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Screening of Variable Importance for Optimsing Electrodialytic 

Remediation of Heavy Metals from Polluted Harbour Sediments 

Abstract 

Using multivariate design and modelling, optimal conditions for 

electrodialytic remediation (EDR) of heavy metals were determined for 

polluted harbour sediments from Hammerfest harbour located in the 

geographic Arctic region of Norway. The comparative importance of the 

variables; current density, remediation time, light/no light, the liquid-solid 

ratio and stirring rate of the sediment suspension were determined in 15 

laboratory scale EDR experiments by projection to latent structures (PLS). 

The relation between the X matrix (experimental variables) and the Y 

matrix (removal efficiencies) was computed and variable importance in 

the projection was used to assess the influence of the experimental 

variables. Current density and remediation time proved to have the highest 

influence on the remediation of the heavy metals Cr, Cu, Ni, Pb and Zn in 

the studied experimental domain. In addition it was shown that excluding 

the acidification time improved the PLS model, indicating the importance 

of applying a limited experimental domain that covers the removal phases 

of each heavy metal in the specific sediment. Based on PLS modelling the 

optimal conditions for remediating the Hammerfest sediment was 

determined; operating in the experimental domain of 0.5-0.8 mA/cm2 and 

a remediation time after acidification of 450-570 hours met acceptable 

levels according to Norwegian sediment quality guidelines. 

Keywords: Chemometrics, Projections onto Latent Structures (PLS), 

electrodialytic remediation, heavy metals, harbour sediments  
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Introduction 

Large amounts of sediments are annually dredged worldwide due to harbour 

development and/or to meet the demands of governmental acts to improve the aquatic 

environment of harbours. The most common ways of dealing with dredged polluted 

sediments are disposal (on land/at sea) and to a lesser degree solidification and 

stabilisation (STSO) in which the polluted sediments are incorporated in constructions, 

e.g. harbour foundations. Development of treatment strategies for the dredged polluted 

sediments has been limited. Due to the increasing focus on moving towards more 

sustainable societies, ideally zero-waste societies, along with the considerations of 

minimising the pollution legacy for future generations, emphasis on developing 

methods to remediate contaminated sediments to levels assessed as non-polluted hence 

increasing the potential recycling opportunities may be expected in the future.  

This issue is increasingly noticeable also in the Arctic region e.g. in Hammerfest 

in the north of Norway. The harbour has been identified as one of 17 harbours of 

highest priority for remedial actions by the Norwegian national action plan for polluted 

seabed [1]. In Hammerfest the harbour sediment pollution originates from several 

sources over the past 50-60 years and has a complex composition of various pollutants, 

including heavy metals, PAHs, PCBs and TBT.  

Even though electrodialytic remediation (EDR) has proven a liable method for 

removing heavy metals from polluted sediments the method has not been systematically 

studied using chemometrics. The objective of the study was therefore to employ 

statistical experimental design in order to identify the relative importance of 

experimental variables and to find optimal settings for achieving satisfactory 

remediation.  

 



4 
 

 

Multivariate design and modelling  

Regardless of experimental method employed, it is of utmost importance that 

experiments are conducted in such a manner that changes in the experimental setup will 

be reflected in the result. Though this may sound logical, it is not always the case in 

practise and one often encounters studies claiming to result in optimal conditions 

without any real proof of it being the case. A typical example is when conducting the 

“optimization” by changing one variable at a time (OVAT) by first finding the best 

outcome for one experimental variable followed by keeping this variable constant while 

changing the next variable(s). This will lead to false optima if the variables are 

correlated, which is often the case, e.g. time – concentration or time – temperature. The 

solution to this problem is to conduct experiments in such a way that optimum settings 

for independent as well as correlated variables are found. An efficient way of ensuring 

this is by employing statistical experimental design [2].  

A complete two-level factorial design contains all possible combinations of the 

settings of the factors and a factorial design with k-factors hence contains 2k 

experiments, resulting in all variables and all variable interactions being modelled. A 

major advantage of this type of design is that the results may be calculated without the 

use of expensive software. A fractional factorial design is constructed as a fraction of a 

complete factorial design, thus containing less information as some variables will be 

confounded with other variables. The fraction is a 1/2p fraction of a complete factorial 

design giving a total of 2k-p experimental runs [2]. Experiments are selected to cover a 

maximum variation over the experimental space. Even though a fractional design 

contains less information, due to confounding, it is possible to construct the design so 

that main effects and two-variable effects are only confounded with higher order 
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interaction effects. Since higher order interaction effects are assumed to be negligible, 

the fractional designs can be used to obtain good estimates of the true main effects and 

the true two-variable interaction effects [2]. For most studies the identification and 

setting/tuning of the most important variables will be sufficient for obtaining 

satisfactory results but there are methods of extracting more information from the data, 

e.g. by employing the experimental variables as input in Projections to Latent Structures 

(PLS) analysis. 

PLS is a multivariate method based on projections and is used for modelling 

quantitative relationships between a descriptor matrix, X and a response matrix, Y. 

Object points in both the X and Y spaces are projected down to a PLS component.  For 

each PLS dimension the scores of the Y-block has a maximum correlation to the scores 

of the X-block. New PLS components are introduced until all the systematic variation in 

the Y-block has been described and only noise remains [2-5]. Advantages of PLS are 

that it can cope with collinearity between variables, noise in both the X and Y matrices 

and that moderate amounts of missing data is tolerated.  

The fraction of the variation in the Y matrix explained by the model is expressed 

in the term R2Y and the predictive power, Q2, is an estimate of the reliability/stability 

of the model calculated by cross-validation. Ideally, these values should be as high as 

possible and of the same magnitude, which would indicate that the model is valid within 

the domain investigated. 

The results from the calculations can be presented in different ways, e.g. in 

Variable Importance in the Projection (VIP) plots. In this manner, the importance of 

each parameter in the model (the experimental variables in the X matrix) can be 

visualized with respect to its correlation to the responses (e.g. the remediation levels in 

the Y matrix). VIP plots reflect the relative importance of the model parameters and 
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parameters with VIP values larger than 1 are considered relevant for explaining the 

responses (remediation levels). However, in order to determine if the setting of the 

experimental variable should be high or low for optimal results, response surfaces 

should be calculated. 

Electrodialytic remediation 

EDR of heavy metals from solid waste materials was developed at the Technical 

University of Denmark in the early 1990s. The method has since then been used for 

remediation of harbour sediments achieving removal efficiencies up to 99% of the 

original heavy metal content and/or to levels below national threshold values and 

recommended values from OSPAR [6-13]. EDR is based on the principles of 

electrokinetic remediation (EKR), in which an electric field is applied, subsequently 

mobilising charged particles in the solid waste. A low level current (in the order of 

mA/cm2 of the cross sectional area between the electrodes) is applied and the fluid in 

the polluted material acts as the conductive medium. Transport processes are dominated 

by electromigration, i.e. the transport of ions and ionic complexes in the pore fluid of 

the polluted material [14-16].  

The electric field initiates electrolysis reactions at the electrode, producing H+ 

ions at the anode and OH- ions at the cathode. Since the effective ionic mobility of H+ is 

higher than that of OH-, an acidic front in the polluted material prevails; subsequently 

desorbing and mobilising heavy metals under the influence of the applied electric field 

[14-16].  

EDR controls the formation and progress of the acidic and alkaline fronts by 

applying ion exchange membranes, separating the polluted material from the electrodes 

and circulating electrolytes, thus controlling the transport of ions between the polluted 
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material and electrolytes. Acidification of the polluted material takes place due to water 

splitting at the anion exchange membrane placed adjacent to the anode [17].  

Based on a kinetics study on the electrodialytic removal of Al, Fe, Ca, K, Mg, Mn 

and Pb from an industrially polluted soil[18]; the removal of a given metal during EDR 

can be divided into four phases: 

(1) Lag phase; the pH decreases to the threshold value at which desorption of the 

given metal is initiated (acidification). During this phase there is a limited 

removal of the given metal. 

(2) Fast metal removal phase; rapid dissolution/desorption of metal in the available 

fraction of the sediment. 

(3) Slow metal removal phase; continuous dissolution/desorption of metal in the 

lesser available fractions of the sediment which could also include dissolution of 

stable soil minerals. 

(4) Stationary phase; removal of the metal ends. 

The time and metal removal rate of each phase in EDR depends on how the metal 

is bound in the sediment, sediment properties and the chosen experimental domain. A 

high buffer capacity will for instance delay the process [16] by prolonging the lag 

phases of the metals that are not predominantly bound to carbonates. An EDR study of 

sediments with different properties revealed variation in the removal efficiencies within 

the same experimental domain [12]. Other EDR studies showed that current density, 

remediation time and to a lesser degree the L/S of the experimental sediment suspension 

significantly influenced the removal efficiencies [6-9]. Since the experimental domain 

influences the pH development in the sediment it also influences the different phases of 

the EDR; e.g. the lower the operating pH the higher propensity of dissolving more of 
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the stable soil minerals hence prolonging the slow metal removal phase prior to 

obtaining stationary conditions.  

Several EKR and EDR studies of polluted sediments have shown limited removal 

of targeted heavy metals applying the traditional stationary set-up with removal 

efficiencies generally below 20% with a few exceptions of up to 40% [12, 19-22]. 

Removal efficiencies of up to 70% have been reported by applying desorbing agents as 

an enhancement technique [21]. Another technique for enhancing removal efficiency  is 

to apply a set-up in which the sediment in suspension is continuously stirred, resulting 

in fast removal of up to 99% Cd, 86% Cu, 95% Pb and 86% Zn in the sediment [7, 8, 

13]. Applying desorption agents in the stirred set-up [12] did not increase the removal 

efficiencies of Cd, Pb and Zn indicating that the stirred set-up has a higher comparative 

importance for the removal efficiencies. In addition lower interferences of the system 

were reported in the stirred set-up [10, 12]. 

Methods and Materials 

Experimental design 

In the first set of experiments the influence of the continuous variables current density, 

remediation time, L/S ratio and stirring rate of the sediment suspension; and the 

discrete variables light/no light and suspension liquid (tap water/distilled water) were 

determined. Undertaking a complete two-level factorial design would entail conducting 

26 (64) experiments. By assuming that the interaction effects between three to six 

factors are negligible, the amount of experiments can be reduced to a 26-3 fractional 

factorial design consisting of 8 experiments (1-8) equivalent to a complete 23 fractional 

design.  In addition, 2 experiments with light and 2 experiments without light were 

conducted at average values of the other variables (9-12).  
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Three more experiments (13-15) were conducted to assess the influence of 

current density and remediation time after acidification (pH=4). The experiments fit 

with a 22-1 fractional factorial design with one centre experiment. 

The experimental settings are presented in table 1.  

Table 1  

EDR Experiments  

Sediments from Hammerfest harbour (coordinates 70.39.87N and 23.41.31E) were 

sampled in the fall of 2010 using a Van Veen grab. The sediments were sampled from 

the top 10 cm of the seabed at a depth of approximately 12 m. The sediments were kept 

cool during transport to the laboratory where they were stored in a freezer until used in 

the experiments. 

The electrodialytic cell was manufactured from Plexiglas and consisted of 3 

compartments; the centre compartment contained the polluted sediments in suspension 

and electrolyte liquids were circulated in the two adjoining compartments. The length of 

the centre compartment was 10 cm, the length of each electrolyte compartment was 3.5 

cm and all three compartments had an inner diameter of 8 cm. Ion exchange membranes 

from Ionics (anion exchange membrane 204 SZRA B02249C and cation exchange 

membrane CR67 HUY N12116B) separated the electrolyte compartments from the 

polluted sediment compartment. NaNO3 (0.01 M) was used as electrolyte liquids and 

was continuously adjusted to pH 2 by HNO3 (5M). The electrolytes (300 ml) were 

circulated via Ismatec reglo pump with a flow rate of 10 ml/min. Platinum coated 

titanium electrodes were used in each electrolyte compartment and a power supply 

(Hewlett Packard E3612A) maintained a constant DC current. The sediment suspension 

was stirred by a CAT R14 motor with a stirrer consisting of plastic flaps (4cm x 0.5 cm) 

fastened to a glass rod. 
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After the EDR experiments sediments were filtered through a Whatman CAT 

1113-320 filter (32.0 cm) and the metal concentrations in both the suspension liquid and 

solids were measured. The stirrer, membranes and electrodes were soaked in HNO3 

(5M) overnight and the heavy metal concentrations in the soaking liquids as well as the 

electrolyte liquids were measured. 

Sediment analysis 

Major elements and heavy metal concentrations (Al, Ba, Ca, Fe, K, Mg, Mn, Na, V, Cr, 

Cu, Ni, Pb, Zn) were measured based on digestion (Norwegian standard NS4770). 

Sediment dried at 105oC (1.0g) and HNO3 (9M, 20mL) were autoclaved (200kPa, 

120oC, 30 minutes). Solid particles were subsequently removed by vacuum filtration 

through a 0.45 µm filter and the liquid was diluted to 100mL. Metal concentrations in 

the liquid were measured by Inductively Coupled Plasma (ICP-OES) and are given as 

mg metal per kg dry matter.  

Sequential extraction was made in four steps based on the improvement of the 

three-step method [23] described by Standards, Measurements and Testing Program of 

the European Union. Air-dried sediment (0.5g) was treated in four steps: extraction with 

acetic acid (0.11M, 20mL, pH3) for 16 hours; extraction with hydroxylammonium 

chloride (0.1M, 20mL; pH2) for 16 hours; extraction with hydrogen peroxide (8.8M, 

5mL) for 1 hour, followed by extraction at 85oC for 1 hour, followed by evaporation of 

liquid at 85oC, subsequently the cooled solid fraction was extracted with ammonium 

acetate (1M, 25mL, pH2) for 16h; digestion as described above.  

Multivariate analysis 

In this study SimcaP11 software was used for PLS modelling based on the experiments 

in table 1. The X matrix consisted of the 6 experimental variables and the Y matrix 

consisted of the removal efficiencies, calculated as the final concentrations compared to 
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the initial concentrations in the sediment (%). In order to include the discrete variables 

in the modelling, the two different conditions were arbitrarily assigned the value 1 or -1.  

VIP Plots were used to assess the variable importance for the models computed. Since 

VIP plots are based on relative values, comparison between different models is possible. 

However, the plots do not convey the numerical influence of variables, so in order to 

establish whether a given variable has a positive/negative influence on the model, 

contour plots were used.  

Preliminary PLS modelling showed that experiment 11 deviated from the 

remaining experiments for all metals/heavy metals, although not as a statistical outlier 

(high voltage indicating disturbances to the system was registered and the final pH was 

high compared to the other three centre experiments) and the experiment was excluded 

from further modelling.    

Results and discussion 

Screening of variable importance for the remediation 

Prior to PLS modelling of the results, a one factor variance analysis of all the 

experiments was undertaken to determine whether there was a significant difference 

between the initial and final concentrations of the metals/heavy metals in the sediments. 

The influence of EDR was apparent for Ba, Ca, K, Mg, Mn, Na, Cr, Cu, Ni, Pb and Zn, 

where a significant difference was registered while the F values were below the critical 

value (3.99) for Al, Fe and Ni, indicating similar levels of initial and final 

concentrations. For these three elements the experimental domain may have covered a 

large part of the initial lag phase of EDR with limited metal removal. Since part of the 

experimental domain could still cover the removal phase(s) of these three elements, it 

was decided to include them in the PLS modelling.      
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The following PLS models were calculated: 

Model 1a: Based on design 1 in table 1 (11 experiments) 

Model 1b: Based on design 1 in table 1; substituting the variable time with time 

after acidification 

Model 2: Based on design 2 in table 1 (3 experiments) 

Model 1a had a good correlation factor, R2Y of 0.74 (figure 1). The predictive power, 

Q2, of the model should ideally have a similar value; however, for model 1 the Q2 

value of 0.045 is very low, indicating that the model is not stable within the 

experimental domain.  

Figure 1 

In the VIP plot of model 1a, the relative importance of experimental variables 

are in the order current density (1.80)> time (0.96)~suspension liquid (0.93)>stirring 

rate (0.70)>L/S (0.65)>light (0.29). The low Q2 value of the model could indicate that 

the studied experimental domain does not cover the removal phase(s) of the 

metals/heavy metals in the model, in which case the experimental domain should be 

adjusted.  

Experimental observations of varying acidification time (not necessarily related 

to the variation in the other experimental variables) indicated that applying the total 

remediation time as a variable could result in deviations in the PLS modelling. This 

would especially be the case when the acidification time constitutes a high fraction of 

the total remediation time. Based on these considerations a new model was calculated 

(model 1b), in which the ‘total remediation time’ was substituted by the variable ‘time 

after acidification’ (pH<4), based on the same 11 experiments as in model 1a. 

Adjusting the time variable leads to a skewed fractional factorial design, none the less 

the results have an indicative value.  
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The correlation factor, R2Y of 0.75, was similar to the correlation factor of model 1a. 

The predictive power of the model increased manifold in comparison with that of model 

1a and had a Q2 value of 0.44 (figure 1). In model 1b the VIP plot (figure 2) deviates 

from model 1a with a variable importance order of time after acidification (1.63) 

>current density (1.34)>>suspension liquid (0.78)~stirring rate (0.67)~L/S (0.64)>light 

(0.26). Time after acidification and current density hence influence the model to a larger 

extent than the other variables. The difference in the VIP plots between the two models 

further accentuates the importance of time after acidification rather than the total time 

of the remediation in the modelling, most probably related to larger parts of the initial 

EDR lag phases of the different metals being excluded from the model. Previous EDR 

studies of harbour sediments have focused on the total remediation time [6-12, 24]; 

acknowledging the influence of carbonate content and hence acidification time on EDR 

[12], the studies were however not based on chemometric modelling. The findings of 

the PLS models 1a and 1b confirm the development of the different EDR phases [18] as 

a function of time. It is also worth noting that the earlier EDR studies of sediments have 

focused on the  influence of experimental settings on each metal individually, rather 

than including several metals in the same analysis, as made possible by the PLS 

calculations for models 1a and 1b. 

To test whether the model correlation and predictability could be further 

improved by applying time after acidification rather than the total remediation time in 

the experimental design, model 2 was computed based on three new experiments 

(design 2, table 1). Due to the findings in model 1a and 1b, the experimental design only 

included the two most important variables – current density and time after acidification; 

and in order to focus on the fast removal phases of EDR the time range was narrowed. 
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The correlation factor R2Y, was 0.82 and the prediction power, Q2 was 0.65 

(figure 1), a vast improvement compared to model 1a. A VIP plot (not shown) revealed 

equal variable importance in the two experimental variables, indicating that time after 

acidification and current density were equally important for the metal removal 

efficiencies in the three experiments.  

Including all the metals in the models, as done above, gives a general overview 

of the data, i.e. how well the experimental domain has been defined and also the general 

trends in variable importance. Since the time ranges of the metal removal phases vary 

among the metals, the chosen experimental domain may not be simultaneously ideal for 

all metals.  

To assess any differences in model trends and variable importance for the 

different metals, new models for each metal were computed. The correlation factors and 

predictive power of each metal in the three models vary (figure 1) and with the 

exception of Ca, Mg, Na and Zn, the models for each metal improves from model 1a to 

model 1b to model 2 (figure 1). A reason for the poorer models for Ca, Mg, Na and Zn 

could be the narrow experimental time range (when scrutinising the data it is found that 

the concentration levels for each of these metals are not affected by the experimental 

settings). Since these metals appear to be in the stationary phase of the EDR it is 

justifiable to exclude them from model 2. Modelling the remaining metals in one model 

vastly improves the model with a correlation factor of 0.97 and a predictive power of 

0.94. 

Figure 2 

Since the model correlation factors and predictive power varies from metal to 

metal, one may also expect a variation in the relative importance of variables depending 

on the metal. This trend is exemplified by the variation in the variable importance of the 
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different metals in model 1b (figure 2). For illustrative purposes the metals have been 

grouped into: mobile metals naturally occurring in sediments (Ca, K, Mg, Na); less 

mobile metals naturally occurring in sediments (Al, Ba, Fe, Mn, V) and contaminants 

(Cr, Cu, Ni, Pb, Zn).  

As illustrated in figure 2b the variables that influence the removal of the mobile 

metals in the sediment are current density, time after acidification and suspension 

liquid. Contour plots of the metals (not shown) reveal that applying distilled water 

rather than tap water increases the removal efficiencies, indicating that distilled water 

dissolves more salts, making especially Ca, Mg and Na more available for extraction. 

For the naturally occurring metals in the sediment matrix, Al, Ba, Fe and Mn the 

general trend is that time after acidification and current density have the highest relative 

importance for the removal efficiencies. For V it appears that the stirring rate rather 

than the current density influences the removal efficiency, indicating that a relatively 

larger part of V is present in the exchangeable fraction of the sediment compared to the 

other metals. This is supported by the estimation of the exchangeable fractions of the 

different elements by sequential extraction (figure 3).  

For the contaminants Cr, Cu, Ni, Pb and Zn; figure 2d illustrates that current density 

and time after acidification have higher comparative importance for the remediation 

efficiencies than the other variables. Previous EDR studies of sediments have applied 

OVAT designs with up to 3 variables and have hence not included possible interactions 

between variables. Although direct comparison of variable importance on EDR was not 

the main objectives of the studies, some general trends can be retrieved. In general, 

remediation time and current density had the highest influence on removal efficiencies 

of the studied heavy metals (Cd, Cu, Pb and Zn) [7, 8, 10]. However, in one of the 

studies, L/S was found to be more significant than current density for Cu and Zn [8], 
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while another study found that stirring rate was more significant for the removal of Cu 

and Pb than current density [10]; the remediation time was constant in both studies. In 

the present study current density and time after acidification were consistently found to 

be more important than the other variables. The difference in the results may be due to 

the different experimental domains and sediments studied and emphasise that removal 

of each heavy metal from the same sediment may be different depending on how they 

are bound in the sediment and to a lesser degree, the experimental settings.  

EDR effect on the sediment matrix 

Prior to proceeding with optimisation for the EDR process, an assessment of the 

remediation effect on the sediment matrix was performed. The removal efficiency of 

each metal was compared to the distribution of the metal in the different fractions of the 

sediment (figure 3); exchangeable, reducible, oxidisable and residual estimated by 

sequential extraction.  

Figure 3 

For the elements Al, Ca, Fe, Mg, Mn, Na the highest levels of removal are 

similar to the amounts found in the exchangeable fraction of the sediment. These 

findings are in line with the predictive powers of the individual modelling of Model 1b 

which indicate that after acidification, these metals are removed at a rate consistent to 

the fast metal removal phase of the exchangeable fractions.  

The individual modelling of Ba, K and V in Model 2 (figure 1) resulted in 

poorer predictive powers indicating that the experimental domain covered different 

phases of the metal removal. This is further supported by the highest levels of metal 

removal being equivalent to residual fraction levels of the sediment indicating the metal 

removal at this stage could be either in the slow metal removal or stationary phase.  
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The removal efficiencies of Cr and Ni are lower than the amounts found in the 

exchangeable fractions, which could be due to the acid exchangeable fractions not being 

completely dissolved at the pH levels of the experiments. The removal efficiency of Pb 

is equivalent to the exchangeable fraction and along with results of Model 2 this 

suggests that within the experimental domain, Pb was in the fast metal removal phase of 

EDR. Cu and Zn were also removed from the oxidisable and reducible fractions of the 

sediment, respectively. The predictive powers of these two elements were however 

good, so it is not possible to assess whether the two metals have moved into the slower 

metal removal phases with minor influences on the model; or whether they remain in 

the fast removal phase within the experimental domain. In a previous study, the heavy 

metal removal from the oxidisable fractions was attributed to the stirred set-up which 

enhanced the oxidation of the sediment, thus releasing heavy metals bound in these 

fractions [9]. Whether the stirring rate prolongs the fast removal phase has however not 

been investigated. 

The above analysis shows that comparison of removal efficiencies in relation to 

sediment fraction distribution and the PLS model(s) can give indications of which EDR 

phases each metal undergoes over the studied experimental domain.  

Application of model for optimisation of remediation 

The maximum quantitative removal of contaminants in the applied experimental 

domain is illustrated in figure 4 and is compared to two sets of background levels in 

sediments as defined by the Norwegian EPA and OSPAR. The initial concentrations of 

Cr and Ni are low and although elevated compared to the background levels of OSPAR, 

are not high enough to be of concern. The concentrations of the heavy metals targeted in 

this study, Cu, Pb and Zn, significantly exceed the Norwegian sediment quality criteria. 

Figure 4 
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The removal efficiencies of Cu, Pb and Zn are up to 70%, 79% and 69%, 

respectively, in the applied experimental domain and meet the background levels of the 

Norwegian EPA. The removal efficiencies of Cu and Zn do not reach the background 

values of OSPAR and if these are to be met, the experimental domain should be 

expanded.   

The sediment-specific removal efficiencies as a function of the experimental variables 

can be visualised in contour plots. The plots for Cu, Pb and Zn, from model 1b 

calculations, are shown in figure 5. Based on the screening of variable importance of 

these three heavy metals (figure 2) time after acidification and current density are 

varied in the plot, while the remaining experimental variables are set at fixed levels. 

Figure 5 

The contour plots are valuable tools for developing a remediation strategy to 

meet remediation goals. The contour plots indicate the experimental domain to operate 

within, in order to achieve specific remediation objectives. The most site-appropriate 

strategy can then be chosen according to whether time or energy consumption is 

considered more vital.  

To meet the Norwegian background levels, the simultaneous remediation of the 

three targeted heavy metals Cu, Pb and Zn is necessary in this study. Instead of 

comparing the contour plots in figure 5, a ‘sweet spot’ plot was made – essentially three 

overlaying contour plots (figure 6). As above the time after acidification and current 

density are varied, while the remaining experimental variables are fixed at constant 

values. The sweet spot plot illustrates the space in which one heavy metal, two heavy 

metals and all the heavy metals (sweet spot), respectively meet the specified 

remediation objectives. For the sediment in this study it would be necessary to operate 
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at high levels of both current density and time after acidification to reach levels 

equivalent to Norwegian background levels.   

Figure 6 

Conclusion 

Multivariate design and analysis revealed that the variables current density and 

remediation time had the highest influence on the removal of Cr, Cu, Ni, Pb and Zn. 

The PLS model was significantly improved by substituting remediation time with time 

after acidification, making it possible to determine optimal experimental settings for 

removing targeted heavy metals in specific sediment. 

Since the PLS model revealed that the variables L/S ratio, stirring rate, suspension 

liquid and light/no light had a lower influence on the EDR process for the specific 

sediment, these were kept fixed, while optimal settings for current density and time 

after acidification were determined. The study showed the potential of applying 

multivariate design and analysis as a tool for determining variable importance and 

optimal conditions.  
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Table 1. The experimental designs. 

Exp. Time 
 

Current 
density 

L/S 
 

Stirring 
rate 

Light Suspension 
liquid 

 (h) (mA/cm2) (ml/g) (rpm) - - 
Design 1 
1 192 0.04 2 1300 Yes Tap water 
2 672 0.04 2 1 No Tap water 
3 192 0.80 2 1 Yes Dist. water 
4 672 0.80 2 1300 No Dist. water 
5 192 0.04 12 1300 No Dist. water 
6 672 0.04 12 1 Yes Dist. water 
7 192 0.80 12 1 No Tap water 
8 672 0.80 12 1300 Yes Tap water 
9 432 0.42 7 650 Yes Dist. water 

http://dx.doi.org/10.1016/j.seppur.2011.02.010
http://dx.doi.org/10.1016/j.chemosphere.2010.07.004
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10 432 0.42 7 650 Yes Dist. water 
11 432 0.42 7 650 No Dist. water 
12 432 0.42 7 650 No  Dist. water 
Design 2 
13 142* 0.80 2 1300 Yes Dist. water 
14 2* 0.04 2 1300 Yes Dist. water 
15 72* 0.42 2 1300 Yes Dist. water 
*time after acidification 

 

 

 

 

 

 

 

 

 

 

Figure 1. Model summaries of model 1a, model 1b and model 2: a). Model summary 

plot of all models (including all the metals) b).-d). Model summary plots of modelling 

each metal individually in models 1a, 1b and 3. 

Figure 2. VIP Plots of Model 2.  a) All the metals combined (one model); b). Individual 

modelling - mobile trace elements in soil; c). Individual modelling - sediment trace 

elements; d). Individual modelling - contaminants in the sediment.  

Figure 3. The maximum removal of metals (%) in the experimental domain of the 15 

electrodialytic experiments, compared to the exchangeable, reducible, oxidisable and 

residual fractions (%) in the sediment determined by sequential extraction.  
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Figure 4. Initial and lowest final contaminant concentration levels in the experimental 

domain compared to background values defined by OSPAR and the Norwegian EPA.  

Figure 5. Removal efficiency (%) of a) Cu, b) Pb and c) Zn  as a function of time after 

acidification and current density (model 2). The remaining experimental variables were 

fixed at: stirring rate of 650 rpm; liquid-solid ratio of 7 mg/ml, suspension liquid – 

distilled water and light. 

Figure 6. Sweet spot of remediation to obtain concentrations of contaminants equivalent 

to background values as determined by the Norwegian EPA, i.e. Cu removal efficiency 

of min. 40 %; Pb removal efficiency of min. 66% and Zn removal efficiency of min. 

31%. In the plot the stirring rate was constant at 650 rpm, liquid-solid ratio was 7 mg/ml 

and suspension liquid was distilled water.  
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25 
 

 

Figure 2 

  



26 
 

 

Figure 3 
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Figure 4 
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Figure 5a 

 

Figure 5b 

 

Figure 5c 
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Figure 6 
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