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Abstract 

Comparisons of cell and stack designs for the electrodialytic removal of heavy metals from 

two harbour sediments, were made. Multivariate modelling showed that sediment properties 

and experimental set-ups had the highest influence on the heavy metal removal indicating that 

they should be modelled and analysed separately. Clean-up levels of Cu, Pb and Zn were 

significantly higher for the cell designs, implying that longer time and relatively more electric 

charge and energy would be necessary to achieve similar clean-up levels in the stack design 

experiments.  

In the studied experimental domain, the optimal current density for the 2- and 3-compartment 

cells was 0.12mA/cm2 (center value) removing the highest quantity of Cu, Pb and Zn per Wh. 

The highest percentages removed were 82% Cu, 81% Pb and 92% Zn were however achieved 

at higher current density. For the stack experiments conducted at same electric charge per unit 

sediment, energy consumption was a magnitude higher and the highest clean-up levels were 

21% Cu, 42% Pb and 73% Zn.  
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1 Introduction 

Electrodialytic remediation (EDR) is based on applying an electric field of low current to the 

contaminated material and is among the electrokinetic remediation methods used for 

removing heavy metals from contaminated materials. The electric field initiates electrolysis 

reactions at the electrode, producing protons at the anode and hydroxyl ions at the cathode. 

Since the effective ionic mobility of protons is higher than that of hydroxyl ions, an acidic 

front prevails in the contaminated material [1] and heavy metals are subsequently desorbed, 

mobilised and transported by electromigration towards the cathode. The rate of acidification 

of the contaminated material depends on its physical and chemical properties; a high buffering 

capacity in soil will, for instance, retard the acidification as may high levels of organic species 

and salts [2-4].  

EDR controls the formation and progress of the acidic and alkaline fronts by making use of 

ion exchange membranes, which physically separate the contaminated material from the 

electrodes and circulating electrolytes. In addition, they control the transport of ions between 

the contaminated material and electrolytes, preventing the introduction of protons and 

hydroxyl ions from the electrolysis reactions into the contaminated material. Acidification of 

the contaminated material is however still achieved, mainly due to water splitting at the anion 

exchange membrane [5] and the hydroxyl ions produced are transported across the membrane 

to the anolyte while the protons advance towards the cathode (figure 1).  

EDR has been successfully used for the removal of heavy metals from different contaminated 

solid materials such as soil, harbour sediments, wood, fly ash and sewage sludge [6-10]. 

During the last decade, the majority of EDR studies have been conducted on lab scale using a 

3-compartment design (figure 1), consisting of a centre compartment with the polluted 

material and two adjoining compartments in which electrolytes are continuously circulated. 
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Experimental variables shown to have significant effect on the heavy metal removal in this 

design include current density, remediation time and liquid-solid (L/S) ratio of the 

contaminated material [10-12]. In addition, several studies have shown that applying a stirred 

rather than a stationary set-up significantly improves the removal of heavy metals from soil 

[13], harbour sediment [14] and fly ash [15].   

Recently, a new design for EDR lab-scale experiments, consisting of a 2-compartment cell, 

has been developed and patented at The Technical University of Denmark. The polluted 

material compartment is adjoined by one compartment in which electrolyte is circulated. A 

cation exchange membrane separates the two compartments and ensures that desorbed 

elements from the contaminated material are transported to the electrolyte while preventing 

hydroxyl ions produced in the electrolysis reactions from entering the contaminated material 

compartment. The anode is placed directly in the polluted material, leading to acidification 

due to the direct supply of protons. Few studies have been conducted in the 2-compartment 

cell and the influence of experimental variables on EDR in this design has not been as well 

documented as for the 3-compartment cells. A recent study, however, established that the 

acidification time was significantly reduced, the final pH was lower and lower voltages were 

observed in the 2-compartment compared to the 3-compartment cell. In addition the higher 

conductivity in the 2-compartment cell was attributed to the direct introduction of protons to 

the suspension [16]. 

An EDR stack design for bench-scale experiments was introduced by Jensen et al. [17] for 

improving the recycling potential of contaminated fly-ash by reducing the leachability of 

heavy metals. The stack, consisting of alternating feed- and concentrate-compartments, was 

designed based on the principles of the 3-compartment cell with the aim of continuous 

treatment of larger quantities of fly-ash and for the later scaling-up to pilot-plant [18]. The 

polluted material in suspension is continuously circulated in the feed compartments, while 
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concentrate liquid is continuously circulated in the adjacent concentrate compartments. Ion-

exchange membranes separate the feed- and concentrate-compartments (figure 1) and control 

the transport of ions between the compartments. Acidification of the polluted material is 

ensured by water splitting at the anion exchange membrane and the subsequent accumulation 

of protons in the feed compartments. The desorbed heavy metals are transported by 

electromigration from the feed- to the concentrate compartments. 

Figure 1 

Direct comparisons of the above cell- and stack designs have not yet been undertaken. 

Multivariate analysis provides a valuable tool for such a comparison and is based on statistical 

experimental design and evaluation of the results, e.g. by Projections onto Latent Structures 

(PLS).  

PLS is a multivariate statistical tool for evaluating the experimental variable importance 

within the studied experimental domains. Among the advantages of PLS is that it copes with 

colinearity between variables and provides plots of the data compressed to fewer dimensions 

than the original dataset [19-21]. In this respect, PLS has proven a reliable tool for assessing 

the comparative experimental variable importance as well as for predicting experimental 

conditions for specified remediation objectives for the electrodialytic removal of heavy metals 

from harbour sediments [22, 23]. 

In this study PLS was used to model the quantitative relation between a descriptor matrix, X, 

consisting of the experimental variables and a response matrix, Y, consisting of the heavy 

metal clean-up levels. Object points in each of the X and Y matrices are projected down to a 

PLS component. For each PLS dimension the PLS scores of the Y-matrix are calculated to 

have a maximum correlation to the scores of the X-matrix. New PLS components are 

iteratively introduced until the systematic variation in the Y-matrix has been exhausted [19, 

20].  
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The main objective of this study was to compare the different experimental set-ups for two 

harbour sediments, thus providing a foundation for later scaling-up. The comparison focused 

on the two experimental variables current density and remediation time for the three EDR 

designs: 2-compartment cell, 3-compartment cell and stack, as well as clean-up levels and 

energy consumption. Since EDR of harbour sediments in the stack has not previously been 

reported, a more elaborate analysis for understanding the EDR processes was included in the 

study. 

2 Experimental 

2.1 Experimental sediments 

Sediments from Sisimiut, Greenland and Hammerfest, Norway were sampled from the top 10 

cm of the seabed using a Van Veen grab and were kept frozen during transport and stored in a 

freezer until analysed or treated. 

Since the EDR stack could not treat sediment suspensions with grain sizes above 1 mm, the 

sediments were sieved through a 1mm sieve prior to use to enable comparison of the different 

designs/set-ups.  

2.2 Sediment analyses 

Major elements and heavy metal concentrations (Al, Ca, Fe, K, Mg, Mn, Na, V, Cr, Cu, Ni, 

Pb, Zn) were measured based on digestion (Danish standard DS259). Sediment dried at 105oC 

(1.0g) and HNO3 (9M, 20 mL) were autoclaved (200kPa, 120oC, 30 minutes) and solid 

particles were subsequently removed by vacuum filtration through a 0.45µm filter and the 

liquid was diluted to 100mL with distilled water. Metal concentrations in the liquid were 

measured by Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP-OES).  

Chloride content was measured by agitating sediment dried at 40oC (10g) with Millipore 

water (40mL) for 20 hours on a horizontal shaker. Solid particles were subsequently removed 
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by vacuum filtration through a 0.45µm filter and the chloride concentration was measured by 

ion chromatography.  

Carbonate content was measured by treating dried sediment (5g) with HCl (3M; 20mL) and 

volumetrically measuring the CO2 developed in a Scheibler apparatus, calibrated with CaCO3. 

Organic content was based on loss of ignition of dried sediment (2.5g, 550oC, 1 hour). 

pH (KCl). Dried sediment (5g) was agitated with KCl (1M, 12.5mL) for an hour and pH was 

subsequently measured using a radiometer analytical electrode. 

Wet sieving. A mixture of wet sediment (75g), distilled water (350mL) and Na4P2O7
.10H2O 

(0.1M, 10mL) was agitated for 24 hours. This slurry was subsequently sieved through a 63µm 

sieve to determine the fraction above and below 63µm. 

Sequential extraction was made in four steps based on the improvement of the three-step 

method [24] described by Standards, Measurements and Testing Program of the European 

Union. Air-dried sediment (0.5g) was first extracted with acetic acid (0.11M, 20mL, pH3) for 

16 hours; secondly extracted with hydroxylammonium chloride (0.1M, 20mL; pH2) for 16 

hours; thirdly extracted with hydrogen peroxide (8.8M, 5mL) for 1 hour, followed by 

extraction at 85oC for 1 hour, then evaporation of liquid at 85oC and subsequently the cooled 

solid fraction was extracted with ammonium acetate (1M, 25mL, pH2) for 16h; and a fourth 

digestion of the remaining solid particles was performed (as described above).  

pH dependent extraction experiments were made by agitating 8 samples of dried sediment 

(5g) with HNO3 (25mL) in varying concentrations (0.01M-1M). Extractions with distilled 

water were made as a reference. All the extractions were agitated for a week on a horizontal 

shaker. Subsequently samples settled for 15 minutes and the pH was measured. Solid particles 

were separated from the sediment suspensions by vacuum filtration through a 45µm filter and 

digestion (as described above) of the dried solid particles was conducted.  
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2.3 EDR experiments 

2.3.1 Materials 

The 2-compartment and 3-compartment cells used in the study were designed (figure 1) using 

the same materials and sizes; the 2-compartment cell not containing an electrolyte 

compartment or anion exchange membrane. The cell compartments were manufactured from 

Plexiglas and the dimensions were: length of electrolyte compartments 3.5 cm; length of 

sediment suspension compartment 10 cm; inner diameter of all compartments 8 cm. Ion 

exchange membranes were from Ionics (anion exchange membrane 204 SZRA B02249C and 

cation exchange membrane CR67 HUY N12116B). The electrolyte used was NaNO3 (0.01M) 

adjusted to pH 2 by HNO3 (7M). The electrolyte liquids (350 mL) were circulated between 

external glass bottles and the electrolyte compartments via Pan World pumps with flow rates 

of 30mL/min. Platinum coated titanium electrodes were used in each electrolyte compartment 

and a power supply (Hewlett Packard E3612A) maintained a constant DC current. The 

sediment suspension was stirred by a RW11 Basic lab-egg (IKA 2830001) with a stirrer 

consisting of plastic flaps (4cm x 0.5cm) fastened to a glass rod.  

After the EDR experiments the sediment suspensions were gravity filtered and the heavy 

metal concentration in the liquid and solids from the suspension were measured. The stirrer, 

membranes and electrodes were rinsed in HNO3 (5M) overnight and the heavy metal 

concentrations in the rinsing liquids along with the electrolyte liquids were measured by ICP-

OES. 

Spacers, ion-exchange membranes and electrodes were assembled into an EDR stack based on 

the electrodialysis cell design by Jurag Separation A/S. The stack used in the present study 

consisted of 5 feed spacers with alternating concentrate spacers. The feed and concentrate 

spacers were separated by alternating cation and anion exchange membranes resulting in 5 
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feed compartments separated by concentrate compartments (figure 1). At each end of the 

stack an electrode compartment was separated from the adjacent concentrate compartment 

with ion-exchange membranes. Each feed spacer was 5mm wide and had an inlet at the 

bottom and an outlet at the top, both 3 mm wide, enabling sediment with grain sizes <1mm to 

pass through the feed compartment without clogging. The concentrate spacer was 0.6 mm 

wide and also had an inlet at the bottom and an outlet at the top. Each ion-exchange 

membrane had a surface area of 530cm2, equal to the compartment surface.  

External plastic containers initially contained 3L of electrolyte (NaNO3, 0.01M), 3L 

concentrate (NaNO3, 0.01M) and 6L sediment suspension and circulation of the individual 

liquids/suspension were ensured by external pumps. Electrolyte liquids from the cathode and 

anode compartments were mixed in the external electrolyte container. Circulation of the 

sediment suspension ensured mixing without need for stirring in the external suspension 

container. 

After the EDR experiments the sediment suspensions were gravitational filtered and the heavy 

metal concentration in the suspension liquid and solids along with the concentrate and 

electrolyte liquids were measured by ICP-OES. The feed compartments of the stack were 

rinsed with distilled water and the concentrate and electrolyte compartments were first rinsed 

with HNO3 (0.1M) and subsequently with distilled water.  

2.3.2 Experimental design 

Previous EDR experiments found that PLS model predictability and reliability increased when 

time after acidification was included as a parameter rather than the total duration of the 

experiments. Acidification time in this study is the time for achieving pH 4 in the sediment 

suspension. Time after acidification is accordingly the time the experiment ran after reaching 

pH 4 in the sediment suspension.   
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The same current densities and liquid/solid (L/S) ratios were used in the comparable cell- and 

stack experiments. The EDR treatment time in the stack experiments does not equal the 

experimental duration, since only approximately 1/5 of the sediment resides in the stack at 

any given time.  However, larger quantities of sediment were still treated in the stack 

experiments and therefore the equivalent electrical charge per unit of dried sediment was used 

for the comparison between the different set-ups.  

Treatment time was calculated using the formula: 

 (Ic x tc)/mc = (Is x ts)/ms 

where I is the current (A), t is the effective EDR treatment time (h) and m the mass (g) of dry 

sediment; the c signifies cell and s signifies stack. The remediation time after acidification 

listed in table 1 is based on the treatment times in the cell experiments; the actual 

experimental times in the stack were lower (given in brackets in the table). 

In all experiments the L/S ratio of the sediment suspension was 6ml/g, using distilled water as 

suspension liquid and the stirring rate in the cell experiments was 1,300rpm.  

9 experimental designs were made to test the comparative influence of the experimental 

variables. The continuous variables were current density and remediation time after 

acidification. The discrete variables included two sediments and the three experimental set-

ups. All of the nine experimental designs included 3 variables and were designed as 23-1 

fractional factorial designs consisting of 4 experiments based on a complete 22 factorial 

design and an additional 3-4 experiments representing centre point(s) of the continuous 

variables. 

In experiments 18, 19 and 22, conducted in the stack, sampling of the sediment suspension, 

electrolyte liquid and concentrate liquid were made 8 times during each experiment providing 

more data for modelling and data treatment.  
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The experimental designs are given in table 1.  

 

Table 1: Experimental settings. The design parameter time after acidification was based 
on the duration in cell experiments; electrical charge per mass unit was used to adjust 
the true duration of the stack experiments. The true duration times for the stack 
experiments (no. 16-22) are given in brackets.   

Experiment Sediment Current 
density 
(mA/cm2) 

Time after 
acidification 
(h) 

Set-up 

1 Hammerfest 0.04 48 3-compartment 
2 Sisimiut 0.2 48 3-compartment 
3 Sisimiut 0.04 278 3-compartment 
4 Hammerfest 0.2 278 3-compartment 
5 Hammerfest 0.12 163 3-compartment 
6 Sisimiut 0.12 163 3-compartment 
7 Sisimiut 0.12 163 3-compartment 
8 Sisimiut 0.04 48 2-compartment 
9 Hammerfest 0.2 48 2-compartment 
10 Hammerfest 0.04 278 2-compartment 
11 Sisimiut 0.2 278 2-compartment 
12 Hammerfest 0.12 163 2-compartment 
13 Hammerfest 0.12 163 2-compartment 
14 Sisimiut 0.12 163 2-compartment 
15 Sisimiut 0.12 163 2-compartment 
16 Hammerfest 0.04 0 (0) Stack 
17 Hammerfest 0.2 48 (2.5) Stack 
18 Sisimiut 0.04 48 (2.5) 

278 (14.5) 
Stack 

19 Sisimiut 0.2 0 (0) 
48 (2.5) 
278 (14.5) 

Stack 

20 Hammerfest 0.12 24 (1.5) Stack 
21 Hammerfest 0.12 24 (1.5) Stack 
22 Sisimiut 0.12 24 (1.5) 

163 (8.5) 
Stack 

23 Hammerfest 0.2 0 3-compartment 
24 Hammerfest 0.04 48 2-compartment 
25 Hammerfest 0.2 0 2-compartment 
26 Hammerfest 0.12 24 3-compartment 
27 Hammerfest 0.12 24 2-compartment 

The clean-up levels were calculated as the percentage of the given heavy metal removed 

compared to the initial amount in the sediment. The fraction of heavy metal mobilised in the 

EDR treatment was calculated as the amount in suspension liquid (filtered), electrolyte 
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liquid(s) and concentrate liquid compared to the total amount of heavy metal at the time of 

sampling.  

The power consumption in Wh (E) was calculated as:  

� 𝐸𝐸 = 𝑉𝑉𝑉𝑉 𝑑𝑑𝑑𝑑
𝑡𝑡

𝑡𝑡=0
 

where V is the voltage between the electrodes (V), I is the current (A) and t is the remediation 

time (h).  

2.4 PLS modelling 

In this study SimcaP11 software was used for calculating PLS models based on the 

experiments in table 1. The X-matrix consisted of the experimental variables and the Y matrix 

consisted of the removal efficacies (%) of the elements in the sediment. In models 1-3, the Y-

matrix included the elements Al, Ba, Fe, K, Mg, Mn, Na, V, Cr, Cu, Ni, Pb and Zn; while in 

models 4-5 the Y-matrix included Cu, Pb and Zn. In order to include the discrete variables in 

the modelling, they were arbitrarily set to -1 or 1.   

To assess the reliability and stability of the calculated PLS models the correlation factor R2Y 

and predictive power, Q2 were calculated. R2Y is a measure of the fraction of the Y matrix 

explained by the model and Q2 is an estimate of the reliability of the model calculated by 

cross-validation. Variable Importance in the Projection (VIP) plots present the importance of 

each parameter in the model with respect to its correlation to all the responses (Y) and to the 

projection (X). Hence the VIP plots reflect the relative importance of the model parameters to 

each other and parameters with VIP values above 1 are considered relevant for explaining the 

responses. The VIP plots do however not convey the numerical influences of variables, so in 

order to establish whether a given variable has a positive/negative influence on the model, 

coefficient plots were used.  

3 Results and Discussion 
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3.1 Sediment characteristics 

The sediment characteristics are summarised in table 2 and both sediments have low buffer 

capacity and low content of organic matter. For some of the elements (Ca, Pb, Zn) there are 

less deviations in the Hammerfest sediment implying that the sediment from Sisimiut is less 

homogeneous with respect to these elements. In general, the sediment characteristics appear 

to be at similar levels in the two sediments.   

Table 2: Sediment characteristics. 

Characteristic Units Hammerfest  
sediment 

Sisimiut  
sediment 

Carbonate % 0.7±0.1 1.7 ±0.6 
Organic matter % 5.3±0.1 6.4 ±0.3 
pH  7.5±0.02 7.5±0.05 
Grain size <63µm % 14.3 19.0 
Chloride 

mg/kg 

9,200±840 7,950±470 
Al 7,050±510 4,003±375 
Ba 120±10 80±10 
Ca 5,100±480 11,400±2,800 
Fe 13,100±850 9,750±1,250 
K 2,950±100 1,430±140 
Mg 4,830±280 3,200±310 
Mn 125±10 70±10 
Na 5,400±530 5,120±840 
V 37±9 29±4 
Cr 28±2 24±4 
Cu 77±25 190±50 
Ni 19±2 13±1 
Pb 58±10 66±20 
Zn 105±15 290±50 
 

Figure 2 illustrates the dispersion of elements in the different fractions of the two sediments, 

based on results of the sequential extraction. For the heavy metals of environmental interest, 

more Ni and Pb, and less Cr, Cu and Zn are related to the exchangeable and reducible 

fractions in the Hammerfest sediment than in the Sisimiut sediment, which could result in 

different EDR removal rates. For the other elements, there is generally a higher potential for 

mobilisation in the Sisimiut sediment.  

Figure 2 
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Based on the pH dependent desorption analyses, the desorption order in the Sisimiut sediment 

was Zn(6)>Ni(5)>Cr(3),Cu(3),Pb(3); while the desorption order in the Hammerfest sediment 

was Zn(5)>Ni(4)>Cu(3),Pb(3)>Cr(2.5). This indicates that in order to ensure mobilisation of 

Cr, Ni and Zn, the sediment suspension should be more acidic for the Hammerfest sediment 

than the Sisimiut sediment. Therefore, even though the sediment characteristics appear to be 

similar, the sequential extractions and pH desorption orders have revealed that different 

results of EDR might be expected depending on how the heavy metals are bound in the 

sediment. 

In order to investigate this further, both sediments were included in the PLS models calculated 

for each of the three set-ups: 

Model 1a: 3-compartment cell (experiments 1-7) 

Model 1b: 2-compartment cell (experiments 8-15) 

Model 1c: EDR stack (experiments 16-22) 

The three models had correlation factors, R2Y, in the range 0.59-0.76 and predictive powers 

in the range 0.04-0.32, the latter indicating unstable models. This could be due to the limited 

number of experiments or too large an experimental domain; e.g. dissimilar sediments. This is 

further accentuated in the VIP plots of the models (figure 3) revealing that the sediment had 

the highest influence on EDR in all of the three set-ups and hence should be modelled 

separately. 

Figure 3 

The two models of the cell experiments predicted higher removal efficiencies of Ni and Zn in 

the Sisimiut sediment, and Pb in the Hammerfest sediment. The predictions of Pb and Zn are 

in line with the EDR results (table 3) and the results of the sequential extractions (figure 2), 

i.e. a higher fraction of Pb was bound in the exchangeable and reducible fractions of the 

Hammerfest sediment while a higher fraction of Zn was bound to the same fractions in the 



14 
 

Sisimiut sediment. The removal efficiencies of Ni were similar in the two cell designs which 

may be due to a more uniform distribution in the two sediments than is the case for Pb and 

Zn.  

3.2 Comparison of cell and stack experiments 

3.2.1 General trends in the EDR experiments 

A summary of the results of the EDR experiments is listed in table 3, details of the results are 

given in the supplementary material table A and table B2. Some caution should be exercised 

in making direct comparisons between the three set-ups, since experiments represent different 

parts of the experimental domain. It is however possible to observe some general trends and 

differences between the set-ups.  

As expected [16], the acidification time was generally shorter in the 2-compartment than in 

the 3-compartment cell but the difference in acidification time was small, which is probably 

related to the low buffer capacities of the sediments. Larger differences may however occur 

when studying more calcareous sediments. The acidification times in the stack are not directly 

comparable to the cell design experiments since relatively more electric charge per time unit 

is supplied in the stack. Electrical charge calculations however, revealed that the stack needed 

relatively more electrical charge per mass unit to acidify the sediment suspension (table 3). 

The final pH was generally lower in the 2-compartment than in the 3-compartment cells, 

which most likely is due to the direct supply of protons in the 2-compartment cell. The final 

pH the EDR stack suspension liquid were not as acidic as in the cell experiments (implying 

that clean-up levels for heavy metals desorbing around or below pH 3 might be poorer than in 

the cell experiments). This observation could be explained by differences in concentration 

gradients, differences in membranes and/or differences in the transport of H+ in the stack 

compared to the 2- and 3-compartment cell set-ups. However, the pH in the electrolyte liquids 

                                                           
2 Supplementary materials are available with the on-line version only at (URL) 
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of the cell set-ups and the concentrate liquid of the stack were equivalent, ruling out that the 

concentration gradient of H+ was different in the three designs. Another possibility is that 

relatively more H+ was transported through the feed compartments in the stack without 

affecting the sediment suspension than was the case in the 2- and 3-compartment cell set-ups. 

This could be an effect of different membranes being used in the stack and cell set-ups 

(potentially affecting water splitting and transport of ions across the membranes), the shorter 

distance between the membranes in the stack or the flow rate of the sediment suspension.   

The energy consumption levels (kWh/kg sediment) were generally lowest in the 2-

compartment cell, followed by the 3-compartment cell and the highest energy consumption 

was observed for the stack. Since the current density was held constant in the experiments, the 

fluctuations in voltage and hence resistance across the EDR compartments/cells was the 

determining factor for the energy consumption. The 2-compartment cell was expected to have 

lower resistance than the 3-compartment cell due to the set-up only consisting of one ion-

exchange membrane and in addition the electrolysis reaction at the anode resulting in higher 

conductivity of the sediment suspension. This was verified by the lower voltages observed for 

the 2-compartment cell.  

Table 3: Summary of EDR results for the cell and stack experiments. Removal 
efficiencies are the percentage of metal removed from the original sediment.  

 Sediment 2-compartment 3-compartment Stack 
Acidification time 
(h) 

Hammerfest 5-26 25-33 15-16 
Sisimiut 21-31 23-31 8-11 

Electric charge for 
acidification (C/g 
sediment) 

Hammerfest 2-6 3-12 11-51 
Sisimiut 3-10 3-11 6-32 

Final pH Hammerfest 1.5-4.0 2.0-3.8 3.4-4.0 
Sisimiut 1.8-3.2 1.8-2.7 2.6-4.1 

Energy 
consumption 
(kWh/kg sediment) 

Hammerfest 0.005-0.05 0.01-0.78 0.01-0.60 
Sisimiut 0.01-0.18 0.01-0.04 0.01-1.23 

Removal efficiencies (%) 
Cr Hammerfest 0.2-18.9 3.5-34 0-37 
Cu Hammerfest 0.5-72 0-66 0-46 
Ni Hammerfest 0-45 15-40 0-19 
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Pb Hammerfest 0-81 24-70 0-59 
Zn Hammerfest 0-76 32-72 0-42 
Cr Sisimiut 2-33 2-9 0-5 
Cu Sisimiut 12-82 9-45 0-33 
Ni Sisimiut 16-40 25-36 0-27 
Pb Sisimiut 2-49 0-36 0-30 
Zn Sisimiut 62-92 73-84 0-73 
 

For both sediments, the highest clean-up levels for Cr, Cu, Ni, Pb and Zn were observed in the 

2-compartment cell, followed by the 3-compartment cell while the EDR stack had the lowest 

efficiency.  

For the cell experiments with remediation time after acidification <48h, it is interesting to 

note that higher clean-up levels of the heavy metals were observed in the 3-compartment cell 

for the Hammerfest sediments. These experiments (1 and 23-27) have the same experimental 

settings and are directly comparable. For experiments of longer remediation time, this trend 

reversed and higher clean-up levels were observed in the 2-compartment cell. The reason for 

the difference in trends could be due to removal occurring during acidification being more 

significant to the total removal when employing shorter remediation times.  

3.2.2 EDR set-ups 

Since the sediment had the highest influence on EDR in each of the three experimental set-

ups, the two sediments were modelled separately. The models of the Hammerfest sediments 

(model 2) and the Sisimiut sediments (model 3) were based on experiments covering the same 

part of the experimental domain: 

Model 2a/3a: The 2-compartment and 3-compartment cells (experiments 1-15; 23-27) 

Model 2b/3c: The 2-compartment cell and the EDR stack (experiments 8,9,11-22,24,25,27) 

Model 2c/3c: The 3-compartment cell and the EDR stack (experiments 1-3,6,7,16-23,26) 

The correlation factors and predictive powers of the calculated models (figure 4) indicated 

mediocre and unstable models, which may be related to the experimental domain covering 

excessive space, most likely due to the differences related to the set-ups.  
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Figure 4 

Models 1 and 2 revealed that to achieve a better understanding of the removal efficiencies of 

elements from the sediments in the three different experimental set-ups; each sediment and 

each experimental set-up should be modelled separately. The models however provided a 

general overview of trends in the removal of elements from the two sediments in the three 

experimental set-ups.  

To assess variable importance in the removal of Cu, Pb and Zn from each sediment, in each of 

the three experimental set-ups, 6 new PLS models were calculated. The models for the 

Hammerfest sediments (model 4) and the Sisimiut sediments (model 5) were based on all 

experiments and included: 

Model 4a/5a The 2-compartment cell experiments (experiments 8-15,24,25,27) 

Model 4b/5b The 3-compartment cell experiments (experiments 1-7,23,26) 

Model 4c/5c The EDR stack experiments (experiments 16-22) 

The correlation factors of the cell experiments for the Hammerfest sediment (models 4a and 

4b) were 0.95-0.98 and the predictive powers were 0.89-0.97, i.e. good and stable models. 

The correlation factors for the Sisimiut sediment were 0.73-0.77 and predictive powers of 

0.45-.070; the lower values compared to the Hammerfest sediment were due to longer 

experimental times. For both sediments, the VIP plots showed that current density and time 

after acidification was equally important for the removal of Cu, Pb and Zn in the 2-

compartment as well as the 3-compartment cell.  

The PLS models of the stack experiments had correlation factors, R2Y of 0.76-0.77 and 

predictive powers of 0.65-.070. Comparison between the two sediments was based on the 

same experimental domain. The VIP plots showed different trends for the two sediments. 

Time after acidification had the highest influence for removal of Cu, Pb and Zn from the 

Hammerfest sediment, while current density had a larger impact on the removal in the 
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Sisimiut sediment. The difference in variable importance between the two sediments could be 

due to the difference in the final pH. pH decreased to 3.87 in the Hammerfest sediment 

suspension, while pH decreased to 3.15 in the Sisimiut sediment suspension within the same 

time frame. Relatively more desorption could occur at lower pH levels resulting in 

comparative larger influence of current density.  

3.2.3 Removal efficiencies and energy consumption 

Experiments conducted at the centre points of the continuous variables have the same 

experimental settings enabling direct comparison of removal efficiencies between the three 

set-ups. For the Hammerfest sediment, the remediation time (24 hours after acidification) was 

too short to detect any clear trends when comparing the three set-ups. 

The experiments representing the centre of the continuous variables for the Sisimiut sediment 

had a remediation time after acidification of 163 hours. Figure 5 summarises the clean-up 

levels of Cu, Pb and Zn for experiments 6, 7 (3-compartment cell), 14, 15 (2-cell 

compartment) and 22 (stack). The removal efficiencies are higher in the cell experiments 

indicating that the stack experiments need longer remediation times to reach similar clean-up 

levels. For the cell experiments more Cu is removed in the 2-compartment cell, while the 

clean-up levels of Pb and Zn are comparable.  

Figure 5   

In a previous study of polluted soil, energy consumption for the removal of Cu (0.1-0.2 

mA/cm2; 240 hours) in a 3-compartment cell set-up were in the range 0.1-3.2 Wh/mg Cu [25], 

which is comparable to the levels found in this study, listed in table 4. In the direct 

comparison of energy consumption, it is apparent that the lowest energy consumption for Cu, 

Pb and Zn is found in the 2-compartment cell, while the highest levels, by a magnitude, are 

found in the stack. In all three set-ups relative higher amounts of Zn are removed per same 

energy consumption unit than the other heavy metals due to the higher mobility of Zn.  
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Table 4: Energy consumption in the Sisimiut experiments 

 Energy consumption per removed Cu/Pb/Zn  
(Wh/mg) 

Experimental settings 48h 163h 278h 

2-compartment cell 
0.04 mA/cm2 5.3/1.0/0.3 n.e n.e 
0.12 mA/cm2 n.e. 0.2/0.4/0.1 n.e 
0.20 mA/cm2 n.e n.e 10/18/5.3 

3-compartment cell 
0.04 mA/cm2 n.e n.e 1.4/3.2/0.6 
0.12 mA/cm2 n.e 1.1/0.6/0.2 n.e 
0.20 mA/cm2 13/5.1/1.6 n.e n.e 

Stack 
0.04 mA/cm2 1.8/0.2/0.5 n.e 4.4/0.3/0.4 
0.12 mA/cm2 n.e 33/4.5/2.9 n.e 
0.20 mA/cm2 162/53/29 n.e 73/85/18 

n.e.: no experiment  

For the 2-compartment and 3-compartment cell set-ups the lowest energy consumption is 

registered in the centre experiments (0.12 mA/cm2, 163h) which could be due to a more ideal 

current density, i.e. low resistance but current still mobilising/removing relatively higher 

amounts than in the low current density experiments. For the stack experiments the lowest 

energy consumption is registered for the low current density experiments indicating that 

higher current does not lead to relatively more removal of metals. A more thorough analysis 

of heavy metal removal in the stack is however necessary to investigate this trend. 

3.3 Stack experiments 

A previous study showed that EDR can be divided into four phases: a lag phase in which 

limited metal removal occurs; a fast metal removal phase in which the given metal is 

desorbed/dissolved; a slow metal removal phase in which metal related to lesser available 

fractions is desorbed/dissolved and finally a stationary phase [26]. In the Sisimiut sediment 

stack experiments Cu, Pb and Zn appear to be in the lag phase of EDR [26] and limited 

mobilisation of the heavy metals occurs (figure 6). For the two experiments run at higher 

current densities, Zn is mobilised at a constant rate during the whole experiment indicating Zn 

being in the fast removal phase. At the end of the experiments run at a current density of 

0.12mA/cm2, an increase in mobilisation of Cu and Pb occurs indicating the initiation of the 

fast metal removal phase. For the high current density experiments (0.2mA/cm2), faster 
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desorption/dissolution of Cu and Pb begins after approximately 8 hours (experiment duration 

time after acidification). The results are in line with the findings of current density having a 

larger influence on EDR in the stack than time after acidification (model 6c).  

Figure 6 

The development in pH was similar in the three stack experiments (figure 7) both during and 

after acidification, so the difference in metal mobilisation must be due to the current density; 

and within the studied experimental domain a current density higher than 0.04mA/cm2 is 

necessary for significant mobilisation of the targeted heavy metals.  

Figure 7 

At the end of all three experiments it was observed that approximately 60% of the desorbed 

heavy metals were found in the sediment suspension liquid. In the sediment suspensions of 

the cell experiments of equivalent supplied electrical charge, approximately 30% of the 

mobilised heavy metals were found in the suspension liquid. For cell experiments conducted 

at lower remediation times, higher fractions of mobilised heavy metals were found in the 

suspension liquids. Accordingly, the reason for the high fractions of mobilised heavy metals 

in the sediment suspension of the stack could be due to terminating experiments while EDR 

was still in the fast removal phases, i.e. desorption/dissolution was still on-going, rather than 

due to the residence time of the sediment suspension in the stack. In addition, this is in line 

with a previous study of the EDR stack in which high fractions of mobilised heavy metals 

were also found in the suspension liquid [17]. 

3.4 Scaling-up of lab-scale experiments 

The present study can serve as foundation for scaling-up EDR to enable treatment of larger 

quantities of sediment. Whilst it was found that the cell and stack set-ups were different and 

could not be directly compared, it is however possible to recognize traits important for the 

scaling-up.  
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Sediments were found to have the highest influence on EDR and should be modelled 

separately. If sediment characteristics of larger data-sets were included, it is however possible 

that sediments could be modelled in the same model [23]. When these are not included, 

optimal remediation conditions for each sediment should be determined on lab-scale prior to 

proceeding with bench-scale. The cell experiments could be used for indicating of optimal 

current density for remediation. In this study it was for instance found that the optimal current 

density in relation to highest removal per consumed energy was 0.12mA/cm2 (centre value). 

The stack experiments indicate, that heavy metal desorption occurs at this current density as 

well and could therefore function as a good starting point for bench-scale experiments 

(although longer remediation times would be necessary).  

The direct comparison of the same experimental settings in the three set-ups revealed higher 

removal efficacies of the targeted heavy metals, Cu, Pb and Zn, in the cell experiments than 

the stack experiments, indicating that relatively more electrical charge per mass unit is 

necessary in the stack. Remediation in the stack should hence be conducted at longer 

remediation times than applied in this study.  

Higher energy consumption per removed heavy metal unit was observed in the stack. This 

could potentially be reduced by running the stack experiments at longer remediation times and 

by increasing the volume of sediment suspension. The latter might result in longer 

remediation times, but could also reduce the energy consumption per mg heavy metal 

removed. Energy consumption levels similar to the cell experiments should however not be 

expected.  

4 Conclusion 

Multivariate analysis revealed that the type of sediment highly influenced EDR results and 

each sediment should be modelled separately. In addition it was found that the three 

experimental set-ups should be considered as three different systems. Modelling the 
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sediments and experimental set-ups separately showed that the current density and time after 

acidification was equally important for both sediments in the cell experiments. In the stack 

experiments, the importance of the two continuous variables varied between the two 

sediments due to difference in final pH and hence desorption of heavy metals in the 

sediments.  

In the studied experimental domain, the optimal current density in the cell experiments with 

regards to removing the highest amount of Cu, Pb and Zn per Wh was 0.12mA/cm2 (centre 

value). The highest percentages of metals removed, 82% Cu, 81% Pb and 92% Zn, were 

however achieved at higher current density. Maintaining the optimal current density would 

hence entail operating at higher remediation times to achieve similar removal efficiencies. For 

the comparable stack experiments the energy consumption was an order of magnitude higher 

and the highest clean-up levels were still only 21% Cu, 42% Pb and 73% Zn. In order to 

improve the removal efficiencies longer remediation times in the stack experiments are 

necessary.  
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Figure 1: The EDR cell and stack designs: 3-compartment cell, 2-compartment cell and 
stack. 
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Figure 2: Distribution of heavy metals in the different fractions of the sediments. 

 

 

Figure 3: Summary of VIP plots of removal efficacies in the 3-compartment cell (model 
1a), 2-compartment cell (model 1b) and EDR stack (model 1c). Highest VIP values 
indicate highest influence on EDR. 
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Figure 4: Model correlation factors, R2Y, and predictive powers, Q2, of the set-up 
comparisons for the Hammerfest (models 2a-2c) and Sisimiut (models 3a-3c) sediments. 

 

 

Figure 5: Clean-up levels of Cu, Pb and Zn in the three experimental set-ups in centre 
experiments. The 2-compartment cell experiments were replicated and the average 
deviations were 14% for Cu, 3% for Pb and 1% for Zn.  
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Figure 6: Mobilised Cu, Pb and Zn (%) at different current densities in the EDR stack 
as function of remediation time after acidification. 
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Figure 7: Development in pH as a function of experiment duration time during EDR 
stack experiments of the Sisimiut sediment. 
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Table A: Results of EDR experiments of the Hammerfest sediment 

 3-compartment cell 2-compartment cell Stack 
Experime
nt  

1 4 5 23 26 9 10 12 13 24 25 27 16 17 20 21 

Acidificati
on time 
(h) 

33 31 25 25 31 5 7 23 20 26 17 22 15 16 15 15 

Electric 
charge for 
acidificati
on (C/g 
sediment) 

3.2 15 5.6 12 8.9 2.4 0.7 6.6 5.6 2.5 8.2 6.3 11 51 31 31 

Initial pH 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 
Final pH 2.4 3.7 2.0 3.8 2.5 2.8 2.0 1.5 1.8 2.3 4.0 2.5 4.0 3.9 3.4 3.5 
Energy 
consumpti
on 
(kWh/kg 
sediment) 

0.0
2 

0.7
8 

0.0
3 

0.0
1 

0.0
1 

0.0
2 

0.0
2 

0.0
5 

0.0
5 

0.00
5 

0.0
2 

0.0
1 

0.0
1 

0.6
0 

0.0
3 

0.0
2 

Recovery of metals (%) 
Cr 

68 85 76 75 63 
11
4 96 

10
8 88 109 

11
1 

10
7 

11
0 

63 87 60 

Cu 
94 78 93 

12
0 84 

11
3 

10
1 

12
1 

10
5 114 

10
9 

11
6 

10
5 

11
5 

11
0 

85 

Ni 
72 91 97 73 69 

12
0 

11
3 

13
3 

12
2 131 

12
5 

11
6 

11
5 

75 90 70 

Pb 
62 90 77 72 59 

11
1 

10
4 

11
3 

10
0 122 

11
2 

11
4 

12
3 

12
0 

85 66 

Zn 10
5 

10
8 99 91 89 

12
0 

10
2 

13
5 

11
3 133 

11
7 

11
5 

12
5 

13
0 

99 90 

Removal efficiencies (%)  
Cr 34 12 34 25 34 0 14 12 27 0 0 0 0.2 0 23 37 
Cu 44 63 68 0 31 34 62 65 67 9 0 0 0 48 44 46 
Ni 34 22 42 24 33 6 23 26 32 0 0 0 0 34 19 15 
Pb 58 64 79 24 49 32 44 79 78 3 0 0 0 59 15 17 
Zn 68 64 71 32 59 48 63 59 72 40 0 37 0 42 25 20 
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Table B: Results of EDR experiments of the Sisimiut sediment 

 3-compartment 
cell 

2-compartment cell Stack 

Experiment  2 3 7 8 11 14 15 18 19 22 
Acidification time (h) 23 31 26 31 22 31 23 9 12 10 
Electric charge for 
acidification (C/g 
sediment) 

11 3.0 7.5 3.0 10 8.8 6.6 6 32 21 

Initial pH 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 
Final pH 2.4 1.8 2.7 3.2 1.8 2.4 2.3 3.8 2.9 2.6 
Energy consumption 
(kWh/kg sediment) 

0.03 0.01 0.04 0.01 0.18 0.03 0.03 0.03 0.28 1.23 

Recovery of metals (%) 
Cr 90 101 87 87 89 86 119 107 88 100 
Cu 116 92 84 91 92 125 80 128 101 114 
Ni 105 126 115 105 122 77 92 105 78 125 
Pb 122 111 115 123 99 100 114 102 110 113 
Zn 120 120 120 112 117 99 101 115 111 107 
Removal efficiencies (%)  
Cr 14 9 2 9 32 33 2 0 5 2 
Cu 9 45 37 12 82 50 66 0 33 5 
Ni 27 25 36 20 40 16 34 0 27 16 
Pb 0 36 12 2 49 17 16 0 30 5 
Zn 73 84 80 62 92 82 84 0 73 41 
 


