
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Apr 27, 2024

Cardiovascular health effects of oral and pulmonary exposure to multi-walled carbon
nanotubes in ApoE-deficient mice

Christophersen, Daniel V.; Jacobsen, Nicklas R.; Andersen, Maria H. G.; Connell, Shea P.; Barfod,
Kenneth K.; Thomsen, Morten B.; Miller, Mark R.; Duffin, Rodger; Lykkesfeldt, Jens; Vogel, Ulla Birgitte
Total number of authors:
14

Published in:
Toxicology

Link to article, DOI:
10.1016/j.tox.2016.10.003

Publication date:
2016

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Christophersen, D. V., Jacobsen, N. R., Andersen, M. H. G., Connell, S. P., Barfod, K. K., Thomsen, M. B.,
Miller, M. R., Duffin, R., Lykkesfeldt, J., Vogel, U. B., Wallin, H., Loft, S., Roursgaard, M., & Møller, P. (2016).
Cardiovascular health effects of oral and pulmonary exposure to multi-walled carbon nanotubes in ApoE-
deficient mice. Toxicology, 371, 29–40. https://doi.org/10.1016/j.tox.2016.10.003

https://doi.org/10.1016/j.tox.2016.10.003
https://orbit.dtu.dk/en/publications/76d12583-0cea-438d-9bd3-0e16f154a89a
https://doi.org/10.1016/j.tox.2016.10.003


1 
 

Cardiovascular health effects of oral and pulmonary exposure to multi-walled carbon 

nanotubes in ApoE-deficient mice 

 

Daniel V. Christophersena, Nicklas R. Jacobsenb, Maria H. G. Andersena, Shea P. Connellc, Kenneth 

K. Barfodb, Morten B. Thomsend, Mark R. Millerc, Rodger Duffine, Jens Lykkesfeldtf, Ulla Vogelb, 

g,, Håkan Wallina, b, Steffen Lofta, Martin Roursgaarda, Peter Møllera* 

 
aDepartment of Public Health, Section of Environmental Health, University of Copenhagen, Øster 

Farimagsgade 5A, DK-1014 Copenhagen K, Denmark.  

 bThe National Research Centre for the Working Environment, Lersø Parkalle 105, 2100 Copenhagen, 

Denmark. 

cCentre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom. 
dDepartment of Biomedical Sciences, Heart and Circulatory Research Section, Faculty of Health 

Sciences, University of Copenhagen, Blegdamsvej 3 Building 12.5, DK-2200 Copenhagen N, 

Denmark. 

eMRC/University of Edinburgh, Centre for Inflammation Research, Edinburgh, United Kingdom. 
fDepartment of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of 

Copenhagen, Ridebanevej 9, DK1870 Frederiksberg C, Denmark. 

gDepartment of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. 

Lyngby, Denmark. 

* Corresponding author: Department of Public Health, Section of Environmental Health, University 

of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark, email: 

Pemo@sund.ku.dk  

 

Running title: Cardiovascular effects after exposure to MWCNTs 

 

 

 

 

 

 

mailto:Pemo@sund.ku.dk


2 
 

Highlights 

 ApoE-/- mice was exposed to MWCNT-7 by oral gavage or intratracheal instillation. 

 Pulmonary exposure was associated with oxidative damage to DNA in lung tissue. 

 Oral exposure did not affect the composition of the gut microbiome. 

 The exposure was not associated with accelerated atherosclerosis in aorta or BCA. 

 There was increased outer and inner aortic diameter in MWCNT exposed mice. 

 

 

Abstract 

Exposure to high aspect ratio nanomaterials, such as multi-walled carbon nanotubes (MWCNTs) may 

be associated with increased risk of atherosclerosis, pulmonary disease, and cancer. In the present 

study, we investigated the cardiovascular and pulmonary health effects of 10 weeks of repeated oral 

or pulmonary exposures to MWCNTs (4 or 40 µg each week) in Apolipoprotein E-deficient (ApoE-/-

) mice fed a Western-type diet. Intratracheal instillation of MWCNTs was associated with oxidative 

damage to DNA in lung tissue and elevated levels of lipid peroxidation products in plasma, whereas 

the exposure only caused a modest pulmonary inflammation in terms of increased numbers of 

lymphocytes in bronchoalveolar lavage fluid. Ultrasound imaging in live animals revealed an increase 

in the inner and outer wall thickness of the aortic arch at 10 weeks after pulmonary exposure to 

MWCNTs, which may suggest artery remodelling. However, we did not find accelerated plaque 

progression in the aorta or the brachiocephalic artery by histopathology. Furthermore, repeated oral 

exposure to MWCNTs did not cause changes in the composition of gut microbiota of exposed mice. 

Collectively, this study indicates that repeated pulmonary exposure to MWCNTs was associated with 

oxidative stress, whereas cardiovascular effects encompassed remodelling of the aorta wall.  
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1. Introduction 

Multi-walled carbon nanotubes (MWCNTs) are fibres with high strength, making them attractive 

components in products that are designed to resist force. However, MWCNTs have a high aspect 

ratio, similar to asbestos, which may pose a public health threat because of hazards related to 

pulmonary inflammatory diseases, cardiovascular diseases and cancer. There are numerous types of 

MWCNTs, but Mitsui MWCNT XNRI-7 (hereafter referred to as “MWCNT-7”) has attracted special 

attention because it has been shown to cause mesothelioma in wild-type rats and a susceptible mouse 

model (Mercer et al. 2013b; Sakamoto et al. 2009; Takagi et al. 2008, 2012). Based on sufficient 

evidence from experimental animal models, MWCNT -7 was recently classified as possibly 

carcinogenic to humans (Group 2B) by the International Agency for Research on Cancer (IARC), 

whereas other types of CNTs were not classifiable due to limited data (Grosse et al. 2014). It has been 

shown that asbestos workers have increased cardiovascular disease mortality (Harding et al. 2012). 

Exposure to other high-aspect ratio materials, such as MWCNTs may pose the same hazard on the 

cardiovascular system. Atherosclerosis is a progressive disease of the vascular tree, characterized by 

the accumulation of lipids in the intima of medium and large sized arteries (Libby 2002). Secretion 

of pro-inflammatory cytokines initiates the expression of vascular adhesion molecules on the surface 

of endothelial cells in the artery lumen, which facilitates the migration of monocytes and leukocytes 

into the intima layer. Monocytes in the intima increase their uptake of oxidized lipids and oxidized 

low-density lipoprotein (oxLDL), which mediates transformation into lipid-laden macrophages and 
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foam cells — the hallmark of the early stage of atherosclerosis. In vitro experiments have shown that 

MWCNTs promote these effects on endothelial cell activation and lipid accumulation in monocyte-

derived foam cells (Cao et al. 2014, 2016). Progression of atherosclerosis leads to atheromas with a 

complex phenotype that eventually can develop into an unstable plaque with a thin fibrous cap, 

necrotic core, and neovascularization, which is associated with increased risk of plaque rupture, 

thrombus formation, and death in humans (Hansson and Libby 2006).  

Only a few studies have investigated the pro-atherogenic effects of pulmonary exposure to CNTs. 

One study on administered single-walled CNTs (SWCNTs) by oropharyngeal aspiration, 20 

µg/mouse every other week for eight weeks, showed accelerated plaque progression and expression 

of vascular cellular adhesion molecule 1 (VCAM-1) in apolipoprotein E-deficient (ApoE-/-) mice on 

a high-fat diet (Li et al. 2007b). Pulmonary exposure to MWCNTs (25.6 µg /mouse weekly) for five 

weeks caused pulmonary inflammation and accelerated plaque progression in Western-type diet fed 

ApoE-/- mice at day one after the last exposure (Cao et al. 2014). However, another study showed that 

pulmonary exposure to MWCNTs, 40 µg /mouse twice a week for 16 weeks, caused a substantial 

pulmonary inflammation without accelerating plaque progression in ApoE-/- mice on a high-fat diet 

(Han et al. 2015). Furthermore, a single pulmonary exposure to MWCNT-7 or two other MWCNTs 

(NRCWE 026 and NM-401) showed substantial lung inflammation and increased levels of the acute 

phase protein Serum Amyloid A that is suggested to be associated with accelerated atherosclerosis 

via modifications of high density lipoprotein-mediated cholesterol retrograde transport (Poulsen et 

al. 2015; Saber et al. 2014) . 

Oral delivery of nanomaterials may occur intentionally or accidentally through ingestion of food, 

cosmetics or drugs (Duncan 2011; Frohlich and Roblegg 2012; Pele et al. 2015; Weir et al. 2012). 

Additionally, inhalation of particulate matter, but also nanomaterials including CNTs leads to oral 

uptake through mucociliary clearance (Oberdörster et al. 2002). Although other types of carbon-based 
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nanomaterials such as carbon black is associated with altered vasomotor function in the aorta 

(Folkmann et al. 2012), no studies have yet investigated vascular effects after oral exposure to CNTs. 

Several studies have indicated that an altered gut microbiota can be associated with traits of the 

metabolic syndrome, including obesity and insulin resistance that are both associated with 

atherosclerosis (Cani et al. 2008; Tremaroli and Backhed 2012). Moreover, the same phylotypes of 

bacteria have been observed in the oral cavity, gut, and atheromas of patients with atherosclerosis, 

suggesting an infestation of external bacteria to the systemic circulation (Koren et al. 2011). This is 

supported by observations that treatment with broad spectrum antibiotics alters the composition of 

the gut microbiota and has a beneficial effect on plaque progression in ApoE-/- mice (Rune et al. 

2016). Furthermore, CNTs have an antimicrobial activity to commensal bacteria in the human 

gastrointestinal tract in vitro (Chen et al. 2013a; Zhu et al. 2014). It is currently unknown if in vivo 

exposure to CNTs influences the gut microbiota in mice. Interestingly, lipopolysaccharide (LPS) 

induced pulmonary inflammation is associated with altered gut microbiota (Sze et al. 2014). 

The aim of this study was to investigate if repeated pulmonary or oral exposures to MWCNTs could 

lead to accelerated plaque progression in ApoE-/- mice fed a Western-type diet. Pulmonary 

inflammation was assessed as the influx of neutrophils in bronchoalveolar lavage (BAL) fluid. Also, 

we assessed the bacterial composition of the gut microbiota after oral exposure to MWCNTs. Lipid 

peroxidation was measured in plasma as a marker of systemic oxidative stress, relevant for 

atherosclerosis. Finally, we investigated levels of oxidatively damaged DNA in lung tissue as both a 

marker of genotoxicity and oxidative stress.  

2. Methods 

2.1. Animals and housing conditions 

Female C57BL/6-Ntac mice were used in a pilot study on pulmonary effects of different dispersants. 

The mice were purchased from Taconic (Ejby, Denmark) and given one week of acclimation before 
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the first exposure at 8 weeks of age. For oral and pulmonary exposure to MWCNTs, female C57BL/6-

Apoetm1 Unc N11 (ApoE-/-) mice were purchased from Taconic (Ejby, Denmark) and given two weeks 

of acclimation before the first exposure at 10 weeks of age. All mice were assigned to groups of 5 

mice and housed in polypropylene cages (Jeluxyl HW 300/500) with sawdust bedding and 

enrichment, such as pinewood sticks and rodent tunnels. The mice were maintained in a 12:12 h. 

light-dark cycle with controlled humidity and temperature. All cages were sanitized once a week. 

Mice of the dispersant pilot study had ad libitum access to regular mouse chow (Altromin no. 1324, 

Christian Petersen, Denmark) and tap water. The ApoE-/- mice of the oral and pulmonary study were 

switched from regular chow to ad libitum access to Western Diet (21% milk fat [w/w], 0.21% 

cholesterol [w/w]; Open Source Diets, RD Western Diet Product # D12079B) two weeks prior the 

first exposure. The studies and all animal procedures were approved by the local animal ethical 

committee as well as the Danish Animal Experimental Inspectorate under the Ministry of Food, 

Agriculture and Fisheries (permission 2010/561-1779 and 2013-15-2934-00762). 

2.2. Chemicals 

Mitsui XNRI-7 MWCNT (MWCNT-7) was obtained as a gift from Mitsui & Co, LTD (now produced 

by Hodagaya, Yokohama, Japan). Chemical composition and dimensions have been published 

previously. Briefly, median length and width were 3.86-5.7 μm and 49-74 nm, respectively. The 

carbon purity was very high (>99%) with almost none (0.78%) of 31 tested metal impurities; these 

were mainly Na (0.41%) and Fe (0.32%) (Jackson et al. 2015; Poulsen et al. 2015). Endotoxins were 

below the level of detection. BET surface area was 26 m2/g (Jackson et al. 2015; Porter et al. 2010). 

Alveofact surfactant (5 mg/ml) was a kind gift provided by Lyomark Pharma (Lyomark Pharma, 

GmbH, Germany). D-α-Phosphatidylcholine, dipalmitoyl (DPPC), Pluronic F-68, Pluronic F-127, 

sodium carboxymethylcellulose (Mw ~ 90,000 (CMC 90K)), sodium carboxymethylcellulose (Mw 

~700,000 (CMC 700K)) and Tween 80 were purchased from Sigma-Aldrich, Denmark. Tween 20 
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was obtained from Calbiochem, USA. Mouse serum was obtained under sterile conditions (obtained 

from C57BL/6 mice, purchased from Taconic, Denmark). 

  

2.3. Preparation of MWCNT-7 suspension and particle size determined by dynamic light 

scattering  

The quality of the dispersion of MWCNT-7 was determined by visual assessment and by dynamic 

light scattering (DLS) in sonicated vehicles with the following dispersants: Alveofact, DPPC, 2% 

mouse serum, Pluronic F-68, Pluronic F-127, CMC 90K, CMC 700K, Tween 20, and Tween 80.  

Vehicle stock preparations (1% [W/W]) was made for Pluronic F-68, Pluronic F-127, CMC 90K, 

CMC 700K, Tween 20 and Tween 80 in nanopure water (< 45 µm pore size) on a magnetic stirrer 

until fully dissolved. DPPC 1% stock was made dissolving DPPC in nanopure water followed by 

sonication for 30 sec at 10 % amplitude using a Branson Sonifier S-450D (Branson Ultrasonics Corp., 

Danbury, CT, USA) equipped with a disruptor horn (Model number: 101-147-037). 

 All 1% vehicle stock solutions were diluted to 0.1% and 0.01% in nanopure water and for Alveofact 

(5 mg/ml) diluted to 1 mg/ml and 0.5 mg/ml. MWCNT-7 was suspended in the 1%, 0.1% and 0.01% 

or 5 mg/ml, 1 mg/ml and 0.5 mg/ml vehical solutions to a MWCNTs concentration of 2.56 mg/ml 

and sonicated in an ice bath for 16 min with 10% amplitude using a Branson Sonifier S-450D 

(Branson Ultrasonics Corp., Danbury, CT, USA) equipped with a disruptor horn (Model number: 

101-147-037). 

DLS (Zetasizer Nano ZS, Malvern Instruments Ltd., UK) was used to measure the hydrodynamic 

size number distribution of the MWCNTs in the vehicles as described previously (Kyjovska et al. 

2015). Calculations were done by the Dispersion Technology Software (DTS) using the absorbance 

and refractive index of Printex 90 (carbon black) and the viscosity of water, except for the CMC 90K 

(used in in vivo pilot study). As CMC90K is a highly viscous solution, we measured the viscosity of 



8 
 

1%, 0.1% and 0.01% solutions (without MWCNTs) at 25ºC using a Vibro Viscometer ((SV-10, 

0.3~10.000mPa*s) A&D company, Limited N92 (u0013)) and RSVICO software (ver.1.11V A&D 

company Limited). Dynamic viscosity was calculated as (measured viscosity/density) and used for 

calculations with the DTS software.  

2.4. Study design 

2.4.1. Testing of dispersants for pulmonary inflammation (pilot study) 

MWCNTs are notoriously difficult to suspend in aqueous media without addition of a dispersant, but 

this artificial compound may have biological effects. Therefore, a panel of dispersants was initially 

tested for their ability to disperse MWCNTs without causing in vivo toxicity. The purpose of the pilot 

study was to find a suitable dispersant that 1) could disperse the MWCNTs, and 2) induced little 

pulmonary inflammation after repeated i.t. instillation. Wild-type C57BL/6 mice were i.t. instilled 

once a week for 4 weeks (i.e. 4 i.t. instillations in total) with Tween 20 (0.1%), Tween 80 (0.1%), 

CMC 90K (0.1%), Alveofact (5 mg/ml) or mouse serum (2%) (n=3/group). The exposure to Alveofact 

(5 mg/ml) and serum (2%) group was repeated (identical setup) in a second trial, which also included 

nanopure water as a negative control (n=3/group). The mice were euthanized at 24 h after the last 

exposure and the BAL fluid was collected. 

2.4.2. Oral or pulmonary exposure to MWCNTs (main study) 

ApoE-/- mice were exposed to MWCNTs either by i.t. instillation or oral gavage. To be able to 

compare the MWCNTs doses given either via i.t. instillation or oral gavage all mice received a dose-

volume of 50 µl suspensions. Mice exposed to the same dose, but via a different route of 

administration, received a bolus from the same batch preparation at the given day. The doses were 

selected to be similar to previous exposures to CNTs that have used 25.6 µg/mouse per week for 5 

weeks (total dose = 128 µg/mouse) (Cao et al. 2014) and 20 µg/mouse once every other week for 8 

weeks (total dose = 80 µg/mouse) (Li et al. 2007b). The exposure time was increased in the present 
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study in an attempt to a more advanced progression of atherosclerosis as compared to previous studies 

on CNTs. The mice were exposed to MWCNTs once a week for 10 weeks to 4 µg (total dose 40 µg) 

or 40 µg (total dose 400 µg) (n = 10 mice/group). The weekly doses correspond to 0.16 or 1.6 mg/kg 

bodyweight, assuming mice weight 25 g. These doses would be achieved in humans within a full 

week occupational exposure at 0.22 and 2.2 mg/m3, assuming complete deposition of MWCNTs in 

the airways, 70 kg bodyweight, inhalation of 10 m3 air/day and 5 working days/week. Three groups 

of ApoE-/- mice were i.t. instilled with either vehicle (0.1% Tween 80 in nanopure water), low (in 

total 40 µg), or high (in total 400 µg) dose of MWCNTs. Three groups of ApoE-/- mice were orally 

exposed to vehicle (0.1% Tween 80 in nanopure water), low (in total 40 µg), or high (in total 400 µg) 

dose of MWCNTs using oral gavage. All mice were euthanized 24 h after the last exposure.  

For the oral gavage, mice were restrained by one hand, and 50 µl suspensions were administered into 

the mice using an SGE glass syringe (250F-LT-GT, Trajan Scientific Australia Pty Ltd) equipped with 

a disposable polyurethane feeding needle (Fuchigami, Japan). After gavage, the mice were weighed 

and transferred back to their cage.  

The i.t. instillation was carried out as described previously (Jacobsen et al. 2015). Briefly, the mice 

were anesthetized using 3-4% isoflurane until fully relaxed. Hereafter they were transferred back 

down to a 50o instillation board. A diode light source was positioned outside the larynx to visualize 

the epiglottis, trachea, and vocal cords. The tongue was gently pressed towards the lower jaw using 

a small spatula, and the trachea was intubated using a 24 gauge BD Insyte catheter (Ref: 381212, 

Becton Dickinson, Denmark) with a shortened needle. To ensure that the tube was positioned correctly 

in the trachea an extremely sensitive pressure transducer was used to measure the mouse respiration 

frequency as described previously (Jacobsen et al. 2009). Fifty microliters of dispersion were instilled 

immediately followed by 200 µl air using a 250 µl SGE glass syringe (250F-LT-GT, Trajan Scientific 
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Australia Pty Ltd). After instillation, the mice were weighed and when fully conscious transferred back 

to their cages. 

2.5. Bronchoalveolar lavage and isolation of organs 

All mice were euthanized by a subcutaneous injection of Hypnorm /Midazolam, (2 Water: 1 

Hypnorm: 1 Midazolam (5 mg/ml)). The weight of each mouse was recorded and blood collected by 

cardiac puncture in an eppendorf tube containing 36 µl K2EDTA. Blood was instantly centrifuged, 

and plasma immediately collected. BAL was performed by cannulating the trachea using a 22 gauge 

needle equipped with polyurethane catheter. The lungs were flushed twice using (2 x 0.8 ml/mouse) 

physiological saline. Each flush consisted of one slowly down and up movement using a 1 ml 

disposable syringe. The total BAL fluid volume recovery was estimated to be around 75% of the total 

flush volume. The BAL fluid was kept on ice (less than 1 h) until it was centrifuged at 400 g at 4°C 

for 10 min and, the supernatant stored at -80° until use. 

The BAL pellet was resuspended in 100 µl medium (HAMS F12 (GIBCO #21765) supplemented with 

10 % foetal bovine serum (FBS)). The total BAL cell count from each mouse was determined using 40 

µl cell suspension in an NC-100 Nucleocounter (ChemoMetec A/S, Denmark). To prepare Cytospin 

slides cells were centrifuged at 1000 rpm for 4 min. The objective slides containing cells from BAL fluid 

were stained using May-Grunwald/Giemsa co-staining. Differential cell count was performed by 

counting 200 cells per slide by a person blinded to the exposure groups. 

Immediately after the BAL procedure, tissues were harvested. Lung tissues were dissected, snap 

frozen in liquid nitrogen and stored at -80°C. Pellets of mouse faeces were obtained aseptically from 

the descending colon, and frozen on dry ice and stored at -80oC. The heart and the whole aorta (from 

the arch to the iliac bifurcation) were carefully dissected and transferred to a petri dish containing 

oxygenated ice-cold Physiological Saline Solution (PSS) buffer. The aortic arch and brachiocephalic 
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artery (BCA) were gently trimmed for fat- and connective tissue under an Olympus SZX7 

stereomicroscope. Hereafter, the BCA was embedded in Tissue-Tek O.C.T™ Compound (Sakura 

Finetek, Værløse, Denmark), frozen on dry ice and stored at -80oC. The heart and aorta were kept in 

cold PSS at 4oC until trimming. 

2.6. Atherosclerotic burden in the aorta and the brachiocephalic artery 

Atherosclerotic plaque progression was investigated non-invasively in real-time using ultrasound 

imaging and post-mortem by histopathological staining, and by en face analysis. 

2.6.1. Ultrasound imaging of the aortic arch 

High frequent ultrasound imaging of the aortic arch was used as a non-invasive method for evaluating 

the continuous development of atherosclerotic lesions in the aorta of ApoE-/- mice. Mice were 

anesthetized with 2% isoflurane and placed in supine position on a heating pad during the scanning. 

Temperature, heart rate, and respiration were closely monitored. The fur on the chest was gently 

removed using a hair removal cream (Veet, Reckitt Benckiser Group plc, United Kingdom) and 

aquasonic gel (Maersk-Andersen, Denmark) was applied to the chest for optimal contact between the 

scan head and the skin. Ultrasound imaging was performed using the Vevo 770 system (VisualSonics, 

Canada) equipped with the 40 MHz RMV-704 scan head. Imaging was performed in the long-axis 

view using M-mode with the scan head fixed in the VisualSonics Vevo Integrated Rail System II. To 

ensure reproducibility and accuracy of each scan, the BCA was used as an anatomical landmark and 

scanning of the aortic arch was preformed at a depth of 5 - 6 mm. The thickness of the aortic outer 

wall (i.e. superior curvature of the aortic arch), the inner wall (i.e. inferior curvature of the aortic arch) 

and lumen diameter were obtained from the ultrasound scanning. Supplementary Figure 3 shows the 

location of the aortic outer and inner wall. After scanning the mouse was allowed to recover fully 

from anaesthesia before being transferred back to its cage. 
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2.6.2. En face analysis on the whole aorta 

The heart and the aorta were placed in ice-cold oxygenated PSS buffer where fat- and connective-

tissue were carefully removed using micro scissors under an Olympus SZX7 stereomicroscope. The 

trimmed aorta was cut longitudinally from the arch to the iliac artery, and then flattened and mounted 

between an objective glass and a cover slide, avoiding any overlapping tissue. Digital images of the 

intimal surface were obtained using an Olympus SZX7 stereomicroscope and Olympus Color View 

I camera. Atherosclerotic plaque burden was quantified as the percentage of lesions covering the 

intima surface area of the aorta and quantified by a person blinded to the exposure groups. Data analysis 

was carried out using ImageJ software.  

2.6.3. Atherosclerotic burden in the brachiocephalic artery 

The atherosclerotic burden in the BCA was assessed through the method of Miller et al. 2013. Briefly, 

BCAs were defrosted into formalin and lightly stained in acid fuschin prior to embedding in paraffin 

wax to aid the correct orientation of the vessel. Histological sections (5 m thick) of the BCA (a 

branch of the aortic arch to the carotid-subclavian bifurcation) were taken in quadruplicate at 100 m 

intervals, Sections were stained with Masson’s Trichrome. The cross-sectional area of the plaque of 

a single replicate at each 100 m interval (beginning at the first section of an artery with a fully intact 

media) was measured and standardized to the medial area. A single mean value of atherosclerotic 

burden for each animal was calculated from the plaque size from each complete serial section 

throughout the BCA. 

2.7. DNA damage in lungs 

The level of oxidatively damaged DNA was measured by the comet assay as described previously 

(Danielsen et al. 2010). In brief, lung tissue was squeezed through a mess in a stainless steel cylinder 

with ice-cold Merchant’s buffer, with a plunger and suspensions were then embedded in 0.75% 
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agarose on gel bonds and lysed overnight in lysis solution (2.5 M NaCl, 100 mM Na2EDTA, 10 mM 

Trizma base, pH 10.0). Thereafter, they were washed 3×5 min in a buffer (40 mM HEPES, 0.1 M 

KCl, 0.5 mM Na2EDTA, 200 μg/ml BSA, pH 8.0). Formamidopyrimidine DNA glycosylase (FPG) 

or human oxoguanine DNA glycosylase 1 (hOGG1) were added to the relevant gel bonds and 

incubated for 45 min at 37°C. FPG was a gift from Professor Andrew Collins (University of Oslo, 

Norway). The hOGG1 enzyme was obtained from New England Biolabs (Ipswich, MA, USA). The 

gel bonds were then rinsed with cold milipore water and transferred to alkaline solution for 40 min 

(1 mM Na2EDTA, 300 mM NaOH, pH > 13.0) and were subsequently subjected to electrophoresis 

for 20 min in the same buffer at 300 mA and 0.83 V/cm (from anode to cathode). After 

electrophoresis, gel bonds were washed 15 min in neutralization buffer (0.4 M Trizma base, pH 7.5), 

rinsed with water and immersed in 96% ethanol overnight. Gel bonds were air-dried, stained with 

YOYO-1 (Molecular Probes, Eugene, OR, USA) and visually scored in a blinded fashion. The levels 

of DNA damage were obtained by scoring 100 nuclei/gel in 2 gels. We used a five-class scoring 

system and transformed to lesions/106 bp with a calibration curve where one arbitrary unit 

corresponds to 0.0273 lesions/106 bp (Forchhammer et al. 2010). The level of FPG or hOGG1 

sensitive sites was calculated as the difference in DNA damage between slides that had been treated 

with the FPG or hOGG1 and buffer. We used Ro19-8022 and light exposed monocytic THP-1 cells 

as reference controls, which has been used as a control in comet assay validation trials (Ersson et al. 

2013; Forchhammer et al. 2012; Johansson et al. 2010). Ro19-8022 was a gift from F. Hoffmann-La 

Roche (Basel, Switzerland).  

2.8. Malondialdehyde (MDA) levels in plasma 

As a marker of systemic oxidative stress, we measured the lipid peroxidation as MDA in plasma of 

ApoE-/- mice using high-performance liquid chromatography (HPLC) with fluorescence detection as 

described previously (Lykkesfeldt 2001). All analyses were run in triplicates. 
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2.9. Gut microbiota 

 

DNA was extracted from frozen faecal samples from mice orally exposed to vehicle or 400 µg 

MWCNTs using Qiagen, DNA Mini Stool kit (Qiagen, Ab, Sollentuna, Sweden) for detection of 

pathogens in frozen stool samples, with minor modifications as described previously (Barfod et al. 

2013). We included an extraction contamination control, by performing mock extractions on our 

vehicle (0.1% Tween 80 in nanopure water). The DGGE-PCR amplifying the V2-V3 region of the 

16S ribosomal DNA gene of the bacteria was amplified by universal primer HDA1 and HDA2. The 

primer set HDA 1-GCf: (5´-ACT CCT ACG GGA GGC AGC AGT-´3) and HDA 2r (5´-GTA TTA 

CCG CGG CTG CTG GCA C-´3). The forward primer HDA 1-GCf: was labeled at the 5´ end with 

a GC clamp (5’-CGC CCG GGG CGC GCC CCG GGC GGG GCG GGG GCA CGG GGG -3’)” 

(Licht et al. 2006). Total PCR volume of 50 µl contained: 4 µl Milli-Q water, 20 µl of 5 PRIME 

Mastermix (MasterMix-100Rxns, 5PRIME GmbH, Hamburg), 8 µl of primer HDA 1f, 8 µl of primer 

HDA 2r, and finally 10 µl of DNA template (approximately 16 ng/µl). The PCR was performed under 

the following conditions: denaturing was carried out at 94°C for 4 min, followed by the denaturing 

step 94°C for 30 sec, and then 30 cycles with annealing step at “56°C for 30 sec, extension at 68°C 

for 60 sec”, and the final extension step performed at 68°C for 7 min. The PCR fragments were 

separated by DGGE as described with minor modifications including 3 lanes of marker and loading 

one no template PCR control per run along with the vehicle controls (Muyzer et al. 1993; Smith et al. 

2011). Gels were run at 60°C for 16 h at a constant voltage of 70 V in 0.5 × TAE buffer and stained 

with Gel-Red (Thermo Scientific, Copenhagen, Denmark) for 60 min and photographed on the Gel 

Doc system (Biorad Laboratories AB, Solna, Sweden). 

Analysis of the DGGE was performed blinded using BioNumerics Version 7.5 (Applied Maths NV, 

Sint-Martens-Latem, Belgium). After normalization, a band matching was performed with a tolerance 
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of 1% and an optimization of 1%. The results from the automatic band matching were checked 

manually and corrected where necessary. The similarity between profiles was calculated with a 

ranked Pearson correlation coefficient based on the band matching results using band intensities. A 

dendrogram was then constructed with Unweighted Pair Group Method with Arithmetic Mean 

(UPGMA). The reliability of the dendrogram (i.e. separated branches) was determined with the 

cophenetic correlation coefficient (Sokal and Rohlf 1962).  

2.10. Statistics 

The results were analysed by hierarchical nested ANOVA with a dose of MWCNTs nested in the 

route of exposure. Results on ultrasound scanning data were analysed by repeated measurements 

ANOVA. Main study results on BAL fluid cell counts did not have homogeneity of variance (assessed 

by Bartlett’s test). Nevertheless, the reported statistical results correspond to parametric tests because 

this analysis gave similar results as non-parametric ANOVA tests. Differences between groups in 

post-hoc tests were assessed by Fisher’s least significant difference (LSD) test. BCA atherosclerotic 

burden was analysed with Student’s t-test using Welch’s correction for unequal variances. Plasma 

MDA and genotoxicity in lung tissue were analysed by one-way ANOVA with post-hoc LSD test. 

Gut microbiota statistical analyzes were performed after mean-based normalization of profiles using 

Student’s t-test. All results are reported as mean and standard error of the mean (SEM). Statistical 

significance was accepted at 5% level. The statistical analysis was carried out in Statistica version 5.5 

(StatSoft, Tulsa, OK, USA) and GraphPad Prism version 5.00 for Windows (GraphPad Software, San 

Diego, CA, USA). 

3. Results 

3.1. Selection of a dispersant for MWCNT-7  

We tested a panel of dispersants in different concentrations (0.01%, 0.1%, and 1% solution) for 

dispersion of MWCNTs. DLS supplemented with macroscopic evaluation was used to assess the 
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quality of the dispersion. Dispersants tested were Alveofact, CMC 90K, CMC 700K, DPPC, mouse 

serum, nanopure water, Pluronic F-68, Pluronic F-127, Tween 20 and Tween 80. Four dispersants 

(CMC 700K, DPPC, Pluronic and F-68, Pluronic F-127) were discarded due to poor dispersion 

(fluctuating count rate, wide size number distribution, and a Poly-Dispersity Index (PDI) above 0.5, 

bad macroscopic appearance, and a tendency to form large agglomerates of MWCNTs as indicated 

by DLS (data not shown). The remaining dispersants were screened in vivo for possible unwanted 

pulmonary inflammation. Pulmonary inflammation measured as the influx of neutrophils in BAL 

fluid was assessed after 4 i.t. instillations over a period of 4 weeks (Table 1). As we only wanted to 

investigate qualitatively the inflammatory response of each dispersant against the control group, not 

compare quantitatively responses by statistical tests, we used few mice per group. No p-values are 

reported for the pilot study because the low number of animals per group might be associated with a 

high risk of statistical type 2 error. Direct comparison of absolute or relative values of cell influx in 

BALF between the 4 and 10 weeks studies has not been done because the observations stem from 

different mice strains fed different diets. Additionally, it should be noted that none of the vehicles 

used in the present study were tested for being free of pathogens or pyrogen. The instillations of all 

types of dispersants were associated with influx of cells in BAL fluid as compared to nanopure water. 

Only one of the tested dispersants (Alveofact (5mg/ml)) caused a moderate influx of neutrophils in 

BAL fluid (5% of the total cell number). The instillation of CMC 90K, serum, Tween 20, and Tween 

80 had an influx of ~ 0-3% of the total cell number. The dispersants’ ability to cause influx of 

eosinophils in BAL fluid was as follows in descending order of percentage of total cells: Alveofact 

(5 mg/ml) < serum (2%) < Tween 80 < Tween 20 < CMC 90 K < nanopure water.  

Among the tested dispersants, 0.1% Tween 80 was chosen as being the most suitable dispersion of 

MWCNTs because it had a very stable count rate, a PDI of 0.3, and a unimodal size number 

distribution (agglomeration size peak at 295 nm). Supplementary Figure 1 shows size number 
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distribution curve of 0.1% Tween 80, and the visual appearance of MWCNT-7s (2.56 mg/ml) in 0.1% 

Tween 80 after sonication. In addition, i.t. instillation of Tween 80 was only associated with a modest 

influx of neutrophils in BAL fluid, which is supported by observations from other researchers who 

have used Tween 80 for i.t. instillation and have not observed signs of toxicity in rodents (Li et al. 

2007a; Morimoto et al. 2010; Reddy et al. 2012). Instillation of Tween 80 was associated with a 

modest influx of eosinophils in BALF; however, this is very unlikely to have affected the MWCNT-

induced vascular effects given that our previous study showned no association between high levels 

of eosiniphils and progression of atherosclerosis in ApoE-/- mice (Cao et al. 2014). Also, we did not 

observe any changes in the breathing pattern of the mice after exposure to any of the dispersants.  

3.2. Assessment of pulmonary inflammation after exposure to MWCNTs 

The results on BAL fluid cell counts in MWCNT-exposed mice are reported in Table 2. I.t. instillation 

of vehicle was associated with increased levels of total cells (P < 0.001), macrophages (P < 0.001), 

neutrophils (P < 0.001), lymphocytes (P < 0.001) and eosinophils (P <0.001) compared to dosing 

vehicle by oral gavage. There was a higher number of lymphocytes in BAL fluid following i.t. 

instillation in the highest MWCNT-exposure group (P < 0.05). Similar increases were observed for 

neutrophils (P = 0.08) and macrophages (P = 0.23), although they did not reach statistical significance. 

The number of eosinophils was decreased after i.t. exposure to 40 µg (P < 0.01) and 400 µg (P < 

0.001) of MWCNTs compared to vehicle exposures.  

The oral exposure to 400 µg MWCNTs significantly increased the influx of neutrophils in BAL fluid 

(P < 0.05), although the actual number was small (net increase of 400 ± 200 cells) (Table 2). There 

were unaltered and low numbers of total cells, macrophages, lymphocytes or eosinophils in the BAL 

fluid of mice exposed to MWCNTs by oral gavage. 

3.3. DNA damage in lung tissue after i.t. instillation of MWCNT-7 
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Fig 1 shows the levels of DNA damage in lung tissue following pulmonary MWCNTs exposure. In 

general, there seemed to be increased levels of oxidatively damaged DNA in all MWCNT-exposed 

groups, although there only was statistical significance in hOGG1-sensitive sites (P < 0.05) at 40 

µg/mouse and in FPG-sensitive sites at 400 µg/mouse (P < 0.05). A pooled analysis of FPG- and 

hOGG1-sensitive sites, using standardized results, showed increased level of oxidatively damaged 

DNA in lung tissue in the group with 40 µg/mouse (1.58 ± 0.11 fold, N = 10, P < 0.05) and 400 

µg/mouse (1.51 ± 0.14 fold, N = 10, P < 0.05) as compared to the control group (1.0 ± 0.14 fold, N = 

10) (Supplementary Table 1 describes the standardization). There was no difference in the level of 

DNA strand breaks in lung tissue between the groups of mice after i.t. instillation of MWCNTs, 

although there was a tendency toward an inverse dose-response relationship. The levels of SB, 

hOGG1- and FPG-sensitive sites in the Ro19-8022 control samples were 0.27 ± 0.03, 0.32 ± 0.04 and 

0.95 ± 0.15 lesions/106 base pairs, respectively (n = 5).  

3.4. Malondialdehyde levels in plasma of MWCNT-7 exposed mice 

Pulmonary exposure to 40 µg MWCNTs increased MDA plasma concentrations as compared to the 

control group (P < 0.05). However, there was no difference between the group exposed to 400 µg 

MWCNTs and control group (Fig 2). The oral exposure to 400 µg MWCNTs decreased MDA plasma 

concentration compared to the control group (P < 0.01), with no effect observed by exposure to 40 

µg MWCNTs. 

3.5. Gut microbiota after oral exposure to MWCNT-7 

Supplementary Fig 2 shows the microbial diversity in the gut between mice that received vehicle and 

MWCNTs (400 µg) by oral gavage. The dendrogram and principal component analysis (PCA) plot 

showed no clear difference in internal bacterial clustering between samples within experimental 

groups. There was no statistically significant difference between the vehicle and MWCNT-exposed 

mice with respect to average species diversity and the average species evenness. 
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3.6.Atherosclerotic burden in the aorta and the brachiocephalic artery of MWCNT-7 exposed 

mice  

3.6.1. Ultrasound imaging 

The results on ultrasound imaging (M-mode) of live animals are shown in Fig 3. There was a time-dependent 

gradual increase of aortic wall inner diameter within all the groups (P < 0.001). There was a statistically 

significant interaction between the dose of MWCNTs and duration of exposure (P < 0.05). The highest dose 

of MWCNTs by i.t. instillation was associated with a 1.36 fold increase (95% CI: 1.21 – 1.51 fold) of inner 

aortic diameter (P < 0.001). Oral exposure to the highest MWCNTs dose was associated with a 1.15-fold 

increase (95% CI: 1.01 – 1.28 fold) in inner aortic diameter (P < 0.05). 

The outer diameter of the aorta increased in a time-dependent manner (P < 0.001). There was a 

statistically significant interaction between the exposure route and dose of MWCNTs (P < 0.05). The 

exposure to the highest dose of MWCNTs by i.t. instillation was associated with 1.43 fold (95% CI: 

1.13 – 1.63 fold) increased outer aortic diameter (P < 0.001), whereas the oral exposure had no effect 

on the outer diameter of the aorta (P = 0.82). 

There were no time-related effects on the aorta lumen diameter (P = 0.87). There were no differences 

between exposure groups with regard to MWCNTs exposure and route of administration (P = 0.42). 

3.6.2. En face aorta 

The results on plaque progression, assessed by en face analysis, are shown in Fig 4. There were no 

differences between the groups with regard to the dose of MWCNTs (P = 0.58).  

3.6.3. Histological analysis of BCA 

The exposure to the highest dose of MWCNTs (400 µg/mouse) by either oral or pulmonary route had 

no significant effect on the atherosclerotic burden in the BCA – measured as a mean of serial sections 

(Fig 5).  
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4. Discussion  

The present study investigated the changes in arteries and pulmonary inflammation after multiple oral 

or pulmonary exposures to MWCNTs. In addition, we also investigated the composition of gut 

microbiota and pulmonary genotoxicity after oral or i.t. exposure to MWCNTs, respectively. Fig 6 

depicts the relationship between biomarkers and pathways of cardiovascular effects in the present 

study. The available literature on cardiovascular effects of pulmonary exposure to MWCNTs is 

sparse, and there exists no published literature investigating the atherogenic effects of oral exposure 

to MWCNTs. In contrast, there is a large body of literature showing that pulmonary exposure to other 

nanomaterials and combustion-derived particulate matter is associated with accelerated 

atherosclerosis and vascular dysfunction (Møller et al. 2016). Similar effects on atherosclerosis and 

vascular dysfunction are observed across experimental models and humans after exposure to 

combustion-derived particulate matter (Møller et al. 2011). Studies on controlled exposure to 

nanomaterials in humans have not been launched because of the obvious health hazard. 

Our findings show that repeated i.t. exposure to MWCNTs did not cause the expected and typical 

particle-driven pulmonary inflammation (i.e. increased total cell numbers and neutrophil influx in 

BAL fluid). However, the i.t. exposure to 400 µg MWCNT-7 increased the number of lymphocytes 

in BAL fluid, which was accompanied by a modest increase in neutrophils. The exposure to both 

doses was associated with decreased number of eosinophils in BAL fluid, which is in keeping with 

previous observations after repeated exposure to MWCNTs (Cao et al. 2014). We had expected a 

much more pronounced influx of inflammatory cells in BAL fluid. Earlier studies of i.t. instillation 

of NM-401 MWCNTs (using 2 % serum as dispersant), which are physic-chemically similar to 

MWCNT-7s, showed a predominant influx of neutrophils at 24 h post-exposure in mice 

(approximately 105 cells after i.t. instillation of 54 µg / mouse), whereas there were elevated levels of 

neutrophils, macrophages, and lymphocytes at day 28 after a single i.t. instillation (Poulsen et al. 
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2015). Likewise, long-term inhalation exposure to MWCNT-7s in mice and rats has shown an influx 

of neutrophils in BAL fluid (Kasai et al. 2015; Porter et al. 2013). During the necropsy we visually 

detected (macroscopically) black material in the lung tissue of mice after exposure to MWCNT-7, 

indicating that rather large quantities of MWCNTs were still present in the lungs. In addition, 

MWCNT-7 is known to be biopersistent and have been detected in lung tissue and extrapulmonary 

tissues at long times after exposure (Mercer et al. 2013a). As others have observed a strong 

inflammatory response following a single instillation of the same material (MWCNT-7) (Porter et al. 

2010; Poulsen et al. 2013) we speculate that the repeated i.t. instillations of the dispersant (i.e. 0.1 % 

Tween 80) and the competing eosinophilia might have dampened the inflammatory response of 

MWCNT-7. It should be emphasized that a systematic review of literature indicates no consistent 

association between pulmonary inflammation and atherogenic changes in animal models after 

exposure to various types of combustion-derived nanoparticles or engineered nanomaterials (Møller 

et al. 2016). Furthermore, it has been shown that repeated i.t. instillations of lipopolysaccharide, once 

a week for 10 weeks, increased neutrophilic influx in BALF, without alteration to the extent of 

atherosclerosis in aorta and BCA (Christophersen et al. 2016). Thus, we feel it is unlikely that overt 

pulmonary inflammation is a pre-requisite for these cardiovascular effects in animal models. 

Unexpectedly, oral exposure to 400 µg MWCNT-7 caused a small, but statistically significant, 

increase in the number of neutrophils in BAL fluid, which was not accompanied by similar increases 

in other types of leukocytes.  

The pulmonary exposure to MWCNT-7 was associated with increased level of oxidatively damaged 

DNA in lung tissue. FPG and hOGG1 detect 8-oxoguanine and ring-opened formamidopyrimidine 

lesions (Cadet et al. 2012). These lesions may arise from reactive oxygen species, generated from 

exogenous (e.g. MWCNTs) or endogenous (e.g. inflammatory cells) sources. It has been shown that 

exposure to particulate matter is associated with elevated levels of oxidatively damaged DNA in lung 
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tissue at doses that do not cause pulmonary overload (Møller et al. 2013). The elevated levels of DNA 

damage indicates a pro-oxidant environment in the lungs as well as a genotoxic hazard, which is in 

accordance with the observation of carcinogenicity after exposure to MWCNT-7 (Sakamoto et al. 

2009; Takagi et al. 2008, 2012) and in agreement with previous studies reporting increased levels of 

DNA strand breaks following a single i.t. instillation of NM-401 and NRCWE-026 (Poulsen et al. 

2015). There is surprisingly little information on genotoxicity endpoints of MWCNT-7, and this was 

one of the main reasons for classification as ‘only possibly carcinogenic to humans’ (Kuempel et al. 

2016). The pro-oxidant status is also supported by observations of increased levels of MDA in plasma, 

suggesting systemic oxidative stress after i.t. exposure to 40 µg MWCNT-7. The unaltered level of 

MDA at the high dose might be related to a scavenging effect of the MWCNTs, i.e. the MDA 

molecules might not translocate to the circulation because they bind to the MWCNTs in the lungs. 

Bell-shaped concentration curves have also been observed for ROS production by CNTs (Folkmann 

et al. 2008; Jacobsen et al. 2008). On the other hand, the decreased plasma MDA levels in the orally 

exposed mice should be interpreted with caution. The Western-type diet contains MDA and/or 

propenal-derivatives of MDA, which are bioavailable (Giron-Calle et al. 2002). Thus, MWCNTs in 

the gut may bind to MDA and inhibit its uptake, thereby reducing the plasma concentration of MDA. 

To the contrary, oral exposure to SWCNTs was associated with increased levels of oxidatively 

damaged DNA in the liver and lungs of rats (Folkmann et al. 2009).  

The i.t. exposure to MWCNTs was associated with increased inner and outer wall thickness of the 

aortic arch. Similar effects were also observed in the orally exposed mice, although only reaching 

statistical significance for the inner wall thickness. Collectively, it suggests that exposure to 

MWCNTs is associated with increased thickness of the aorta wall, which does not appear to be 

directly linked to accelerated plaque progression. Increased wall thickness is normally related to 

remodelling of the artery wall - a well-known phenomenon of essential hypertension in humans, 
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where intima-media thickness increases of 15-40 % can occur without changes in lumen diameter 

(Laurent and Boutouyrie 2015). However, the obtained ultrasound images in mice do not have 

sufficient resolution to differentiate between the different layers of the aorta and measure intima-

media thickness. Nevertheless, outward remodelling of the aorta has been described as an age-

dependent effect in ApoE-/- mice over a 6 months period (Bentzon et al. 2003). The radial enlargement 

of the arterial wall, with constant lumen size, suggests a pressure-driven remodelling of the aorta 

(Laurent and Boutouyrie 2015), although it should be noted that the majority of studies have shown 

that ApoE-/- mice do not develop hypertension (Vasquez et al. 2012). The assessment of plaque 

composition in the BCA, a region of the artery under high wall stress, showed unaltered morphology 

or media-to-lumen ratio (results not shown). This indicates that outward remodelling is not a 

generalized tendency in the arterial tree of the MWCNT-exposed mice. The atherogenic effects found 

after exposure to CNTs have primarily been investigated in the aorta using en face analysis (Cao et 

al. 2014; Li et al. 2007b). It is possible to detect differences of a few percentages in absolute plaque 

size values with the en face analysis of aorta from this number of mice (Chen et al. 2013b; Mikkelsen 

et al. 2011). Thus, the modest difference in plaque area in the group of mice exposed to the highest 

dose of MWCNTs in the gastrointestinal tract as compared to controls (i.e. 10% and 7% aorta plaque 

area, respectively) is similar to differences that have been statistically significant in other studies. 

Studies on concentrated ambient air pollution particles have shown that ultrasound scanning provided 

reproducible results on the progression of atherosclerosis in the aorta (Chen et al. 2010; Sun et al. 

2008). We also investigated the atherosclerotic burden in the BCA, which is a medium size artery 

which rapidly generates complex atherosclerotic plaques in high-fat-fed ApoE-/- mice, the extent of 

which is increased after exposure to diesel exhaust particles (Miller et al. 2013) or SWCNTs (Li et 

al. 2007b). Investigating the plaque burden in serial histological sections of the BCA, we detected a 

relatively high plaque burden in all three groups of both i.t. instilled and oral gavaged mice; however, 
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there was no statistically significant effect of exposure to MWCNTs. Overall, that data suggests that 

exposure to MWCNTs did not cause progression of atherosclerosis, whereas there were signs of 

outward remodelling in the aorta. The nature of bioactive factors, leading to outward remodelling, 

has not yet been elucidated. Interestingly, recent observations have shown that the serum from 

MWCNT-7 exposed mice contains bioactive factors that cause vasomotor dysfunction ex vivo when 

administered to aorta rings from unexposed mice (Aragon et al. 2016). 

The gut microbiota has recently been considered to be important for the toxicological effects of 

nanomaterials (Pietroiusti et al. 2016). Here, we did not detect an alternation of the dominant gut 

microbial species in stools from Western-type diet fed ApoE-/- mice exposed orally to 400 µg 

MWCNTs, using DGGE. DGGE is a fast method, however, it is neither quantitative nor provides any 

taxonomical information, which would be obtainable with 16S rRNA gene sequencing. 16S sequence 

analysis would also show changes in less abundant bacteria. Several in vitro studies have shown that 

CNTs may have an antimicrobial effect, that is influenced by the physicochemical properties such as 

length, diameter, and rigidity (Chen et al. 2013a), with SWCNTs showing more antimicrobial activity 

than MWCNTs (Zhu et al. 2014). We have previously shown that SWCNTs have a marginal effect 

on the lung microbiome (Barfod et al. 2015). We did not investigate the lung microbiome in the 

present study because there was no presence of pulmonary inflammation by the MWCNT exposure. 

A suggested mechanism for the antimicrobial effect in vitro is reactive oxygen species production by 

CNTs (Rajavel et al. 2013), although this remains to be confirmed in vivo.  

In conclusion, the results of the present study show that exposure to MWCNT-7 is associated with 

elevated levels of oxidative stress biomarkers in lungs and plasma, whereas cardiovascular effects 

included increased aorta wall thickness. An increased aorta wall thickness without loss of lumen, 

suggesting vascular wall remodelling, is typically observed in essential hypertension, which is an 

independent risk factor for cardiovascular disease. 
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Legends to figures 

Fig 1. Levels of DNA damage in lung tissue after repeated exposure to MWCNT-7 by i.t. instillation. 

Each symbol represents DNA damage level in one mouse. Lines represent mean ± SEM of 10 mice 

in each group. Statistical analyses were carried out using ANOVA. 

Fig 2. Systemic lipid peroxidation measured as malondialdehyde (MDA) levels in plasma of ApoE-/- 

mice i.t. or oral exposed with vehicle, 40 µg or 400 µg MWCNT-7. Results are presented as mean ± 

SEM. Statistical analyses were carried out using hierarchical nested ANOVA. 

Fig 3. Ultrasound scanning of the aortic arch of anaesthetized ApoE-/- mice at 0, 8 and 10 weeks of 

exposure to vehicle, 40 µg and 400 µg MWCNT-7 by i.t. instillation or oral administration. The 

measurements include the thickness of the inner wall (top), the outer wall (middle) and lumen 

diameter of the aortic arch. All measurements were obtained using M-mode view of the aortic arch 

with the brachiocephalic artery used as an anatomic landmark. Results are presented as mean ± SEM. 

Each data point represents an individual mouse (n = 6 - 7). Statistical analyses were carried out using 

hierarchical nested ANOVA. Supplementary figure 3 depicts how the ultrasound imaging was 

performed. 

Fig 4. Aorta plaque area (% of intima surface area) in ApoE-/- mice after i.t. or oral exposure to vehicle, 

40 µg or 400 µg MWCNT-7 at 0, 8 and 10 weeks. Results are presented as mean ± SEM. Statistical 

analyses were carried out using hierarchical nested ANOVA. Supplementary figure 4 depicts images 

of the level of atherosclerotic plaques in the en face analysis. 

Fig 5. Atherosclerotic plaque burden (average of serial sections throughout artery, standardized to 

the percentage of the area of the media layer of the blood vessel) in the brachiocephalic artery of 

ApoE-/- mice after i.t. or oral exposures with vehicle or 400 µg MWCNT-7 for 10 weeks. Results are 

presented as mean ± SEM. Statistical analyses were performed by Student’s t-test with Welch’s 

correction for unequal variances. Supplementary figure 5 depicts images of the Masson’s trichrome 

staining. 

Fig. 6. Summary of biomarkers related to development of atherosclerosis in MWCNT-exposed mice. 

Bold arrows indicate pathways with statistically significant effect of investigated biomarker. 
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Table 1 

BAL fluid cell number 24 hours post-exposure to the last of 4 weekly instillations of vehicle with different dispersants 

Cell types  Tween 20 

(0.1%) 

Tween 80 

(0.1%) 

CMC 90K 

(0.1%) 

Alveofact (5 

mg/ml) 

Serum 

(2%) 

Nanopure 

water 

Total cells 139.3 ± 12.8 223.7 ± 61.6 159.3 ± 11.3 201.1 ± 51.8 92.8 ± 27.2  15.2 ± 8.4 

Neutrophils 1.5 ± 1.1 5.9 ± 3.1 1.1 ± 3.1 10.2 ± 3.9 1.7 ± 1.0 0.0 ± 0.0 

Macrophages 104.3 ± 14.9 133.7 ± 35.1 136.7 ± 7.5 80.7 ± 16.3  58.2 ± 22.1  13.2 ± 7.2 

Eosinophils 20.8 ± 5.3 65.6 ± 29.5 1.7 ± 1.7 93.3 ± 41.4  21.2 ± 16.5  0.0 ± 0.0 

Lymphocytes 3.1± 2.1 7.1 ± 5.4 8.5 ± 4.8 3.7 ± 2.1 3.9 ± 1.2 0.3 ± 0.3 

Epithelial 9.7 ± 1.9 11.5 ± 4.0 19.0 ± 6.6 13.3 ± 6.0 7.9 ± 2.4 1.7 ± 1.4 

C57BL/6 mice received a total of 4 i.t. instillations with vehicle once a week for 4 weeks (n = 3 mice/group), except for 

Alveofact and serum (n = 6 mice/group). BAL fluid cell numbers are reported as cells x 103 with mean ± SEM. 
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 Table 2 

BAL fluid cell number in ApoE-/- mice at 24 h post-exposure after the last of 10 exposures to MWCNT-7 by either i.t. 

instillation or oral gavage  

Cell types I.t. vehicle I.t. 40 µg I.t. 400 µg Oral vehicle Oral 40 µg Oral 400 µg 

Total cells 181.8 ± 40.3 126.5 ± 36.9 157.9 ± 18.6 27.7 ± 5.3 42.8 ± 3.2 39.7 ± 4.8 

Neutrophils 13.4 ± 4.4 21.4 ± 11.5 21.0 ± 4.0 0.0 ± 0.0 0.0 ± 0.0 0.4 ± 0.2† 

Macrophages 46.6 ± 9.1 39.5 ± 9.0 58.9 ± 8.7 25.2 ± 5.3 35.2 ± 2.8 33.3 ± 4.1 

Eosinophils 90.6 ± 23.4 43.1 ± 13.1** 15.0 ± 5.9*** 0.0 ± 0.0 0.9 ± 0.8 0.2 ± 0.1 

Lymphocytes 30.0 ± 10.9 19.9 ± 7.8 52.5 ± 7.1* 0.3 ± 0.1 1.9 ± 1.0 1.0 ± 0.4 

Epithelial 2.1 ± 1.2 2.6 ± 0.9 10.5 ± 3.3 1.8 ± 0.6 4.7 ± 1.1 4.3 ± 0.9 

ApoE-/- mice were i.t. instilled once a week for 10 weeks and BAL fluid cells were collected, stained and counted. *P < 

0.05, **P < 0.01 and ***P < 0.001 compared with vehicle-instilled group. For neutrophils on oral exposure †P < 0.05 

compared with oral vehicle using rank sum post-hoc test was used. I.t. instillation of vehicle in the lungs is associated 

with substantially higher cell counts in BAL fluid as compared to mice that were exposed to vehicle by oral gavage (P < 

0.001, not indicated by symbols in the table). Results are given as cell number x 103, and data are presented as mean ± 

SEM. Statistical analyses were performed using hierarchical nested ANOVA with Fisher’s LSD test. 




