Carryover of CH3Hg from feed to sea bass and salmon

Rasmussen, Rie Romme; Håland, Weronica; Larsen, Bodil Katrine; Kotterman, Michiel; Sloth, Jens Jørgen; Marques, António T.; Granby, Kit

Publication date: 2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Carryover of CH$_3$Hg from feed to sea bass and salmon

Rasmussen RR1; Håland W1; Larsen BK1; Kotterman M2; Sloth JJ1; Marques A3; Granby K1
1) Technical University of Denmark (DTU), 2) Wageningen Marine Research, IJMuiden, The Netherlands, 3) Portuguese Institute for the Sea and Atmosphere (IPMA)

Model. Fish concentration (C_{fish}) as a function of feed uptake, elimination (k_E) and growth dilution (k_G), where uptake depends on feed concentration (C_{feed}), assimilation (α) and feeding rate (F). From fish and feed weight (w), specific growth rate (SRG) and feed conversion rate (FCR) are calculated.

\[
\frac{dC_{fish}}{dt} = \alpha \cdot F \cdot C_{feed} - k_E \cdot C_{fish}
\]

FCR = $w_{feed \ consumed} / \Delta w_{fish \ gained}$ [1]

$k_G = \text{SGR} = (\ln w_t - \ln w_0) / t$ [2]

$c_fish \ growth \ corrected(t) = c_{fish} \cdot (1 + k_G \cdot t)$ [3]

$\ln \ (c_{fish} - c_{fish, \ control \ diet}) = constant - k_E \cdot t$ [4]

$c_{fish}(t) = \frac{\alpha \cdot F \cdot C_{feed}}{k_E} \cdot (1 - \exp (k_E \cdot t))$ [5]

Conclusion. Toxicokinetics were modeled. Feed with low levels of CH$_3$Hg (41-75 ng/g) showed assimilation (α) close to 100% and low elimination (k_E). Similar results for all diets.