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We model the electron photoemission from metal nanoparticles into a semiconductor 

in a Schottky diode with a conductive oxide electrode hosting the nanoparticles. We 

show that plasmonic effects in the nanoparticles lead to a substantial enhancement in 

photoemission compared to devices with continuous metal films. Optimally 

designed metal nanoparticles can provide an effective mechanism for the photon 

absorption in the infra-red range below the semiconductor bandgap, resulting in the 

generation of a photocurrent in addition to the photocurrent from band-to-band 

absorption in a semiconductor. Such structure can form the dais of the development 

of plasmonic photoemission enhanced solar cells.  

 

Plasmonic photovoltaics is a well established scientific discipline,  which exploits plasmonic 

effects in metallic nanostructures in order to improve the efficiency and decrease the cost of 

solar cells (SCs), as well as to develop new concepts in photovoltaic devices [1]. Two basic, 
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well-known plasmonic effects can be used to increase the photovoltaic efficiency of thin SCs: 

(a) resonant scattering of solar light by plasmonic nanoparticles into a thin absorbing film 

[1,2]; (b) increased optical absorption in the near-field zone surrounding plasmonic 

nanoantennas [1,3]. Both effects lead to the enhanced absorption of light in SC structures. In 

thick SCs, plasmonic nanoparticle layers can be effective as antireflection coatings [4]. A 

distinguishing feature of the above mechanisms is that if a semiconductor absorber of a SC 

absorbs the part of the solar spectrum that corresponds to photon energies gE  , where Eg 

is the semiconductor bandgap energy, then the use of plasmonic nanoparticles in the SCs only 

results in an increase in absorption in the same part of the solar spectrum ( gE  ). In such 

configuration only the optical properties of the plasmonic structures are exploited, and the 

harvesting of solar photons with gE   is not possible. 

Recently, several papers have also considered the enhanced photoemission of electrons 

from plasmonic nanoparticles (nanoantennas), i.e., a “plasmonic” photoemission, in order to 

improve the performance of solar cells. The plasmonic photoemission was proposed to 

realize the photoconductivity in plasmonic metamaterials [5] and increase the absorption of 

photons with gE   near the bandgap energy [6].  Both effects are expected to improve the 

efficiency of SCs and result in the development of new photodetectors, in which 

nanoparticles act as active nanoantennas [7]. The photoemission of an electron from a metal 

into a semiconductor occurs if the photon energy   is larger than the work function bW  at 

the metal-semiconductor interface, i.e., bW   (Fig.1a). The key idea is that a localized 

plasmonic resonance (LPR) in a nanoparticle can lead to a substantial increase in the 

absorption of photons with energies ħω close to the LPR energy ħωLPR in the solar cell.  More 

importantly, if b LPR gW E  , then absorbed photons with energies in the range b gW E   

can induce a current of photoemitted hot electrons, which adds to the photocurrent produced 
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by the absorption of photons for which 
gE   in the semiconductor.  It is important to note 

that for b LPR gW E   the absorption of light by metal nanoparticles does not affect the 

absorption of photons with 
gE   in the semiconductor core of the SCs.  The resulting total 

photocurrent and possibly also the photovoltaic conversion efficiency of the device are 

therefore higher. 

In this Letter, we perform numerical study of a Schottky diode structure composed of a 

semiconductor/plasmonic nanoparticles/transparent conductive oxide stack.  We show that 

the enhanced photon absorption below the semiconductor bandgap and a photocurrent as a 

result of the photoemission of electrons from plasmonic nanoantennas, can be achieved 

through the proper design of the nanoantennas (in particular the sizes and shapes of the 

nanoparticles). Through such additional mechanism of absorption of photons with gE   

the photovoltaic efficiency of SCs can be increased and plasmonic photoemission enhanced 

solar cells can be realized. In contrast to paper [7], in which the analysis of experimental 

results is based on semi-phenomenological Fouler's formula [8] for the photoemission, our 

calculations are based on the theory of the photoeffect from metallic nanoparticles [5, 9, 10]. 

We demonstrate promising quantum efficiency of the device. 

Fig.1b shows the structure considered in the present study. It is composed of a square grid 

of cylindrical silver nanoparticles of height h and elliptical cross-section with the semi-axes 

lR (long) and sR (short) deposited on a GaAs substrate.  The grid has period L, so the 

nanoparticle areal density is 21nanon L . The nanoparticle layer is covered with conductive 

indium tin oxide (ITO). The structure is illuminated with light of wavelength   and intensity 

S, incident normal to the structure surface.  If the energy of a hot electron generated after the 

absorption of a photon is higher than 0.83eV, which is the Schottky barrier height of Ag on n-

GaAs, then the electron can be transferred into the semiconductor (Fig.1a). Thus, the 

photoemitted electron contributes to the photocurrent in the structure.  The current continuity 
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is maintained by recharging the nanoparticles from the ITO layer through an external circuit 

(not shown in Fig.1b).  

We chose to study a simple Schottky barrier SC, although it had been shown [11], that 

metal-insulator-semiconductor (MIS) SCs have substantially better performance. They 

eliminate the recombination current, whereas the photocurrent flow is not affected if the   

insulator is thin enough to allow tunneling.  This simplification does not affect the 

conclusions of the present simulations, while making them easier.  In particular, by ignoring 

the insulator we can assume a constant permittivity of the semiconductor, which we expect to 

result in only a small shift of the LPR energy.  Significantly, since the insulator is thin 

enough to permit the tunneling of hot photoelectrons, the cut-off wavelengths of the spectral 

response of both the Schottky diode and MIS solar cell are the same.  

If a nanoparticle of size 
nanoa  is much larger than the de Broglie electron wavelength  in 

the metal, 5 Å in silver, then (a) we can neglect size quantization in the nanoparticle and 

calculate the normal component of the photoemission current density nj through the 

nanoparticle surface into the semiconductor substrate using the theory of electron 

photoemission from the bulk metal through its flat boundary; (b) we can assume that the 

dominant mechanism for the photoemission of electrons is photon absorption by the electrons 

during their collisions with the surface of the metal [9]; and (c) we can assume that  nj  is 

proportional to the square of the electric field component nE  inside the metal, normal to the 

nanoparticle metal-semiconductor interface [5,10]:
 

2

n emission nj qC E  ,      (1) 

where coefficient emissionC  depends, in particular, on the wavelength of the light   and the 

work function bW . The analytical expression for emissionC  for a Schottky barrier (and a 
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trapezoidal tunneling barrier) can be found elsewhere [5,12]. Obviously, 
emissionC  is non zero 

only if 
bW  .  

The average photocurrent density J  in the device is 

2 22

ms
emission n emission inc

A
J L qC ds E qC E J    ,    (2) 

where the integral is taken over
msA - the area of the contact between the metal nanoparticle 

and semiconductor substrate. The quantity  

2 22

ms
inc n

A
J L E ds E

        (3) 

is a “dimensionless photocurrent density”, which describes the “electromagnetic” properties 

of the structure (in our case the antenna properties of the plasmonic nanocylinders) relevant 

for photoemission, while 
incE  is the light field incident on the structure from vacuum (Fig.1b). 

Correspondingly, the quantum efficiency of the device    J q S  , where 
2

8incS c E   

is the intensity of the incident light, is 

0 0, 8 emissionJ C c      .     (4) 

The results of numerical calculations of J  and light absorption in the structure are 

presented below. In simulations performed using the CST Microwave Studio [13] (the solver 

employs a finite integration technique for solving Maxwell’s equations in integral form), we 

used the Drude-Lorentz formula for the complex dielectric function m  of silver 

nanoparticles (plasma frequency 161.37 10 rad sp    and collision frequency 1227.3 10 1 s   ). 

The permittivities of the ITO and GaAs layers are assumed to be frequency independent and 

equal to 4.67 and 12.86, respectively [14, 15].  For the latter material the assumption of the 

constant permittivity is only valid for photon energies below the absorption edge of GaAs. 

The constant real-valued permittivity of the ITO is chosen to get the pure effect of localized 

plasmons. A realistic model of the ITO only tunes positions and strengths of resonances. The 
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light absorption is calculated as the part of the incident light flux that is neither reflected ( R ) 

nor transmitted (T ) through the structure,i.e. 1A R T   . 

Fig. 2 shows absorption spectra for light polarized along the long and short axes of a 

nanoparticle. The absorption spectra for a circular cylindrical nanoparticle are expectedly 

identical for both polarizations, whereas an elliptical cylinder with
l sR R  has polarization-

dependent plasmonic resonances that are strongly shifted from each other.  By setting the 

long semi-axis to 20nmlR  and gradually decreasing the short semi-axis 
sR  from 20 to 7.5 

nm, the red and blue shifts of the plasmonic resonance occur for light polarized along the 

long (Fig.2a) and short (Fig.2b) semi-axes, respectively. This property of the plasmonic 

resonances of elliptical nanoparticles can be used for the realization of a polarization-

dependent electron photoemission based photodetector.   In the context of the solar cell 

design, elliptical nanoparticles can be used to tune the plasmon resonance to a lower 

frequency, while maintaining the small volume of the nanoparticle, what is necessary for the 

efficient photoemission.   

Plasmonic resonances for light polarized along the long semi-axes (Fig.2 a) of all 

nanoparticles considered here lie at wavelengths longer than 87.0g  μm, which corresponds 

to the GaAs bandgap 1.43eVgE   and shorter than 1.49 μm, which corresponds to bW  for the 

Ag-GaAs interface (Fig.2a).  Therefore, the spectral responsivity of the device is extended to 

longer wavelengths in comparison with GaAs.  Meanwhile, for light polarized along the short 

axes of the nanoparticles with a relatively small value of  15nmsR   the photoemission occurs 

for photon energies gE  . Then the photon absorption due to the band-to-band transitions in 

GaAs may be more efficient for generating the photocurrent.  It may, however, still be a 

useful approach to reduce the total thickness of the solar cell. 

A signature of the presence of localized surface plasmons can be recognized in both the 

absorption, A, and the photocurrent, J , spectra, as shown in Fig.3 for different nanoparticle 
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densities.  The positions of the photocurrent maxima (Fig.3b) coincide with the positions of 

the absorption resonances plotted in Fig.3a.  Both resonances are red-shifted and broadened 

with increasing the nanoparticle density (decreasing L).  This behavior can be explained by 

an increase in interactions between nanoparticles [4].  It should be stressed again that the 

resonance peaks are at wavelengths between 1.1 and 1.3 μm, thus corresponding to energies 

below the semiconductor bandgap. 

When the period L is varied from 80 to 140 nm for the fixed size of the nanoparticles 

( 20nmlR  , 7.5nmsR  ), the peak magnitude of the plasmonic resonance passes through its 

maximum at max 100nmL   (see the inset to Fig.3a). The dimensionless photocurrent J  

exhibits similar behavior as demonstrated in the inset to Fig.3b. The origin of this behavior 

can be explained intuitively.  The contribution of plasmonic nanoparticles to the absorption 

and photoemission must tend to zero for very low nanoparticle densities (large L). On the 

other hand, localized plasmon effects must vanish for a dense enough set of nanoparticles 

(small L), i.e. when they start bridging with each other to form a homogeneous film. 

The case of a homogeneous film corresponds to a standard semiconductor-metal Schottky 

diode [16]. In this case, the metal is adjacent to the semiconductor at every point on the 

interface, and the localized plasmon effect is absent. Such device can be used as a reference 

for comparison with plasmonic nanoantennas devices.  If light is incident normally to the 

reference device, the field component normal to the surface is zero, and electron 

photoemission is absent. For comparison, if we assume that light with intensity S propagates 

almost parallel to the continuous metal layer in the standard device (the optimal coupling to 

the standard device), then the dimensionless photoemission current parameter can be 

estimated as 42 102||/1
~  moJ  . The nanoantenna-induced photoemission can be 

characterized by the enhancement factor oF J J , which is estimated to be 5~ 10  for the 

plasmonic maxima shown in Fig. 3b.  The presence of the plasmonic nanoantennas results in 
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a substantial enhancement in the electron photoemission (by several orders of magnitude) in 

comparison with the non-resonant situation. According to Ref. [5] 2 3~10 10o
  . Therefore, 

quantum efficiency ~ 0.02 0.2  (4) can be expected at the maxima in Fig.3b, in agreement 

with the value ~ 0.15  obtained in Ref. [5]. 

The response of a SC to the light impinging on its surface at different angles is important 

for its operation under diffuse light conditions.  In the geometry considered in the inset to Fig. 

4 the device is illuminated with light impinging at arbitrary angle .  The electric field, the 

normal to the interface and the wavevector lie in the same plane.  As a result of the continuity 

of the normal component of the Poynting vector, the intensity of the radiation in the ITO, 

I=nITO|E|
2
, can be expressed in terms of the intensity I0 of the incident light as I=I0cosα/cosθ, 

where nITO is the refractive index of the ITO and α and θ are the angles of incidence and 

refraction, respectively. The squared field component parallel to the interface, which excites a 

localized plasmon in the cylinder, has the form |Et|
2 

= |E|
2
cos

2
θ = (I0/nITO) cosθ cosα.  Its 

dependence on  is shown by the dashed curve in Fig. 4. It is in agreement with the results of 

numerical simulations at the resonance wavelength (λ = 1176 nm). At shorter wavelengths 

there is still a trace of the plasmonic effect (the black solid line in Fig. 4). In contrary, at 

longer wavelengths (the blue line in Fig.4) the plasmonic effect is absent. Even at large 

angles of incidence the photocurrent at resonance is pronounced and drops to a half of its 

maximum value only at the angle of approximately 60 degrees. That provides a direct 

confirmation of the broad-angle photon harvesting ability of the SC device. 

In conclusion, we have demonstrated that plasmonic nanoparticles can be used to provide 

a substantial enhancement in the photoemission from a metal into a semiconductor (by 

several orders of magnitude), when compared with a continuous metal film.  The largest 

photocurrent is obtained near the localized plasmonic resonances of elliptical nanoparticles 

arranged in a periodic array.  The photoemission efficiency can be as high as 20%. By the 
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appropriate design of the nanoparticle shape (e.g. elliptical) the photocurrent can result from 

the absorption of photons with energies below the semiconductor bandgap, thus extending the 

spectral response range of the solar cell. The effect is preserved in the broad range of angles 

of incidence.  Therefore, in thin solar cells this behavior can be considered as an additional 

mechanism for the generation of the photocurrent, leading to the realization of a new type of 

plasmonic photoemission enhanced solar cell. 

AN and AL acknowledge partial financial support from the Danish Research Council for 

Technology and Production Sciences via the THzCOW project. The work of AVU at DTU 

was supported by the Otto Moensted Foundation.  
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Fig. 1. (Color online) (a) Schematic diagram of the photoemission of an electron from a 

metal nanoparticle. An electron (black dot) absorbs a photon of energy   during a 

collision with the metal-semiconductor interface, and enters the semiconductor over a 

Schottky barrier with the work function 
bW . (b) Schematic diagram of the structure 

considered in the present study. Incident light induces the photoemission of electrons e
–
 

from nanoparticles into the semiconductor. 

 

 

Fig. 2. (Color online) Light absorption spectra in the system of elliptic cylinders, for 

incident light polarized along (a) the long axes and (b) the short axes of the 

nanoparticles. In the calculations, Rl = 20nm, h = 10nm, L = 80nm. 
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Fig. 3. (Color online) (a) Light absorption spectra and (b) spectra of the dimensionless 

photocurrent parameter J for several nanoparticle densities, i.e., several values of L. The 

insets show the dependences of the resonance maxima peakA  and 
peak

J  on L. In the 

calculations, Rl = 20nm, Rs = 7.5nm, and h = 10nm. 

 

Fig. 4. (Color online) Dimensionless photocurrent J plotted versus the light incidence 

angle α, which varies in the plane of the long axes of the nanoparticles.  The electric field of 
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the incident wave is also in the plane of incidence.  The dashed curve shows the analytical 

prediction. 


