Archetypal analysis of auditory profiling data towards a clinical test battery

Sanchez Lopez, Raul; Bianchi, Federica; Santurette, Sébastien; Dau, Torsten

Publication date: 2016

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Archetypal analysis of auditory profiling data towards a clinical test battery
Raul H. Sanchez², Federica Bianchi¹, Sébastien Santurette¹,² and Torsten Dau¹
rsalo@elektro.dtu.dk
¹ Hearing Systems group, Department of Electrical Engineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
² Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen, Denmark

Introduction
Nowadays, the pure-tone audiogram alone is used for hearing-aid fitting and characterization of the degree of hearing loss. Nevertheless, some hearing-impaired listeners have shown a so-called speech communication handicap even though the audibility was compensated for by amplification. Plomp (1978) proposed a classification of the hearing loss based on speech intelligibility tests, the “audibility loss” and the “distortion loss”. Therefore, a different fitting strategy may be needed for compensating the deficits of these two different classes.

The aim of the present study is to clarify which tests are needed (in addition to the audiogram) to classify the listeners in different hearing profiles.

Hypothesis
- H1: Hearing-impaired listeners can be grouped in 4 different profiles by identifying trends in the behavioral data. This can be done using unsupervised learning.
- H2: The test used for classifying the subjects can be reduced to only the most relevant tests using supervised learning.

Method
Unsupervised

I. Dimensionality Reduction: PCA

A) Principal component analysis of the dataset. After cross-validation the optimal number of components was five. B) PCA after dimensionality reduction by cross-validation with the 5 variables highly correlated to PCA (≈95%). C) same as B) but for PCA2 (≈75%). Proposed licensing tests consisted of the 10 tests in B and C.

Non-auditory related distortions

Method
Unsupervised

II & III. Archetypal analysis and Profile identification

A) Archetypes, trends found in the data for each profile and for the proposed licensing tests. 4 archetypes resulted from the archetypal analysis which could explain 88% of the variance. B) Each listener is placed in the “Square Visualization” depending on the similarity to each archetype. Each listener will belong to the auditory profile of the closer archetype, which will be used in IV. Supervised learning.

IV. Supervised learning: Classification

A) Decision tree obtained by using the raw data as an input and the auditory profiles as the output. The classification was based in the variables SRTA, SRTA, IPD and Bpoches. B) Resolutions of the Speech reception in noise (SRTA) (C) the lowest frequency for detecting interaural phase differences (IPD) and D) Binaural pitch dichotic (Bpoches). The dashed lines correspond to the limits imposed in the decision tree.

Conclusion
- The new analysis provides consistent evidence of the existence of different “auditory profiles” in the data.
- The most informative predictors for the profile identification of the HI listeners were related to temporal processing, loudness perception and speech perception.
- The current approach seems to be promising for analyzing other existing data towards an efficient auditory profiling.