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Abstract 10 

The aim was to investigate the influence of raw material variation in Atlantic salmon from 11 

aquaculture on filleting yield, and to develop a decision tool for choosing the appropriate raw 12 

material for optimized yield. This was achieved by tracking salmon on an individual level 13 

(n=60) through a primary production site. The majority of the salmon exhibited a heavier right 14 

fillet compared to the left fillet after filleting. No explicit explanation was found for this 15 

observation although the heading procedure was shown to have a large impact. A Partial Least 16 

Square model was built to predict the yield after filleting. The model was based on six pre-17 

processing variables and allowed an acceptable prediction of the filleting yield with a root mean 18 

square error cross validation of 0.68. The presented model can estimate the slaughter yield for a 19 

certain batch before ordering from the slaughterhouse. This may facilitate optimal planning of 20 

the production of salmon fillets by ordering and assigning the right batch to the right product 21 

category to obtain an optimal yield and quality.  22 

Keywords: Production analysis; Prediction; Atlantic salmon; Yield; Multivariate data analysis; 23 

PLS 24 

 25 

1. Introduction 26 

Due to the growing population in the World, an increase in food demand of around 70% by 27 

2050 is foreseen (Searchinger et al. 2013). This provides the food industry with a strong 28 

incitement to increase product yield in a cost-effective manner (Somsen et al. 2004). Food 29 

products are highly complex biological matrices with a combination of chemical and physical 30 

factors, which all together define the product characteristics (Rahman, 2005). The inherent 31 

variation in these factors, such as fat, protein and size, results in a natural raw material 32 

variation that influences the processing of the product. Moreover, the most valuable part of the 33 

salmon is the fillet hence increasing the overall exploitation of the salmon meat with focus on 34 

optimizing the yield of the fillets is desirable (Powell et al. 2008).   35 

A structured approach to increase production yield may identify undesirable mass loss or areas 36 

in the production that allow for adjustment prior to processing (Somsen et al. 2004). Somsen et 37 

al. (2004) implemented a production yield analysis (PYA) method to identify areas in a poultry 38 

processing company where optimization in yield could take place by calculating the yield 39 
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efficiency of the transformation process. Ineffective operating machinery and fine-tuning of 40 

machinery were just two of the actions that were identified. In contrast to PYA, which is focused 41 

on process steps and where they can be improved, process analytical technology (PAT) is aimed 42 

at monitoring the product throughout the production. To ensure the desired quality of the final 43 

product, PAT has long been used in the pharmaceutical industry and the methods have also 44 

been adapted to the food industry (Chew & Sharratt, 2010; Pomerantsev & Rodionova, 2012; 45 

van den Berg et al. 2013). PAT focuses on control using real-time monitoring that allows for 46 

modifications during production in case the indicators of the desired quality do not fulfil 47 

specified requirements (van den Berg et al. 2013). Instead of only applying post-production 48 

quality testing, it is beneficial to investigate the raw material properties and process variables 49 

during the production. This allows for adaption of the processing parameters in real time, which 50 

ensures the selected quality traits for the final product (Pomerantsev & Rodionova, 2012). The 51 

two methods clearly have specific advantages when applied separately. Yet, a combination of 52 

them will provide the food producer with a valuable tool to first analyse the production, 53 

considering both process and biological variation of the raw material, and secondly, couple 54 

these findings to identify the processability of the product.  55 

The processing of Atlantic salmon (Salmo salar) from aquaculture into fillets was used as case in 56 

this study. Aquaculture production of Atlantic salmon consists of a rearing period (24 to 36 57 

months), including harvesting, slaughtering and gutting, all handling and transportation, before 58 

entering the primary processing. The primary processing encompasses the production of fillets 59 

or portions, either fresh or frozen (Melberg & Davidrajuh, 2009). This study comprises an 60 

analysis of the production using PYA in order to identify areas where PAT can be applied in a 61 

future production situation. The hypothesis is that, by combining the ideas behind PYA and PAT, 62 

the characteristics of the incoming raw materials can be considered when planning, and also 63 

monitoring, the processes to subsequently enable a yield increase.  64 

The aim of this study was therefore to investigate if comprehensive collection and analysis of 65 

data from processing companies could be utilized to increase the production yield in the salmon 66 

industry. To secure comprehensive data and traceability, each salmon entering the processing 67 

plant were followed on an individual level through the process. Thus, possible influences of 68 

biological variation in the raw material on the subsequent production yield could be revealed. 69 

 70 

2. Material and methods 71 

2.1 Sampling 72 

Atlantic salmon (Salmo salar) (n=60) from three different slaughterhouses (1, 2 and 3) in 73 

Norway was used for the experiment. The salmon were all in the weight class from 4-5 kg and 74 

classified as SUPERIORa with respect to their quality. In January 2015, the salmon were 75 

harvested, iced and transported by truck to the production facilities of the participating 76 

company in the northern part of Denmark.   77 

                                                             

a The quality grade SUPERIOR represents salmon with no considerable defects such as damaged 

skin and significant loss of scales. They must be void of bruises, damaged belly or musculature 

(Regulation (EU) No 1151/2012). 
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 78 

2.2 Experimental design 79 

All salmon were tagged in the mouth with an individually numbered pit tag. This was done to 80 

ensure tracking of the fish during processing and to later distinguish the heads. Images of all 81 

salmon were taken to enable objective evaluation of the belly cut. The salmon were held by the 82 

gills, hanging straight down, and a RedGreenBlue (RGB) image was taken with a digital camera. 83 

The weight (W), length (L) and thickness (T) across the dorsal fin of each fish were recorded. 84 

The processing line used for the study was from BAADER Food Processing Machinery 85 

(Nordischer Maschinenbau Rud Baader GmbH+Co KG, Lübeck, Germany). The gutted salmon 86 

were headed using the U-Cut heading machine for salmon (BAADER 434 S), filleted (P1) on a 87 

high speed filleting machine (BAADER 581), auto-trimmed (P2) on a high speed trimming 88 

machine (BAADER 988) and finally manually trimmed (P3) by well trained staff at the 89 

processing company. The salmon were placed consecutively on the production line for heading. 90 

Heads and tails were cut and the heads were collected for weighing and further analysis. The 91 

salmon were filleted mechanically and then collected, numbered and weighed after each 92 

processing step P1-P3.  93 

 94 

2.2 Data acquisition 95 

The heads were packed on ice in polystyrene boxes and transported to the Technical University 96 

of Denmark (DTU) in order to investigate the head cut. Each head was weighed on a Kern FCB 97 

scale (Kern & Sohn CmbH) with a weighing range of 8 kg and a readability of 0.1 g. The heads 98 

were placed upside down in a beaker and a photo was taken with a digital camera in a specially 99 

designed white painted box (size 1150 x 760 x 800 mm) with 20 m LED light bands (5000K, 100 

390 Lumens, ClimaCare.dk) placed in a spiral along the sides (longitudinal direction) with 101 

approximately 10-15 cm between each winding in order to create a diffuse light. Images of the 102 

heads were investigated by a panel of four with respect to the presence of additional meat on 103 

either left or right side. Figure 1a presents an example of one of the head cuts where the 104 

presence of additional meat on the left side, marked by a circle, was unmistakable. The images 105 

of the belly cut were quantitatively analysed and ranked based on how big an arch the cut 106 

displayed. The ranking was made as presented in Figure 1b.  107 

 108 

Figure 1 109 

 110 

Based on the measured values of weight (g), length (cm) and thickness (cm) a range of variables 111 

were calculated, and their definitions are presented in Table 1.  112 

 113 

Table 1  114 

 115 
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The groupings of variables were chosen based on their use as normal evaluation criteria, their 116 

availability (simple to measure), and because they hypothetically could have an influence on the 117 

final yield.  118 

Yield was calculated as the weight of the two fillets divided by the weight of the whole gutted 119 

salmon and multiplied by 100%.  120 

 121 

2.3 Statistics  122 

Data were statistically analysed using the Prism 6 (GraphPad Software, Inc., La Jolla, CA, USA) 123 

software for Mac. A paired t-test was used to test whether there was a significant size difference 124 

between the left and right fillets. The significance level was set to P<0.05. The influence of the 125 

gutted weight, length, thickness, degree of belly cut and K factor on the size difference between 126 

the left and right fillet were tested using ANOVA in the open-source software for statistical 127 

calculations, R (R Foundation for Statistical Computing, Vienna, Austria). 128 

 129 

2.4 Multivariate data analysis 130 

To establish the relationship between the main variables related to physical appearance and 131 

percentagewise yield, Partial Least Squares regression analysis (PLS) (Wold, 1975) was used to 132 

build a model for the prediction of yield. All models were built with the measured variables as 133 

the X matrix and the calculated yield as the Y vector. All data were auto scaled with 1/standard 134 

deviation. Outliers were detected and removed based on influence, Hotelling T2 statistics and Q-135 

residuals. Variables were excluded based on lowest regression coefficients and weighted 136 

regression coefficients. The models were calibrated using a full cross-validation, and evaluated 137 

based on the calibration root-mean-square error (RMSEC), and the cross-validation root-mean-138 

square error (RMSECV). Principal Component Analysis (PCA) (Hotelling, 1933) was used for 139 

explorative data analysis and visualization of correlations between variables. The software 140 

Unscrambler X (Camo ASA, Oslo, Norway) was used for the multivariate data analysis.  141 

 142 

3. Results and discussion 143 

3.1 Yield  144 

In this study, the weight after each processing step was followed for 60 salmon. This allows for 145 

knowledge on how processing influences each single fish and possibly identifying parameters 146 

relating the yield to the physical appearance of the salmon such as length, weight and thickness 147 

over the dorsal fin, or with calculated variables, such as the shape ratio, W/LT and K factor. 148 

Moreover, comparisons of belly cuts can aid in understanding how the slaughtering may affect 149 

the subsequent processing steps. Figure 2 presents the mass flow of the production with the 150 

calculated yield, the mean total weight, the mean weight of the left and right fillet, and the 151 

calculated loss after each processing step.  152 

 153 

Figure 2  154 
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 155 

Figure 2 illustrates the reduction in yield (including standard deviations) after each process 156 

step from an average of 76.7%±6.5% after mechanical filleting (P1), to 67.5%±7.2% after auto-157 

trimming (P2), and further down to 51.9%±11.3% after manual trimming (P3). The trimming 158 

recipe determines how much is trimmed from the fillet and will therefore influence the 159 

resulting weight reduction. In this case study, approximately 50% of the gutted salmon could be 160 

sold as fillet. In comparison, Rørå et al. (1998) reported the yield of the untrimmed and 161 

trimmed fillets with skin to be 77.6% and 67.3%, respectively. Nevertheless, Rørå et al. (2001) 162 

put the yield of farmed fish species in the range of 40-70%. Hence, taken into consideration that 163 

the salmon in this study underwent deep skinning, a final fillet yield of 50% is regarded as 164 

consistent to what has been found by other researchers.  165 

The weight loss during filleting was 23.3% on average. This comprises the removal of the 166 

skeletal frame as well as the head and tail. The auto-trimming loss accounted for 12.0% while 167 

during the manual trimming and deep skinning 23.1% was removed. In total the trimming loss 168 

amounts to 32.4%. In comparison, Rørå et al. (1998) reported a filleting loss of 22.5% by 169 

mechanical filleting, and a trimming loss of 13.2%. However, in their study the fillets were 170 

trimmed manually and the skin was not removed, which can explain the differences between 171 

the reported trimming losses of the two studies. 172 

 173 

3.2 Weight difference of fillets 174 

According to Figure 2 the mean weights and standard deviations of the fillets after P1 were 175 

1710 g (±147.1 g) for the left side and 1733 g (±150.2 g) for the right side. A paired t-test 176 

showed that the observed difference was significant with a P value < 0.0001. After P2 the mean 177 

weights (and standard deviations) of the left fillet was 1505 g (±124.5 g) and the right fillet 178 

1524 g (±128.3 g) and the paired t-test showed a significant difference with P = 0.0006. After 179 

the last trimming and skinning (P3) the mean weights and standard deviations of the left and 180 

right fillet were 1176 g (±112.9 g) and 1213 g (±108.5), respectively, with P = 0.0085. The P 181 

values increase after each processing step meaning that the fillets become more alike after each 182 

trimming. Hence the automatic trimming procedure trim the larger fillet more for the two fillets 183 

to become more alike, which in the worst case may result in over-trimming and thus increased 184 

loss. 185 

Two data subsets were created for each of the three processing steps (P1-P3) in order to ensure 186 

that the weight differences between left and right fillet were significantly different from zero. 187 

One set containing the differences where the left fillet was larger than the right fillet, and 188 

another set for vice versa. A one-sample t-test was performed for each of the six data subsets, to 189 

test null-hypothesis that the means were equal to zero. The results are summarized in Table 2 190 

with standard deviations (SD), number of samples in each group (n) and P values. 191 

Table 2.  192 

From Table 2 it can be seen that for nearly all data subsets the null-hypothesis can be rejected 193 

(P<0.05). For one subset (P2, left > right) the null-hypothesis cannot be rejected, which can be 194 

explained by the large standard deviation, that arises from a single data point being notably 195 
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different from the others. This analysis suggests that the inspected fillet weight differences are 196 

significantly different from zero. 197 

To ensure that the weight differences between all left and right fillets were not separated by a 198 

small margin, all fillets were divided into three groups: One group where the left fillets were 199 

larger than the right fillet by a certain margin, one group where the right fillets were larger than 200 

the left fillet by a certain margin, and finally a group were the left and right fillet differences 201 

were smaller than a certain margin. Two different margins were selected corresponding to the 202 

lower and upper bound of a 95% confidence interval calculated for the absolute mean 203 

difference between all left and right fillet weights. This was chosen in order to encompass every 204 

possible mean difference based on the available data.  205 

Table 3.  206 

The number of samples in each of the three groups for all processing steps (P1-P3) is 207 

summarized in Table 3. The table shows a clear tendency of the right fillet being larger than the 208 

left. Even when considering the greater margin at the initial processing step, more than a third 209 

of the right fillets are larger than the left fillets. 210 

In the present study, yield was calculated as (weight of left fillet + weight of right fillet)/gutted 211 

weight*100%, in contrast to other studies where yield has been calculated as (2*fillet 212 

weight)/gutted weight*100% (Rørå et al. 1998; Skjervold et al. 2001). In this study, it was 213 

shown that the weights of the two fillets differed significantly, and thus do the calculations here 214 

result in a more realistic and precise measure of yield compared to previous studies. Seen in the 215 

light of process analysis it is of paramount importance that the foundation for optimization is 216 

built on actual amounts in order to set up realistic goals for future production processes.  217 

To identify at which step(s) during processing the weight difference was introduced the weight 218 

data were further examined. After P1, the right fillet was generally heavier than the left fillet 219 

except in 13 instances where the opposite was seen. After P2, 11 of the 13 incidences after P1, 220 

where the left fillet was heavier than the right fillet, was repeated. Additionally, two different 221 

salmons displayed a heavier left fillet summing up to a total of 13 incidences where left side 222 

fillet > right side fillet. After P3, 14 occurrences of the left fillets being larger than the right fillets 223 

were noted whereof nine of them were new, compared to the previous steps. Hence the weight 224 

differences after each process step did not necessarily coincide and the difference between the 225 

fillets after P2 and P3 seemed to be of less importance. Yet, it was the mechanical filleting that 226 

revealed the initial weight difference and the cause of this difference must therefore be a 227 

process prior to or during the mechanical filleting.  228 

To trace back and investigate possible causes of the observed difference in weight between the 229 

right and left side fillet the belly cut and heading procedures were given a closer look.  230 

Prior to the experiment it was hypothesized that the belly cut from the slaughtering process 231 

might influence the yield after filleting as an uneven cut would favour either the left or right side 232 

fillet, thus explaining the observed weight difference. Visual inspection of the belly cut in 233 

relation to the weight difference did not reveal any correlation. Nevertheless, the result of an 234 

ANOVA showed that the belly cut was the only significant variable related to the weight 235 

difference between the left and right fillet when performing the ANOVA on weight, length, 236 

thickness, degree of belly cut and K factor. This shows that extensive data acquisition and 237 

subsequent analysis can reveal correlations that are not caught by the human eye.  238 
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The heading procedure was examined by investigating the images of the head cuts. It was 239 

observed that all heads had more meat/muscle on their left side compared to the right side. 240 

Hence, if this procedure were the only processing step causing the observed weight difference 241 

then we would expect that all the salmon would display a heavier right side fillet. More meat on 242 

the left side of the head should mean less meat on the left fillet and consequently a heavier right 243 

fillet. Although this was generally the case, a comparison of the weights revealed that 22% of 244 

the samples still exhibited a heavier left fillet compared to the corresponding right fillet. 245 

Consequently, the heading procedure cannot solely be responsible for the observed weight 246 

differences.  247 

Factor analysis of how the measured and calculated variables (presented in Table 1) interact 248 

and influence the weight difference after each process step was performed. It showed that the 249 

weight difference after P2 solely depended on the weight difference after P1, and the weight 250 

difference after P3 did not correlate to any of the variables. These findings were expected since 251 

P2 and P3 both are influenced by predefined recipes, such as choice of trimming based on 252 

customer orders, and human factors during the manual trimming. The weight difference after 253 

P1, however, was most likely a result of the raw cut that separates the fillets from the skeletal 254 

frame. Consequently, it is only up to this processing step where prediction of yield is truly 255 

meaningful. 256 

 257 

3.3 Prediction of yield 258 

From the previous analyses presented in this study, indications were found that some 259 

parameters measured prior to processing influenced the yield after mechanical filleting. 260 

Building a prediction model for the yield after mechanical filleting, based on a combination of 261 

specific measurable pre-processing parameters, can provide an estimate of the yield even 262 

before the salmon has entered the processing facility. By providing the filleting company with 263 

these variables the yield after mechanical filleting for a certain batch can be estimated thus 264 

enabling better planning of the production by ordering (and assigning) the right batch to the 265 

right product category. This may assist the processing companies in obtaining the highest 266 

possible outcome from the incoming raw materials.  267 

Several prediction models were built to predict the percentage yield after mechanical filleting 268 

based on the variables measured in this study. Initially, a model was built without excluding any 269 

variables and only by removing outliers. A total of 16 outliers were detected and removed (this 270 

will be discussed further in section 3.5) and both the RMSEC and RMSECV values of 0.47 and 271 

0.60, respectively, validated the model as being rather good. However, the model comprised all 272 

measured and calculated variables thus obscuring the outcome, which should contain variables 273 

that can be measured prior to processing in order to be truly applicable in the industry for 274 

predictive purposes. Hence the model was used as the basis for building three successive 275 

models, which were further analysed. These models are presented in Table 4.  276 

 277 

Table 4.  278 

 279 
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A PLS model (PLS1_1) was built on the seven variables listed in Table 4 remaining after a 280 

variable reduction. In total, 15 samples with outlying behaviour were removed from the dataset, 281 

which resulted in a RMSEC of 0.40 and a RMSECV of 0.43 for a five-factor model. Even though 282 

PLS1_1 showed very good prospect it was chosen to exclude the head weight from the variable 283 

selection, since ideally the variables included in the model should all be measurable prior to 284 

processing. Omitting the head weight and including all samples in the PLS1_2 model resulted in 285 

a total of 14 outliers, a RMSEC of 0.63, and a RMSECV of 0.68 for a two-factor model.  286 

The K factor is already measured at farm level by random sampling to determine the optimal 287 

time for harvesting, and again before and after slaughtering to direct products into the optimal 288 

product flow. The K factor comprises measurements of weight and length, both of which are 289 

used to construct some of the other variables. The thickness over the dorsal fin is the only 290 

necessary variable that is currently not registered. Therefore it was interesting to investigate 291 

the effect of excluding variables that contain the thickness as it results in a model that can be 292 

incorporated based on variables already measured in the production. PLS1_3was built on the 293 

complete data set and the K factor, length and weight. Leaving out the stand alone variable 294 

length from the model gave the best result and resulted in a total of 12 outliers, a RMSEC of 295 

0.67, and a RMSECV of 0.71 for a two-factor model. Even though PLS1_3 gives a reasonable 296 

error of prediction, it is not the best model of the three presented in Table 4, and will thus not 297 

be investigated further.  298 

Figure 3 depicts a score plot (a) and a correlation loading plot (b) of Factor-2 versus Factor-1 299 

from the PLS1_2 model. Figure 3a depicts the scores of the samples. The samples are clustered 300 

depending on which slaughterhouse (1, 2, or 3) supplied them.   301 

 Figure 3 302 

Figure 3b show how the variables (shape ratio, length, W/LT, K factor, thickness and weight) 303 

correlate, as highly positive correlated variables have similar weights and will thus appear close 304 

together. Together the plots describe certain characteristics of the salmon depending on the 305 

supplying slaughterhouse. Salmon from slaughterhouse 1 overall were longer and had a higher 306 

shape ratio than samples from slaughterhouse 3. Samples from slaughterhouse 2 were 307 

characterised by being heavier in weight, thicker measured over the dorsal fin, and having a 308 

higher K factor compared to the two other slaughterhouses. The salmon from slaughterhouse 3 309 

distinguished themselves by having lower values for all variables compared to the two other 310 

slaughterhouses. Although, all three groups overlap, the clustering of samples from 311 

slaughterhouse 2 and 3, respectively, is well defined. On the other hand, samples from 312 

slaughterhouse 1 span the whole plot with samples displaying the largest variation in both 313 

weight and W/LT index. This means that the variation in the raw material batch when buying 314 

salmon from either slaughterhouse 2 or 3 are more homogeneous and thereby easier for the 315 

production to handle while the width in batch variation of salmon from slaughterhouse 1 is 316 

bigger.  317 

With PLS1_2 it is possible to predict the yield after filleting from only few measurable variables 318 

with a RMSECV of 0.68. The equation for this prediction model is given by the intercept and the 319 

beta coefficients together with the respective X loadings. The equation for PLS1_2 can be 320 

written as  321 

Yield(%)=52.95+0.293*W+0.114*L+0.241*T+0.216*W/LT+0.257*K factor-0.121*shape ratio  322 
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with W being the fish weight in grams, L the fish length in cm, and T the thickness over the 323 

dorsal fin in cm. The K-factor and shape ratio are both without units. The beta coefficients are 324 

all weighted, meaning that they describe how much they change when the predicted value 325 

changes one standard deviation. All beta coefficients (except Length) were significantly 326 

different from 0 with P values < 0.0001. Length showed to be just on the limit with P = 0.0731.  327 

By defining a common knowledge base for the salmon industry the processing companies can 328 

request that more parameters are measured prior to slaughtering, in this case the thickness. 329 

Such requests for particular parameters can be fed a model to determine the predicted yield of 330 

individual batches. Such a model can be incorporated as a decision support tool in the 331 

acquisition phase of the salmon allowing the processing company to define their demands when 332 

ordering raw materials from the farms. If knowledge transfer between the parties in the value 333 

chain should be facilitated the economical incitement to perform additional measurements 334 

must be present. In relation to the present study, we found that the thickness over the dorsal fin 335 

will provide the production companies with valuable information in the decision-making 336 

process. Ordering of raw materials that match the consumer requests for a specific trimming 337 

will ultimately reduce the loss of otherwise good meat and increase the profit of the filleting 338 

company. On the other hand, this additional information must also result in an increased price 339 

of raw material for the farm, as it is here the extra work is required. Therefore, further 340 

investigations must include the cost of adding an extra measurement at farm level in order to 341 

make a detailed prediction of the yield possible.  342 

 343 

3.5 Further Analysis of Deviating Samples 344 

We have demonstrated by PLS how the yield of the majority of the data (corresponding to 80%) 345 

could be predicted with acceptable accuracy based on the available data. Hence these samples 346 

were assumed to be within a normal range with respect to the measured variables. With the aim 347 

of defining the processability of salmon the remaining 20% of the samples were further 348 

examined. This was achieved by investigating the differences of the 13 deviating samples, 349 

shared between the PLS1_2 model and the PCA model, to explore why the yield% of these 350 

specific salmons could not be predicted.   351 

No explanation was found with respect to origin of slaughterhouse or weight difference 352 

between the left and right fillets. Seven of the 13 deviation-duplicates originated from 353 

slaughterhouse 2, four were supplied by slaughterhouse 1, and two had come from 354 

slaughterhouse 3. Ten of the 13 samples exhibited a heavier right fillet than left fillet. This is 355 

almost the same proportion, 75%, as in the full dataset with 78%.  356 

In order to determine which variables could explain the variance in the deviation dataset, all 357 

variables were included in the analysis. Exploring the dataset with respect to all variables 358 

showed that fewer variables were needed to explain the variance. The performed PCA on the 13 359 

deviating samples, and after variable reduction, resulted in three distinct PCs, which together 360 

contained 100% of the total variance. Figure 4 presents a bi-plot of the results with PC-1 vs. PC-361 

2. The samples are circled to illustrate the clustering of the samples. 362 

 363 

Figure 4  364 
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 365 

The bi-plot in Figure 4 reveals two groups of salmon in the deviation based dataset based on the 366 

PCA model. The first group, marked with the left circle, characterised samples with a straight 367 

belly cut (rank 0). The second group, marked with the right circle, represents samples that 368 

display an angling of the belly cut to the left (rank 1 and 2). Figure 4 illustrates how the samples 369 

cluster in relation to the loadings; samples to the right were salmon with higher values of length 370 

and W/LT ratio compared to the cluster to the left. The left cluster, however, is dominated by 371 

higher values of yield (P1) compared to the sample cluster to the right. Although the difference 372 

in weight of the fillets cannot be fully explained by the belly cut, the angling of the cut on the 373 

deviating samples seems to be correlated to the yield. The variance among the deviating 374 

samples can be explained with fewer variables compared to the variance in the full dataset. 375 

However, both the length and the W/LT ratio were negatively correlated to the yield and thus 376 

may be two variables that should be investigated further. Knowledge of which factors that 377 

relate to the yield may be used in a forward-looking way to optimize production and define new 378 

requirements in the industry. Yet, the processing companies alone cannot achieve this. The 379 

information flow in the value chain must be adapted to be able to handle requests from the 380 

primary processing, or even further down the value chain. Despite the development within 381 

traceability systems, the norm today is that no or only little information follows the fish, except 382 

what is required by law, and hence will not be passed on to the next step in the value chain 383 

(Frosch et al. 2008). This makes it difficult to optimize along the value chain, as information is 384 

not shared between and over the processing links. Changing the information flow from the 385 

traditional linear flow to a circular flow will enable all parties to share knowledge regarding the 386 

raw materials. This can facilitate knowledge transfer between the links of the value chain, both 387 

upstream and downstream, by directing the information to the part of the value chain that has 388 

an influence on the specific share. Hence a question regarding measurements of new 389 

parameters should be directed from the processing company to the farm, as it is here the 390 

salmon are measured prior to determination of optimal harvest time.  391 

Even if prediction of yield is made possible in the future the economic gain might not be enough 392 

to lift the cost of the measurement. Another way to increase the outcome from the production 393 

companies is to look at how to remove the additional meat from the heads. In this study we 394 

found that all the salmon had more meat on the left side of the head after heading. This may be 395 

explained by the positioning of the salmon during heading where the fish is placed on the left 396 

side and as a result is resting on the surface when the cut is made. From the observations made 397 

in the production the presence of additional meat on the head was always the case. Therefore, it 398 

is not believed that resetting the equipment will recover the meat. More likely, it is the design of 399 

the machine in which the salmon is placed flat on the left side that is responsible for a crooked 400 

head cut with meat left on the head as a consequence. When the salmon is lying flat in the 401 

heading machine the right side of the fish is stretched whereas the left side becomes more 402 

compressed. This difference in positioning may cause a lopsided cut and meat is lost. Even if the 403 

additional meat only amounts to 30-40 grams per fish (~ 1%) it adds up and for a 12000 tonnes 404 

production, 73.5 tonnes extra salmon meat can be gained, amounting to 300.000 €/year. 405 

Because of this, in addition to understanding how raw material variation influence the yield, 406 

further analyses of productions and machinery must be made. In this context it is important to 407 

stress that not all processing lines are identical and thus present results may not be applicable 408 

to all companies.  409 
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 410 

4. Conclusions 411 

The production analysis conducted in this study focused on the three main processes: filleting, 412 

auto-trimming, and manual trimming. It was found that 78% of the salmon exhibited a weight 413 

difference between the fillets favouring the right side. Even though the heading procedure could 414 

explain part of the observed weight difference it does not explain it all as the belly cut also 415 

seems to influence the observed weight difference. Furthermore, the study revealed six 416 

variables; shape ratio, length, W/LT, thickness, weight and K factor, which together enabled an 417 

acceptable prediction of the filleting yield with a RMSECV of 0.68. Although the data set was 418 

small, and thus did not allow for testing of the predictive ability of the model on new data, the 419 

RMSECV show that it is possible to establish a relevant prediction model. The final prediction 420 

model was built on data from salmon of 4-5 kg harvested in January. Therefore, it must be 421 

investigated if different size groupings, seasonal differences and/or other variables influence 422 

the predictability of the yield. The beta coefficients in the model will change according to the 423 

size grouping and thus the model might need some adjustments with regards to raw materials 424 

from other seasons and/or origin.  425 

Comprehensive data collection and analysis may at first seem a cumbersome method, yet the 426 

presented model could be used to give an estimate of the yield of a specific salmon batch before 427 

ordering the raw materials from the slaughterhouse. This will give the production company an 428 

advantage with respect to maintaining a healthy business. Additionally, the salmon farmer can 429 

follow the rearing of the fish more intensively with spot checks in the net pens, and by that find 430 

the optimal time of harvest based on the prediction model presented in this study.  431 
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Figure 1 Evaluation of heads and belly cut. Figure 1a depicts the presence of additional 

meat on the left side of the head marked by a circle. Figure 1b show a schematic drawing 

of the angle of the belly cut. Cuts angling to the right are denoted -2 and -1, straight cuts 

are 0 and cuts angling to the left 1 and 2.  
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Figure 1



 

 

Figure 2 Mass flow of the production of salmon fillets. Presentation of mean weight, 

percentage yields and loss after each processing step together with the mean weight of the 

left and right fillets (n=60). 

 

Figure 2



 

Figure 3 Partial Least Squares (PLS) regression. Plots showing the final model PLS1_2 

with six variables related to the physical appearance of the salmon prior to filleting. The 

scores plot (a) shows the clustering of the samples according to slaughterhouse (1, 2 or 3) 

highlighted with circles. The correlation loading plot (b) show how the variables 

correlate. Both plots show the maximum variation of the dataset after outliers have been 

removed.  

 

Figure 3



 

Figure 4 Principal Component Analysis (PCA) of outlier samples. Bi-plot of outlier 

samples together with the variables (yield, length and W/LT). The plot shows two 

sample clusters related to the loadings. The two clusters are highlighted with circles, the 

left being samples with a straight belly cut and the right being samples with an angled 

belly cut. The plot shows the maximum variation of the dataset. PC-1 accounts for 64% 

of the variation in the dataset. PC-2 accounts for 22% of the variation. 
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Figure captions 

Figure 1 Evaluation of heads and belly cut. Figure 1a depicts the presence of additional 

meat on the left side of the head marked by a circle. Figure 1b show a schematic drawing 

of the angle of the belly cut. Cuts angling to the right are denoted -2 and -1, straight cuts 

are 0 and cuts angling to the left 1 and 2.  

Figure 2 Mass flow of the production of salmon fillets. Presentation of mean weight, 

percentage yields and loss after each processing step together with the mean weight of the 

left and right fillets (n=60). 

Figure 3 Partial Least Squares (PLS) regression. Plots showing the final model PLS1_2 

with six variables related to the physical appearance of the salmon prior to filleting. The 

scores plot (a) shows the clustering of the samples according to slaughterhouse (1, 2 or 3) 

highlighted with circles. The correlation loading plot (b) show how the variables 

correlate. Both plots show the maximum variation of the dataset after outliers have been 

removed.  

Figure 4 Principal Component Analysis (PCA) of outlier samples. Bi-plot of outlier 

samples together with the variables (yield, length and W/LT). The plot shows two 

sample clusters related to the loadings. The two clusters are highlighted with circles, the 

left being samples with a straight belly cut and the right being samples with an angled 

belly cut. The plot shows the maximum variation of the dataset. PC-1 accounts for 64% 

of the variation in the dataset. PC-2 accounts for 22% of the variation. 

 

 

 

 

Figure Captions



Table 1 Variable definition. Table presenting the calculated variables together with their 

definitions with W being the weight, L the length and T the thickness of each fish.  

Calculated variables Definition 

Shape ratio (L/T) Length-to-thickness ratio 

W/L2 Weight divided by the squared length 

L3/WT The cubed length divided by the weight and 

length 

W/LT Weight divided by length and thickness 

K factor (W/L3) Weight divided by the cubed length 

 

Table 1



Table 2 Weight differences. Presentation of the results from a one-sample t-test on the cases where 

right> left and right<left for each process step (P1-P3). The results are provided as weight difference 

(g) together with standard deviation (SD), number of samples (n) and P values.  

 P1 P2 P3 

Weight 

difference (g)  

right > left 

36.2 

(SD=20.3, n=47) 

P value = 4.8511e-16 

31.7 

(SD=15.7, n=47) 

P value = 5.6827e-18 

73.4 

(SD=58.2, n=43) 

P value = 2.3965e-10 

Weight 

difference (g)  

right < left 

23.8 

(SD=19.7, n=13) 

P value = 9.2100e-04 

30.0 

(SD=57.1, n=13) 

P value = 0.0821 

87.8 

(SD=75.4, n=14) 

P value = 7.7666e-04 

 

Table 2



Table 3 Number of cases where the difference between left and right fillet exceeds a certain 

margin.  For each processing step (P1-P3), each fish is divided into one of three groups, depending on 

whether the difference between left and right fillet exceeds a certain margin or not. The margins 

correspond to the bounds of a 95% confidence interval calculated on the absolute mean differences 

between all fillets. 

  

P1 

 

P2 P3 

Margin, M 28.2g 38.8g 23.8g 38.9g 60g 93.5g 

No. of fish 

where 

left fillet is 

larger right 

by M 

4 2 3 1 7 5 

No. of fish 

where the 

difference 

between left 

and right 

fillet are 

smaller than 

M  

25 36 26 42 32 38 

No. of fillets 

where 

left << right 

by M 

31 22 31 17 18 14 

 

Table 3



Table 4 Prediction models. The table presents three PLS models and the resulting Root Mean Square Error 

of Calibration (RMSEC), Root Mean Square Error Cross Validated (RMSECV), number of factors, and the 

number of outliers.  

Model Variables RMSEC %yield RMSECV %yield # Factors Outliers 

PLS1_1 Shape ratio 

Length, L 
Head weight 

W/LT 

Thickness, T 
K factor 

Weight, W 

0.40 0.43 5 15 

PLS1_2 Shape ratio 

Length, L 

W/LT 
Thickness, T 

K factor 
Weight, W 

0.63 0.68 2 14 

PLS1_3 K factor 

Weight, W 

0.67 0.71 2 12 

 

Table 4



Table captions 

Table 1 Variable definition. Table presenting the calculated variables together with their 

definitions with W being the weight, L the length and T the thickness of each fish.  

Table 2 Weight differences between left and right side fillet. Presentation of the results 

from a one-sample t-test on the cases where right side fillet > left side fillet and right side 

fillet <left side fillet for each process step (P1-P3). The results are provided as weight 

difference (g) together with standard deviation (SD), number of samples (n) and P values. 

Table 3 Number of cases where the difference between left and right fillet exceeds 

a certain margin.  For each processing step (P1-P3), each fish is divided into one of 

three groups, depending on whether the difference between left and right fillet exceeds 

a certain margin or not. The margins correspond to the bounds of a 95% confidence 

interval calculated on the absolute mean differences between all fillets.  

Table 4 Prediction models. The table presents three PLS models and the resulting Root 

Mean Square Error of Calibration (RMSEC), Root Mean Square Error Cross Validated 

(RMSECV), number of factors, and the number of outliers. 

Table captions



  

Supplementary Interactive Plot Data (CSV)
Click here to download Supplementary Interactive Plot Data (CSV): Suplementary data.csv
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