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Linear Discrete-time State Space Realization of a

Modified Quadruple Tank System with State

Estimation using Kalman Filter

Sazuan N M Azam
Department of Applied Mathematics and Computer Science, Technical University of Denmark,
DK-2800 Kgs. Lyngby, Denmark

E-mail: snaz@dtu.dk

Abstract. In this paper, we used the modified quadruple tank system that represents a multi-
input-multi-output (MIMO) system as an example to present the realization of a linear discrete-
time state space model and to obtain the state estimation using Kalman filter in a methodical
mannered. First, an existing dynamics of the system of stochastic differential equations is
linearized to produce the deterministic-stochastic linear transfer function. Then the linear
transfer function is discretized to produce a linear discrete-time state space model that has a
deterministic and a stochastic component. The filtered part of the Kalman filter is used to
estimates the current state, based on the model and the measurements. The static and dynamic
Kalman filter is compared and all results is demonstrated through simulations.

1. Introduction
A dynamic model of a system can be described in a various way. From the derivation of
the mathematical model it is possible to obtain the underlying information of the system and
implement a control algorithm to the system. Most of the systems or processes are usually
described by state-space system and by investigating the state of a system at certain time and
its present and future inputs, it is possible to predict the output in the future [1]. State space
models can be either non-linear or linear form and usually a real system or process is described
by a non-linear models whereas in order to estimate and control the system, most mathematical
tools are more accessible to a linear models. Therefore, in this paper we want to demonstrate the
transformation of a non-linear continuous model of a modified quadruple tank system described
as deterministic-stochastic differential equations into a linear discrete-time state space model.

Throughout this work, we will fully utilize the Modified Quadruple Tank System, based
on [2] to assimilate the fundamental theory of model realization and state estimation to an
exemplification of MIMO system, illustration of the real-world complex system applications
which is widely used for education in modeling and demonstrating advanced control strategies
[3], [4].

Several works have been done on four tanks system regarding the modeling the dynamic of
the system. A full description of linearization of the model for four tank system is presented in
[5], [6] and [7]. In [7] the linearization is described in detail using the Jacobian matrix formation
to represent the system in state space model while in [8] establishes the linearized model based
on the non-linear mechanism of the system. Another method is shown in [9]where the model is
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Figure 1. Schematic diagram of the modified quadruple tank process

developed from input and output data resulting an empirical linear state space model using a
sub-space identification and can be used effectively for a non-linear system.

As for the state estimation, we want to estimates all the variables which represents the internal
condition or the status of the system at a specific given time [1] so as to allow for future output
prediction and to design the control algorithms. A Kalman’s state estimator for a non-linear
multivariable process such as the four tanks system is shown in [10] using a linear state space
model solved by the algebraic Ricatti equation. Meanwhile the usage of the estimation of the
Kalman filter with full derivation can also be found in [11]. In this work we use the Kalman
filter in order to estimates the current state of the modified quadruple tank system and evaluate
the response of dynamic and static Kalman filter.

This paper is structured as follows. A brief description of modified quadruple tank system is
presented and the realization of the linear discrete-time state space model is shown in detail in
Section 2. Then the state estimation using Kalman filter is discussed in Section 3. The following
section is where all the results is discussed in Section 4. Finally, we conclude this work in the
last section.

2. Linear Discrete-time State Space Model Realization
The first part of this paper is to transform the non-linear continuous state space model of a
modified quadruple tank system to a linear discrete state space model through linearization
and discretization. A brief description of the system is presented below and followed by the
linearization and discretization.

2.1. The Modified Quadruple Tank System
The modified quadruple tank system is a simple process, consist of four identical tanks and
two pumping system as shown in Figure 1 but yet illustrates a system that is non-linear with
multiple inputs and outputs (MIMO) and complicated interactions between manipulated and
controlled variables.

The main objective of this system is to control the level of the water in the lower tanks (Tank
1 and 2) by manipulating the flow rates F1 and F2 which are distributed across all four tanks,
represents the dynamics of multivariable interaction since each manipulated variables influences
the outputs. The height of the water level in these two tanks, h1 and h2 is measured and
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controlled. The flows denoted F3 and F4 are unmeasured unknown disturbances.
The dynamic of the process is described in Stochastic Nonlinear Model (SDE) given as:

dx(t) = f(x(t), u(t), d(t), p)dt+ σdw(t) (1a)

y(t) = c(x(t)) + v(t) (1b)

z(t) = c(x(t)) (1c)

where w(t) is the process noise and normally distributed, w(t) ∼ N(0, Rw), due to the unknown
information regarding the distribution and v(t) is the measurement noise from the sensors in
each tank and it is normally distributed, v(t) ∼ N(0, Rv). v(t) is being added to the measured
variables, (1b). For full description of the modeling part, see [12].

2.2. Linear System Realization
Linearization is required to find the linear approximation to analyze the behaviour of the
nonlinear function, given a desired operating point. We apply the first-order term only of
Taylor expansion by truncation around the steady state of the non-linear differential equations,
f(x(t), u(t), d(t)) and consider the derivative of the state variable, x. This derivative is defined
as a function, f ,

f(x(t), u(t), d(t), p) =


ργ1u1(t) + α3 − α1

ργ2u2(t) + α4 − α2

ρ(1 − γ2)u2(t) + ρd1(t) − α3

ρ(1 − γ1)u1(t) + ρd2(t) − α4

 (2)

where αi is given by

αi = ρai
√
xi(t)

√
2g

ρAi
i = 1, 2, 3, 4 (3)

and p denote the vector containing all the parameters of the system, for full description of the
parameter see [12]. The Jacobian of f with respect to the state-variables are

Jx(x(t), u(t), d(t), p) =


−β1 0 β3 0

0 −β2 0 β4
0 0 −β3 0
0 0 0 −β4

 (4)

where βi is given by

βi =
1√
xi(t)

√
a2i gρ

2Ai
i = 1, 2, 3, 4 (5)

Similarly the Jacobian of f with respect to the manipulated variables giving

Ju(x(t), u(t), d(t), p) =


ργ1 0
0 ργ2
0 ρ(1 − γ2)

ρ(1 − γ1) 0

 (6)

and lastly the Jacobian of f with respect to the disturbance variables are

Jd(x(t), u(t), d(t), p) =


0 0
0 0
ρ 0
0 ρ

 (7)
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In this case, we introduced the deviation variables as

X(t) = x(t) − xs U(t) = u(t) − us D(t) = d(t) − ds (8)

and defined the Jacobian matrices evaluated around a stationary point xs, us, ds to be

Ac = Jx(xs, us, ds, p) Bc = Ju(xs, us, ds, p) Ec = Jd(xs, us, ds, p) (9)

With these matrices the first order Taylor approximation around the steady state point are given
as

f(x(t), u(t), d(t), p) ≈ f(xs, us, ds, p) +AcX(t)

+BcX(t) + EcD(t)

= AcX(t) +BcX(t) + EcD(t)

(10)

For the measurement and controlled variables we introduced Y (t) and Z(t) respectively and the
linearized system of the modified quadruple tank system as

Ẋ(t) = AcX(t) +BcX(t) + EcD(t) X(t0) = 0 (11a)

Y (t) = CX(t) (11b)

Z(t) = CzX(t) (11c)

where the C matrices are defined as

C = Cz =

(
1
ρA1

0 0 0

0 1
ρA2

0 0

)
(12)

2.3. Discretization of a Linear System
The dynamics of the modified quadruple tank system is now described as (11) and to use
this linear continuous model of the system to be subjected to MPC, the model needs to be
discretized by assuming zero-order-hold (ZOH) of the variables at specified sampling points,
that is assuming the exogenous variables are constant between sampling points. The aim is to
have a linear discrete-time state space model with piecewise constant uk, dk in a form of

xk+1 = Adxk +Bduk + Eddk (13a)

yk = Cdxk +Dduk (13b)

with discrete-time consideration

tk = t0 + kTs, k = 0, 1, 2...
xk = x(tk)

and assuming the inputs on the ZOH is

u(t) = uk, tk ≤ t ≤ tk+1

then the solution of (13) with respect to u is given as

xk+1 = x(tk+1) (14a)

= eA(tk+1−tk)xk +

∫ tk+1

tk

eA(tk+1−τ)Bu(τ)dτ (14b)

=
[
eATs

]
xk +

[∫ Ts

0
eAηBdη

]
uk (14c)
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By comparing both equations (11) and (14) and similar result can be obtained for disturbances
variable d(t) giving

Ad = eATs Bd =
∫ Ts
0 eAτBdτ Ed =

∫ Ts
0 eAτEdτ

Cd = C Dd = D
(15)

where Ad, Bd, Ed can be computed with[
Ad Bd
0 I

]
= exp

([
A B
0 I

]
Ts

)
[
Ad Ed
0 I

]
= exp

([
A E
0 I

]
Ts

) (16)

For this particular work, the continuous state space representation matrices were discretized
with Ts = 30s assuming ZOH.

Considering the stochastic part of the model, a piecewise constant process noise w,
measurement noise v and uncertainty of the initial state x0 to the process is added. The linear
discrete model from (13) is expanded into stochastic version as in the equation below

xk+1 = Adxk +Bduk + Ed(dk + wk) (17a)

yk = Cdxk + vk (17b)

zk = Cdzxk + vk (17c)

subject to
x0 ∼ N(x̄0, Pp), wk ∼ N(0, Q), vk ∼ N(0, R) (18)

where Q,R is given by

Q =

[
12.52 0

0 12.52

]
R =

[
22 0 0 0
0 22 0 0

]
and Pp is given by

Pp =


0.12 0 0 0

0 0.12 0 0
0 0 0.12 0
0 0 0 0.12


2.4. Linear Discrete-time State Space Representation
In order to rewrite the difference equation system representation (13) in a more structured form,
the Markov parameters is introduced. It is a discrete impulse coefficients of a discrete state
space model. The Markov parameters are calculated to avoid making iterative simulations to
keep only the matrix-vector multiplications. In doing so, a significant time saving is introduced
to the control algorithm and to have an observer canonical form with minimal realization. Let
Hi denote the Markov parameters at the i′th sampling time after an unit-impulse, then to obtain
the Markov parameters from u to y is given as

Hi =

{
0 i = 0

CAd
i−1B i = 1, 2, ...N

(19)

N is assigned value to be sufficiently large so that the impulse response can reach the steady
state. The Markov parameters for u to z, d to y and d to z is computed the same way and by
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replacing the appropriate matrices accordingly. With all the information being gathered, it can
be re-written in a matrix form of

Y = Φx0 + ΓU (20)

where Y , Φ, U are

Y =


y1
y2
y3
...
yi

 Φ =


CAd
CAd

2

CAd
3

...
CAd

i

 U =


u1
u2
u3
...
ui


while Γ is obtained from the calculated Markov parameters, Hi, i = 1, 2, ...N

Γ =


H1 0 0 . . . 0
H2 H1 0 . . . 0
H3 H2 H1 . . . 0
...

...
...

...

HN HN−1 HN−2
... H1


As for the system with disturbances, the state space model can be represented as

Y = Φx0 + ΓuU + ΓdD (21)

where
D =

[
d1 d2 d3 . . . di

]T
From equations (20) and (21), Φ and Γ can be used for the prediction part from the Kalman
filter for a model predictive control strategy.

3. State Estimation for the Discrete-Time Linear System
From the previous section, the discrete-time state space model is a linearized model from the
non-linear model. We want to extract information from the measurements of the real system
in order to limit the discrepancy between the model and the real system but since the models
assume measurement error, the signals need to be filtered. This can be done by using Kalman
filter where it is used to filter the measurement [1]. The Kalman filter consists of two parts,
filtering part and prediction part. The filtered part is to estimates current state based on the
model and the measurements whilst the prediction part is used by the constrained regulator to
predict the future output trajectory, given an input trajectory. This is illustrated in the block
diagram as in Figure 2. In this paper we focus on the filtering part for the state estimation only
and design both dynamic and static filter to evaluate their estimation.

3.1. Dynamic Kalman Filter
From [12] the model is linear time invariant (LTI) discrete-time stochastic difference equations,
in the form of

xk+1 = Adxk +Bduk + Eddk + Edwk (22a)

yk = Cdxk + vk (22b)

subject to
wk ∼ N(0, Q), vk ∼ (0, R) (23)
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Figure 2. Block diagram of MPC for modified quadruple tank process

where the process noise wk and measurement noise vk are distributed as[
wk
vk

]
∼ Niid

([
0
0

]
,

[
Q S
ST R

])
(24)

where R and Q is the covariance matrix of measurement error and disturbances variable
accordingly, S is the covariance matrix between disturbance variable and measurement error
and the distribution of the initial state is given by

x0|−1 ∼ N(x̂0|−1, P0|−1) (25)

Assuming at stationary point t = tk and the measurement yk = y(tk), the filtering part can be
performed by calculating

ŷk|k−1 = Cx̂k|k−1 (26a)

ek = yk − ŷk|k−1 (26b)

x̂k|k = x̂k|k−1 +Kfx,kek (26c)

ŵk|k = Kfwek (26d)

x̂k+1|k = Ax̂k|k +Buk + ŵk|k (26e)

By using the coefficients

Re,k = CPk|k−1C
T +R Kfx,k = Pk|k−1C

TR−1e,k Kfw = SR−1e,k (27)

and the following expression can be achieved

Pk+1|k = APk|kA
T +Qk|k −AKfx,kS

T − SKT
fx,kA

T (28)

3.2. Static Kalman Filter
From equation (28) it can be re-written into a difference equation form as

Pk+1|k = APk|k−1A
T +Q− (APk|k−1C

T + S)(CPk|k−1C
T +R)−1(APk|k−1C

T + S)T (29)
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P signifies the stationary one-step ahead state error covariance matrix obtained from the
Discrete-time Algebraic Riccati Equation (DARE).

P = APAT +Q− (APCT + S)(CPCT +R)−1(APCT + S)T (30)

and the coefficients in equations (27) can be simplify

Re = CPCT +R Kfx = PCTR−1e Kfw = SR−1e (31)

Since by using this limit as an approximation to the one-step matrix and the Kalman gains Kfx

and Kfw becomes constant matrices, it will lighten the computations of the controller.

4. Results and Simulation of the system
The first part of this work is the linear discrete-time state space realization and computations
which is re-written in a more structured form where we introduced the use of Markov parameters.
Then the second part is the implementation of Kalman filter and the predictive controller
strategy. In this sections, all results from the computations and simulations will be shown.

4.1. Linear Discrete-time State Space Realization
The linearized continuous system matrices are obtained as in equation (11) to ensure that the
theoretical linear estimation of the system are almost identical to the non-linear system, it is
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Figure 3. Markov Parameters for the Discrete-time State Space Model Experiments
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Figure 4. Kalman filter for noisy F3 and 10% step changes

possible to compare the estimated gains and time-constants from the non linear transfer function.
Then, by assuming zero-order hold, the continuous state space representation matrices above
were discretized with Ts = 30s, hence the discrete state space system matrices is also obtained
as in equation (13).

Considering a sampling time of Ts = 30s the Markov parameters has been calculated for the
discrete-time state space model, from Figure 3 the plots can be compared to the model from the
step response experiment in our previous work [12] and shows that in most cases the plots are
very similar. Therefore, the calculated Markov parameters, Hi are reliable and usable for other
purposes such as in designing the predictive controller.

4.2. State Estimation
In this experiments, both dynamic and static Kalman filter were tested as a state estimator
where the disturbance is an unknown stochastic variable, then after approximately 450s we
introduced a 10% step changes and for this simulations, the linear model is used to create the
measurements. Figure 4 and Figure 5 were plotted to compare the estimated current states with
and without Kalman filter and between dynamic and static Kalman filter with a step change of
F3 and F4 accordingly. It can be clearly seen that in general, the filter is well performed tracking
the output trajectory from the noisy measurements and also it can cope well dealing with an
impact of the unknown disturbance step. Although the difference between dynamic and static
Kalman filter is not apparent, the dynamic filter is able to even further reduce the noise giving
a smoother and more stable response particularly in tanks h1 in figure 4 and tank h2 in figure
5, noticeable for both tanks that is directly affected by the given step disturbance.
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5. Conclusion
This paper has described comprehensively an outline to obtained a discrete-time state space
model for linear system on a modified quadruple tank system in a simple and constructive
method. This lab scale system represents a MIMO system which has complicated variables
interactions and complex control problems. The dynamics of the system is described by an
existing simulation models in terms of deterministic and stochastic non-linear continuous time
models. These models were linearized and discretized in order to form a discrete-time linear
time-invariant difference equations, the form that is used in the Kalman Filter for estimations.
Based on the model and measurements, the current state of the system was estimated and in
additional, the comparison between dynamic and static Kalman filter was also presented.

Acknowledgement
This work was supported by Faculty of Electrical Engineering, Universiti Teknikal Malaysia
Melaka, Durian Tunggal, 76100, Malaysia and the Ministry of Higher Education, Malaysia.

References
[1] Simon D 2006 Optimal State Estimation (John Wiley & Sons)
[2] Johansson K H 2000 IEEE Transactions on Control Systems Technology 8 456–465
[3] Johansson K H, Horch A, Wijk O and Hansson A 1999 Proceedings of the IEEE Conference on Decision and

Control 1 807–812
[4] Dormido S and Esquembre F 2003 European Control Conference (ECC), 2003 (IEEE) pp 3267–3272

13th European Workshop on Advanced Control and Diagnosis (ACD 2016)                                     IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 783 (2017) 012013          doi:10.1088/1742-6596/783/1/012013

10



[5] Askari M, Moghavvemi M, Almurib H A F and Muttaqi K M 2016 IEEE Transactions on Industry
Applications 52 1882–1890

[6] Almurib H A F, Askari M and Moghavvemi M 2011 Proceedings of the Sice Annual Conference 6060581,
87–91

[7] J J, T S and Babu T H 2014 International Journal of Advanced Research in Electrical, Electronics and
Instrumentation Engineering, IJAREEIE 03 11552–11565

[8] Prusty S B, Pati U C and Mahapatra K K 2015 Computer, Communication, Control and Information
Technology (C3IT), 2015 Third International Conference on (IEEE) pp 1–6

[9] Gatzke E P, Meadows E S, Wang C and Doyle F J 2000 Computers & Chemical Engineering 24 1503–1509
[10] Vijula D A and Devarajan N 2013 International Journal of Electrical Engineering and Technology 6 149–163
[11] Jorgensen J B and Jorgensen S B 2007 2007 American Control Conference (IEEE) pp 128–133
[12] Mohd Azam S N and Jørgensen J B 2015 Proceedings of the 5th International Conference on Control Systems,

Computing and Engineering (ICCSCE 2015)

13th European Workshop on Advanced Control and Diagnosis (ACD 2016)                                     IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 783 (2017) 012013          doi:10.1088/1742-6596/783/1/012013

11




