
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: May 08, 2024

Maximum length scale in density based topology optimization

Lazarov, Boyan Stefanov; Wang, Fengwen

Published in:
Computer Methods in Applied Mechanics and Engineering

Link to article, DOI:
10.1016/j.cma.2017.02.018

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Lazarov, B. S., & Wang, F. (2017). Maximum length scale in density based topology optimization. Computer
Methods in Applied Mechanics and Engineering, 318, 826–844. https://doi.org/10.1016/j.cma.2017.02.018

https://doi.org/10.1016/j.cma.2017.02.018
https://orbit.dtu.dk/en/publications/3b7f439b-53c1-4213-a492-6c2f30698215
https://doi.org/10.1016/j.cma.2017.02.018


Maximum length scale in density based topology optimization

Boyan S. Lazarov∗, Fengwen Wang

Department of Mechanical Engineering, Solid Mechanics

Technical University of Denmark

Nils Koppels Allé, Building 404
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Abstract

The focus of this work is on two new techniques for imposing maximum length scale in topology

optimization. Restrictions on the maximum length scale provide designers with full control over

the optimized structure and open possibilities to tailor the optimized design for broader range

of manufacturing processes by fulfilling the associated technological constraints. One of the

proposed methods is based on combination of several filters and builds on top of the classical

density filtering which can be viewed as a low pass filter applied to the design parametrization.

The main idea is to construct band pass filter which restricts the appearance of very thin and very

thick elements in the design. In combination with the robust design optimization formulation

the methodology results in manufacturable designs without the need of any post processing. The

second technique provides more strict control on the maximum design features and is developed

with the help of morphological operators. The formulation relies on a small number of additional

constraints. Both approaches are demonstrated on optimization problems in linear elasticity.

Keywords: topology optimization, robust design, length scale, manufacturability

1. Introduction

The aim of this article is to present two new techniques for imposing maximum length scale

in density based topology optimization. Topology optimization [1] is a design method which

distributes material in a design domain by minimizing an objective function and fulfilling a set

of constraints. The design is represented using a density field which takes value one at points

occupied with solid material and zero in void regions. In order to utilize gradient based optimiza-

tion techniques the optimization problem is relaxed and the density field is allowed to take values

between zero and one. Existence of the solution is ensured by density filtering [2, 3]. Classical

filtering techniques provide minimum length scale of the design, however, the regularized op-

timization process results in intermediate densities and practical realization of the final design

requires post processing. Black and white (solid/void) designs can be obtained using projection

techniques [4] with length scale imposed either on the solid or on the void phase. Alternatively
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manufacturable black and white designs [5] can be obtained by requiring robustness of the per-

formance with respect to geometric imperfections in the production process modeled by erosion

and dilation operations [6].

The focus of most research works targeting length scale in topology optimization is on impos-

ing minimum length scale and only few of them address the maximum length scale issue. The

main advantages of imposing maximum length scale on optimized designs are defined clearly

in [7]. Restrictions on the maximum length scale provide redundant members and diversifica-

tion of the load path which results in more robust design with respect to localized damage [8].

The designers are provided with full control over the structure from technological perspective,

e.g., avoiding additional effects not accounted for in the optimization formulation or the lack of

production technologies for very thick elements. Maximum length scale is imposed in [7] by

restricting the amount of material in the neighborhood of each point in the design domain which

results in a large number of design constraints. Maximum length scale can be observed in the de-

signs presented in [8], which is a result of requiring robust performance with respect to localized

damage. The method is computationally expensive and is inapplicable in its current form for

practical applications. Control on the maximum size of inclusions in periodic material designs

by using combination of projections is demonstrated in [9, 10]. Algorithms for imposing maxi-

mum length scale in level set optimization approaches have been proposed recently in [11, 12].

An idea, similar to the one presented in [11], for controlling the minimum and the maximum

length scale in optimized designs is proposed for the level set method in [13] and extended for

density based topology optimization in [14]. The length scale control is achieved by restricting

the density values for all skeleton points of the design. In both works [13, 14] the sensitivities

related to changes of the skeleton are neglected and possible shortcomings are discussed in [12].

The current work presents two alternatives with the aim at eliminating the large number of

constraints and reduce the computational cost. The gradients of the objective and the constraints

are obtained using adjoint analysis and the chain rule without any simplifications. The first tech-

nique is based on the construction of a band pass filter in the frequency domain which restricts

the appearance of thick members in the optimized design. The method does not introduce new

constraints in the optimization formulation. The idea can be viewed as a generalization of the

work presented in [15] where control of the structural complexity is demonstrated by sensitivity

filtering of the low frequencies of the objective gradients. The second technique is based on

morphological operators [16] and provides restrictions to the optimized design using one or two

additional constraints. The constraints restrict the appearance of thick elements or large void

regions. Both approaches can be arbitrary combined with any existing technique for imposing

minimum length scale on the design, thus, providing the designer with full control over the geo-

metric features of the optimized design. In addition an alternative scheme for filtering based on

the Fast Fourier Transform is presented and discussed in details.

2. Topology optimization

As stated earlier topology optimization [1] is an iterative design method which distributes

material in a given design domain Ω by minimizing an objective function (material volume,

structural compliance, wave energy) and fulfilling a set of prescribed constraints. The design

process is an iterative procedure and the design updates are based on the gradients of the objective

and the constraints. The design domain is discretized using finite elements and the response of

the associated physical problem is evaluated after each iterative design update step. The method

has been applied in a broad range of optimization problems , e.g., heat transfer, linear elasticity,
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wave propagation [1]. Here the proposed maximum length scale techniques are demonstrated for

optimization problems in linear elasticity. In discrete form the considered optimization problems

can be written as

min
ρ

: c(ρ),

s.t. : K
(

ρd (ρ)
)

u = f, (1)

: V
(

ρd (ρ)
) ≤ V∗,

: ρmin ≤ ρ ≤ ρmax

where c(ρ) is the objective function. K
(

ρd (ρ)
)

u = f is a discrete representation of the linear

elastic problem, where K
(

ρd (ρ)
)

is the so-called stiffness matrix obtained by a finite element

discretization of the Navier-Cauchy partial differential equation. The continuous form of the op-

timization problem can be found in [1]. The nodal values of the displacement field are collected

in the vector u and the external load supplied to the elastic system in the vector f. The design

field1 is considered to be a constant within each element and all discrete values are collected

in the vector ρ. The values for the first method, based on filtering, are required to be between

ρmin = −1 and ρmax = 1, which differs from the usual bounds [0, 1] utilized in most publications

in topology optimization. For the second approach, based on morphological operators, the de-

sign field is between zero and one 0 ≤ ρ ≤ 1. The density field ρd, 0 ≤ ρd ≤ 1, is obtained by

series of transformations applied on the design field ρ. The transformations consist of several

filtering, scaling and projections steps. All of them are discussed in details in the following sec-

tions. The total volume occupied with material is required to be smaller than a prescribed value

V
(

ρd (ρ)
) ≤ V∗.

The material properties for each element e are computed using the SIMP (Solid Isotropic

Material with Penalization) interpolation scheme [17] given as

Ee = Emin + ρ
p

d,e
(Emax − Emin) (2)

where p penalizes the intermediate densities, Emin is a small value larger than zero which ensures

positive definiteness of the stiffness matrix, and Emax is the elasticity modulus of the distributed

material. The optimization problem is non-convex and the design can converge to a local mini-

mum. The gradients of the objective with respect to the filtered variables are obtained by adjoint

sensitivity analysis, and with respect to the design variables by employing the chain rule [1].

The objective is assumed to have the following general form c(ρ) = lTu. The sensitivities with

respect to the density field variables ρd,e, e = 1, . . . ,Ne are given as

∂c

∂ρd,e

= −λT
∂K

∂ρd,e

u = −λT

e

∂Ke

∂ρd,e

ue (3)

where Ne is the number of elements in the mesh and λ is the solution of the adjoint equation

K
(

ρd (ρ)
)

λ = l. The vector l is equal to the external input of the system l = f for minimum com-

pliance problems. For mechanism design problems the vector l is used to select the displacement

at the point of interest, therefore, l is zero everywhere except at the vector element corresponding

to the selected degree of freedom.

1In this article the discrete representation of the density field ρ will be interchanged with its continuous representation

ρ depending on the context.

3



3. Filtering in topology optimization

The aim of the filtering step in the topology optimization is to ensure existence of the so-

lution [2]. Designs obtained using the original topology optimization formulation, without any

amendments, might result in several problems like checkerboards and mesh dependency. It is

demonstrated in [18] and [19] that solutions consisting of alternating solid and void cells or-

dered in checkerboard-like patterns are not optimal and exist due to bad numerical modeling that

overestimates the stiffness. Another issue is mesh dependency of the solution, i.e., refining the

mesh and performing the optimization on the refined mesh might result in a completely different

design rather than providing better description of the one obtained using the coarse mesh. Both

of these problems are often avoided by applying filters on the original design field and modeling

the physical density field to be equal to the result of the filtering process. The density field can

be written as a convolution product of a filter function and the design field ρ

ρ f (x) =

∫

Ω

F (x − y) ρ (y) dy (4)

The filter function can be given in an explicit form as linearly or exponentially monotonically

decaying function [3] or to be equivalent to the Green’s functions of partial differential equation

(PDE)[20]. In the second case the filtered field ρ f is obtained as the solution of the following

PDE

− r2
f∇2ρ f (x) + ρ f (x) = ρ (x) , x ∈ Ω (5)

with prescribed boundary conditions. The parameter r f controls the minimum length scale in

the design, and the prescribed boundary conditions control the density field along the boundary.

A boundary condition of Neumann type
∂ρ f

∂n
= 0 can be specified if the design problem does

not require a prescribed density along the boundary. The Neumann boundary ensures volume

preservation which simplifies the implementation of the volume constraint, i.e., the total volume

of the design field is equal to the total volume of the filtered field.

3.1. Interpretation of filtering in the frequency domain

The filter Equation 4 can be viewed also as a low pass filter, where ρ is an input signal to

the linear system and ρ f is the filtered signal. The filter transfers the low frequency signals and

attenuates the fast oscillatory part of the input. The filter properties can be analyzed using the

so-called frequency transfer function, e.g. [21], which shows how the system reacts to every

possible input frequency. The transfer function for the PDE filter in 1D can be written explicitly

as

HL (ω) =
1

r2
f
ω2 + 1

(6)

whereω is given angular frequency of the input signal and HL (ω) denotes the frequency response

function of the linear filter. A graph of HL (ω) with respect to different angular frequencies is

shown in Figure 1. As it can be seen the high frequencies are attenuated, i.e., the frequency

content of the output signal consists of the low unattenuated harmonics of the input signal. In-

creasing the parameter r f attenuates faster the high frequency content of the input and decreasing

it increases the high frequency content. In topology optimization, large parameter r f removes

the fine details in the design and smaller r f provides finer details which can be described with

more oscillatory harmonics. Therefore the minimum length scale is provided by suppressing the

fine details (high frequencies) in the design field discretization.
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Figure 1: 1D low-pass filter with different parameters r f .

3.2. Band pass filter for topology optimization

The low-pass filter includes all frequencies around the zero frequency and the maximum wave

length of the harmonics which can contribute to the filtered design field is unlimited. Bounding

it, provides maximum length scale in the design. Therefore, creating a band-pass filter provides

bounds on both the minimum and the maximum length scale (wave length in 1D) of the filtered

design field. One of the simplest operations which attenuates the response amplitudes around

the zero frequency is the scaled Laplace operator −r2
l
∇2. The frequency transfer function of the

combined PDE filter and the Laplace operator is given as

HH (ω) =
r2

l
ω2

r2
f
ω2 + 1

(7)

Taking the limit at ω → ∞ of Equation 7, reveals that the high frequency content of the design

field is not attenuated. In topology optimization this results in fine design details comparable with

mesh size, i.e., lack of minimum length scale. In order to attenuate the high frequency content,

a second PDE filter with filter parameter rs can be introduced which results in the following

frequency transfer function

HB (ω) =
r2

l
ω2

(

r2
f
ω2 + 1

)

(

r2
sω

2 + 1
)

(8)

The parameters rs and r f can be used for tuning the frequency content of the filtered design

and rl scales the amplitude of the response. The plots of Equation 7 and Equation 8 are shown

in Figure 2. The maximum transmission of the filter defined by Equation 8 is located at ω =
1√
rsr f

and the maximum is equal to
r2

l

(r f+rs)
2 . In 2D and 3D the application of the above filtering

steps results in pair or triplets of frequencies with weights found by rotating the 1D plot of the

frequency transfer function around the center of the coordinate system.

Finite element implementation of the above filtering requires utilization of second or higher

order elements for the numerical evaluation of the Laplace operator. However, close inspection of

the equations reveals that the result from the operation can be obtained directly from Equation 5

by rearranging the terms as

− r2
l ∇2ρ f (x) =

r2
l

r2
f

(

ρ (x) − ρ f (x)
)

(9)
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Figure 2: 1D high-pass (left) with r f = rl and band-pass (right) filter with parameters r f = rs and rl = 2r f .

The solution of the first filter with parameter r f is subtracted from the original density field, and

after scaling is supplied as input to the second filter with parameter rs, which is given as

− r2
s∇2ρs (x) + ρs (x) =

r2
l

r2
f

(

ρ (x) − ρ f (x)
)

(10)

In order to utilize the result of the above band pass filter in topology optimization, the final

density field needs to be bounded and the bounds need to be known in advance. The design

fields ρ (x) and ρ f (x) are bounded in the interval [−1, 1]. The field ρs (x) is bounded between the

maximal and the minimal value of the field ρs (x) which are controlled by the parameter rl. An

estimate for the maximal value of ρ − ρ f can be obtained by subtracting the upper and the lower

bounds of ρ and ρ f , respectively. Utilizing this estimate for scaling the final density ρs results

in large gray regions and low contrast topologies. Sharper bounds can be obtained by using the

Green’s function of the filter. The filtered field ρs is given as

ρs (x) =

∫

Ω

G (x − y) ρ (y) dy (11)

where G (x − y) is the Green’s function for the band pass filter, which for parameters r f = rs =

1.0 and rl = 2 is shown in Figure 3. In contrast to the standard filter where the filter function

is strictly non-negative, the Green’s functions for the band pass filter are positive close to the

point x and become negative with increasing the distance |x − y|. The maximal value of ρs can

be obtained by setting ρ (y) = −1,∀y ∈ {y : G (x, y) < 0} and ρ (y) = 1,∀y ∈ {y : G (x, y) > 0}.
Therefore the maximal value is evaluated as

ρs,max (x) =

∫

Ω

|G (x − y)| dy (12)

The output of the band pass filter can contain contributions of several frequencies with weight

provided by the frequency response function. Therefore, the optimizer can utilize any of the

harmonics with weights larger than zero. The interval can be narrowed by applying several band-

pass filters one after another. Alternatively, the design field can be transformed using Fourier

transform and the image can be convoluted with filter function defined entirely in the frequency

domain. Such an approach will be discussed in details in the following section.
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Figure 3: 1D Green’s functions for parameters r f = rs = 1 and rl = 2 and infinite filter domain.

Another important feature, of the PDE band-pass filter with Neumann boundary conditions,

is that the integral of ρs over the design domain is always equal to zero. Representing the density

field ρd using direct scaling of the filtered field ρs with the inverse of the maximum and applying

a shift of 0.5 would result in a design volume equal to 0.5 of the volume of the design domain.

This limitation can be alleviated by using nonlinear scaling and shift different from 0.5. In such

cases the volume constraint in the optimization problem can become redundant.

The above filtering steps are also applicable to the classical density filtering techniques uti-

lized in topology optimization, where the filter function has bounded support and is given as

F (x − y) = 1 − |x − y|
R f

, ∀ |x − y| ≤ R f (13)

A filtered design field ρ f with filter radius R f is subtracted from the original design field, and the

result is provided as an input of a second filter with filter radius Rs. The frequency content of

the obtained band pass filter can be computed numerically using the the Fast Fourier Transform

(FFT).

3.3. Band pass filter - FEM numerical implementation

The band pass filter in discrete form can be written as

K fρ f = T fρ (14)

ρo =
r2

l

r2
f

(

ρ − ρ f

)

(15)

Ksρs = Tsρo (16)

where K f and Ks are obtained using finite element discretization of the filter operators Equation 5

and Equation 10, and projecting them onto the space of constant interpolation functions within

each element (e.g. [22]), T f and Ts are matrices which map the vectors with element-wise

densities to nodal vectors, e.g. [20]. The vectors ρ, ρ f and ρs represent the original design field,

the output of the first filter with length parameter r f and the output of the second filter. The final

density is obtained by scaling and shifting the values of ρs

ρd =
1

2

(

1 +
1

Mρs

ρs

)

(17)
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a) b)

q2

q1

q2

Figure 4: Design domain, load and boundary conditions for testing the max-length scale filter.

where Mρs
is the maximal possible value of the filtered field ρs. The maximum for design do-

main without any bounds can be calculated using the analytic Green’s functions of the PDE and

Equation 12. For finite design domain the Green’s functions depend on the prescribed boundary

conditions and it is difficult to find exact analytic expression. Hence, for the discretized prob-

lems they can be computed numerically. The sensitivities of an element ρs,i with respect to the

original design field variables can be found using the chain rule. The filter operator is linear and

hence, the vector with sensitivities si =
ρd,i

ρ
is a discrete representation of the Green’s function

associated with element i. Therefore, the maximal value of ρs,i can be computed as

Mρs,i
=

∑

|si| (18)

The maximal value within the whole design domain is given as Mρs
= max

{

Mρs,i
,∀i = 1 . . .Ne

}

.

Such uniform scaling might introduce a bias in the design design domain, which might be unde-

sirable. In such cases the scaling can be performed element wise with Mρs,i
. The field ρs,max (x)

is smooth with main fluctuations close to the borders of the design domain. A numerical search

procedure can be employed to decrease the cost of finding Mρs
. Another alternative is to use the

fact that the arithmetic mean of positive variables is bounded from above by the quadratic mean,

which can be utilized in finding analytic expression for upper bound of Mρs
. Both alternatives

are left for future investigations.

The band-pass filter is demonstrated on two test cases shown in Figure 4. The results for

vertical load (left case Figure 4) are shown in Figure 5 and the results for mixed loads are shown

in Figure 6. The penalty p is set to p = 5. The designs are obtained using the method of

moving asymptotes (MMA) [23]. The domain dimensions are 25m × 25m and the optimization

is performed for 2D plane stress and unit thickness and unit modulus of elasticity.

The design shown in Figure 5 demonstrates clearly that the optimized topology has a fre-

quency spectrum around the maximum transmission of the filter. For r f = rs = 0.5 the maximum

transmission is at ω = 2. The corresponding wavelength is π, which for the length of the design

domain results in 7.95 waves. The estimate is slightly larger than the obtained one. The number

of bars estimated by visual inspection is equal to 7. It should be pointed out that the uniqueness

of the topology cannot be guaranteed. For different initial topologies and iteration histories the

designs differ, however, in all cases the number of the vertical bars is around the estimated num-

ber of 7.95. For the case r f = rs = 1.0 the estimated number of bars is 3.97 which is very close

to the obtained number of bars estimated by visual inspection and equal to 4. Similar behavior
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Figure 5: Topology optimized design for q2 = 0.01N and parameters r f = rs = 0.5 (left), and r f = rs = 1.0 (right).

Boundary conditions and the load is shown in Figure 4, a).

Figure 6: Topology optimized design for q1 = q2 = 0.01N and parameters r f = rs = 0.5 (left), and r f = rs = 1.0 (right).

Boundary conditions and the load is shown in Figure 4, b).
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can be observed for the mixed case results shown in Figure 6. A common feature for all of the

presented designs is the lack of contrast. The maximal value Mρs
can be achieved only by a

single pattern of design distribution which usually does not coincide with the optimal solution of

the problem. The obtained densities ρd are far from the zero/one bounds and stay closer to 0.5.

In this case, the optimizer can have difficulties finding optimal design even for high penalization

factor p. A possible solution is to use point wise nonlinear transformation(projection) which

compresses the design space around 0 and 1. Further details are discussed in section 4.

3.4. Band-pass FFT filter

More precise control over the frequency transfer function of a band-pass filter can be achieved

by modeling it directly in the frequency domain, rather than obtaining it through Fourier trans-

form of some analytic or PDE spatial filter. Often analytic representation of such filters cannot

be found in the physical domain. Therefore, topology optimization applications can utilize nu-

merical implementations based on FFT. The design field ρ is transferred in the frequency domain

ρ̃ (ω) = F ρ (x) using 1D, 2D or 3D Fourier transform and the corresponding FFT implemen-

tation. In the frequency domain ρ̃ (ω) is convoluted using frequency transfer function defined

entirely in the frequency domain and the result is converted back in the spatial domain using the

inverse Fourier transform. The above operations can be written as

ρ̃ (ω) = F (ρ (x)) (19)

ρ̃s (ω) = F̃ (ω) ρ̃ (ω) (20)

ρs (x) = Fi

(

ρ̃s (ω)
)

(21)

where Fi denotes the inverse of the transformation and F̃ (ω) denotes the filter function defined

entirely in the frequency domain. The Fourier transform is infinitely periodic in all dimensions.

In order to decrease the appearance of artifacts around the edges of the design domain, the dis-

cretized design field can be padded with zeros. After filtering the result is cut back to the original

size. In a similar way the boundary condition of the design can be modified by padding the

design domain with predefined patterns different than zero. In numerical implementations the

Fourier and the inverse Fourier transforms are replaced with FFT and iFFT.

The gradients of any function s =
∂c(ρs(ρ))
∂ρ

with respect to the original design variables can

be obtained by knowing the gradients ss =
∂c(ρs)
∂ρs

and passing them through the filter

s̃s = FFT (ss) (22)

s̃ = F̃ ∗ s̃s (23)

s = iFFT (s̃s) (24)

The maximum value Mρs,i
=

∑ |si| can be found by passing vector ss through the filter which

consists of zeros for all elements with index j , i, and one at position i.

A band-pass filter in the frequency domain is modeled by a donut like filter function in the

frequency domain. The transformed filter function in the physical domain is shown in Figure 7.

The filter function in the frequency domain is defined as

F (ω) = exp

(

− (|ω| − ωs)
2

2s2

)

(25)
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Figure 7: Spatial filter function for the central frequency ωs = 0.05cycles/element and deviation parameter s = 0.0075.

where |ω| is the length of the vector ω. The bandwidth of the filter is controlled by the parameter

s, and the central frequency is given by ωs. Designs for settings shown in Figure 4 are similar

to the results from the PDE based implementation, shown in Figure 5 and Figure 6, and there-

fore, they are not presented here. However, the band-pass FFT filter is utilized in the examples

presented later in this work.

It should be pointed out that the traditional low-pass filter utilized for imposing minimum

length scale in topology optimization can be implemented using FFT where the donut is replaced

by a ball with center around zero. FFT low- and band-pass implementations based on highly

tuned numerical FFT libraries can potentially outperform the PDE filters and provide effective

filter solution in topology optimization independent of the length scale imposed by the filter.

A possible limitation of the filter is that it is applicable to regular rectangular domains only.

Irregular domains can be extended to rectangular ones by padding the design field with zeros,

which can increase the computational cost associated with the filter.

4. Black and white designs based on band-pass filters

Optimized designs where the physical densities coincide with the filtered fields possess large

gray regions and practical realizations require post-processing. The post-processing step might

completely destroy the design performance [6, 24]. Thus, several schemes to alleviate it have

been proposed in the literature [4, 25, 26, 27]. The main idea is to project the filtered field

above given threshold to one and below the threshold to zero. The projection is embedded in

the topology optimization algorithm and the threshold projection does not affect the optimality

of the solution. Mathematically the projection is expressed using Heaviside function. Since

the Heaviside function is not differentiable, it is replaced with regularized approximation, e.g.

[4, 25, 26, 27, 6]. In this section the projected field is represented as

ρd =
1

2

[

1 + tanh (β (ρs − η))
]

(26)

where the parameter β controls the quality of the approximation and η is provided threshold. As

β → ∞, the tanh function approaches the Heaviside function. To provide exact 0/1 bounds for

the minimum and the maximum of ρd the above expression can be normalized [6], however, for

simplicity the normalization is avoided here.

Three designs obtained using threshold projections, with threshold η = 0, are shown in

Figure 8. The left design is obtained with uniform initial guess. The topology resembles closely

11



Figure 8: Topology optimized design for parameters r f = rs = 1.0, β = 25 and, q2 = 0.01N uniform initial guess (left),

q2 = 0.01N random initial guess (middle), and q1 = q2 = 0.01N random initial guess (right). Boundary conditions and

the loads are shown in Figure 4, a) for the left and the middle designs and Figure 4, b) for the right design.

the topology of the design obtained without projection and shown in Figure 5. Designs with

projection possess much better contrast and they are close to discrete 0/1 designs. In order

to obtain sharp transition between the void and solid regions the projection amplifies the high

frequencies in the design spectrum. Therefore, the minimum length scale introduced by the

filtering process is lost. The effect can be observed on Figure 8 for the design obtained with

random initial guest.

It is demonstrated in [28, 6] that the appearance of small features in the design can be sup-

pressed by replacing the objective in the original topology optimization formulation given by

Equation 1 with the worst objective obtained for three thresholds ηi, ηd and ηe representing the

blueprint, the most dilated and the most eroded designs, respectively. More realistic imperfec-

tions can be obtained by varying η in a prescribed interval
[

ηd, ηe

]

and modeling the thresh-

old as random variable. The model can represent uniform production errors due to erosion

or dilation along the perimeter of the design [29]. The optimization formulation has been ex-

tended later to include spatial variations of the geometry along the design perimeter [30, 31], and

recently, it has been demonstrated that the threshold projection schemes resemble closely mi-

cro/nanolithography and photolitography production processes [32, 33]. The development opens

new possibilities for obtaining more realistic physical models of the designs and incorporating

them in the optimization process. Requiring robustness of the design, i.e., lack of sensitivity of

the objective with respect to variations in the geometry, often leads to black and white design with

clearly defined minimum length scale. It should be pointed out that the length scale is defined

only when all design realizations share the same topology. In all cases where the design topology

changes between the realizations, the removal or the addition of elements to the design due to

variations in the manufacturing process does not change significantly the design performance.

The worst case optimization formulation [6] is given as

min
ρ

: max
[

ci(ρ), ce(ρ), cd(ρ)
]

s.t. : K ((ρ, ηi)) ui = f, (27)

: K ((ρ, ηd)) ud = f,

: K ((ρ, ηe)) ue = f,

: V
(

ρd (ρ, ηd)
) ≤ V∗,

: −1 ≤ ρ ≤ 1
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Figure 9: Design domain, boundary conditions and load for the MBB problem.

where ci, ce and cd are computed for the intermediate, the most eroded and the most dilated cases.

Compared to the original formulation Equation 1 the adopted worst case robust formulation re-

quires the solution of three linear systems of equations corresponding to each of the considered

design realizations. In practical implementations the optimization problem is reformulated to

the so-called bound formulation [1]. The discrete max operator is replaced by an additional

optimization variable and an additional constraint for each of the objective functions.

4.1. MBB beam design

The design domain with boundary conditions and the load for the so-called MBB (Messer-

schmitt - Bölkow - Blohm) beam problem are shown in Figure 9. In order to save computational

cost only half of the problem is modeled. The ratio L : B = 3 : 1 is kept for all presented

examples. The domain is padded in order to avoid an influence of the boundary conditions on

the design in the filtering process. The padding lp distance depends on the filter parameters and

the filter type. Concentrated unit force is applied at the upper right corner of the internal domain

marked with dotted line.

For the examples presented in this section the padding length is set to lp = 0.2B. The design

field ρ is set to zero in the padded part of the design domain. The domain is discretized using

140 × 320 elements. The initial β is set to two and is multiplied by 1.2 every 50 iterations until

beta is equal to β = 32. The penalty is increased from 1 to 3 by multiplying it by a factor 1.2

every 50 iterations. The slow increase of β and the penalty is required in order to provide more

freedom to the optimizer in the early stages of the design process.

Non-robust designs with Gaussian filter defined by Equation 25 and different parameters are

presented in Figure 10. The performance varies between the designs from 94.2 Nm to 96.1 Nm

and improves slightly with increasing the central filter frequency. As expected, increasing the

central filter frequency ωs leads to more frequent appearance of solid elements and smaller void

regions. It should be pointed out that the weights on the frequencies around the zero frequency

are small but different from zero. Therefore, low frequency harmonics are allowed to be pre-

sented in the design. That is the main reason for the appearance of large void area in the upper

right corners for all designs in Figure 10.

Designs with the Gaussian filter defined by Equation 25 and zeroing the weights for all fre-

quencies in a circle with radiusωs− s and center (0, 0) are shown in Figure 11. This step removes

completely the slowly varying harmonics from the design representation. Hence, the largest
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Figure 10: Non-robust MBB beam designs for different filter parameters where Bt = B + 2lp.

ωs = 5B−1
t , s = 3B−1

t ωs = 6B−1
t , s = 3B−1

t

Figure 11: Non-robust MBB beam designs for different filter parameters and zero weight for all frequencies in a circle

with radius ωs − s and center equal to center of the frequency domain.

length between any two boundary points of the solid or the void regions has to be roughly smaller

than the vertical dimension of the design domain divided by 2 for the first case with ωs = 5 and

by 3 for the second case ωs = 6. This leads to the appearance of hanging solid inclusions which

do not contribute to the design performance. They exist due to the imposed restrictions on the

design space. Another expected effect due to the weight increase far from the center of the fre-

quency domain is the appearance of thin elements in the design. As discussed earlier they can

be suppressed by requiring robust performance with respect to geometric imperfections modeled

using simple erosion and dilation realized by selecting different threshold projections. Such ro-

bust designs are shown in Figure 12. The thin elements are removed, however, in contrast to the

non-robust design case free hanging solid regions appear in both problems. The appearance of

hanging solid regions can be avoided by relaxing the filter to cover the entire frequency range as

shown in Figure 10, by enforcing maximum length scale only on the solid phase of the design as

demonstrated later in section 5, or by introducing additional constraint on the lower bound of the

smallest eigenvalue for linear elastic structures [1].

The suggested band-pass filter projection scheme is recommended only for problems where

the maximum size is defined loosely as a distribution in the frequency domain and is not crit-
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Figure 12: Robust MBB designs for different filter parameters and thresholds [−0.015Mρs ; 0; 0.015Mρs ].
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Figure 13: Design domain, boundary conditions and load for a non-rectangular MBB problem (left), and non-robust

MBB design for filter parameters ωs = 7B−1
t , s = 7B−1

t .

ical for the final design realization and its performance. These are problems where repetitive

patterns with specified frequency are desirable due to aesthetic or functional requirements, e.g.,

architectural designs, porosity in scaffold microstructures, designs of fill-in patterns in additive

manufacturing. Alternative filtering-projections schemes for strict enforcement of maximum on

the size of the design features and avoiding the appearance of artificial solid regions are presented

in section 5.

The applicability of the FFT filter for non-rectangular design domain is demonstrated on a

minimum compliance optimization problem with boundary conditions and design domain shown

in Figure 13. The padding lp is set to be 0.2B. The filter domain is extended to a rectangular

domain in order to use FFT. The extension requires mapping from the actual design domain to

the rectangular one. This complicates slightly the implementation, however, it gives a complete

freedom to control the frequency content of the filtered design.

5. Maximum length scale based on morphological operators

The main limitation of the maximum length approach based on filtering is that the length

scale cannot be stated in exact manner. It is loosely specified as a distribution in the frequency

domain. Often in practice the maximum length scale is specified as a number which identifies

the maximum dimension in a specified direction. Controlling such feature is difficult in the

frequency domain which provides the motivation behind the approach presented in this section.
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structuring element

Figure 14: Example of erosion (middle) and dilation (right) operations applied on a rhomboid with square structural

element shown in the left upper corner. The original shape is marked with dotted line in the transformed images.

The idea is built on standard operations utilized in image processing and developed over the last

half century as a branch in mathematics known as mathematical morphology [16].

The two basic morphological operations, utilized here, are the erosion and the dilation oper-

ations. Initially the operations have been defined for binary 0/1 images with the help of structur-

ing element. The structuring element is a binary image usually defined on a sub-domain much

smaller compared to the image domain. Its role is to select all points inside the sub-domain and

either for dilation set them to one if a point inside the selection is one, or for erosion set them

to zero if a point inside the selection is zero. Eroded or dilated versions of the binary image can

be obtained by applying the above operations to all pixels. As mentioned in [25] the structur-

ing element corresponds closely to the neighborhood operation for classical filtering in topology

optimization. Examples of erosion and dilation operations are shown in Figure 14. As it can

be seen the erosion removes a layer of material and dilation adds a layer of material along the

perimeter of the solid region.

The applicability of morphological operators in topology optimization have been discussed in

details in [25]. The logical operations for binary images are relaxed and replaced with continuous

filter functions which mimic their behavior. A form of the dilation is utilized for imposing

minimum length scale on the void or the solid phases of topology optimized designs in [4]. The

idea is to apply a classical hat filter Equation 13 with a compact support on the design field

and then project the result with Heaviside projection and threshold zero. Such an operation

guarantees that the final projected density field is constructed by a union of solid circles, i.e., the

minimum solid design feature is a circle with radius equal to the radius of the filter. The same

idea can be applied on the void phase of the domain. Detailed discussion and comparison of the

different approaches can be found in [6].

Here the morphological operators are applied for defining maximum length scale on the de-

sign. The length scale on the solid phase is defined by the parameter/parameters necessary to

define the smallest structural element with specified shape for which the eroded design coin-

cides with void design distribution everywhere in the design domain. Maximum length scale

on the void is defined in a similar way by the parameter/parameters necessary to characterize

the smallest structural element with specified shape for which the dilation coincides with solid

design distribution everywhere in the design domain. The condition for the solid phase can be
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written as
∫

Ω

ρde (x) dx = 0 (28)

and for the void phase
∫

Ω

(

1 − ρpd (x)
)

dx = 0 (29)

where the fields ρde and ρpd is obtained first by convolution with a filter function with compact

support and then Heaviside projections. With the help of a relaxed Heaviside threshold projection

[6] defined as

Hp (ρ, β, η) =
tanh (βη) + tanh (β (ρ − η))
tanh (βη) + tanh (β (1 − η)) (30)

and a filtered field ρd f

ρd f (x) =

∫

Ω

F (x − y) ρd (y) dy (31)

the eroded field for Equation 28 is defined as

ρde (x) = Hp

(

ρd f (x) , β, η = 1
)

(32)

and the dilated field for Equation 29 is defined as

ρpd (x) = Hp

(

ρd f (x) , β, η = 0
)

(33)

The modified discrete topology optimization problem with maximum length scale on both phases

is defined as

min
ρ

:c(ρ),

s.t. :K
(

ρd (ρ)
)

u = f, (34)

V
(

ρd (ρ)
) ≤ V∗,

∑

ρde,e ≤ εs
∑

(

1 − ρdd,e

)

≤ εv

0 ≤ ρ ≤ 1

where ρd = Hp

(

ρs, β, η
)

is relaxed Heaviside projection of the filtered field vector ρs obtained

by filtering of the design field vector ρ. The filter can be constructed by any of the filtering

techniques discussed in section 3. The design field is this case is bounded between zero and

one. The first sum corresponds to the integral defined by Equation 28 and the second one to

the integral defined by Equation 29. Hence, the first sum enforces maximum length scale on the

solid phase and the second sum maximum length scale on the void phase. The max-length scale

constraints can be relaxed by setting the values εs and εv to small positive numbers larger than

zero. Enforcing both constraints results in a maximum length scale on both phases. Removing

one of them results in maximum length scale on one of the phases which widens the applicability

range compared to the approach presented in section 4 where maximum length scale is imposed

on both phases. The material properties for each element are obtained by the SIMP interpolation

scheme.
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Figure 15: MBB beam designs with maximum length scale imposed on both phases (left) and only on the solid phase

(right).

5.1. MBB beam design

The first example is optimized design of MBB beam with design domain and boundary con-

ditions shown in Figure 9. The padding length is set to lp = 2r where r = 0.056B. The internal

part of the design domain marked with dotted line is discretized using 300 × 100 elements. The

designs are obtained using β continuation where β = 2 in the beginning and is multiplied by

2 every 50 iterations. The final value is β = 32. Non-robust designs with maximum length

scale imposed on both phases and only on the solid phase are shown in Figure 15. Imposing

maximum length scale on both phases results in solid elements which do not contribute to the

design performance. These artifacts, similar to case with band-pass filters, appear only due to the

imposed constraints. Removing the requirement for maximum length scale on the void regions

alleviates the issue of hanging solid features. This demonstrates the flexibility of the additional

constraints approach compared to the band pass filter - projection methodology presented earlier

in this article.

Close study of the results in Figure 15 reveals that even though a relatively large projection

parameter is utilized in the final design the projected density field possesses gray regions, which

require post processing. These gray regions are removed using the recently proposed methodol-

ogy [34] for imposing minimum length scale using only additional geometric constraints. The

results are shown in Figure 16. The idea is to require that the filtered field ρ f is above a threshold

ηe for all points x =
{

y ∈ Ω| ρd (y) = 1, and∇ρ f = 0
}

. The above condition imposes length scale

on the solid phase only. Additional condition where the filtered field ρ f is required to be below a

threshold ηd for all points x =
{

y ∈ Ω| ρd (y) = 0, and∇ρ f = 0
}

, imposes minimum length scale

on the void phase. The initial designs for both optimization runs are the final designs shown in

Figure 15, and the thresholds are selected to be ηd = 0.35 and ηe = 0.65. For more implementa-

tion details the interested readers are referred to [34]. It should be pointed out that in this case the

designs response is not required to be robust with respect to geometric variations in the design.

The optimized designs with maximum length scale posses large number of hollow circles

close to the elements connections. These are natural outcome of the imposed maximum length

scale constraints. Their appearance can be controlled completely by either increasing the length

scale of the void regions or by decreasing the volume fraction of the solid phase. The length scale

in the void regions can be increased by moving the dilated realization threshold closer to zero,

and/or increasing the filter radius [6]. The effect can be seen in Figure 18 where the length scale

on the void phase is increased by doubling the filter radius and moving the dilated threshold to

0.23. The threshold is selected to match the minimum length scale imposed on the solid phase

for the designs presented in Figure 17 and Figure 18. The imposed maximum/minimum length

scale constraints require rounding of all angles, i.e., all elements connecting to a common node

have to be tangent to a circle. The restriction leads to wavy behavior of the elements around the

connections. The reduction of the solid material, on the other hand, forces the optimization
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Figure 16: MBB designs with minimum and maximum length scale imposed on both phases (left) and maximum length

scale only on the solid phase (right).

Figure 17: MBB designs with maximum length scale imposed only on the solid phase and minimum length scale imposed

on both phases and volume fractions of 40%, 30%, and 20%.

to keep the main structural elements and removes the less critical details, thus, reducing the

design complexity. Due to the smaller minimum length scale imposed on the void phase the

wavy behavior of elements around the connections is not strongly pronounced. The effect is

demonstrated in Figure 17 for volume fractions 40%, 30%, and 20%. The designs are obtained

using robust formulation [6] with initial design shown in Figure 16 right. The maximum length

scale on the solid phase for the designs presented in Figure 17 and Figure 18 is the same.

5.2. Compliant mechanism design with maximum length scale

The second example is the design of compliant mechanism with design domain and boundary

conditions shown in Figure 19. The optimization parameters are the same as for the MBB design

in subsection 5.1. The input spring has unit stiffness and the output spring is 103 softer than

the input one. A unit force fin is applied on the upper left corner of the design domain and the

objective is to maximize displacement uout. The response is required to be robust with respect

to uniform erosion and dilation within the threshold interval [0.35, 0.65]. The optimization is

performed using the min / max formulation, e.g. Equation 27, with three thresholds ηe = 0.65,

ηi = 0.5, and ηd = 0.35. Detailed study of the formulation can be found in [6].

The optimized results of the compliant mechanism for volume fractions of 35% and 20%

are shown in Figure 20. The first design is obtained with maximum length scale imposed on
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Figure 18: MBB designs with maximum length scale imposed only on the solid phase and minimum length scale imposed

on both phases and volume fractions of 30% and 20%. The length scale of the void phase is increased by doubling the

filter radius used in Figure 17 and by using dilated realization for threshold of 0.23.

lp

L

L
2

kin kout

fin uout

Figure 19: Compliant mechanism - design domain and boundary conditions.
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Figure 20: Compliant mechanism design with maximum length scale imposed on both phases, and only on the solid

phase. The first two designs are obtained with volume constraint 35% of the total volume and the last design is obtained

with volume constraint 20% of the total volume of the design domain.

both phases. Isolated solid regions are distributed in the design domain in order to fulfill the

condition for imposing maximum length scale on the void phase. Requiring maximum length

scale only on the solid regions removes the hanging solid features. However, close inspection

reveals that a large solid element is connected to the main structure by weak gray connections.

This, can be attributed to the highly non-convex nature of the optimization problem. Furthermore

it indicates that the volume constraint becomes inactive. Due to the continuation scheme the

design topology can get locked in the early stages of the optimization, and later when the length

scale constraints become active the optimizer cannot utilize the excess material. Decreasing the

material volume to 20% removes the weakly connected elements. Another well known feature

is that the requirement for robustness of the mechanism performance alleviates the single node

hinge problem [6] and imposes minimum length scale for the parts of the structure which actively

contribute to the design performance, i.e., all critical regions around the flexible hinges posses

minimum length scale. However, regions/elements which cannot provide significant changes in

the design performance might not exist in all design realizations and hence length scale for them

is not defined. As the performance of the design is not affected significantly by modifying these

elements, the design is manufacturable within the allowed manufacturing imperfections.

The convergence history is shown in Figure 21. The jumps in the performance for the differ-

ent realizations correspond to increase of the parameter β. As discussed in [6], the eroded and

the dilated realizations show equal performance for the optimized topology.
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Figure 21: Convergence history - compliant mechanism design. Eroded, intermediate and dilated realizations are shown

with red, blue and green colors, respectively.

6. Conclusions

An alternative for filtering based on Fourier transform, and two new alternatives for im-

posing maximum length scale in density based topology optimization are presented in details.

The methods eliminate the need of large number of constraints and an implementation requires

slight modification of the existing topology optimization formulations. Their limitations and ad-

vantages are demonstrated in optimizations of linear elastic designs. The methods are general

and applications to other optimization problems will be demonstrated in future research. The

proposed maximum length scale alternatives can be combined with most methods for imposing

minimum length scale providing the designers with complete control over the design process and

resulting in manufacturable robust black and white designs without any post processing.
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