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Summary

The emergence of embedded low-cost sensors in mobile devices allows us to cap-
ture unprecedented data about human behavior. Hence personal informatics
systems are becoming an integrated part of our everyday life: Capturing various
aspects from our health, work-life, to economic balance, and utility consump-
tion. All of which are aimed to provide knowledge of oneself, on which we can
reflect. Many personal informatics systems are characterized by mainly focusing
on collecting and analyzing data, rather than translating the data into meaning-
ful feedback. This dissertation presents challenges related to personal informatics
systems, and propose an approach to design cognitive interfaces, which considers
both users’ motivations, needs, and goals.

In this thesis I propose a new personal informatics framework, the feedback loop,
which incorporates lean agile design principles. Including hierarchical modeling
of goals, activities, and tasks to create minimal viable products. While consid-
ering how micro-interactions based on an understanding of data, couples with
user needs and the context they appear in, can contribute to creating cognitive
interfaces. Designing cognitive interfaces requires a focus on translating data into
meaningful feedback, which the users can reflect on in order to gain insights. Thus
I present tools such as personalized baselines and thresholds to enable reflection,
while creating personalized goals, scenarios, trade-offs in order to provide action-
able feedback, which can help users to adjust their behavior. Although feedback
can be provided in many different ways, it basically consists of audio, visual,
and haptic components, which combined may reinforce each other to support the
underlying interaction.



ii

The papers included in this thesis cover selected parts of the feedback loop. For
instance, examining emotional responses to pleasant and unpleasant media con-
tent from brain activity, reveals the large amount of data and extensive analysis
required to apply this to future personal informatics systems. In addition we anal-
yse challenges related to temporal aspects of the feedback loop, when users attempt
to self-regulate their brain activity based on a real-time feedback. This leads to
identification of underlying audio, visual and haptic feedback components, which
combined may support the underlying interaction within personal informatics.
And with the emerging availability of sensor packed wearable devices, haptic
feedback may become an inherent part of personal informatics systems, which
could enhance the interaction based visual feedback.



Resume

Udviklingen af billige mobile sensor teknologier giver os mulighed for at indsamle
hidtil usete mængder data om menneskelig adfærd. Derved er personal informa-
tics systemer ved at blive en integreret del af vores hverdag, med opsamling af
data om forskellige aspekter fra sundhed, arbejdsliv til økonomisk balance, og res-
source forbrug. Dette har til formål at opbygge viden om en selv, hvorpå vi kan
reflektere. Mange personal informatics systemer er karakteriseret ved primært
at fokusere på at indsamle og analysere data, snarere end at oversætte data til
meningsfuld feedback. Denne afhandling præsenterer udfordringer i forbindelse
med personal informatics systemer, og foreslår en tilgang til design af kognitive
grænseflader, som omfatter brugernes motivationer, behov og mål.

I denne afhandling opstiller jeg en ny ramme for personal informatics systemer,
the feedback loop, som inkorporerer lean agile design principper. Heriblandt hie-
rarkisk modellering af bruger behov relateret til mål, aktiviteter og opgaver som
basis for design af minimal viable products. Hvis mikro-interaktioner baseres på
en forståelse af data, brugernes behov og den sammenhæng de optræder i, kan
de bidrage til at skabe kognitive grænseflader. Design af kognitive grænseflader
kræver fokus på at oversætte data til meningsfyldt feedback, som brugerne kan
reflektere over, og få indsigt i. Således præsenterer jeg værktøjer såsom person-
lige referencepunkter og grænseværdier, der muliggøre refleksion og opfyldelse af
personlige mål. Scenarier, afvejninger, og hensyn til konteksten medfører at fe-
edbacken bliver handlingsorienteret og dermed kan hjælpe brugerne til at justere
deres adfærd. På trods af at feedback kan blive præsenteret på mange forskellige
måder, består de grundlæggende af auditive-, visuelle- og haptiske komponenter,
der kan kombineres og derved forstærke hinanden og understøtte den underlig-
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gende interaktion.

Artiklerne der er inkluderet i denne afhandling illustrerer aspekter af the feedba-
ck loop. Heriblandt undersøges følelsesmæssige reaktioner på behagelige og ube-
hagelige billeder ud fra hjerneaktivitet, hvilket illustrerer den omfattende data
indsamling og analyse som kræves for at dette kan anvendes i fremtidige perso-
nal informatics systemer. Derudover analysere vi udfordringerne forbundet med
tidsmæssige aspekter af the feedback loop, når brugere forsøger at selvregulere
deres hjerneaktivitet baseret på et real-time feedback. Dette fører til identifika-
tion af underlæggende auditive, visuelle og haptiske feedback-komponenter, der
på tværs af modaliteter kan understøtte den underliggende samspil med personal
informatics systemer. Med udviklingen af mobile sensor teknologier, wearables, vil
haptisk feedback kunne blive en integreret del af personal informatics systemer,
hvilket kan supplere interaktion med den visuelle feedback.
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Chapter 1

Introduction

Today, there is a personal informatics system for almost any aspect of a per-
son’s life, such as moods felt, health symptoms experienced, exercises performed,
computer applications used, steps taken, electricity consumed, and hours slept.
- Human behavior and our cognitive and emotional states have been studied
in many domains, including psychology, sociology and neuroscience. With the
technological development of sensors, mathematical models and increasing com-
putational power, many aspects of our lives have become digital, making it easy
to monitor everything from global systems such as transportation, utility usage,
transactions to individual monitoring of everything from steps, heart rate, coffee
consumption etc. Thus, data on human behavior, cognition and emotions are
no longer reserved for the scientific community, but are steadily being applied in
governmental planning and legislation; in business strategies for consumer prod-
ucts; and in the everyday life of individuals, who seek knowledge and insight into
their behavior, physical and psychological being. This is a new era of personal
informatics and cognitive systems, which poses challenges related to the design
of interfaces enabling people to interact with their own data and gain insights.



2 Introduction

1.1 Cognitive Interfaces for Personal Informatics

Personal informatics is a quantitative approach to obtaining knowledge of one-
self on which we can reflect [Li et al., 2010]. The field of personal informatics
stretches from information on physical and psychological conditions (heart rate,
insulin levels, mood etc.) to behavioral information (gps location, shopping ex-
penses, shopping preferences, music taste) or social connections (Facebook, con-
versation patterns and dominance, physical closeness to bluetooth visibility). In
this thesis I will map out challenges related to personal informatics applications,
and propose an approach to design interfaces and systems that not only fulfill
users needs, but can be thought of as cognitive interfaces.

Cognition may be defined as the ability to infer meaning from perceptual sen-
sory data by applying aspects of attention, memory, knowledge, and reasoning
[Reisberg, 1997]. Thus we consider cognitive interfaces as systems that can trans-
late data into meaningful feedback, systems that can potentially learn from user
behavior and interaction, thereby becoming adaptable.

As in programming, where ’Hello World’ is the simplest version of an interface,
one of the simplest cognitive interfaces of personal informatics is FitBit1. The
step counter, FitBit, translates accelerometer data into steps, calories, stairs
climbed and relates them to personal goals. Thereby the otherwise meaningless
data becomes accessible and meaningful to the user. More advanced systems such
as GN ReSound’s hearing aids2 use data streams from phones to adapt to the
surrounding environment. These kinds of context-aware systems are sprouting up
everywhere, as well as systems such as Google Now3, which based on sensor data
learns from our past patterns, habits, routines, and interactions. Google Now
provides contextual updates, which it believes the user will be interested in, such
as sports scores from his favorite team, and traffic information about his usual
commute at the appropriate time. Thereby Google Now tries to accommodate
user needs and desires.

Some of the most complex cognitive systems we have to date are able to com-
prehend semantic relations, such as IBM with Watson’s4 natural language pro-
cessing. Watson is able to translate speech to text, interpret information (or
questions), connect it to underlying concepts, make decisions (or provide an-
swers) based on trade-off analysis or confidence levels. Although Watson is not

1fitbit.com
2gnresound.dk
3google.com/landing/now/
4ibm.com/smarterplanet/us/en/ibmwatson/
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a dedicated personal informatics system, it can quickly become one, by feeding
it personal data, like health data.

I will focus on how we can incorporate ways of inferring meaning from data to
make cognitive interfaces that can help people gain insights and make behavioral
changes in their lives. In this process I will also touch upon emotional aspects,
such as motivation, preferences and emotional responses. Emotions have tra-
ditionally been presented as the ’black sheep’ of cognitive science, due to their
ability to distort memories and because they can be the reason for irrational
or illogical decisions [Reisberg, 1997]. However, recently, emotions have started
to be viewed as inherently integrated with cognition, in the sense that emotions
help adjust cognitive processes such as perception, attention, memory, experience,
self-belief [Damasio, 2008]. Thus I will consider emotional aspects in relation to
personal informatics and creating personalized interfaces.

1.2 Outline & Contributions

In addition to the current chapter, the thesis consists of six chapters, four pub-
lished papers, and one submitted paper. The chapters ties together the contri-
butions from the papers and relate them to the context of cognitive interfaces for
personal informatics. In summary, the remainder of the thesis is structured as
follows:

Chapter 2 provides a foundation for the rest of the thesis, by defining personal
informatics and describing the motivation of Quantified Self’ers, and the
challenge between early adopters and users expecting a functional product.
In addition the widespread personal informatics framework, Stage-based
Model [Li et al., 2010] is described and its limitations are discussed. This
provides motivation to establish a new personal informatics framework that
accommodates lean agile design principles.

Chapter 3 presents the framework, the feedback loop, build on an iterative loop,
consisting of personal informatics stages including scope, data collection,
analysis & visualization, infer meaning, adjust behavior and outcome. The
framework incorporates lean agile design principles, such as a hierarchi-
cal modeling of high-level outcomes scoped in relation to activities and
tasks, resulting in a minimal viable product. In addition it describes micro-
interactions which contributes to the users experience: With triggers ac-
commodating context and the users routines; rules consisting of algorithms
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analyzing the data; and feedback, translating the data into meaningful in-
formation. If done right, these micro-interactions can make systems seem
intelligent, and can be referred to as cognitive systems.

Chapter 4 illustrate how personality traits can provide insights to users’ mo-
tivations and preferences, which can help to scope a personal informatics
system to a specific type of users. Personality traits reveal only overall
attributes of large groups of people, while more individual preferences are
needed for a truly personalized system. Additionally methods for extract-
ing individual emotional responses to pleasant and unpleasant pictures from
brain activity are examined. This stresses the amount of data analysis and
extensive machine learning techniques required.

Chapter 5 presents examples of visualizations of time-series data and how pat-
terns, trends, and outliers of time-series data can be enhanced through
visualizations. Furthermore we focus on how to infer meaning from data by
use of baselines and thresholds, which can enable reflection. While making
the feedback more actionable from personalized goals, presenting different
scenarios and trade-offs and providing feedback at the appropriate time and
in the right context in order to facilitate behavior change.

Chapter 6 describes previous neurofeedback interfaces and demonstrates how
the design of these interfaces can have an effect on the training outcome.
This also illustrates the importance of considering the temporal aspects of
feedback, especially when the feedback is provided in real-time and and
changes are measured on a temporal level of milliseconds. The feedback in-
terfaces are examined as a combination visual, audio or haptic components,
which combined may reinforce each other can support the training activity.

Chapter 7 centres on haptic feedback, since the development of sensor packed
wearable devices, makes haptic feedback an obvious candidate for personal
informatics systems. It examines how a few haptic components can be com-
bined to create a perceived continuous motion. While a second experiment
reveals how fast different haptic patterns are perceived and whether they
are considered to be more pleasant or unpleasant than others. However if
these haptic patterns should not only serve as a means for providing infor-
mation, but also enhance the user experience and create associations of real
touch interaction, they can benefit from other interface components, like
the combination of visual and haptic feedback in the beating heart from
Apple Watch.

Chapter 8 discusses aspects touched upon in the thesis, their implications for
further research. This includes considerations of temporal aspects of feed-
back, and the tight coupling between stages in the feedback loop. Also con-
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siderations on how to access users high-level motivations, needs and goals,
which are essential for scoping the personal informatics systems. Last a
discussion on moving from classical scientific experimental setup into the
everyday context of personal informatics systems.

Chapter 9 summarizes the main contributions presented in this dissertation.

Paper A Smartphones as pocketable labs: Visions for mobile brain
imaging and neurofeedback, presents the Smartphone Brain Scanner
which is build from a consumer EEG headset connected to a mobile device.
In addition the technical limitation of noise in a mobile environment are
discussed, while prospects of using 3D source reconstruction techniques can
aid these limitations. The paper presents a platform for developing EEG
applications with real-time 3D source reconstruction. Examples of experi-
ments carried out with the Smartphone Brain Scanner, including imagined
finger-tapping, emotional responses from written words, and neurofeedback
training.

Paper B Emotional responses as independent components in EEG, dis-
cusses the possibilities for discriminating emotional responses, with the
perspective of applying these to create more personalized interfaces that
adapt to our preferences in real-time. While hypothesizing that retrieval of
emotional response in mobile usage scenarios could be enhanced through
spatial filtering, we compared a standard electrode-based analysis against
an approach based on independent component analysis.

Paper C Spatio temporal media components for neurofeedback, outline
previous neurofeedback interfaces used to train the ability to self-regulate
brain activity, which can be viewed as an example of a personal informat-
ics system. The paper presents an experiment involving two different de-
signs of neurofeedback training and demonstrates how these interfaces are
constructed from audio, visual components and temporal settings, which
appear to have a strong influence on the ability to control brain activity.

Paper D SOA thresholds for the perception of discrete/continuous
tactile stimulation, sets out to identify the lower and upper threshold of
the Stimulus Onset Asynchrony (SOA) for perceived continuous motions.
The range between lower and upper thresholds can be utilized to create
continuous stimulation of the skin, which can be perceived at moving at
various speeds.

Paper E Vibrotactile alarm system for reducing sleep inertia, utilizes
the haptic feedback in an alarm clock, eliminating the noise disturbance,
when sharing the same sleeping space with roomates, spouses or family
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members. The paper investigates the emotional ratings and attention level
of attention towards different haptic patterns, in order to choose a haptic
pattern that complements a pleasant awakening.



Chapter 2

Personal Informatics

Personal informatics is a quantitative approach to obtaining knowledge of one- SELF-TRACKING
self - behavior, habits, physical state, thoughts, and mental state - and goes by
many names self-tracking, quantified self, life-logging, and living by numbers. The
famous statement "know thyself" from ancient Greek culture is often mentioned
as a basic human need. Whether it is a basic need or not, we experience an in-
creased interest and a growing market for applications measuring various aspects
of our life - from one’s diet, exercise or sleep to more specific measures such as
amounts of coffee, email activity, utility consumption.

However, tracking behavior is far from a modern concept. People have been
tracking their behavior for centuries through diaries, bookkeeping etc. Benjamin
Franklin, who was a very self-aware man, tracked aspects of his life and behavior.
He understood the difference between good intentions and turning them into
action. From his autobiography, "The Private Life of the late Benjamin Franklin"
we know that he measured his life on 13 virtues in order to live an ’ideal’ life,
see Figure 2.1. These virtues consisted of tangible factors which were easy to
evaluate such as temperance (eat not to dullness; drink not to elevation). The
virtues also included factors that applied to both physical and abstract terms such
as order (let all your things have their places; let each part of your business have
its time), and some more philosophical factors such as Sincerity (Use no hurtful
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Figure 2.1: Benjamin Franklin’s chart, showing his 13 virtues (Temperance,
Silence, Order, Resolution, Frugality, Industry, Sincerity, Justice,
Moderation, Cleanliness, Tranquility, Chastity, Humility) and the
weekdays

deceit; think innocently and justly, and, if you speak, speak accordingly). While
some of these would be easy to map down in a binary system, others would require
evaluation of what is ’just’ or how others would perceive a certain behavior, is it
’hurtful’? Even by evaluating his life in this orderly fashion, Benjamin admitted
that he was never able to live the virtues perfectly, but felt he had become a
better and happier man for having made the attempt1. Today we would refer to
Benjamin Franklin as a first mover or early adopter within personal informatics.

Terms like early adopters, first movers or lead users describe a group of people,EARLY
ADOPTERS who are the first to develop and use new technologies and applications. These

innovators and visionaries are of special interest when developing new products,
because they can help articulate behaviors, desires, and needs that might be
dwelling in the rest of the population, but which are less visible and distinguish-
able. This user-driven development is commonly found in extreme sports, but
within personal informatics, the early adopters are known as Quantified Self’ers.
Thus we will take a closer look at this group of people - their motivation and
needs, and the barriers they experience. We will examine how to create personal
informatics systems that not only motivate but may adapt and become action-

1artofmanliness.com/2008/06/01/the-virtuous-life-wrap-up/
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Figure 2.2: Moore argues that a chasm exists between the engaged and for-
giving early adopters and the majority expecting a fully functional
product [Moore, 2002].

able. This must be done while keeping in mind that a product will only become
a success if it bridges the chasm between early adopters of a technology and early
majority expecting a fully functional consumer product[Moore, 2002], see Figure
2.2.

2.1 Quantified Self

The Quantified Self-movement became a reality when Gary Wolf and Kevin Kelly QUANTIFIED
SELFintroduced the concept in the tech-magazine Wired, and created the forum, quan-

tifiedself.com. Today Quantified Self’ers is a diverse group of life hackers, data
analysts, computer scientists, health enthusiasts, productivity gurus and patients
[Choe et al., 2014]. While some use existing personal informatics tools, others ac-
cess api’s, create plug-ins, or build their own. The needs and motivations of these
users are likewise diverse: Some suffer from chronic or life-threatening diseases
that require immediate attention. Others strive to live healthier lives through ex-
ercise, diets or life-work balance. And for some it is curiosity about their habits
and behavior that motivate them, such as how their music consumption patterns
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evolve 2. From a study in 2014 examining Quantified Self’ers’ tools, motivations
and insights, Choe et al. stated the most popular tracking categories are: Phys-
ical activity (40%), food (31%), weight (29%), sleep (25%), and mood (13%).
However many also report tracking other things including cognitive performance,
blood glucose, location, heart rate, symptoms, knowledge, stress, body fat, pro-
ductivity, snoring, movies, posture, medicine, skin condition, home energy usage,
clothes, and public transit usage[Choe et al., 2014].

Although this group of people is still relatively small, we see examples of how
their needs are affecting broad populations through federal regulations, such as
in the case of the Nightscouts. The Nightscouts is a group of parents with chil-
dren suffering from diabetes who have a strong need for accessible applications
monitoring their children’s glucose levels in real-time. However, they grew tired
of waiting for the slow development of applications due to legislation. So under
the slogan #WeAreNotWaiting3 they created an open source solution by hacking
an existing product from DexCom. They wanted to get access to their own data
accepting the responsibility that follows. Thereby they gained access to glucose
data from a DexCom monitor strapped around the abdomen. The hardware sen-
sor in itself needed a high level of regulatory approval (class III product) from the
FDA (Food and Drug Administration). However the application, which only dis-
plays data, is now being classified as Class II, which means that it does not need
an approval but only to be registered by the agency and follow certain controls.
This can be seen as an example of how the government has been forced to allow
easy development of personal informatics apps that integrate with sensors. This
is evidence of how much power a small group of people have, and how personal
informatics systems are crossing the chasm.

These are examples of highly motivated people, creating systems that accommo-
date their own personal needs. However if we want to create successful personal
informatics systems that can cross the chasm, we need a framework enabling us
to navigate through the design process of personal informatics systems.

2.2 Personal Informatics Frameworks

An attempt has been made by Li et al., to provide a theoretical foundation forSTAGE-BASED
MODEL personal informatics [Li et al., 2010]. By doing so they have created a framework,

the Stage-Based Model, dividing the process into sequential stages, see Figure 2.3:
2quantifiedself.com/2014/10/tim-ngwena-music-listening-habits/
3twitter.com/hashtag/wearenotwaiting
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Figure 2.3: Illustration of the Stage-Based Model inspired from Li et al.’s
illustration[Li et al., 2011].

Preparation is where the user decides what to track and which tools to use.

Collection during which data is collected.

Integration is where the data is prepared, combine and transformed.

Reflection here the user can reflect upon the data.

Action where users can take action on their newly gained knowledge, change
behavior or set new goals.

They suggest that design of personal informatics systems should be holistic: Con-
sidering all stages and the barriers that could occur and even cascade through the
stages. Li et al. also describe these stages as being iterative. However this is pri-
marily in respect to users’ changing information needs, focus or tools. Hence after
tracking the amount of calories consumed, the user might find it more interesting
to track nutritional value of the food, and therefore changes tool.

In the final stage, the action stage, Li et al. describe how users can choose
to change behavior based on their new-found knowledge, and how they might
tailor their behavior to match their goals, indicating that many users of personal
informatics systems are goal oriented.
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Figure 2.4: Goals can be viewed as a hierarchy from high-level, system goals,
to sequences of actions or tasks which constitute the higher-level
goals.

2.2.1 Hierarchical Goals

In addition to the Stage-Based Model, Li et al. examine the goals of differentTYPES OF
GOALS personal informatics users[Li et al., 2011]. Relying on Powers’ theory of percep-

tual control that describes goals as a hierarchy, from idealistic system goals, to
very specific sequence goals, see Figure 2.4[Powers, 1973]:

System Goals is the thought of an ideal self: an ideal relationship, society.

Principle Goals are the goals required to achieve the ideal self. This could be
becoming physically fit, looking attractive, or becoming more effective.

Program Goals are more specific and often measurable. This could be exercis-
ing 3 times a week, loosing 10 pounds, or only checking emails once a day
to avoid distractions while working.

Sequence Goals are the sequence of actions or activities, what makes program
goals possible. This could be putting on running shoes, going outside,
avoiding sugar, or turning off email notification etc.

According to Li et al. the program goals are essential to achieve behavioral
changes. However they do not describe how the program goals should be defined
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on the basis of the principle goals. Should a person, whose principle goal is
to become physically fit, run three times a week, once every day, or instead
swim twice a week? This might depend on the user’s personal preferences or
past experiences. In addition Li et al. ignore the effect of the sequence goals.
Consequently, they ignore the fact that these sequence goals can easily become
barriers that hinder the user in achieving his goals, for example, sitting down on
the couch when getting home from work instead of putting on running shoes. The
importance of these sequences of actions are supported by the work of Kim et al.
[Kim and Paulos, 2010]. Kim et al. claim that users who succeed in sustaining
the use of personal informatics applications are those who adopts the tool into
their daily routines. In order to adopt the usage into the user’s routines it is the
sequence of actions leading to a specific behavior which is important.

2.2.2 Properties of the Stages

The stages in the Stage-Based Model are described as being either user-driven USER- OR
SYSTEM-
DRIVENor system-driven, where either the user or system is in charge of the tasks within

that stage. In a user-driven system, the user might be collecting data manually
and/or afterwards analyzing it himself. This can become very time and attention
consuming, which can easily lead to fatigue and lack of motivation. In contrast,
a system-driven setup typically has automatic data collection, driven by the ad-
vances in sensor technology. This makes it possible to collect data continuously,
such as heart rate or respiration, thereby providing a more detailed picture of how
they fluctuate. Another advantage is that sensors can collect data on behavior
that we are unconscious about, for example by tracking sleep phases. The down-
sides of a system-driven approach can be less accurate data, e.g. by mistaking
lying passively on the couch with sleeping. A system-driven approach can also
be limited in the visualization and analysis it provides, thereby not illustrating
the data of interest to the user.

Li et al. recommend an "appropriate balance between user- and system-driven"
systems [Li et al., 2010]. However if we want the personal informatics systems
to cross the chasm, the tedious and difficult tasks such as collecting data and
analyzing data need to be minimized, e.g. by automation. Instead the focus
should be on creating better rules, for translating data and inferring meaning
enabling the user to reflect on it, and gain insights. Thus the systems should
be designed to accommodate potential incorrect data, by allowing users to edit
and correct data, and learn from these mistakes. Analysis should be based on
personal baselines, thresholds, and goals.
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Li et al. also describe systems as either uni-faceted or multifaceted. Uni-facetedMULTI- OR
UNI-FACETED means that they are only concerned with one aspect about the behavior. e.g.

physical activity (including heart rate, calorie spend, distance covered, pace etc.).
Whereas multi-faceted considers multiple aspects in combination, such as physical
activity and sleep patterns. Recently more systems have started monitoring mul-
tiple aspects, but only few are combining the data streams, looking at how these
aspects affect each other. An example of a multi-faceted system is Spire4, which
combines the physical activities (sitting, standing, and moving) with breathing
patterns (like deep breaths or quick gasps). By analyzing these, Spire claims to
"infer state of mind (tense, calm, focus)" 4. However it does not provide tools
for analyzing how physical activity and mental states affect each other on a long-
term scale. Will regular exercise stabilize mood swings? Thus many of these
multi-faceted applications lack the ability to infer meaning from the data. This
results in applications that mainly display huge amounts of data with no clear
user need or goal in mind.

Li et al. advocate for multi-faceted systems, however these will only work if
they have a clear understanding of which behavioral patterns and physiological
measures effect each other, and how to infer meaning from them. Instead systems
should rather be excellent at solving one specific need rather than trying to grasp
everything - they should start of as a minimal viable product.

2.2.3 Barriers

Li et al. describe several barriers within each stage, which might affect laterCHANGING
TRACKING

TOOLS stages. Among the barriers are, exporting and importing data: If the user decides
to change between tools that do not support importing and exporting data, old
data might be lost. This will lead to fragmented or scattered data in the reflection
stage.

Another example of barriers is during the collection stage, where the data might
depend on subjective measures, such as an estimate of calories in a meal, or if
there is no standard for entering data such as judgment of relationship or mood.
This will affect the quality of the measures and the ability to compare it and
reflect upon it.

In the recent study from Choe et al., the motivation, tools and insights from en-WHICH DATA
TO COLLECT thusiastic Quantified Self’ers have been examined [Choe et al., 2014]. The study

4spire.io
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revealed more barriers, including tracking the right things. E.g. instead of track-
ing when and where a panic attack happens, it would be interesting to track the
triggers and context. As Choe et al. point out, a common mistake in personal
informatics is failing to capture the triggers and context, instead only focusing on
tracking e.g. symptoms or outcome measures [Choe et al., 2014]. This problem
of not tracking the triggers, is actually a result of not understanding the users’
needs or the relations between behavioral aspects.

Another problem is tracking too many thing, which occurs in the collection TRACKING TOO
MUCHstage and is often associated with the multi-faceted systems. Tracking too many

things can quickly become overwhelming and exhausting, which might lead to
inconsistent tracking or even to lack of motivation and tracking fatigue: "I can
honestly say that I’ve made the classic newbie self-tracking mistake which is that
I track everything" [Choe et al., 2014]. The problem is also relevant later in
the integration stage, where the data format or simply the extensive amount
of data makes it difficult to analyze, to find correlations between data streams
and therefor to interpret the data: "It’s not that we lack the information, we’re
virtually drowning in it. The obstacle is that we don’t have the proper tools to
interpret the significance of our data" [Choe et al., 2014].

Both of these problems are actually related to a lack of scoping in the design
process: What are the questions you seek answers to? What are the needs and
motivation? It also shows a lack of understanding of the behavioral measures.
The fact is that we are now able to monitor and cross examine a lot more biomet-
rics and behavioral measures without being certain of which are affecting each
other. Thus there is a risk of mistaking correlations with causality; what is the
relationship between behavioral aspects? E.g. are we drinking coffee because
we are tired, or are we lacking sleep because of the caffeine in the coffee we are
drinking (Figure 2.5)?

2.3 Limitations of Current Frameworks

In summary Li et al.’s stage-based personal informatics framework can be under-
stood as a socio-technical model in the sense that it tries to merge engineering
aspects such as data collection and integration with user-centered aspects such
as reflection and behavioral aspects of the action stage. Although there are a lot
of good considerations, it is not clear how to apply the Stage-Based Model in an
iterative design process. The Stage-Based Model lacks detailed considerations of
needs, motivations and goals: Li et al. focus on action as an outcome and limit
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Figure 2.5: Causality of data: Does your coffee consumption reflect your lack
of sleep? Or do you lack sleep due to your coffee consumption?

reflection to a single stage. They only consider iterations in terms of changing
needs, rather than it being an integrated part of the design process.

The framework does not address the links between needs, motivations or howSCOPE &
OUTCOME these are connected to high level values and goals. Likewise there is no con-

sideration of how to transform these high level goals to more tangible goals.
Furthermore the sequences of actions required to reach the desired goals are ig-
nored. Instead the main focus is limited to the barriers and how these might
cause the user to fail in reaching the final stage, action, which seems to be the ul-
timate goal. Thus the goal seems to be changing behavior and improving oneself,
rather than gaining insight, which is only briefly mentioned as a side product
of Reflection. This is not an uncommon approach in personal informatics, as
has also been pointed out by Baumer, who criticizes personal informatics studies
for focusing more on outcomes related to Reflection rather than reflection itself
[Baumer et al., 2014].

Perhaps this is due to the misleading definition of reflection as a stage betweenINFER MEANING
integration and action. Some would argue that reflection can happen at different
times and on different cognitive levels. Already when the user decides to start
tracking, reflection is happening to some degree. The user might want to inves-
tigate how he is using his time, thereby indirectly he has reflected on his current
usage or at least on his assumed usage. Reflection could also happen during the
collection or action stage: When the user finds himself checking facebook up-
dates while being aware that his computer usage is now being monitored with
RescueTime5. Thus the mere awareness of tracking behavior can lead to reflec-
tion. Others like Baumer have also noted that many personal informatics studies

5rescuetime.com



2.3 Limitations of Current Frameworks 17

use reflection as a keyword without defining it[Baumer et al., 2014]. And many
of those who do, refer to Schön’s concept of reflection-in-action [Schön, 1983].
Reflection-in-action describe the ability to improvise or make decisions during
an activity. This would be described as learning by doing or by experience. How-
ever Schön also describes a concept of reflection-on-action, which is more similar
to Li et al.’s reflection on data, where the process of reasoning on past behavior
leads to insights. Instead of reflection we will refer to this as inferring meaning
from data, which might lead to reflection or even insights.

Finally, Li et al. suggest that systems should be iterative between stages. How- ITERATIONS &
LOOPSever the model only describes iterations from action to preparation, mainly in

respect to prospects of incorporating new data, tool and processes. Thereby the
framework becomes somewhat flexible to the users’ changing information need -
to a redirection of the user’s goal or questions. However, the stage-based model
does not consider iterations in a shorter loop, through only some of the stages.
By doing this, we can consider the user’s transitions between stages, from knowl-
edge, reflecting on it leading to action: How the data should be visualized to
infer meaning from data, upon which the user can reflect and hopefully gaining
insights. Or in the case where behavior change is the goal, considerations on how
systems can accommodate action leading to successful behavior change.

Thus we propose an alternative model with needs and motivations as the starting
point, while incorporating both high-level and low-level goals. The model will
include iterations between stages, a feedback loop. We will suggest elements
within the stages that can help infer meaning from data, aiming at providing
insights.
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2.4 Summary

Personal informatics systems are becoming more common in our everyday life
and span from systems monitoring our health, work-life, to economic balance,
and utility consumption. So far these systems have been highly influenced by the
Quantified Self’ers, who have tested, evaluated, discussed, and modified systems
to accommodate their own needs. This group of people are highly motivated
and more tolerant towards bulky, unstable or demanding systems. In contrast,
the majority of the market would not be able to modify the system nor be as
forgiving. For personal informatics systems to cross the chasm, we need a design
framework relying on lean agile development processes.

In contrast the established personal informatics frameworks are limited by:

• Not focusing on the scope & outcome - including understanding users needs,
motivation and goals which might be changing behavior, or exploring pat-
terns and gaining new insights.

• Not focusing on how to infer meaning from data, enabling reflection and
insights - including an understanding of relations between behavioral pat-
terns and physiological measures; and personalizing the data analysis and
visualization.

• Not considering the iterative feedback loop taking place when using a per-
sonal informatics system - including when and how feedback is provided to
the user and how feedback is provided to the system through interaction
and behavioral patterns.



Chapter 3

The Feedback Loop

We will start by establishing a model that is centered around an iterative feedback
loop. Focusing on the scope and its relation to high level outcome, which remains
essential in lean design process, will help to define the minimal viable product.

Scope is where the user decides what to track and how. This is based on the
underlying user needs and motivation, which is connected to the user’s
values and goals.
I will examine the connectivity between motivations, needs, and goals, while
linking them to an iterative design process. The coupling between person-
ality traits and motivations will be described and emotional responses to
pleasant and unpleasant stimuli will be investigated.

Data Collection is where data related to physical sensors or behavioral pat-
terns are gathered.
The difficulties and complexity of data collection and analysis are illustrated
in relation to capturing individual emotional responses.

Analysis & Visualization is where the data is integrated, transformed, ana-
lyzed and presented.
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Figure 3.1: The feedback loop, consists of the following stages: scope, data col-
lection, analysis & visualization, inferring meaning, adjust behavior
and outcome, while focusing on the underlying motivation, needs
and goals.

The tight coupling between analysis and visualization will be illustrated
with neurofeedback interfaces.

Infer Meaning is where the user can infer meaning from data by means of
visualization, and by interacting with it - zooming, selecting, and filtering.
Furthermore, this might lead to reflection.
I explore how visual elements can help inferring meaning and enable re-
flection and association. While applying some of these in a neurofeedback
inferface to study the effect it has on training.

Adjust Behavior is where the user can adjust behavior, based on the inferred
meaning.
Neurofeedback training demonstrates users ability to adjust behavior based
on the visualization. In addition I illustrate how haptic feedback can initiate
behavioral change.

Outcome is where the user sees the effect of tracking, either by having achieved
or failed his high level goal, or by simply gaining insight, which can lead to
a changing focus, goal or question, and perhaps setting a new scope.
The effect of the outcome and the temporal aspects of the feedback loop is
discussed when designing neurofeedback interfaces.
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Figure 3.2: Being able to scope the system based on users’ motivation, needs,
and goals; the desired outcome, is essential for creating a successful
personal informatics system.

The loop through data collection, analysis & visualization, infer meaning and/or
adjust behavior is continuous, as long as the user has the same need and goal
in mind. The loop can be applied on many levels to describe small micro-
interactions or at a larger scale, to achiever goals on different levels. By looping
through these stages several times, the user can gain insight on long-term trends
and patterns, or might see the effect of behavior changes. Moreover, the system
might also learn from the user’s interaction and behavioral patterns, and become
adaptable, and can be described as a cognitive system.

We will examine how we can incorporate aspects of lean agile design processes
into the feedback loop, as a guideline for developing personal informatics systems.

3.1 Lean Agile Design Process

In any design process it is important to set the right scope for the system. This
is easier said than done as it requires understanding the users, their needs and
what motivates them, and narrowing these down to create a minimal viable
product. The minimal viable product is the minimal version of product, which
solves a problem for the user, while allowing developers to gain insights through
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testing. It is a strategy for fast development with minimum effort and resources
[Ries, 2011].Thus we will start by zooming in on the scope and outcome of the
feedback loop, see Figure 3.2.

Motivation represents both desires and needs and is one of the reasons for self-MOTIVATIONS
& NEEDS imposed, planned behavior and reflects personal preferences and values. Needs

are basic elements that can be objective such as food and shelter, or subjective
such as self-esteem or feeling secure. However in this thesis we will view needs a
little more broadly. They are not just what provides a foundation to live ’healthy’
lives, they are rather what is necessary to live ’our’ lives, both in a practical and
ideal sense. Thus, needs explain what and motivation can explain why. In this
sense, motivation and needs can be seen as the starting point to achieving goals,
which is therefor tightly connected to the desired outcome.

In the previous chapter we saw how motivation, needs, and goals, are often takenGOALS &
SEQUENCES for granted when describing personal informatics systems. They assume that

motivation naturally leads to behavior change: If you want to become physically
fit, you will naturally succeed at this, if you have a program goal, like running
three times a week. There is no consideration of how these goals are defined, or
which fits the individual user. They also neglect the sequences of actions required
to achieve the desired goal.

Thus, we will investigate how to incorporate both high-level goals and sequences
of actions in the design process. Going from abstract measures of motivations,
needs and goals to tangible tasks which can be transformed into programmable
flow-charts.

3.1.1 User Story Mapping

One way of connecting high level goals with activities and sequences is by theUSER STORY
MAPPING use of User Story Mapping [Patton and Economy, 2014]. User Story Mapping

is a tool for agile software development and is used for scoping user needs into
activities and a hierarchy of prioritized tasks: A story line is created from the
different users and their needs or goals. To achieve these goals one requires a
set of activities, which in turn translate to a sequence of actions. Each of these
activities consists of a set of tasks. These are the detailed steps supporting
the activity. By defining these tasks to avoid dependencies between them, and
by prioritizing them in a hierarchy, the developer can scope the system into a
minimal viable product, see Figure 3.3. From here the developer can improve
the system with more nice-to-have features in the later iterations. Through this
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Figure 3.3: By decoupling tasks and prioritizing them, the first iteration of
product development can be usable as a minimal viable product.

process it becomes clear which tasks are necessary, and which do not contribute
to the activities and goals.

By focusing on one user, and his main goal or need, the activities and tasks
required to solve this, we have started defining a minimal viable product. Based
on this, a prototype is created and tested, enabling the developers to get insight
and evaluate the goals, activities and tasks, which can lead to altering the original
scope, see Figure 3.4.

By applying the user story mapping to our feedback loop we can both transform
the high level goals into sequences of actions, and describe these actions or ac-
tivities as a set of tasks, which can easily turn into programming flow-charts, see
Figure 3.5.

3.1.2 Micro-Interactions

These tasks can be described in details as micro-interactions. Micro-interactions MICRO-
INTERACTIONSprovide a detailed flow-chart view of the underlying rules and triggers that define

a system and can enhance the user experience [Saffer, 2013]. Micro-interactions
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Figure 3.4: User Story Mapping as part of an iterative process, helping to scope
the product by testing prototypes, thereby evaluating and redefin-
ing the scope of the product.

Figure 3.5: By considering the activities of each stage in the feedback loop,
we can transform this into the lean design framework, User Story
Mapping.
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Figure 3.6: Spire consists of micro-interactions - interpreting whether the user
is tense or relaxed based on breathing patterns and activity level.

consist of a chain of events which can be described as five different types of
actions:

Triggers initiate a change of state or mode

Rules determine what change entails

Feedback signals that a rule has been activated and preferably what it entails

Modes are meta rules, that overwrite the current rule

Loop determines when to exit a mode, based on time past, new triggers or
previous history

The triggers can be either user or system initiated. A user initiated trigger could
be when the user switches his phone to silent mode, or when he taps a button to
set an alarm, whereas a system initiated trigger could be when a system switches
to a silent night-mode after 10pm. The rule is then to replace previous audio
notifications or incoming calls with a vibration or simply a visual display. The
phone would stay in this mode until the user switches it back to audio. The
feedback is the small vibration indicating that the silence button is switched on
and an audio icon indicating audio on and off. The modes are meta rules, thus
when the user has set an alarm, this will go off even though the phone is on silent
mode. The alarm mode will then overrule the previous silence rule. The loops
determines when to return to the previous mode. Thus when the phone is on
night-mode, this will continue looping over this mode until morning.

These micro-interactions are often small fundamental elements that contribute to PERSONAL
INFORMATICS
SYSTEMthe user experience, and the rules are what makes these systems seem intelligent.
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In personal informatics we see them in systems like Spire1. For Spire the scope
is to "reduce tension and guide the user towards a calm and focused mind"1.
Spire relies on the natural human feedback mechanism breathing rate, which is
one of the few ways of consciously influencing the nervous system. Changing
the state of mind simply by changing your breathing pattern. Taking a deep
breath when angry or tense might result in becoming more relaxed. This is done
by transforming accelerometer data into breathing rate as well as activity modes
(sitting, standing, and moving). If the user’s breathing rate has increased without
the user moving much, the system will interpret this as the user being tense. The
system notifies the user while suggesting to take a deep breath, see Figure 3.6.
Here the trigger is a combination of data thresholds - a fast breathing pattern
and low physical activity. While the rule is the interpretation; being tense, calm
or focused. The feedback is the notification. However if the user does not agree
with the systems interpretation, and does not feel tense - the system can easily
seem unintelligent. Thus getting these micro-interactions right is important in
striving to create cognitive interfaces.

1spire.io
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3.2 Summary

By establishing a model around an iterative feedback loop, we have created a
starting point for a personal informatics system around the basic component of
providing feedback to the user and receiving feedback on which the system can
learn from the user’s interaction and behavioral patterns, and thereby become
cognitive. The feedback loop consists of the following stages:

• scope

• data collection

• analysis & visualization

• infer meaning

• adjust behavior (optional)

• outcome

The feedback loop focuses on the scope & outcome of the system, which are essen-
tial for creating a minimal viable product. We incorporate User Story Mapping in
order to get from high-level needs and goals to sequential activities which can be
fitted into the user’s routines, and tasks on programming level. With User Story
Mapping the goals, activities and tasks can be decoupled and prioritized helping
to scope a minimal viable product, which can be prototyped, tested, evaluated
and modified until ready to be programmed into a commercial product.

The detailed interaction with the systems are referred to as micro-interactions.
These small fundamental elements are what contributes to the user experience
and makes the system seem intelligent, but only if done right. The micro-
interactions consist of triggers, rules, feedback, modes, and loops. In personal
informatics systems the triggers, rules, and feedback are what makes the system
cognitive. This includes understanding the users and their routines, understand-
ing the data in relation to correlation and causality, and how to translate and
infer meaning from data.





Chapter 4

Personalization

As we saw in the previous chapter, understanding users, their motivations, and
preferences is essential for scoping the product. This chapter focuses on how
we can gain insights to users’ motivations and preferences based on personality
traits, in order to personalize the content, and provide feedback in an appealing
way. In addition, I examine the prospects of accessing users’ emotional responses
from cortical brain activity. This will illustrate the importance of the scope and
how extensive data collection and analysis can be, see Figure 4.1.

Since personality and personality traits often reflect behavior, preferences, mo- PERSONALITY
TRAITStivations and values in life, there has been extensive work on understanding

and analyzing these in a systematic way. One of the most well-known and
thoroughly researched frameworks is the big five developed by McCrae et al.
[McCrae and Costa, 2003]. The big five is a categorization of five primary per-
sonality traits:

Agreeableness a person scoring high in agreeableness, will often show compas-
sion towards others, be helpful, cooperative while being modest and have
a high morale. A person with a low score would be self-centered, proud,
have a hard time trusting others, and think that people should rely on
themselves instead of others.
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Figure 4.1: We explore how we can get insights into users’ motivations, pref-
erences and emotional responses, while illustrating the complexity
of collecting and analyzing brain data of individual emotional re-
sponses.

Conscientiousness a person scoring high in conscientiousness will be described
as driven, organized, responsible, and persistent. While a person scoring
low will be carefree, unstructured, self-doubting, and feel content with no
need for ambitious goals.

Extraversion a person scoring high in extraversion would be very energetic,
optimistic, seeking the company of others, and is comfortable taking charge
and leading groups. A person scoring low would be calm, laid back, private,
serious and need time for himself.

Neuroticism a person scoring high will be anxious, insecure, fiery and sensitive
to others’ opinions, while a person with low scores would be confident,
self-controlled, content, and calm under pressure.

Openness a person scoring high in openness is appreciative of art, imaginative,
has a philosophical approach, challenges authorities and is eager towards
new experiences and various activities. A person scoring low will rely on
familiarity and traditions, is pragmatic, prefers facts and is respectful of
authorities.

Each of the five primary traits has six facets, which further characterize the
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individual. A person might have a combination of these traits, however some are
more strongly represented than others.

By understanding what motivates the users with different personalities, we can IBM WATSON
get an indication of their preferences and values. This is why IBM’s Watson1 has
been trained to infer personality types from social media profiles such as Facebook
and Twitter [Golbeck et al., 2011]. The outcome is measures of which character-
istics are most prominent in a user, compared to the average of the population
of Facebook or Twitter users. In this way, Watson offers companies insights on
their customers’ personalities through social media logins, thereby helping com-
panies target products and marketing more effectively. We can therefore easily
imagine that information about users’ personality traits will become accessible
to developers of personal informatics systems. Thus we can start to include as-
pects such as motivation when designing systems, which can effect the way of
presenting data, content, purpose, and whether the system should be actionable
or explorative, allowing for detailed interaction with the data.

4.1 Designing for Personalities

Even though users with different personalities have similar needs, different ways
of solving these needs might have an appeal to different personality types. This
has been demonstrated in people’s preferences towards book-reviews
[Nass and Lee, 2000], where people preferred reviews presented by a reviewer with
a personality trait similar to their own (introvert vs. extrovert), and were even
more likely to buy the book. Thus applications can be adjusted to personality
traits, by customizing the content, how it is presented and what needs it should
fulfill. To demonstrate this, we look at three applications which help the user
keep track of consumed calories.

Carrot Hunger2, has a very simple interface. The main screen provides feedback PERSONAL
INFORMATICS
SYSTEMSon the amount of remaining calories, in three ways - from the size of the avatar

(skeleton, normal and overweight), the number on the pedestal, and the level of
green slug. The simple, yet artistic interface could easily appeal to people with
high Openness. The application has a sarcastic commentator, that will ruthlessly
shame the user whenever he consumes more calories than the daily threshold, and
will electrocute his avatar, unless he pays a small fee or he will be publicly shamed
on his twitter account. Thus people who choose to use Carrot Hunger will likely

1watson-pi-demo.mybluemix.net
2www.meetcarrot.com/hunger
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Figure 4.2: Illustration of how Watson would present personality traits of a
person with high Openness and Conscientiousness.
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(a) Carrot Hunger (b) MyFitnessPal
(c) MealLogger

Figure 4.3: Three different approaches to personal informatics systems for
tracking calories. (a) Carrot Hunger display a clear warning, when
the consumed calories have exceeded the daily threshold, with the
red colors and electrocution of the avatar. (b) MyFitnessPal shows
a classic bar plot with three colors indicating the amounts of carbs,
fat, and protein consumed during the past week. (c) MealLogger
displays a score board in the top of the screen and depicts meals
and activities as items in a grid.

be cheerful and perhaps competitive, both of which are facets of Extraversion.
The application is also very action oriented, with one big button in the center
of the screen for recording calories. And it only provides a limited history of
behavior - the number of days the user has been able to stay within the calorie
threshold. Thus the user does not need to spend much time engaged in the app,
which is also perfect for people who score high onExtraversion - they tend to live
busy, fast-paced lives. Carrot Hunger excels by having a clear-cut scope and users
of Carrot Hunger are likely to be motivated by its simple, yet candid interface,
which is only meant for a bare minimum of interaction.

In contrast MyFitnessPal3 provides a more extensive interface with a detailed
history. The history includes a diary of all consumed food, which the user can
investigate for nutritional information, and which allows the user to correct in-
accurate food entries. The average nutritional information of fat, protein, carbs,

3myfitnesspal.com
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sugar, fiber, cholesterol etc. from past days, weeks, and months are displayed in
traditional bar and pie charts. This interface appeals to users who are interested
in the details of their behavior. Thus people who choose MyFitnessPal would be
likely to score high in Conscientiousness and low in Openness, since these will
prefer traditional approaches. They have a need for structure and are motivated
by feeling in control.

Another diet application is MealLogger4, where people share pictures of their
meals in communities. People in the communities can comment on each other’s
pictures, get recipes and motivate each other. This concept is appealing to people
with high Agreeablesness, who care care for the opinions of others. The history
is presented as a grid of photos and icons, which leads to more information when
tapped. The interface is intended for the user who spends time on exploring
nice photos, recipes and engaging in the community. Thus this application might
be interesting for people with Extraversion, who find the company of others
rewarding and motivating.

These three examples illustrate how interfaces can appeal to people with different
personality traits. This applies both in terms of how actionable or exploratory
an interface should be, the content, the level of detail, and how it is delivered
(e.g. sarcastic as in Carrot Hunger).

If we look at the personality types of early adopters including many of the Quanti-QUANTIFIED
SELF’ERS fied Self’ers5, these would be likely to score high in Openness, being open towards

new technologies, driven by a curiosity that questions the common ways of doing
things. They could also score high in Conscientiousness, being determined to
get the answers they are looking for and dedicated to use the technologies in
order to achieve their goals. This is how Watson would portray these personality
characteristics, their facets, see Figure 4.2. These personality characteristics can
be used to explain what needs and values a person has, which can explain how a
person would behave and what motivates him.

Though there has been a lot of research focusing of the effect of personality
traits and consumer behavior, there are only a few examples within personal
informatics. Most of these focus on implications on scenarios with gamification
or educational purposes. One study examines correlations between personal-
ity traits, preference towards different game affordances (challenges, rewards,
progress, etc.), and what behaviors they tracked [Karanam et al., 2014]. They
found that people with high conscientiousness and openness preferred rewards,

4meallogger.com
5quantifiedself.com/personality/
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Figure 4.4: The averaged global field power plotted for the three conditions,
neutral (green), pleasant (red), unpleasant (blue), used to define
relevant windows for further analysis.

whereas people with high extraversion and openness were motivated by chal-
lenges. This illustrates some broad tendencies coupling motivational factors with
personality traits, which are relevant in the context of personal informatics and
the design of feedback interfaces. However if we can access emotional responses
to content in real-time, we will be able to create more effective systems that can
adapt to users’ preferences, without extensive training or prior usage.

Yet this standard way of categorizing users by personality traits will only reveal
overall attributes. To make a system truly personal, it requires access to indi-
vidual differences, which amongst other things are affected by past experiences,
memories and emotions.

4.2 Emotional Responses in EEG

Being able to tap into users’ personal experience and emotional responses would
be of great value and enable the possibility of personalized content. With the
development of new types of mobile neuro-imaging headsets, this can become
a reality in the future. In an outline we demonstrate the tentative beginning
with a series of activities and experiments, Appendix A[Stopczynski et al., 2014].
However as we will see in the following, working with brain data is not trivial.
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In prospect of extracting emotional responses from brain activity, we conducted
an experiment displaying affective pictures, Appendix B [Jensen et al., 2014].
The pictures were a subset of pictures from the International Affective Picture
System (IAPS) [Lang et al., 1997] which consist of almost 1000 photos ranging
from everyday objects to mutilated bodies and erotic nude scenes. These photos
were originally rated by 100 college students on a valence and an arousal scale
and have been scientifically accepted as a normative rating.

By recording electroencephalography (EEG) while participants view the photos,EVENT
RELATED

POTENTIALS we capture the electric potential from the scalp representing the neural activity in
the cortex. Traditionally, emotional responses have been analyzed by averaging
the waveform appearing immediately after the stimulus is presented, known as
the event related potential (ERP). The emotional responses appear as slight µV
changes, which is highly susceptible, if captured in a noisy mobile environment.
Thus we compare a classic electrode-based analysis, the Global Field Power, to
an independent component analysis (ICA), in hope of getting a more robust
neural signature which could potentially be applied in a mobile context recording
emotional responses.

We presented a series of affective pictures to four male participants while record-
ing their neural activity on a standard BioSemi ActiveTwo system using 64 elec-
trodes. The pictures were a subset of the IAPS from two studies on emotional
responses, one with 96 pictures [Lang and Bradley, 2007], the other with 66 pic-
tures [Larsen et al., 2003]. The total of 162 pictures were divided into three
conditions (pleasant, unpleasant and neutral), based on their valence and arousal
ratings.

In the classic electrode based analysis we used the Global Field Power to identifyELECTRODE-
BASED

ANALYSIS relevant time windows (P1 (75-125ms), EPN (130-225ms), P3 (250-315ms), and
LPP(325-525), see Figure 4.4), and a scalp map of those time windows to identify
relevant electrodes, see Figure 4.5. Based on these we plotted the average ERPs
across all participants, and found only a significant effect in the early posterior
negativity (EPN) window 4.6. This early negativity corresponds well to earlier
findings [De Cesarei and Codispoti, 2006] and has been related to an increased
attention demand, and primarily captures difference in valence, whether a pic-
ture is pleasant or unpleasant. These early responses might even be visible before
the stimulus is fully processed, suggesting that perhaps the dominating color of
skin in nude scenes and colors of skin and blood in mutilated bodies are deci-
sive. These early responses to pleasant and unpleasant images can relate to the
basic approach or avoidance instinct [Lang and Bradley, 2010]. Whereas early
ERP components are believed to relate to bottom-up processing of stimuli, the
later components have been suggested to indicate higher-order processes such as
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Figure 4.5: Scalp maps for the time periods P1, EPN, P3 and LPP for each of
the conditions (unpleasant, neutral and pleasant).
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Figure 4.6: An average ERP of channels covering the temporal occipital lobe
(P7, P8, POz, PO7, and PO8) shows the three conditions pleasant
(red), unpleasant (blue) and neutral (green). A statistical one-way
anova on each channel marks the significant areas (α=0.01) of the
ERPs in grey.

memory retrieval, and semantic evaluations [Foti et al., 2009]. Thus the lack of
later ERP components could indicate that these are more sensitive to individual
processing.

By using ICA we decomposed the EEG data into scalp maps which where thenCOMPONENT-
BASED

ANALYSIS grouped and reduced by PCA. After this, we clusted similar ICA components by
a K-means algorithm, thereby following the standard EEGlab procedure
[Delorme et al., 2011]. From this, three out of 20 clusters revealed several signifi-
cant time windows showing difference between one or more conditions. All three
clusters were shared among all participants and consisted of a large amount of in-
dependent components. The most profound cluster, cluster 6, showed both early
and late emotional responses to pleasant pictures. These results are somewhat
similar to those found by applying principal component analysis (PCA) on emo-
tional responses [Foti et al., 2009], with early responses distinguishing pleasant
from unpleasant images, whereas later responses were affected by high arousal
scores. This indicates that these later responses are characterized by the intensity
of emotional involvement [Gianotti et al., 2008], which could be associated with
memory coding and semantic processing.
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Figure 4.7: Cluster 6, based on PCA dimensionality reduction and K-means
clustering (K=10,σ=3) of 97 ICA scalp maps found within all con-
ditions, with corresponding ERPs for pleasant (red), unpleasant
(blue) and neutral (green) images. Significant intervals for differ-
entiating between the emotions are indicated in grey.

Where many personal informatics systems suffer from poor scoping, we need an
extremely well defined scope when dealing with brain data. As illustrated with
the electrode-based analysis, we need a well defined scope, in terms of clear defi-
nitions of relevant time windows, and of relevant electrode and a clear distinction
between emotions as illustrated in the strong contrast of IAPS, from mutilated
bodies to erotic nude scenes. And even with all this, it still requires many samples
across multiple participants to distinguish between brain responses to pleasant
and unpleasant stimuli.

The prospects of not only identifying basic emotional responses of attraction
or avoidance, but also accessing more individual responses, such as the later
responses related to associations, memories and past behavior, requires more ad-
vance machine learning methods. As we saw with the component-based analysis,
transforming raw EEG data into usable components required both ICA, PCA
and K-means clustering, which are far beyond the classic excel analysis used in
many existing personal informatics systems.

For these new types of mobile brainscanners to become usable in personal in-
formatics, making them adaptable by generating personalized content, they not
only have to do these types of extensive analysis, they will also have to do them
on a single trial level, preferably without any extensive training period.
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As just illustrated, gaining insights to users’ individual emotional responses is not
trivial. However, gaining insight into the users’ general personality traits, and
thereby what motivates the users, can be used to scope the systems. Personality
traits also reveal preferences on how feedback is presented, both in terms of how
actionable or exploratory it should be, and in terms of the content - the level of
detail, and how it is delivered. Thus we will take a close look at feedback, in
terms of visualization of data, and how we can infer meaning from it.
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4.3 Summary

Systems like IBM’s Watson has demonstrated how it is possible to extract per-
sonality traits from people’s Facebook and Twitter accounts. Personality traits
can provide insight into users’ motivations and preferences, which can help in
scoping a personal informatics systems to a specific type of people, both in terms
of how actionable or exploratory it should be, the content, the level of detail, and
how it is delivered.

These personality traits reveal only overall attributes of large groups of people.
However, if we want to access more personal differences, we need to gain knowl-
edge of past experiences, memories and emotions. With the development of new
types of mobile brainscanners, it could become possible to create individual per-
sonalized context and make systems that could adapt to the individual emotional
responses.

As we illustrate in an experiment on emotional responses from pleasant and
unpleasant pictures, it requires a large amount of data and extensive machine
learning to extract meaningful results. At the moment, this is far beyond the
classical data collection and analysis of any existing personal informatics system.





Chapter 5

Cognitive Interfaces

As touched upon in the introduction, cognitive systems include systems that are
able to learn from the user’s past behavior, or are based on contextual informa-
tion. However, interfaces can also be cognitive in their ability to translate data
into meaningful feedback. And by making the feedback not only meaningful but
also actionable, the user is more likely to adjust behavior if this adjustment is
necessary to achieve his goals. This corresponds to the analysis & visualization,
infer meaning, and adjust behavior stage of the feedback loop, see Figure 5.1.

In order to benefit from the collected data, they need to be accessible and trans-
lated into something understandable in order to get insights. To do this, the data
are often visualized. This thesis will not cover all types of visualization, but will
focus on visualizations of time-series data and how we can apply analytic tools,
such as filtering, baselines, thresholds, etc. to infer meaning from the data.
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Figure 5.1: By translating data with the use of analytic elements, such as base-
line and thresholds, we can infer meaning enabling reflection and
insight, thereby creating cognitive interfaces.

5.1 Visualization

How to visualize the data depends on the insights we want to provide. If the
user wants to change behavior, the visualization should be actionable. However,
if the goal is to explore unknown territory or is to answer a specific question, the
visualization should incorporate interaction, allowing the user to dig down in the
details. Thus before visualizing any data, decisions have to be made on what
message the data should convey and therefor also decisions need to be made on
the underlying analysis of the data, and the level of interaction. Thus a personal
informatics system assumes to know what the user wants and which questions
they want answers for.

The visualization also depends on the type and amount of data we have - are they
discrete, continuous or in a network? Are they events, pictures, or annotations,
etc.? When visualizing data, we try to exploit the abilities of the human eye
to detect structures, patterns, correlations, trends or outliers. Thus we should
present the data in a way that makes these patterns, correlations, trends or
outliers clear.

Common for a lot of personal informatics data is that they are a time-series, sinceTIME-SERIE
DATA
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Figure 5.2: Moves app, shows a summary of physical activities using circle sizes
and stacked bars as a detailed timeline with colors characterizing
types of physical activities and icons illustrating events in-between
the physical activities.

we often compare present and past behavior. Thus we might want to examine
the temporal location of the data; when does the data element exist in time? Is
there a temporal texture of the data; how often does the data occur? What is the
changing rate of the data? Are they repeating in a pattern? Do data elements
occur in a specific order, a sequence? Do data elements co-occur (synchronization
or correlation between data)?

Most personal informatics applications providing temporal data choose to display
them as a linear time axis, with either line graphs, like classical financial trading
developments, or bar plots for comparing entities. However most of our patterns
are typically circular, such as seasonal changes or daily routines, which tend to
repeat on a temporal level. Other data can be structured as a sequence where
one data element follows another in order, or data can be a hierarchical structure
where one data element can be followed by a number of possible data elements.
E.g. you might not wake up at the same time every day, however even if you
wake up later one day, the next thing you do is take a shower and get dressed.
And then you might eat breakfast followed by brushing your teeth, or you might
skip breakfast.

Some of the most classic visualizations within personal informatics are bar plots, MODIFIED BAR
PLOTline graphs, pie charts and other visualizations which are also common in ex-
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Figure 5.3: Calendar heat map showing Dow Jones index value of each day as
colored cells, arranged into rows of weeks and blocks of months 2.

cel. These can easily be modified like Moves1, that tracks the whereabouts and
amount of walking, running, and biking. Moves consists of colored circles rep-
resenting different physical activities (walking, running, biking), see Figure 5.2.
The size of the circles increases with increasing activity, and works as a summary
of the current day’s activity. Below them is a more detailed view of the history,
a stream (of stacked bars) with colors corresponding to the activities and the
length indicates the duration. The bars are divided by small maps, indicating
time spent in one place, and the description of the place (from Google Maps api).
This app is fairly simple and can provide the user with a one-glance overview of
the day’s activity. However, it is not very helpful as a guide or tool to change be-
havior, since it has no threshold indicating the effect of the physical activity and
even though they collect data from millions of users, there is no crowd-sourcing
allowing the user to compare himself with others.

If we expect there to be a sequential pattern in the data, this could become moreHEAT MAPS &
SPIRALS clear with a heat map, aligning the data by hour, day or week to spot patterns. In

Figure 5.3 Dow Jones data is displayed as a heat map2: the values are visualized
by the colored cells. Each cell represents a day, which is arranged into columns,
by week, month and year. The data is constructed into a calendar heat map. Here
we see high fluctuations in the data in October and November of 2008, likewise
in February and March of 2009, whereas the index is more moderate the rest of
the time. This view is especially helpful when the focus is on both extreme high
and low values. Recently, the heat map has been modified into a spiral pattern,
creating a more seamless and continuous flow [Larsen et al., 2013], with no break
between the last and first hours of the days or between Saturday and Sunday.

In a few cases we see examples of time series visualized as a network. BaurDATA AS
NETWORK

1moves.com
2bl.ocks.org/mbostock/4063318
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Figure 5.4: Visualization of Last.fm history as a network and with integration
of calendar events and photo stream.

created an exploratory visualization of the streaming history from Last.fm
[Baur et al., 2010]. The data are a sequence of music tracks, where some tracks
are in the history and are transformed into a network. This is a simple centralized
network, where each node represents the same music track. This is a fairly simple
network, and does not provide us with much more information other than how
many times a track was played over a period of time. However this could easily
be transformed into more complex networks by connecting tracks by the same
artist, genre etc.

The classic approach for exploratory interfaces is the ability to select, filter, re- ZOOMING,
SELECTING &
FILTERINGconfigure, elaborate and connect data. In this example, some of this is done

by applying different colors according to the genres, and changing the size of
the nodes to illustrate which are being played the most and by applying different
temporal filters, such as dates, and time of day. What is more interesting though,
is how calendar events and photo streams (discrete events) are used to get an-
other level of personal data (Figure 5.4). By adding these, the tool is transformed
from an exploratory tool, which might get tedious with time, to a more emotional
system for reliving old events, through music and pictures. The user can then
choose to see photos from a period as a slide show while the most popular music
tracks of that period are being played.

These three systems illustrate how data in time series can be visualized in different
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ways. They also illustrate different levels of detail and interaction, from the
spare time line of Moves - providing an overview and a simple history, to the
Last.fm visualization - allowing the user to explore past behavior by applying
filters and selecting tracks, artists, genres etc. This lets the user specify the
content according to his needs.

5.2 Infer Meaning

In order to gain insight based on the data visualization, one of the key elementsBASELINE &
METHAPHORS is a reference point or a baseline. As Huang et al. mention in their review of

visualization studies "Making comparisons is a fundamental way to gain insights
from data"[Huang et al., 2015]. In other words, a single number does not give
much meaning in itself. E.g. knowing that you have burned 1900 calories in a
day, does not give you much insight. However, metaphors can help translate the
numbers into commodities such as seven burgers or walking a distance of 20km,
hence it becomes easier to understand. The number can also be compared to
prior data - a personal baseline; an average across days, weeks, months, years;
or to the average of others. However knowing which baselines to choose will
depend on the goals, context of use, and on personal preferences. E.g. should a
household’s energy consumption be compared to other families of the same size,
or households of the same demographic context? Thus designing visualizations
with the flexibility to change baseline depending on goal and preferences can
accommodate useful insights.

Just as baselines are important, thresholds are equally important. Are sevenTHRESHOLD
burgers a lot or not? Some thresholds are universal (such as a bank balance
below 0 being unwanted), but most are individual. The threshold might depend
on height, weight, gender, age, or amount of activity. Thresholds can thereby
help the user to analyze and understand the data. Common is their ability to
convey a message easily and quickly. This is important, if the user needs to
act upon it. Thresholds are not static, they can just as easily vary with the
behavioral patterns. Thus the amount of sleep needed might depend on the lack
of sleep previously or on the amount of physical activity. Thresholds are easy to
act upon, because they transform data into binary results or decisions.
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5.3 Actionable Feedback

When it comes to behavior change initiated by the personal informatics system,
this is often referred to as persuasive design, which nudges people towards a
certain behavior (whether they are consciously aware of it or not). Recently, there
has been a lot of discussion about whether personal informatics systems should be
persuasive or not, and if so, to what degree 3. The critique of personal informatics
is often that it is one-size fits all solutions: Often with fixed thresholds, such as
a good night’s sleep is 7-9 hours; or standard suggestions such as do not drink
coffee after 7pm; or standard goals, such as TripIt’s4 leader board, showing who
is traveling the most in the user’s network. However, this is misleading if the user
is trying to reduce his traveling due to environmental impact or spending more
time with his family [Munson, 2012].

This can of course be solved, by making it possible to establishing personal goals. PERSONALIZED
GOALSThus systems should accommodate personal goals, which could be distinctly op-

posite. But it is not only important that the user can set his own goals. The
system should also suggest goals which are realistic and which can be adjusted if
they are too ambitious. Systems like Micoach5 have different training programs
according to the user’s goals (run 5km, 10km etc), and to the user’s physical
fitness, however if the user fails to follow the program, there is no possibility for
adjusting it, only to start a new one. Thus being able to set appropriate goals is
essential for the user to succeed, and will increase their motivation and control.
Likewise thresholds and suggestions should be personalized, through learning al-
gorithms or crowd sourced data such as Last.fm’s6 music suggestions. Having
data on users’ preferences might lead to better suggestions.

By modifying and personalizing the system, we make systems less persuasive and SCENARIOS &
TRADE-OFFSinstead make them provide actionable feedback. This can be done by creating

scenarios. Scenarios are especially useful if the effect of an action is not visible
right away, but has more long-term effects, or when data points show discouraging
results, despite the user’s effort to change behavior. This is typical for behavioral
changes which require persistence and a long time before results are visible. This
often leads to lack of motivation. In some cases this could be helped by not
focusing on single data points but on more global trends or by presenting different
scenarios and their trade-offs, showing the user different ways of obtaining the

3quantifiedself.com/2012/03/personal-informatics-in-practice-reflection-and-persuasion-in-
personal-informatics/

4tripit.com
5http://micoach.adidas.com/
6last.fm



50 Cognitive Interfaces

Figure 5.5: A beacon placed in the fridge, sensing when a smartphone is near,
makes Carrot Hunger context aware, prompting the user to enter
the food he is about to consume.

goals. For example, if the user wants to lower his energy consumption, the system
could show what the effect of changing half of the bulbs to energy saving ones
would be, and compare that to the effect of changing them all. Or it could show
what the effect of lowering the temperature on the thermostats would be. Having
multiple scenarios can help the user evaluate the trade-off from different behavior,
and make decisions based on that.

To provide actionable feedback, and encourage action or even change behavior,-
certain elements should be considered. The system should first of all provideSEQUENCES &

ROUTINES feedback in the right situation - when the choice/action is being made, and should
fit into the physical environment and context of use. We see running applica-
tions that are excellent at giving feedback on one’s pace while running, however
they are less successful at getting the user out running. This requires the system
to obtain information which contributes to understanding the contextual and se-
quential circumstances: This could be calendar events, GPS locations, or weather
information, e.g. if the user only runs in the morning and only on days when it
is not raining. The system could use weather data and calendar events to figure
out which mornings would be most suited for running. And with knowledge of
the sequence of actions required to perform an activity or task, the system could
suggest setting an earlier alarm, giving extra time for running in the morning,
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and suggest having the running gear ready next to the bed. By accommodating
and adjusting to the user’s routines, the likelihood of success is increased.

An example of a context-aware system is the Carrot hunger7. Like many other CONTEXT
AWARE
SYSTEMSsystems that track calories, it lets the user enter what food is consumed. However,

it can also be hooked up to a beacon that senses the proximity of a connected
smart-phone. By placing the beacon inside the fridge, it will recognize the smart-
phone once the fridge opens, see Figure 5.5. This triggers a notification, telling
the user to input the food he is about to consume. A clever detail when the
phone is within range of the beacon is that a little Carrot Hunger icon appears in
the bottom left corner of the lock screen, which enables fast entry to the system,
similar to the camera icon function on many phones. Both the notification and
the icon on the lock screen are examples of micro-interactions. It also has a
bar-code scanner that the user can use instead of typing in the food, which will
make the interaction quicker, which is essential if the user needs to input this
multiple times a day. Thus if the visualization is to lead to action, it should
provide in-the-moment data for real-time awareness with respect to the context
(place, behavior, routine etc).

In the next chapter we apply individual baselines and thresholds to neurofeedback
interfaces, and examine the tight coupling between these interface elements and
the temporal aspects of the feedback loop.

7meetcarrot.com/hunger/
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5.4 Summary

Providing feedback is the basic component of any personal informatics system.
The feedback is typically based on data that have been analyzed and presented,
often by a visualization. Since most personal informatics are a type of time-series
data, we saw how different types of visualization could be created from simple
Excel charts to illustrate relative amounts of activity by circles or a history of
events by stacked bars. We saw also how visualizations could underline sequential
patterns of acute high or low values from heat maps.

If the data are not only visualized but also translated into something meaningful,
it becomes easier to reflect upon them and gain insights. This could be done
by the use of personalized baselines and thresholds. Furthermore, the feedback
can be actionable by allowing personalized goals, or by presenting scenarios and
trade-offs of alternative ways of achieving goals. It could consider the user’s
individual routines and sequences of actions that the system should be part of.
And it should be context aware - knowing where and when in a user’s sequence
of actions to provide feedback.



Chapter 6

Neurofeedback Training

Feedback can be provided at many different levels and in different ways. Feedback FEEDBACK
is often a confirmation or declaration of an action. We often see them in relation
to micro-interactions as a confirmation or indication of a rule being triggered -
when switching off the sound on a phone, a bell icon with a cross will appear
and the phone might vibrate as feedback to the user. In personal informatics,
feedback is often presented in relation to a baseline or a threshold, basically a
change in condition. Feedback can be provided on different temporal levels, from
real-time feedback, provided from milliseconds, seconds or minutes of data, to
feedback illustrating tendencies from minutes or hours, such as heartbeat when
exercising, or from days, weeks and months, such as sleep patterns. Feedback can
be described as active when given in real-time, for example a coach monitoring
a person’s running pace and telling him to speed up or slow down. It can also
be passive information available on demand, such as the summary of a run,
showing the distance covered. In other words, the feedback is a clarification of
the behavioral output, which is fed back as input to the user on which the user
can reflect and choose to act.

We will explore how feedback can be used to infer meaning and can affect how
we adjust behavior by considering the temporal aspects of data. Likewise we will
examine the effect of the outcome due to feedback, see Figure 6.1.
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Figure 6.1: We view the feedback loop in relation to neurofeedback training,
while focusing on the effect of the interface, and on providing feed-
back at multiple temporal levels.

6.1 Neurofeedback

We look at the feedback in the context of neurofeedback training. Neurofeed-
back training is a method for self-regulating neural activity based on real-time
feedback of the brain activity. Neurofeedback training is primarily used as part
of treatment for various psychological disorders, but is also used in attempts to
enhance cognitive ability such as concentration or focus and has slowly become
part of the personal informatics segment.

In traditional neurofeedback systems, the scope would involve decisions on whichNEUROFEED-
BACK & THE

FEEDBACK
LOOP

brain waves should be trained and from which cortical areas. This is of course
closely coupled with the disorder that is being treated or the cognitive ability
one wishes to train. Then comes the data collection, where the cortical activity
is monitored, followed by the analysis & visualization where the data are base-
line corrected. This is of great importance when dealing with EEG because the
amount and oscillation of brain activity is highly individual. Thus it is always the
relative cortical activity changes which are visualized. Next is the inferring mean-
ing, this however has often been neglected in traditional neurofeedback interfaces.
It has been assumed that users can regulate their brain activity regardless of how
it is presented. Based on the feedback from the interface, the user can respond
by changing mental strategy or trying to achieve a certain state of mind in the
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Figure 6.2: A traditional neurofeedback interface, with a single square provid-
ing real-time feedback of the neural activity by changing colors from
blue to grey and red when activity is below, equal and above base-
line, respectively

next adjust behavior step. Depending on the user’s ability to regulate his brain
activity and the amount of training, the subsequent outcome can be seen in the
brain activity and in addition is often measured by a cognitive test or behav-
ioral evaluation based on a response. The loop between data collection, analysis
& visualization and adjust behavior is completed in milliseconds, creating the
real-time feedback loop between brain activity and visualization.

With the temporal resolution of the EEG brain scanning neurofeedback training
can provide instant feedback. However, by repeating this loop multiple times, the
reflection might span across seconds, minutes or hours during which the user can
explore different mental strategies to optimize his training, by receiving real-time
feedback on the cortical activity. Due to the brevity of the loop before the change
in brain activity is fed back as input, the way of providing the feedback becomes
extremely important.

6.1.1 Previous Neurofeedback Interfaces

Many traditional training interfaces provide feedback, indicating whether the
activity has increased, decreased or is similar to baseline. The typical feedback
is visual, audio or both. Previous experimental setups have typically used bar
diagrams or colored squares indicating high or low brain activity. These interfaces
provide feedback based on a personal baseline, but provide no other affordances
to guide the user.
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Rather than providing a visual stimulus, other neurofeedback systems such asASSOCIATIVE
FEEDBACK that of Egner et al. have used audio feedback to increase the alpha/theta ratio

[Egner et al., 2004]. A background sound resembling either a ’babbling brook’ or
’ocean waves’ was used to indicate a relative increase of alpha and theta activ-
ity respectively. These sounds would create associations which some might find
supportive to the mental training. Additionally, a high-pitched or low-pitched
gong sound would be executed when the activity exceeded a pre-set threshold
of alpha and theta, respectively. The subjects aimed to increase the amount of
theta sound representation, whereas the gong sound would indicate reaching a
’significant’ activity level, representing succeeding or failing.

Recently a commercial neurofeedback system, Muse1, was developed - a personalPERSONAL
INFORMATICS

SYSTEM informatics system to "enhance your meditation". Muse consists of only four elec-
trodes used to measure brain activity with the goal of helping the user maintain
his focus for a longer period of time. Muse provides real-time feedback by two
audio-streams. The task is for the user to close his eyes and count his breaths.
When the user is focused on counting, the volume of the waves will increase. How-
ever if the user’s mind starts wandering, the sound of the wind in the audio track
will increase. If the user manages to keep focused for 20 consecutive seconds, the
sound of birds will appear, which serves both as a threshold and a motivational
feedback. This way of providing feedback is similar to that of Egner et al., with
audio tracks providing real-time feedback on increased or decreased brain activity
and a threshold sound: The ’babbling brook’ and the threshold gong have been
replaced with the sound of blowing wind and birds. The chosen audio streams of
waves and wind are not coincidental, since these have often been associated with
meditation. While Muse provides real-time feedback by audio streams, it is only
after the training session that the history of past activity is visualized as a graph
chart. Though the sounds of waves and blowing wind may help the user get into
a relaxed state, it is only the audio thresholds that serve as affordances in both
Muse and Egner’s neurofeedback interface.

6.1.2 Feedback on Multiple Temporal Levels

We wanted to design an interface that not only defined thresholds but presented
them within a spatiotemporal context that could contribute to the user’s reflec-
tion on his mental state. Thus we created a real-time history. Our interface
consisted of multiple squares. Each square would represent a real-time feedback
of the brain activity, with the square changing colors from black (merging into

1choosemuse.com
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Figure 6.3: The intensity of the brain activity alters the color of the squares
from black, then blue-scaled to orange-scaled when the brain activ-
ity is below, above and more than three times the baseline, respec-
tively

the black background), to blue and orange. Activity below baseline would be
represented with a black square, which would not be visible on the black back-
ground. If activity increased above baseline, the square would be dark blue, and
become lighter with greater increase. If the increase had a magnitude of three
times the baseline (which was determined in a pilot study), the square would
become yellow towards orange with a even greater increase, see Figure 6.3. The
color of the squares changed continuously according to the attained brain activity
calculated from a running mean of 2 seconds within a sliding window. In this
way, we stabilized the fluctuating pattern of brain activity. After one second,
the square would freeze in the current color and a new square would appear and
change color depending on the brain activity. Thus the square would create a
history of past activity on which the user could reflect. Thus the feedback would
now consist of data from multiple seconds. The squares were also binned into
15-second bins, starting from the left towards right. Thus the number of visible
squares within each bin would represent the number of times the brain activity
was above baseline and their color would represent the intensity. Our hypothesis
was that the history would make it easier for the users to try out different men-
tal strategies and compare them across seconds and minutes. The result of the
interfaces is a more continuous and smooth representation of the data with the
intention of accommodating the mental state of the users.

6.1.3 Neurofeedback Experiment

To see whether this threshold and history had a measurable effect on the neu-
rofeedback training, we tested it against the traditional interface, Appendix C
[Jensen et al., 2013]. The traditional interface was similar to that of Zoefel et
al. with a colored square, representing the brain activity [Zoefel et al., 2011]. If
activity was below baseline the square would turn blue. If it was equal to baseline
it would be grey and if it was above baseline it would turn red, see see Figure 6.2.
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Figure 6.4: The neurofeedback interface provides feedback on real-time brain
activity. With an increase in activity translated into small colored
squares arranged in columns representing 15 seconds of the training.
By displaying the columns side by side, the activity of the 5-minute
training is represented as a horizontal time line.

The color changed with the sampling rate of 128Hz providing a feedback every
125 ms. This meant that the square would flicker if the brain activity fluctuated.

The two interfaces were tested on two different groups, aiming to increase their
upper alpha activity (approximately from 10-12Hz). A group of 11 participants,
including 5 females, trained using the traditional interface. The other group
of 13, including 6 females, trained using our interface. Non of the participants
had any experience with neurofeedback training. The experiment was conducted
with a 16-channel mobile neuro-headset, Emotiv. The live feedback was provided
from the two occipital channels, O1 and O2, which cover the visual center, where
high levels of alpha power can be monitored. Each interface was tested on five
consecutive days from Monday to Friday and each day started with a baseline
recording, which would be used as the baseline for the following five training
sessions of each five minutes. At the end of the day a second baseline recording
was made, to see if the training had any effect on the baseline.

The results showed a significant increase of upper alpha amplitudes for partici-RESULTS
pants training on our interface, though this effect was not transferred to a change
in baseline, see Figure 6.5. This indicates that the interfaces had a helping effect
during the training, but not on the overall baseline, suggesting that it was easier
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Figure 6.5: The difference in the participants’ ability to increase upper alpha
brain activity when using the classic red/blue interfaces (plotted
in red) or using our multi-square interface(plotted in green). The
participants using our interfaces increased their brain activity sig-
nificantly compared to those using the classic interface. Those who
were not able to increase their brain activity are referred to as non-
responders2 (plotted in blue). The bars indicate the standard error
of the mean.
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for the participants to reflect on their brain activity and reach the required men-
tal state using our interface. But it had no effect on their general brain activity in
the longer term. In cases where neurofeedback is used as treatment for children
with Attention Deficit Hyperactivity Disorder (ADHD), this would mean that
the subjects might have an easier time entering a focused state of mind, when
asked to. However, they would not naturally become more focused when not
intended.

Whether the effect is due to the properties of the visual components or the tem-
poral aspects of the representation is unknown. Statements from the participants
revealed that those using our interface would compare different mental strategies,
which was enabled by the temporal feedback history. It might be that the sliding
time window of our feedback interfaces was crucial, in its ability to create a stabi-
lized visualization of the brain activity. This was supported by other statements
revealing that the gradient color change in the feedback could be perceived as
more smooth and continuous, compared to the disruptive flickering of the tradi-
tional interface. This suggests that the feedback should, if possible, support the
mental state which is required for the training, whether it is a relaxed peaceful
mind or a focused and sharp mind, or something completely different. Also, feed-
back provided in more continuous flow might help sustain the mental state, and
help the user feel more in control of his brain activity.

These results indicate that not only does the interface influence our response, but
the time window of the feedback is crucial in our ability to act upon our insights.
Thus with neurofeedback, the feedback loop is very short, providing real-time
information which requires instant reflection. If the user is unable to reflect, the
feedback can be provided from a longer time period, a history. However with if
the feedback only resembles past behavior, it becomes less actionable. This is
just like the fact that increasing one’s pace while running is easier with real-time
feedback, compared to viewing past data on one’s pace and increasing it next
time one goes running.

In traditional neurofeedback interfaces, there has been limited or no focus on how
the feedback was provided. This indicates that there has been little thought on
how to infer meaning from the data, which could guide the user to the acquired
state of mind. It also illustrates that the temporal level of feedback can contribute
to the user’s feeling of control.



6.2 Interface Components 61

(a) New York City Skyline 3 (b) Our neurofeedback interface

Figure 6.6: Our interface could create associations to the blinking lights of a
skyline. While the blurring filter applied to the picture, may cre-
ate a dreaming effect, allowing the user to project himself into the
atmosphere.

6.2 Interface Components

Whether the neurofeedback is provided by sounds or colors, we suggest that
these audio and visual components in combination can create associations and
atmospheres which can help to pull the user into the wanted state of mind.

6.2.1 Visual Feedback Components

A simplified characterization of the visual feedback can be reduced to the follow-
ing components:

• geometric primitives (connected segments)

• color (discrete, gradients)

• size (proximity, scale-ability)

• movement (horizontal, vertical)

• composition (spatial distribution)

In our interface we experience a combination of these components, where small
squares, geometric primitives, are composed around vertical stacks and a horizon-
tal line, while changing colors from dark blue to more yellow and orange tomes.
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This could be associated with a skyline of rising towers with blinking lights in
the horizon as shown in Figure 6.63.

6.2.2 Audio Feedback Components

Similarly the auditory feedback can be constructed from the following compo-
nents:

• pitch (low, high)

• volume (soft, loud)

• timbre (dark, light)

• duration (short, long)

• rhythm (temporal distribution)

In Muse, the audio interface consists of audio streams of blowing wind and ocean
waves which is a combination of continuous and rhythmic changes in the fre-
quency spectrum. The feedback is provided by a volume change in the audio
streams, and by having short high-pitched bird tweets sounding. In this case,
ocean waves, blowing wind, and bird sounds will naturally lead the user to an
imaginary beach. The rolling sound of the waves can be associated with the in-
haling and exhaling of the user, thereby accommodating the task of focusing on
breathing.

6.2.3 Haptic Feedback Components

In line with the audio and visual components, we can further expand with haptic
components:

• frequency

• amplitude (intensity)

• duration (short, long)
3ispynyc.wordpress.com/2011/11/21/the-skyline-lights
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Figure 6.7: The Bouba-Kiki effect illustrates the associative coupling between
the visual shapes and the shape of the mouth when pronounced:
Which of these shapes resembles Bouba and which resembles Kiki?

• rhythm (temporal distribution; overlapping, inter-burst duration)

• composition (spatial distribution)

Consequently, when designing new neurofeedback interfaces, our focus should not
only be on how to visualize an increase or decrease of brain activity, but should
consider how combinations of components might affect the user’s imagination,
associations, or trigger related memories, supporting entering the wanted state
of mind.

6.2.4 Multi-Modal Compositions

Above we see all the components separated. However, by combining these it
is possible to create feedback which not only provides the necessary actionable
information, but which can also support the interaction at other levels. Some of
these components are inherently connected. We see this tight coupling between
visual, audio, and haptic components in the Bouba–Kiki effect.

The Bouba–Kiki effect was first discovered in 1947 by Köhler, who found that BOUBA-KIKI
EFFECTpeople associated certain visual stimuli with the nonsense words, Maluma and

Takete. An even more pronounced effect was found in 2001 with the words Bouba
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and Kiki, showing that 95% of the participants connected the round shape with
Bouba and the pointy shape with Kiki [Ramachandran and Hubbard, 2001], see
Figure 6.7. This effect has been seen across cultural boundaries, in pre-lexical
toddlers [Maurer et al., 2006] and for populations with no written language
[Bremner et al., 2013]. It has been suggested that the coupling is due to asso-
ciations between the visual shape and articulatory characteristics of the vowels
when pronounced [Ramachandran and Hubbard, 2001]. In the study by Fryer,
the visual stimuli were transformed with 2D and 3D representations and a similar
effect was found between the haptic stimuli and the auditive [Fryer et al., 2014].
However, for participants with visual impairment, the effect was significantly
lower, suggesting that the effect is tightly coupled with visual imagery, and that
visual imagery plays an active role in cross-modal integration. This tight coupling
between haptics and visual imagery might be because both sensory modalities
provide geometric information.

We will investigate the effect of different haptic components in creation of per-
ceived continuous motion and how haptic patterns of different modulations are
perceived as pleasant, unpleasant, calm and energetic.
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6.3 Summary

With neurofeedback training we see the tight coupling between temporal aspects
of the analysis and we see how the visualization can provide feedback ot different
temporal levels, from milliseconds to minutes. By the use of a sliding window in
the analysis, it is possible to stabilize the visualization of brain activity, which
might provide the user with a feeling of control. The history of past activity en-
ables the user reflect on and compare past mental strategies. The neurofeedback
training also illustrated how the visualization and being able to infer meaning
from it influences the outcome, the ability to access a successful state of mind.

This kind of monitoring and training of mind is now moving from the scientific and
clinical settings to the consumer arena. Disregarding the effect of the feedback
and inferring meaning from the data can no longer be tolerated. Thus focus
should not only be on how to visualize an increase or decrease of brain activity,
but should consider how combinations of visual, audio, or haptic components
might create associations and support the user in entering the desired state of
mind.





Chapter 7

Haptic Interfaces

The previous chapter demonstrated the effect of combining different audio and
visual components into helpful feedback. In this chapter, I focus on how haptic
feedback can be used to infer meaning by providing distinguishable patterns,
which is commonly used as a notification for the user to adjust behavior, see Fig-
ure 7.1. Haptic feedback is of special interest because of its direct skin contact,
which makes it personal and intimate. This makes it an obvious candidate for
several personal informatics systems providing real-time feedback. Within per-
sonal informatics systems, it has only been applied to a few systems, for example
Spire1, which provides a haptic notification if the user has been sedentary for too
long, indicating that the user should stand up or change position. With actu-
ators becoming an integrated part of smart-watch interaction, we will probably
see even more efforts towards design of haptic feedback, which not only sends a
message, but which also is connected to tactile associations of touch.

Physical contact with objects and people is a natural part of how we interact and ACTIVE &
PASSIVE TOUCHcommunicate with our environment. In contrast to our other sensory modalities

(vision, taste etc.), haptic interaction is responsive: when touching something
you will be touched in return. This is referred to as active (touching) and passive

1spire.io
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Figure 7.1: Taking a closer look at the stages inferring meaning and adjusting
behavior, in relation to haptic feedback - including how haptic feed-
back can be used as notifications for adjusting behavior, or how it
can create associations that support other types of feedback, such
as visualizations.

(being touched) touch. The responsive interaction enables us to refine and adjust
our motor activation - enabling us to lift heavy items, gently interact with fragile
items, or caress the skin of a loved one. It might also be the reason why touching
something often results in a strong personal experience. Thus when we experience
haptic feedback from phones or smart-watches this can easily feel invasive, if not
done in the right way.

The strong effect of haptic interaction can be illustrated by looking at our brains
- the primary somatosensory cortex and the primary motor cortex (see Figure
7.2) [Reisberg, 1997]. Here we see how somatosensory and motor cortices are
mapped to different body regions, illustrating the areas devoted to processing and
integrating information. Large parts of these areas are mapped to the hands and
mouth input and output, which makes sense from a primitive survival perspective,
in which our hands play a significant role in both defending us from danger
and hunting or gathering food. The pictogram in Figure 7.2. also illustrates a
hierarchical range, from a precision grip demanding high coordination of finger
movements, to grasping a heavy object using the whole hand.

The haptic sensory information comes from receptors located in our skin (mechanore-
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Figure 7.2: A pictogram mapping areas of the somatosensory and motor cor-
tex devoted to processing information and executing movements
of the different body regions. Inspired by Reisbergs illustration in
[Reisberg, 1997]

ceptors and thermoreceptors) as well as receptors in muscles, spindles and tendons
(proprioceptors)[Carbon and Jakesch, 2013], thus research on haptic interaction
has been divided into two areas:

Tactile feedback is the stimulation of nerves in the skin, including feeling heat
and texture

Force feedback describes interactions that lead to activation of muscles and
tendons, which would be the feeling of a force (such as weight) or reaction
force (such as hardness)

From these receptors we are able to get information about geometric (size, shape,
etc.) and material properties (texture, hardness, temperature). The geometric
properties are also provided by our visual system and can therefore confirm our
haptic perception. However the material properties, such as quality assessments,
can provide additional information. Thus, if we can not rely on our visual system
to distinguish whether a doorknob is made of metal, plastic or wood, we can get
information about the material properties from touching the handle. Thus hap-
tic feedback can both strengthen the visual information in regards to geometric
information, and provide additional information on material properties.
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In the following sections I will provide state-of-the-art examples of haptic feed-
back, which is divided into two types of haptic feedback:

Direct haptic feedback describes a haptic stimulation which is invented and
often serves to provide information, such as navigation or notifications.

Indirect haptic feedback mimics a real haptic sensation which comes from
interacting with the physical world, this could be plucking a guitar string,
a tap on the shoulder etc. and is often accommodated by either audio or
visual feedback.

7.1 Direct Haptic Feedback

Despite the strong and personal effect haptic feedback can have, it has only beenDICRECT
HAPTIC

FEEDBACK applied in a few applications. The early research on haptic feedback focused on
applications aiding blind or visually impaired people such as needles on fingers
providing direction indications for navigation [Ertan et al., 1998]. The braille
tactile writing system for visually impaired is a good example of how fine tuned
our tactile perception is at our finger tips and of the resolution in which vwe can
distinguish tactile patterns. However most of the direct haptic feedback we see
today is not attached to our finger tips but comes from phones in our pockets or
clips attached to our waistline. The feedback we receive is primarily notifications
of incoming calls, text, calendar event, etc. With the recent Apple Watch, haptic
feedback is now constantly available on the user’s wrist. Because of its invasive
effect, the watch needs to be configured as a filter, allowing only urgent informa-
tion to pass through. The advantage of haptic feedback is that it is invisible to the
environment. Thus in situations where it would be inappropriate to interact with
a smartphone, either because it would be impolite or disturbing, the user can rely
on interaction with a smart-watch. Besides from the normal notification function,
the haptic feedback is also used to confirm micro-interactions when navigating
with the watch. Since most haptic feedback is used to provide information, the
primary focus has been on creating distinguishable haptic patterns.

There are different methods for creating haptic patterns, including vibrotactile
actuators, electrodes, shape memory alloys, electro-mechanical actuators etc. I
will focus on vibrotactile stimulation, since this has been available in mobile
phones for decades and is the most prominent type of haptic feedback in other
personal informatics devices.



7.1 Direct Haptic Feedback 71

Figure 7.3: Tactile associations to haptic modulations.

The Apple watch consists of only one actuator, thus the patterns can only be SETUP WITH
ONE ACTUATORdesigned from modification of the following components:

• frequency

• amplitude (intensity)

• burst duration (short, long)

By modifying these, the vibrations can feel like a subtle tap or a hard poke, or
perhaps even the ripple effect of water rings.

However, with more actuators, the patterns could also be modified by: SETUP WITH
MULTIPLE
ACTUATORS

• rhythm (temporal distribution: overlapping, inter-burst duration, direc-
tion)

• composition (spatial distribution: close together, far apart)

• spatial direction

By modifying these a continuous motion from an overlap of vibration from actu-
ators could be created. This feeling could be translated into the stroke of a hand.
The pattern could also be based on successive bursts by having an inter-burst
interval, making actuators vibrate separately, one after another. The could be
perceived as a step-wise motion, like a hopping rabbit, see Figure 7.3.

We describe patterns as being based on the following three modulations:

Simultaneous where all actuators are vibrating simultaneously.
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Figure 7.4: The rhythm and perceived stimulation of three haptic modulations
- simultaneous, continuous, and successive - is illustrated.

Continuous where there is an overlap of vibration, before the first actuator
stops vibrating the next will start.

Successive where there is a time period in between two actuators’ vibrations,
an inter-burst duration.

7.1.1 Perceiving Continuous Motion

Though these patterns seem straightforward, the understanding of how each pa-
rameter contributes to the perceived sensation and our translation to known
tactile interactions is limited. Thus attempts to understand continuous motion,
includes motion created from three different patterns: continuous (also referred to
as saltation), amplitude modulation and a hybrid pattern [Yatani and Truong, 2009].
Also studies on the effect of frequency, burst duration [Israr and Poupyrev, 2011b],
intensity and body site [Israr and Poupyrev, 2011a, Cholewiak and Collins, 2000]
have been examined.

It may be possible to create haptic feedback which could assist in enhancing an
emotional experience in scenarios such as long-distance relationships. Therefor, in
the hope of overcoming the lack of physical contact when communicating through
standard interpersonal communication systems such as Skype2, or in a virtual
environment such as SecondLife3, we investigated the control space of creating
perceived continuous motions which could be associated with a caressing stroke,
Appendix D [Eid et al., 2015]. We investigated the upper and lower thresholds
of perceived continuous motion on the forearm, by altering the stimulus onset
asynchrony (SOA). The SOA is defined as the time between onset of vibrations
coming from two actuators. If SOA is shorter than the vibration (burst duration),

2skype.com
3secondlife.com
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Figure 7.5: The upper (dashed lines) and lower thresholds (solid lines) for cre-
ating perceived continuous patterns, with actuators at different dis-
tances and with different burst durations.

there will be an overlap of vibration from the actuators, see Figure 7.4. Is SOA
is greater than the burst duration, there will be a period of time between the
two vibrations. The lower threshold is where the vibrations are perceived as
coming from both actuators simultaneously rather than a continuous motion.
The upper threshold is where the vibration is perceived as coming from two
successive actuators, one at a time.

We found the thresholds for five different spatial distributions by placing actua- RESULTS
tors at 4, 8, 12, 16, and 20cm apart. At each spatial distribution the thresholds
were found for three different burst durations, 120, 180, and 240ms. The results
in Figure 7.5 show the lower and upper thresholds of the SOA, indicating that
the area in between is perceived as a continuous motion. Thus we found that the
relationship between inter-bust duration and the burst duration was linear at all
distances except for the lower thresholds at the shortest distance (4 cm). This
could be because the actuators at 4 cm are placed too closely together for the
subject to distinguish between simultaneous and continuous motion. Thus, this
might be an indication of the resolution at which we can distinguish patterns on
our forearm.
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Pattern Modulation Feature
1 Simultaneous Intensity
2 Simultaneous Intensity + Speed
3 Continuous Intensity
4 Continuous Intensity + Speed
5 Continuous Intensity + Direction
6 Successive Intensity
7 Successive Intensity + Speed
8 Successive Intensity + Direction

Table 7.1: Eight different haptic patterns based on the three modulations: si-
multaneous, continuous, successive.

7.1.2 Designing Haptic Patterns

Although most studies examining preferences towards vibro-tactile feedback re-
port preferences towards more continuous stimulation, this might not be the most
suitable haptic feedback in all cases. When implementing haptic stimulation in
a wrist-worn alarm clock, the stimulation should not only be pleasant, but also
attract attention. In this case, a soothing continuous motion might not draw
enough attention upon itself to cause the user to wake up. Instead it might be-
come integrated into the user’s sleep. However, using an arousing and aggressive
stimulation could result in an unpleasant awakening that might lead to a dislike of
the system. Thus we examined both the subjective emotional ratings of different
haptic patterns as well as the response time, how fast 12 participants’ attention
shifted towards the different haptic patterns, Appendix E [Jensen et al., 2015].

The emotional ratings are based on the classic 9-point valence and arousal scales.
The valence level indicates how pleasant or unpleasant the haptic pattern is,
whereas the arousal level indicates how calm or exiting the stimulus is. The
patterns’ ability to attract attention was measured with a dual attention task.
The dual attention task consisted of two tasks performed at once. The first task
was a visual identification task, where the participant had to identify the correct
target among different distractor stimuli. While the user did this test, a haptic
pattern would start. Once the participant perceived the haptic stimulation, he
was to abandon the visual task and respond to the haptic stimuli by pressing a
button. This response time would indicate how quickly the participant’s attention
shifted to the haptic pattern.

We created eight different patterns based on the three modulations (simultaneous,HAPTIC
PATTERNS
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Figure 7.6: The subjective valence ratings (pleasant-unpleasant) of eight differ-
ent haptic patterns, show a preference towards patterns based on
the continuous modulation. Results are shown as box plots with
median, upper and lower quartiles, min and max values, while dia-
monds represent the means.

continuous, and successive). The first two (pattern 1 and 2) were based on the
simultaneous modulations. The next three (pattern 3, 4, and 5) were based on
the continuous modulation. The last three (pattern 6, 7, and 8) were based
on the successive modulation. All of the eight patterns increased in amplitude
(intensity), starting from not being perceivable and slowly increasing until the
user perceived it and responded to it. Pattern 1, 3, and 6 were only modulated
by this intensity increase. Pattern 2, 4, and 7 were in addition changed in speed,
from slow to fast vibrations. This was done by decreasing the SOA interval,
decreasing the inter-burst interval in pattern 2 and 7, and by increasing the
overlap in pattern 4. The last two patterns, 5 and 8 changed in direction (from
left to right and right to left) in addition to the increase in intensity.

Starting with the valence rating, the three patterns based on continuous modula- RESULTS
tion were rated as the most pleasant, and the two based on simultaneous modula-
tion as the least pleasant, see Figure 7.6. However, we also obtained greater error
bars for the simultaneous patterns, indicating that some participants found these
pleasant whereas others did not. The arousal rating in Figures 7.7 shows a less
clear picture, with no distinguishable difference between the patterns. However,
the error bars reveal that some, but not all participants, found the continuous
patterns more calm compared to the others. The response time shows a much
faster response to the continuous modulations compared to any of the others, see
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Figure 7.7: The subjective arousal ratings (calm-exciting) show great variabil-
ity for some patterns. Results are shown as box plots with median,
upper and lower quartiles, min and max values, while diamonds
represent the means.

Figure 7.8: The response times of the eight different patterns show significantly
faster responses to patterns based on continuous modulations and
successive modulations compared to those based on simultaneous
modulations. Results are shown as box plots with median, upper
and lower quartiles, min and max values, diamonds representing
the mean, and circles representing an outlier.
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Figure 7.8, indicating that the continuous modulation of these patterns might be
the easiest to perceive or that these patterns confirmed the participants’ suspi-
cion, once even a slight vibration was perceived. Thus, it would seem natural to
choose a pattern based on a continuous modulation for the haptic feedback of a
wrist-worn alarm clock.

7.2 Indirect Haptic Feedback

From a focus on providing information, haptic feedback has been applied to en- INDIRECT
HAPTIC
FEEDBACKhance user experience and simulate real haptic interactions. In 1997, Nintendo

introduced a game controller providing feedback, the Rumble Pack for Nintendo
64. Depending on the game, the controller would vibrate when shooting with a
machine gun or when a race car was pushed into the verge on the side of the road.
This type of feedback is more indirect and has typically served as an extension of
the gaming experience. This has also been implemented for other entertainment
scenarios, such as seats in movie theaters etc. Attempts have been made to create
haptic feedback as an extension to emotional and interpersonal communication,
in the hope of providing a physical connection for long distance relationships.
Examples of these are everything from small gesture-based sensors to large de-
vices and jackets simulating hugs [Arafsha et al., 2012, Tsetserukou et al., 2009].
However, these products for haptic interpersonal communications have not be-
come successful as a common commercial product, perhaps because mimicking
real social interaction is much more difficult compared to the crude shaking of
a machine gun. The most convincing attempt is perhaps Babybe, which is a
device used in health care that simulates physical contact between mothers and
their premature babies4. Babybe consists of a sensor recording the mother’s chest
movements and heartbeat, which are transmitted to a cushion on which the infant
lies, raising and lowering the cushion.

The Apple Watch also provides indirect feedback, however currently only in one
application. This is the case, with transmitting the user’s heartbeat, recorded
from a sensor in the watch, to another user, while enhancing the tactile feedback
with the visual outline of a heart pumping. This visual feedback is crucial in
order for the receiver to associate the sudden haptic stimulation with the sender’s
heartbeat, instead of just a rhythm of taps. This is a good example of how hard
it is to provide an affective haptic feedback and why it is often accompanied
with either visual or audio feedback. Concurrently with Apple Watch’s growing

4babybemedical.com
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market, we are likely to see many more of these haptic micro-interactions being
used to boost and expand traditional interaction and feedback patterns.
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7.3 Summary

The recently developed sensor-packed wearable devices are obvious candidates for
future personal informatics systems. This implies there will be an increasing focus
on how to create haptic feedback, which can be used not only to infer meaning
by providing distinguishable patterns, but also to create patterns associated with
real tactile touch, which produce personal emotional experiences.

In this chapter we examined the how the human sensory abilities define an up-
per and lower threshold for creating a perceived continuous motion. We also
illustrated how having multiple actuators enables further design components,
which widens the possibilities for creating more advanced haptic patterns. We
also showed how an experiment revealed that haptic patterns based on continu-
ous modulations were considered more pleasant than simple simultaneous bursts.
This suggests that these could be associated with affective natural interaction
patterns such as stroking and caressing.





Chapter 8

Perspectives

This thesis has covered several aspects of cognitive interfaces for personal infor-
matics feedback. First we looked at high-level aspects of design processes such
as scope and outcome. We also looked at stages of activities, from data collection
to infer meaning and adjust behavior, which are a fundamental part of personal
informatics systems aiming to obtain self-knowledge. Furthermore, peeling off a
layer, we examined ways of inferring meaning from data, suggesting use of base-
lines, thresholds, context awareness, scenarios, etc. to enable the user to reflect
and make feedback actionable. Finally, we looked at separating interfaces into a
low-level view of visual, audio and haptic feedback components, and how these
can be combined to create supportive feedback. Thus we can see this as a hier-
archy going from high-level aspects of scope and outcome to low-level feedback
components. This last chapter will summarize the significant contributions of
this thesis and discuss its implications and how we move on from here.
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Figure 8.1: User Story Mapping as part of an iterative design process, helping
to scope the product by testing prototypes, thereby evaluating and
redefining the scope of the product.

8.1 Integration of Design Principles

With many personal informatics systems being driven by the ability to collect
large amounts of data, and with no scoping of the systems, they are likely to
provide meaningless data, which are hard to reflect on and gain insight from. Or
as a Quantified Self’er describes: "It’s not that we lack the information, we are
virtually drowning in it. The obstacle is that we don’t have the proper tools to in-
terpret the significance of our data" [Choe et al., 2014] Although this Quantified
Self’er might be looking for the ultimate analytical tool, the quote does capture
a common problem within personal informatics systems: Focusing on collecting
and analyzing data, rather than supporting the users’ motivations, needs, and
goals [Ohlin et al., 2015].

Thus we present a framework, The feedback loop, which incorporates these high-
level aspects scope and outcome that are essential in lean design processes to help
define the minimal viable product. Scoping a system requires translation of the
of the users’ motivations, needs, and goals into sequence of activities and tasks
within each of the stages, which are decoupled and prioritized as in Figure 8.1.

One way of scoping a personal informatics systems is by the use of personality
traits. Personality traits can provide insight into users’ motivations and prefer-
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ences, both in terms of how actionable or exploratory the system should be, and
in terms of the content’s level of detail and how it is delivered. Thus, personality
traits can be used to scope the high-level motivation, needs and goals as well as
the tangible activities and tasks. Thus the design process can be seen as a way
of transitioning between high-level scope and outcome, and the middle layer of
sequences of activities and tasks.

An example of the importance of scoping personal informatics systems in relation
to intended high-level outcome can be seen with neurofeedback interfaces.

8.2 Creating Supportive Interfaces

Previous neurofeedback studies have merely viewed the actual feedback as a way
of informing the user of his current brain activity level - above, below or equal to
baseline [Vernon et al., 2003, Zoefel et al., 2011]. To the best of my knowledge,
no previous studies on neurofeedback have suggested that the way of providing
feedback could influence the results of the training, until now.

The traditional interfaces have typically consisted of simple geometric primitives
such as a square or bar, indicating high or low brain activity by altering compo-
nents such as color, size or movement. All of which could be viewed as a binary
information feedback: red vs. blue, big vs. small, high vs. low. In contrast,
our interface would provide a smoothly changing color gradient, which based on
the underlying moving window for sampling the data would stabilize the visual-
ization of brain activity. The statements from participants also suggested that
this smooth gradient provided the user with an enhanced feeling of control. In
addition, the spatio-temporal layout of gradient squares generates a history of
past activity, enabling the user to reflect and reuse previous successful attempts
to enhance the alpha activity.

By comparing our interface with a traditional interface, we found an effect during
training, but not on the overall baseline. This suggests that it was easier to in-
crease and maintain an increased alpha activity. However, we could not replicate
earlier results indicating that the neurofeedback training would alter the individ-
ual alpha baselines [Zoefel et al., 2011]. Whether the training effect was due to
color-indicated threshold, the temporal aspects, or other properties of the visual
components is unknown. But one thing is clear: We need to consider feedback
which is supportive of the activities that underpin the desired outcome. In this
case it should support and guide the user to attain the desired state of mind -
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whether it is a relaxed, peaceful state of mind; a focused, sharp state of mind; or
something completely different.

Thus neurofeedback interfaces are a great example of how we need to consider
high-level needs, motivations and goals when we design personal informatics sys-
tems. It illustrates the tight the coupling between all the stages of the loop: data
collection, analysis & visualization, infer meaning, and adjust behavior.

8.2.1 Towards Multi-Modal Interface Components

The interfaces described in this thesis all consist of a combination of components:
visual, audio and haptic such as geometric primitives, colors, pitch, volume, and
many more. The components could be smooth, gradual color change, as in our
neurofeedback interface; the smooth fading volume changes between ocean waves
and blowing wind in Muse; or continuous or rhythmic haptic patterns from vi-
brating actuators.

Perhaps by providing feedback in a continuous manner rather than the binary
high-low indication of brain activity, we can accommodate the sequence of in-
creasing and decreasing brain activity and thereby the progress of training. An
analysis of the effect of individual components was undertaken in the case of the
haptic interface experiments. While we may be able to isolate each individual
component, as in the experiment identifying how the haptic parameters of inten-
sity and rhythm are perceived in isolation, we in reality often combine modalities
as exemplified by the cross modal Bouba-Kiki effect: coupling sound with visual
shapes.

8.3 Moving Science into the Wild

In the experiment examining the upper and lower thresholds of perceived con-
tinuous motion, we isolated the haptic feedback to consist of only three haptic
components: rhythm by changing the SOA; burst duration for 120ms, 180ms
to 240 ms; and composition by changing the distance between the actuators.
Though we did find the upper and lower thresholds, this is unlikely to provide
associations towards affective human interaction such as a caressing hand. This
illustrates how isolation of components might lead to specifications of designing
haptic feedback, but it does not contribute much to the full user experience. For
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that we need to consider multi-modal feedback, such as the combination of visual
and haptic feedback of heart beats from Apple Watch.

The same constraints are valid when it comes to investigating emotional responses
using brain signals: First, by removing eye movements and blinks, whose power
are magnitudes stronger than the brain activity. Secondly, by separating emo-
tional responses in EEG into relevant time windows. Still, in order to get a
measurable difference of how we perceive pleasant or unpleasant images, we not
only have to move beyond electrode-based analysis by employing a range of ma-
chine learning approaches, we also have to use extreme visual stimuli consisting
of mutilated bodies or erotic scenes. But these extreme images are rarely en-
countered in an everyday context, and therefor unlikely to be used for personal
informatics systems.

Thus we remain far from being able to monitor these underlying emotional pa-
rameters outside controlled lab conditions and we are still unable to continuously
collect and analyze such signals ’in the wild’ in relation to personal informatics
systems. We may therefore need to examine alternative ways of extracting indi-
vidual responses: from other physiological measures, such as eye-tracking, skin
conductance or heart rate monitoring; or from behavioral patterns. Or maybe we
can use the general insights of users’ motivations and preferences from person-
ality traits and build on these with the individual physiological and behavioral
measurements, which could easily be retrieved from smart-phones and smart-
watches.





Chapter 9

Conclusion

This thesis should be viewed as a response to the challenges of designing per-
sonal informatics systems, where people seek to gain knowledge of them-selves
by tracking various aspects of their lives, ranging from physiological measure-
ments to behavioral patterns. In particular, this thesis aims to provide a new
personal informatics framework that incorporates lean agile design principles,
thereby focusing on scoping high-level goals, activities and tasks to create mini-
mal viable products. The created framework stretches from high-level aspects of
users’ motivation, needs, and goals to guidelines for creating cognitive interfaces,
seeking to infer meaning from data, and even provide actionable feedback.

With neurofeedback interfaces, I showed design of these interfaces can have an
effect on the training outcome. This suggests that the temporal aspects of the
feedback appear to have an effect. However, further research on this area is
needed. I described how interfaces can be constructed from different visual,
audio and haptic components and argue that by combining these we can hope to
create interfaces which not only provide meaningful feedback, but also enhance
the user experience and support the underlying interaction.

Finally, I hope that this thesis will mark a break with the existing focus on data
collection or data analysis, which has characterized many personal informatics
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systems [Ohlin et al., 2015], and rather focus on supporting the users’ motiva-
tions, needs, and goals.
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Mobile brain imaging solutions, such as the Smartphone Brain Scanner, which combines low cost wireless
EEG sensors with open source software for real-time neuroimaging, may transform neuroscience experimental
paradigms. Normally subject to the physical constraints in labs, neuroscience experimental paradigms can
be transformed into dynamic environments allowing for the capturing of brain signals in everyday contexts.
Using smartphones or tablets to access text or images may enable experimental design capable of tracing
emotional responses when shopping or consuming media, incorporating sensorimotor responses reflecting
our actions into brain machine interfaces, and facilitating neurofeedback training over extended periods.
Even though the quality of consumer neuroheadsets is still lower than laboratory equipment and susceptible
to environmental noise, we show that mobile neuroimaging solutions, like the Smartphone Brain Scanner,
complemented by 3D reconstruction or source separation techniques may support a range of neuroimaging
applications and thus become a valuable addition to high-end neuroimaging solutions.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Only recently have wireless neuroheadsets, capable of capturing
changing electrical potentials from brain activity through electrodes
placed on the scalp using Electroencephalography (EEG), made mobile
brain imaging a reality. The emergence of low-cost EEG sensors and
the increasing computational power of smartphones may transform
neuroimaging from constrained laboratory settings to experimental
paradigms, allowing us to model mental state in an everyday context.
This presents a paradigm shift, making it possible to design new types
of experiments that characterize brain states during natural interaction
over extendedperiods of time. Until recentlymost neuroimaging exper-
iments have been performed with subjects who are at rest, under
the assumption that the brain responses being measured will not be
influenced by subjects sitting or laying down. However, this may be
inaccurate, as animal studies using mice indicate that neurons in the
visual cortex double their visually evoked firing rates if they run on
a treadmill rather than stand still (Niel and Stryker, 2010). Since the
discovery of parietal–frontal circuits of mirror neurones, which fire
both when we grasp an object and when we observe others doing
the same (Pellegrino et al., 1992; Gallese et al., 1996), the sensorimotor
system can no longer be considered as only involved with motion.

Consequently, these mechanisms should rather be understood as
forming an integral part of cognition, allowing us to generalize the
goals of actions based on motor representations in the brain
(Rizzolati and Sinigaglia, 2010).

While there is already significant literature concernedwith dynamic
brain states during natural complex stimuli in conventional laboratory
experiments (see e.g., Hasson et al., 2004; Bartels and Zeki, 2004;
Dmochowski et al., 2012), there has been a growing call to design
studies that relax the constraints of the lab and widen the focus to
map out how we perceive our surroundings under naturalistic con-
ditions (Makeig et al., 2009). For example, natural motion has been
incorporated into laboratory experiments using tools such as the
MoBi Lab Matlab plugin (2009) in order to correlate motion capture
data of moving limbs with the brain responses being triggered
(Gramann et al., 2011). Even adding a few degrees of freedom may
provide an understanding of how cortical responses differ by simply
changing posture (Slobounov et al., 2008), either by measuring how
theta brainwave activity is attenuated in sleepy subjects once they
stand up (Caldwell et al., 2003), or by analyzing the modulation in
spectral power within alpha and beta brainwaves appearing when
one foot hits the ground and the other foot is lifted, as subjects are
no longer transfixed on a chair in front of a computer screen (Gwin
et al., 2011). This provides a foundation for extending standard
EEG paradigms, such as the P300 event-related potential, to mea-
sure how we consciously perceive visual objects when participants
are no longer required to sit motionless but are able to walk on a
belt during the experiment (Gramann et al., 2010). It also makes it
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possible to eventually move a P300 experiment outside the lab,
as has recently been demonstrated by Debener and colleagues (2012)
by combining the wireless hardware from a consumer neuroheadset1

with standard EEG cap electrodes2 and using a laptop to record the
cortical responses, thus providing a portable lab which can be stored
in a backpack and easily carried by the subjects participating in the
experiment.

Taking the idea of bringing EEG into the wild one step further, the
Smartphone Brain Scanner (SBS2) open-source software project (http://
github.com/SmartphoneBrainScanner) introduced in Stopczynski et al.
(2011, 2013), makes it possible to build brain imaging applications
for real-time 3D source reconstruction or neurofeedback training. By
combining a wireless EEG cap with an Android smartphone or tablet,
the SBS2 allows for presenting time-locked audiovisual stimuli such as
text, images, or video, and it allows for capturing elicited neuroimaging
responses on themobile device, thereby transforming low-cost consumer
hardware into a pocketable brain imaging lab. As the Smartphone Brain
Scannerproject potentially allows for designing novel types of brain imag-
ing paradigms, we have initially validated the SBS2 framework in three
experiments related to BCI motor control, embodied semantics, and
neurofeeedback interfaces in order to illustrate the feasibility of capturing
mental state in a mobile context. In the following sections we briefly
review existing mobile EEG sensors, outline the architectural design
of the Smartphone Brain Scanner system for real-time 3D reconstruction,
describe aspects of source separation and spatial filtering in relation to
mobile brain imaging, and give examples of applications built on top of
the open-source software framework for mobile Android devices related
to imagined finger tapping, emotional responses to text, and design of
neurofeedback interfaces (Fig. 1).

2. Mobile EEG acquisition

A wide range of prototype electrode designs, suitable for mobile
neuroimaging, are currently under development, based on MEMS
microelectromechanical systems utilizing spring-loaded dry contact
pins or hard carbon nanotubes that press against the scalp (Ruffini
et al., 2008). For long-term EEG measurement without gel, another
option is electrodes made from soft foam covered with conductive
fabric (Lin et al., 2011), or new types of non-contact high input
impedance sensors capable of capturing EEG signals on the basis of
capacitive coupling (Chi et al., 2012), even when resting on top of
several layers of hair. In contrast to gel-based EEG electrodes, dry
contacts need no skin preparation, and can therefore more easily
be utilized for neuroimaging as participants are able to put on a
neuroheadset without any assistance. However, even though pin
or nanotube contacts easily penetrate the hair and therefore offer
more possibilities for placement than conductive foam-based sen-
sors attached to the skin of the forehead, a spring-like setup may
still be susceptible to noise when users move. Capacitive sensors
provide an alternative for unobtrusive physiological monitoring,
but require an integrated ultra-high impedance front-end for non-
contact biopotential sensing (Chi et al., 2011). So-called Ear-EEG is
a promising technology for long-term EEG data collection, offering
improved comfort and esthetics (Looney et al., 2012). Benchmarks
of prototype capacitive non-contact and mechanical sensors in an
experiment related to decoding a steady state visual evoked poten-
tial in the 8–13 Hz frequency band showed only little signal degra-
dation when compared to standard gel-based Ag/AgCl electrodes
(Chi et al., 2012), showing that these novel sensors may, in
longer term, provide the increased usability that may assure the
transformation of neuroimaging from fixed laboratory setups to an
everyday mobile context.

Among existing commercial solutions, the ThinkGearmodulemanu-
factured byNeuroSky3 provides the foundation for several EEG consum-
er productswhich integrate a single dry electrode alongwith a reference
and a ground attached to a headband. It provides A/D conversion
and amplification of one EEG channel, is capable of capturing brain
wave patterns in the 3–100 Hz frequency range, and records at 512 Hz
sampling rate. Even a single-channel EEG setup, using a passive dry
electrode, such as the NeuroSky, positioned at the forehead and a refer-
ence (typically an earlobe), may allow for measuringmental concentra-
tion and drowsiness by assessing the relative distribution of brainwave
frequencies (Yasui, 2009). More comfortable neuroheadsets using con-
ductive Ni/Cu covered polymer foam, such as Mindo4, measure brain
activity from the forehead on three EEG electrodes plus a reference
channel attached to the earlobe. Integrating analog to digital conversion
at 256 Hz sampling rate for acquisition of bandpass filtered signals in
the 0.5–50 Hz range, the neuroheadset offers 23 h of battery life and
wireless Bluetooth communication, and has been demonstrated in
BCI brain machine interfaces used in games based on controlling the
power of alpha brainwave activity (Liao et al., 2012). Other consumer
neuroheadsets such as the Emotiv EEG, provide bothwireless communi-
cation via a USB dongle and analog to digital conversion of 16 EEG chan-
nels (including reference and ground) at 128 Hz sampling rate while
usingmoist felt-tipped sensorswhich press against the scalpwith a sim-
ple spring-like design. Originally designed as a mental game controller
capable of tracing emotional responses and facial expressions, the ma-
jority of electrodes are placed over the frontal cortex and have no mid-
line positions (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4
with P3/P4 used as reference and ground). However, as mentioned ear-
lier, Debener and colleagues (2012) recently demonstrated that it is
possible tomerge thewireless hardware from the Emotiv neuroheadset
with high quality, conductive, gel-based electrodes in a standard EEG
cap. Repackaging the electronics and battery into a small box
(49 mm × 44 mm × 25 mm) which can be attached to the EEG
cap and rewired through a connector plug to 16 sintered Ag/AgCl
ring electrodes can occur, thus providing a fully customizable mon-
tage which allows the electrodes to be freely placed in the EEG
cap according to the 10–20 international system (in the present

1 http://www.emotiv.com.
2 http://easycap.de/easycap.

Fig. 1. SBS2 mobile EEG recording with real-time 3D source reconstruction, on an
Android smartphone connected wirelessly to an Easycap 16 electrode setup based
on Emotiv hardware.

3 http://www.neurosky.com/Products/ThinkGearAM.aspx.
4 http://www.mindo.com.tw/en/index.php.
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experiment Fpz, F3, Fz, F4, C3, Cz, C4, TP9, TP10, P3, Pz, P4, O1, O2
with AFz/FCz used as reference and ground).

We have tested both the original Emotiv neuroheadset as well as
the modified EEG cap setup in connection with the Smartphone Brain
Scanner open-source software project in the experimental designs
outlined below.

3. Software framework: Smartphone Brain Scanner

The Smartphone Brain Scanner (SBS2) is a software platform
for building research and end-user orientedmulti-platform EEG applica-
tions. The focus of the framework is on mobile devices (smartphones,
tablets) and on consumer-grade (low-density and low-cost) mobile
neurosystems. SBS2 is freely available under an MIT License at https://
github.com/SmartphoneBrainScanner. Additional technical details about
the framework can be found in Stopczynski et al. (2013).

The framework is divided into three layers: low-level data acquisi-
tion, data processing, and applications. The first two layers constitute
the core of the system and include common elements used by various
applications. The architecture is outlined in Fig. 2.

3.1. Key features

With focus on the mobile devices, SBS2 is a multi-platform
framework. The underlying technology – Qt – is an extension of
C++ programming language and is currently supported on the
main desktop operating systems (Linux, OSX, Windows) as well as
mobile devices (Android, BB10, partially iOS) (see http://qt.digia.
com/Product/Supported-Platforms/).

The additional acquisition and processingmodules can be created as
C++ classes and integrated directly with the core of the framework.
The framework supports building real-time applications; data can be
recorded for subsequent offline analysis, most of the implemented
data processing blocks aim to provide real-time functionality for work-
ingwith the EEG signal. The applications developedwith SBS2 are appli-
cations in the full sense, as they can be installed on desktop and mobile
devices, can be started by the user in the usual way, and can be distrib-
uted via regular channels, such as repositories and application stores.

The most demanding data processing block is the real-time source
reconstruction aimed at producing 3D images as demonstrated in
Fig. 4. Source reconstruction is carried out using Bayesian formulation
of either the widely used Minimum-norm method (MN) (Hämäläinen
and Ilmoniemi, 1994) or the low resolution electromagnetic tomography
(LORETA) (Pascual-Marqui et al., 1994). Further description about the

inverse methods implemented in the Smartphone Brain Scanner will be
given later.

4. Methods

4.1. Brain computer interface based on imagined finger tapping

One of the arguably most widely used paradigms of the brain com-
puter interface literature is a task in which a subject is instructed to
select between two or more different imagined movements (Müller-
Gerking et al., 1999; Babiloni et al., 2000; Dornhege et al., 2004;
Blankertz et al., 2006). Mental imagery is the basis of many BCI sys-
tems, originally conceived to assist patients with severe disabilities
to communicate by ‘thought’. The rationale is that the patient, while
having problems carrying out the actual movements, may still be able
to plan the movement and thereby produce a stable motor-related
brain activity, which can be used as an input to the computer/machine.
In this contribution we replicate a classical experiment with imagined
finger tapping (left vs. right) inspired by Blankertz et al. (2006). The
setup consisted of a set of three different images with instructions,
Relax, Left, and Right. In order to minimize the effect of eye movements,
the subject was instructed to focus on the center of the screen, where
the instructions also appeared (3.5″ display size, 800 × 480 pixel reso-
lution, at a distance of 0.5 m) (Fig. 3).

The instructions Left and Right appeared in random order with an
equal probability. A total of 200 trialswere conducted for a single subject.
We selected 3.5 s duration for the ‘active’ instruction (Left or Right) and
1.75–2.25 s randomly selected for the Relax task, similar to Blankertz
et al. (2006). The main motivation for random duration of the Relax
task was to minimize the effect of the subject anticipating and starting
the task prior to the instruction. The experiment was conducted with
an Emotiv EEG neuroheadset transmitting wirelessly to a Nokia N900
smartphone. To illustrate the potential for performing such a study in a
completely mobile context, all stimulus delivery and data recording
were carried out using the SBS2. Analysis and post-processing and
decodingwere conducted off-line using standard analysis tools. In partic-
ular, we applied a common spatial pattern (CSP) approach (Müller-
Gerking et al., 1999) to extract spatial filters which would maximize
the variance for one class, while minimizing the variance of the other
class and vice versa. A quadratic Bayesian classifier for decoding was
applied on features transformed as in Müller-Gerking et al. (1999).

Fig. 2. Layered architecture of the SBS2 framework. Data from connected EEG hardware is
extracted by specific adapters, processed, and used by the applications.

Fig. 3. SBS2 mobile neuroimaging apps for neurofeedback training, presentation of
experimental stimuli, and real-time 3D source reconstruction, running on Androidmobile
devices via a wireless connection to an Emotiv or Easycap EEG setup.
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4.2. Source reconstruction and source separation

Compared to standard EEG laboratory setups, mobile neuroimaging is
extremely susceptible to noise, as the ability to move around simulta-
neously introduces artifacts into the neuroimaging data induced by the
EEG sensors, as well as originating from motion-related muscle activity.
Likewise, mobile neuroimaging is much more exposed to environmental
noise than experiments taking place under controlled conditions in
a shielded laboratory. Combining sensor and source features, however,
has been shown to improve classification in brain-computer interfaces
(Ahn et al., 2012), even though these paradigms often involve activation
of sensorimotor circuits where the location of sources is already quite
well known. Theremight be an even larger potential by integrating source
information for decoding complex brain states involving a range of differ-
ent cognitive tasks. In particular, spectral analysis of changes in power
may offer additional information on activity within specific brain-
wave bands, which, based on the frequency, determines whether it
reflects local or more distributed cortical field potentials. We therefore
suggest that incorporating prior knowledge on what constitutes brain-
generated signals may overall enhance the feasibility of performing ex-
periments using mobile neuroimaging solutions (see also Besserve
et al., 2011).

One approach to localize the actual brain activity in EEG is to tackle
the inverse problem of retrieving the distribution of underlying sources
from a scalpmap by using a forward headmodel to estimate the projec-
tionweightswhich are captured by the electrodes. The problem is, how-
ever, severely ill-posed, as typically tens of EEG electrodes will capture
volume conducted brain activities which may have been generated by
tens of thousands of equivalent dipoles representing post-synaptic
activity within macrocolumns of the cortex (Hämäläinen and
Ilmoniemi, 1994; Pascual-Marqui et al., 1994; Baillet et al., 2001).
A regularization that reduces thenumber of solutions is therefore applied,
using methods such as low resolution electromagnetic tomography
(LORETA), which assumes both the activity of neighboring neurons is
synchronized and their orientation and strength can be modeled as
point sources in a 3Dgrid reflecting ‘blurred-localized’ images ofmaximal
activity (Pascual-Marqui et al., 1994). With F∈RNcñNv representing the
forward model relating the Nv cortical current sources, V∈RNvñNt , to the
Nc measured scalp electrodes, X∈RNcñNt , the forward problem for a
set of time points (Nt) is given by, X = FV + E, when the noise
contribution E is assumed additive. The Minimum-norm method
(MN) (Hämäläinen and Ilmoniemi, 1994) and LORETA methods can
be represented as a single method, with MN as a special case of
LORETA, namely, when no spatial coherence of neighboring sources is

assumed as prior. From a Bayesian perspective the LORETA method is
formulated as

p X Vj Þ ¼ ∏
Nt

t¼1
N xt Fvt ;β
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in which β denotes the precision of the noise (inverse variance), α
the precision parameter of the sources, and L the spatial coherence
between the sourcesV. As theMNmethod assumes no spatial coherence
between neighboring sources, the spatial coherence matrix becomes an
identity matrix, L = I. In contrast, for LORETA this spatial coherence
matrix typically takes the form of a graph Laplacian, implementing geo-
metrical neighborhood driven smoothness. Given the likelihood, p(X|V),
and prior distribution, p(V), of the current sources, the most likely
source distribution can be obtained by maximizing the posterior distri-
bution over the sources as
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The hyper-parameters α and β are optimized on-line using a stan-
dard Expectation–Maximization (EM) approach (Bishop, 2006).

Rather than aiming to solve the inverse problem of determining the
‘what’ from ‘where’ of brain activity, an alternative approach is to apply
methods based on higher-order statistics such as independent compo-
nent analysis (ICA) (Comon, 1994). This allows to separate individual
processes (‘what’) when they stand out as temporally independent in
the native, spatially overlapping scalp representation (Makeig et al.,
1996).

The ability of ICA to identify temporally independent events also
allows for enhanced detection and automatic removal of artifacts
(Delorme et al.). Eye blinks manifest themselves as low 1–3 Hz as well
as higher frequency activity, which translates into stereotypical ICA
scalp maps consisting of a single frontal dipole (Delorme et al., 2007).
When comparing this method against a regression approach using an
electrooculogram (EOG) eye movement correction procedure (EMCP)
to remove eye blink artifacts, ICA turns out to yield almost perfect
correction (Hoffmann and Falkenstein, 2008). Also, other kinds of mus-
cle activity stand out distinctly in the corresponding scalpmaps. Overall,
applying ICA as a preprocessing step improves artifact detection com-
pared to analysis based on the raw EEG data (Delorme et al., 2007).
With particular relevance to mobile neuroimaging, it has been dem-
onstrated that independent component-based gait-artifact removal
makes it possible to capture neural correlates in standard EEG
experiments, even when walking or running (Gwin et al., 2010).

EEG experiments have traditionally focused on analysis of event-
related time-domain waveform deflections and frequency-domain
perturbations in power, but neither of these approaches fully captures
the underlying brain dynamics when averaging data over multiple
trials, or ignoring phase resetting that contributes to the ERP (Makeig
et al., 2004). When first applying ICA to the EEG data, the event-related
time serieswaveforms come to represent independent components gen-
erated by temporally independent, physiologically decoupled local field
potentials, and their corresponding scalp maps that resemble dipolar
projections of the underlying sources (Delorme et al., 2012). This
indicates that ICA may be used for more than denoising, e.g., it can

Fig. 4. SBS2 app for presentation of visual stimuli andmobile EEG recording, using anAndroid
tablet connected wirelessly to an Easycap 16 electrode setup based on Emotiv hardware.
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be used to find the modes of event-related changes in power, as the
independent components framed by the dimensions of frequency,
power, and phase consistency across trials. Even when electrodes are
accurately placed, the recorded potentialsmay still vary due to individual
differences in cortical surface and volume conduction. ICAmay also here
provide a common framework for comparison of the underlying brain
activity in EEG data, regardless of the actual electrode positions. We
thus compared ICA of the EEG data retrieved from both the Emotiv
neuroheadset containing no central electrodes and the Easycap
EEG montage including midline electrodes. In particular, we used the
retrieved scalp maps and activation time series, as well as event-
related changes in power spectra, to perform a statistical group compar-
ison across experimental conditions and trials. As a preprocessing step,
we reduced dimensionality based on principal component analysis
(PCA) and subsequently applied K-means clustering to the independent
components, in order to identify common patterns of brain activity
across the two different mobile EEG setups (Delorme et al., 2011).

4.3. Visual stimulus to investigate emotional responses

Over the past decades, neuroimaging studies have established that
language is grounded in sensorimotor areas of the brain; highly related
neuronal circuits seem involved whether we literally pick up a ball or
in a phrase refer to grasping an idea (Pulvermüller and Fadiga, 2010).
Exploringwhether such brain activation can be detected using amobile
EEG setup, the SBS2 framework was used to display the stimulus
consisting of a subset of action verbs related to emotional expressions,
face, and hand motion as used in a recent fMRI experiment (Moseley
et al., 2011). The framework was also used to record the EEG signal for
subsequent offline data analysis.

Two mobile 16 channel EEG setups were compared; the low cost
Emotiv neuroheadset using saline sensors positioned laterally at AF3,
F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8 and AF4 (P3/P4 used
as CommonMode Sense (CMS) reference/Driven Right Leg (DRL) feed-
back) — versus a standard electrolyte gel-based EEG cap (Easycap,
Germany) similar to what has previously been used for mobile P300
experiments (Debener et al., 2012) enabling an EEG setup including
central and midline Ag/AcCl ring electrodes positioned at Fpz, F3, Fz,
F4, C3, Cz, C4, TP9, TP10, P3, Pz, P4, O1 and O2 (AFz/FCz used as CMS
reference/DRL feedback) according to the international 10–20 system.

A single subject pilot studywas performed to compare the Emotiv and
Easycap EEG setups based on 2 × 10 trials, each consisting of 3 × 20
action verbs presented in a randomized sequence on the smartphone
display (Nokia N900). Each verb was exposed for 1000 ms in a large
white font on black background (3.5″ display size, 800 × 480 pixel reso-
lution) at a distance of 0.5 m, preceded by a fixation cross 500 ms pre-
stimuli, and followed by 1000 ms post-stimuli black screen. Using
the EEGLAB plug-in for MATLAB (MathWorks, USA), epoched EEG data
was extracted offline (−500 ms to 1000 ms) and baseline corrected
(−500 ms to 0 ms). As some of the recorded potentials are induced by
muscle activity, we rejected abnormal data epochs by specifying that
the spectrum should not deviate from baseline by ±50 dB at 0–2 Hz
and manually removed eye blinks (Delorme et al., 2011). To facilitate a
comparison between the different electrode placements used in the
two experiments, we applied the extended Infomax algorithm to linearly
project the EEG data recorded from individual electrodes onto a space of
basis vectors,whichwere temporally independent fromeach other, using
independent component analysis ICA to estimate the scalp maps and
time courses of individual neural sources (Delorme et al., 2007).

To assess the degree to which the Emotiv neuroheadset and the
Easycap EEG setups capture common patterns in brain activity despite
their differences in electrode montage, rather than simply measuring
event-related responses from the 14 electrodes, we applied ICA in a
single-subject study to retrieve 14 independent components from each
of the 2 × 10 trials, related to the Emotiv and Easycap experiments,
respectively: we analyzed 2 × 10 × 14 independent components

generated from the time-locked responses to reading 3 × 20 emotion,
face, and hand-related action verbs in each trial. Retrieving the ICA com-
ponents enabled us to initially compare the event related responses
across the 3 action verb conditions, which in turn enabled us to identify
similar independent sources within trials using the EEGLAB studyset
functionality. Secondly, to identify common patterns of brain activity
both within and across the Emotiv and Easycap experiments, the
EEGLAB studyset functionality and MATLAB Statistical Toolbox were
used to cluster the 2 × 10 × 14, in total 280 ICs based on scalp maps,
power spectra, and amplitude time series. After initially applying ICA
for artifact rejection in each trial, the 280 ICA weights were recomputed
as a basis for a statistical analysis using the EEGLAB studyset functionality
(Delorme et al., 2011), where the dimensionality of the feature space
was reduced to N = 10 by applying PCA principal component analysis
(Jolliffe, 2002). The pre-clustering function PCA compresses the multi-
variate EEG features into a smaller number of mutually uncorrelated
scalp projections, and computes a vector for each component to define
normalized distances in a subspace representing the largest covariances
in the ICA-weighted data. This means that the vectors contain the 10
highest PCA components for the ICA-weighted time series responses,
scalp maps, and power, related to the three conditions. Next, the K-
means algorithm (K = 10) was applied to cluster common ICA compo-
nents within the 10 trials (σ = 3), related to the Emotiv neuroheadset
(Fig. 13) and the Easycap EEG setup (Fig. 14), respectively. Comparing
functionally equivalent groups of ICsmakes it possible to assess whether
they resemble recurring neural sources retrieved frommultiple sessions,
and to determine if the clustered ICs remain shared across the twodiffer-
ent experimental EEG setups (Fig. 5).

4.4. Mobile interfaces for neurofeedback

In contrast to personal informatics apps, neurofeedback interfaces
require the user to interact in real time with audiovisual representa-
tions of EEG data in an attempt to control the ongoing brain activity.
Neurofeedback experiments aiming to increase power in the upper
alpha range have been shown to improve cognitive performance in sev-
eral studies (Hanslmayr et al., 2005; Zoefel et al., 2011). While there
is often a peak in individual alpha brainwave power around 10 Hz,
neurofeedback trainingmakes it possible to control and shift the activity
towards theupper alpha range of 12 Hz. In relation to neurofeedback, an
ability to consciously control alpha brainwave oscillations, which as a
gating mechanism appears to be involved in selective attention (Foxe
and Snyder, 2011), might thus potentially help explain the previously
reported training effects on cognitive performance. Likewise, an associ-
ation between higher alpha frequency and good memory performance
has previously been shown (Klimesch, 1999) (Fig. 6).

However, designs for neurofeedback interfaces are often conceptual-
ized with little attention to how the actual feedback of audiovisual ele-
ments might affect the user's ability to control brain activity. Normally,
User Experience (UX) design of graphical interfaces involves initial
modeling of user needs and selection of design patterns for organizing
content and navigational layout reflecting gestalt principles. This may

AF3 AF4
F3 F4

F8F7

T 7

FC5 FC6

T 8

P7 P8

O1 O2

F3 FZ F4

C3 CZ C4

P3 PZ P4

O1 O2

TP 9 TP 10

FPZ

Fig. 5.Electrode locations for twomobile 16 channel EEG setups; the Emotiv neuroheadset
using saline sensors positioned laterally (left), versus a standard gel-based Easycap EEG
montage including central and midline positions (right).
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subsequently be translated into frameworks for interaction ranging from
scrollable timeline lists to multilayered contextual map metaphors
(Tidwell, 2011). Neurofeedback applications on the other hand have
typically concentrated on mapping EGG amplitude values directly onto
audiovisual components. For example, sounds of ocean waves or
high- or low-pitched gongs (Egner et al., 2004; Hinterberger et al.,
2004) would map to visual designs based on vertical scales and
squares of changing colors (Zoefel et al., 2011; Neumann et al.,
2003; Vernon et al., 2003). When targeted towards children, these
elements have been incorporated into more complex scenarios built
around airplanes, a 3D car racing environment, or a pole-vaulting
cartoonmouse (Gevensleben et al., 2009; Heinrich et al., 2007). In sum-
mary, these designs may be understood as based on contrasting combi-
nations of the following audiovisual components (Jensen et al., 2013):

• pitch (low, high)
• volume (soft, loud)
• timbre (dark, light)
• duration (short, long)
• rhythm (temporal distribution)

• geometric primitives (connected segments)
• color (discrete, gradients)
• size (proximity, scalability)
• movement (horizontal, vertical)
• composition (spatial distribution).

To explore the influence that such components might have on the
efficacy of neurofeedback training, we tested two different interfaces
developed for the SBS2. We conducted an experiment with 25 subjects
aiming at increasing their upper alpha frequency band (Jensen et al.,
2012). The neurofeedback experiment consisted of two iterations, test-
ing the two different interfaces. In the first iteration, 12 healthy sub-
jects (7 males and 5 females) with an average age of 23.6 ± 1.9 did
neurofeedback training on a replication of an existing interface
(Zoefel et al., 2011). This interface indicated brain activity based
on only two components (color gradients framed by a square prim-
itive). In the second iteration another 13 healthy subjects (7 male
and 6 female) with an average age of 26.6 ± 5.5 performed
neurofeedback training using an interface developed on basis of
the common features extracted from the first group of subjects.
The second interface combined four components (scaled down

color gradients framed by square primitives spatially distributed
horizontally and vertically).

The EEG signal from all of Emotiv's 16 electrodes was recorded and
the real-time feedback was constructed from O1 and O2. Additionally,
an offline re-referencing of P3 and P4 with the frontal electrodes AF3,
AF4, F3 and F4 allowed for P3 and P4 to be included in the later data
processing, thus covering a larger area of the relevant cortical area.
The power of the brain activity was calculated using Fast Fourier
Transformation.

Both iterations consisted of five sessions during one week from
Monday to Friday. Each session started and ended with a 5-minute
baseline recordingmeasuring the average brain activity during a simple
task. In between the baseline recordings five 5-minute training sessions
were conducted. After each session, we gathered qualitative data on the
thought patterns of the subjects leading to an increase of alpha brain ac-
tivity based on informal interviews. Each subject received a total of 25
training recordings and 10 baseline recordings.

Fig. 6. SBS2 neurofeedback training app running on an Android tablet, where a blue to
orange shift in color horizontally over time represents an increase in upper alpha power.

Fig. 7. (a) In the interface from the first version of the neurofeedback application, the
current brain activity is visualized by the square changing colors; blue indicating activity
below, gray— equal to, and red — above baseline. (b) The interface of the neurofeedback
application from the second iteration is shown with additional illustrations describing
how it is constructed: The 5-minute timeline shown in the bottom illustrates how the
training session is divided into columns of 15 s. Within a column squares would appear
first (0–3 s) in a window in the lower part of the screen, then (4–7 s) in windows above
and below the first window and lastly (8–11 s and 12–15 s) in windows above the first
two windows. The windows are shown in the rightmost column which was not shown
during the experiments. The encircled column illustrates how the user can easily compare
the ability to increase brain activity in different time intervals.
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The interface used in the first iterationwas similar to the one used in
a study by Zoefel et al. (2011), where the feedback consisted of a square
of changing colors gradually from blue, gray to red. Respectively each
color represented real-time amplitudes below, equal to baseline, or
above baseline, respectively, see Fig. 7a. The subjects were instructed
to make the square turn red. For the baseline recording a similar inter-
face setup was used but with random color changes, making the visual
stimuli similar to those of the training recordings and therefore more
compatible. The subjects were asked to count the number of times the
square turned red. This would ensure a similar cognitive task across
the subjects while recording the baseline, therebymaking these record-
ings comparable.

The feedback interface used in the second iteration consisted of
small squares being generated once a second, if the alpha amplitudes
exceeded the baseline. Over a 15 second interval the squares (maxi-
mum 15 squares) were assembled into a column, after which a new
column of squares was incrementally generated along a horizontal
axis. At the end of the 5 minute training recording, the interface
would consist of 20 columns of squares, see Fig. 7b. Thus the interface
not only showed the current amplitudes, but also the previous, allowing
the user to easily compare methods for increasing the amplitudes. The
squares not only indicated when the amplitudes exceed baseline, but
also the degree of increase by a change in color, ranging from dark
blue to orange (see Fig. 8). The degree of increase was calculated
from a running mean creating a smooth color flow. The subjects were
instructed to create as many squares as possible and preferably with
yellow and orange colors. For the baseline recording a similar interface
was used, although with squares appearing randomly in the columns
and with random color. The subjects were asked to count the yellow
and orange squares.

All subjects of both iterationswere asked to keep their eyes open for
as long as possible, and avoid muscle movements, jawmovements, and
swallowing during all recordings to limit artifacts.

5. Results and discussion

In this section we present the results of the experiments, validating
the performance of the software, platforms used, and EEG hardware.

5.1. Brain computer interface based on imagined finger tapping

In order to validate the applicability of the platform in decoding
imagined left and right finger tapping, the EEG data was bandpass
filtered (8–32 Hz) and we used the data in the interval 0.75–2.00 s
after stimuli onset as input to the common spatial pattern (CSP) algo-
rithm (Müller-Gerking et al., 1999). One important parameter in the
CSP algorithm to be controlled is the number of spatial filters. To deter-
mine the number of spatial filterswe applied cross-validation and exam-
ined the performance (accuracy of classifier) as a function of the training
size (number of trials used for training), see Fig. 9. The classifier was
trained on a balanced set of trials (i.e. equal number of left and right
trials), which was carried out 200 times for each training set size.

Fig. 9 indicates thatwe needmore than a single spatialfilter (m N 1).
When m = 2, for example, two spatial filters are used to maximize
the variance for class 1 while minimizing the variance for class 2 and
an additional two spatial filters are used to minimize the variance for
class 1 while maximizing the variance for class 2. It is interesting that
only a few spatial filters are required to obtain an accuracy close
to 60%. We also note that performance is increasing as a function of
samples, hence, even better performance can be expected if more sam-
ples are collected.

5.1.1. Source reconstruction and source separation
For further validation we applied standard statistical evaluation

for significance and correction for multiple comparisons. Thus, we
performed a Monte Carlo permutation test (Maris and Oostenveld,
2007) to check for significant electrode differences between left
and right finger tapping. Fig. 10 demonstrates a scalp map of the
effect of the averaged response based on left finger tapping minus
averaged response based on right finger tapping. The significant
channels at given time intervals are highlighted in accordance
with the Monte Carlo permutation test conducted using Fieldtrip
(Oostenveld et al., 2011). Both positive and negative effects are
detected as significant with Monte Carlo p-values of 0.012 and 0.001,
respectively. A set of 1000 random permutations were performed.
Inspecting Fig. 10 reveals significant differences over the left and the
right hemisphere and more importantly the electrodes contributing to
the significant difference between left and right imagined finger tapping
are electrodes located close to the premotor area. Thus, it seems that
these electrodes are taking over the often reported electrodes C3 and
C4 as the main drivers, as C3 and C4 are not present in the Emotiv EEG
sensor configuration.

To examine the ability to perform reliable 3D EEG imaging based
on the data acquired using an Emotiv neuroheadset, source reconstruc-
tion was carried out on the bandpass-filtered imagined finger tapping
data (8–32 Hz) also used for the classification task and in the non-
parametric statistical test. Fig. 11 illustrates the mean power of the
difference between left and right imagined finger tapping in the interval
0.75–2.00 s post-stimuli. Premotor areas are typically involved in exe-
cuting the task and in differentiating a left from right imagined
movement. This is also the case here to some extent with minor

Fig. 8. The colors of the squares indicate the intensity of the brain activity.

Fig. 9. Mean accuracy of left and right imagined finger tapping classification for a single
subject. Mean accuracy is based on 200 splits in training and test data. Classification is
based on CSP and a quadratic Bayes classifier focusing on bandpass filtered data
8–32 Hz in interval 0.75–2.00 s after onset.
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discrimination in the premotor areas and more pronounced dis-
crimination in the more frontally located areas. Note the polarity
of the power difference map, with the left hemisphere indicating
a positive difference and the right hemisphere indicating a negative
contribution. During the imagined finger tapping part, the contralateral
premotor/motor regions desynchronize (resulting in a decrease in
power within the specific frequency range) while the ipsilateral
premotor/motor regions first desynchronize shortly and right after syn-
chronize (meaning increased power within the frequency range). The
main explanation for the displacement more frontally found in Fig. 11,

is the uneven distribution of sensors for the Emotiv EPOC system, with
most of the sensors positioned frontally.

However, large proportions of the occipital and temporal areas are
also found to be active by the reconstruction. These apparent visual
and temporal source activation differences may, however, be explained
by the fact that re-referencing to an average channel is performed prior
to source estimation. Since the distribution of the sensor locations
is highly unevenly distributed, with the majority placed frontally,
re-referencing data with a strong frontal activation (e.g. eye blink/
movement) to an average reference channel will map part of the

Fig. 10.Monte Carlo permutation test for significant difference between averaged left imagined finger tapping response and averaged right imagined tapping. Electrodes located close to
the premotor region are detected as significant in the time interval 0.9–2.1 s after stimuli.

Fig. 11. Source reconstruction of mean difference power map between left and right imagined finger tapping.
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frontal activity to the temporal and occipital electrodes. To further
test this hypothesis, we investigated the influence of artifacts caused
by eye motion on the source reconstruction estimates by removing
an eye-related ICA component. Indeed, the removal of the eye move-
ment component seems to improve the source estimates significantly,
as demonstrated in Fig. 13. The operating regions (frontal areas and
slightly pre-motor regions) are more highly visible in this power differ-
ence map between the averaged left minus right imagined finger tap-
ping conditions. Similarly, as in Fig. 11, the sources are displaced more
frontally than typically, and this can be explained by the sensor posi-
tioning offered by the Emotiv EPOC system. The source reconstruction
was performed offline to ensure a fair comparison with and without
removal of the ICA component related to eye movement. The ICA
decomposition was performed using the extended Infomax algorithm
supported by EEGLAB (Fig. 12).

5.2. Visual stimulus to investigate emotional responses

Within the Emotiv data, 2 × 18 ICs have been clustered in 10 out
of 10 trials, indicating that these independent components are consis-
tently activated across all trials (Fig. 13). Similarly, in the Easycap
data, 23 ICs have been clustered within 3 standard deviations of the
K-means centroids in 10 out of 10 trials, while 9 ICs have been grouped
in 7 out of 10 trials, confirming that temporally independent activations
are also grouped across trials in this study (Fig. 14). Taking the relative

polarity of ICs into account when comparing the two studies, the clus-
tered scalp maps in both experiments suggest left lateralized prefrontal
as well as parietal activations in language areas, which integrate motor
and semantic aspects connected through the dorsal and ventral streams
in the brain (Rolheiser et al., 2011; Axer et al., 2012).

This is in line with results obtained in a recent MRI experiment
(Moseley et al., 2011) using the same verbs as in the present EEG
study, indicating that premotor neural circuits are activated when pas-
sively reading verbs related to face and hand motion and when seeing
emotional expressions. Mobile neuroimaging could potentially extend
our ability to explore such action-based links between actual motion
and emotion in an everyday context, which might in turn reflect imita-
tion of gestures or facial expressions involvingmirror neuron circuits in
the brain, possibly providing a foundation for higher level feelings of
empathy and theory of mind.

5.3. Mobile interfaces for neurofeedback

All signal processing of the data for the Neurofeedback experiment
was done off-line using the EEGLAB (Delorme and Makeig, 2004)
plug-in for MATLAB.

Since the alpha frequency band has shown to vary depending on age,
possible neurological diseases, and memory performance (Klimesch,
1999), the upper alpha frequency band had to be determined for
each individual. By identifying the peak in the power spectrum, the

Fig. 12. Source reconstruction ofmean difference powermap between left and right imagined finger tapping. Emotiv EEG data corrected by removal of ICA component associatedwith eye
movement.

Fig. 13. Single-subject EEG neuroimaging study with Emotiv 16 channel neuroheadset: PCA dimensionality reduction and K-means clustering (K = 10, σ = 3) of 140 IC scalp maps,
activation time series and event-related changes in power spectra based on 10 trials, each consisting of reading 3 × 20 emotion (blue), face (green) and hand (pink) related action verbs.
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individual alpha peak (IAF), the upper alpha frequency band was set as
a band of 2 Hz above IAF (from IAF to IAF + 2Hz). Thus the individuals'
upper alpha frequency band were determined from the first baseline
recording of every session, and the mean amplitude was calculated for
all baseline and training recordings. Two subjects (1male and 1 female)
from the first iteration of the experiment did not complete all training
sessions, and were therefore excluded from further analysis.

In addition, it has repeatedly been reported that some subjects,
usually called non-responders, are unable to change amplitudes of the
brain frequencies significantly (Zoefel et al., 2011; Gevensleben et al.,
2009; Fuchs et al., 2003; Lubar et al., 1995). Subjects who did not
show a significant increase in the upper alpha frequencies when com-
paring the very first baseline (baseline 1 in session 1) with the training
recordings from Friday (session 5)were considered non-responders. As
a result, 3 subjects (2 female, 1 male) from the first iteration and anoth-
er 3 subjects (2 male, 1 female) from the second iteration were consid-
ered non-responders. These left 7 subjects in the first iteration (5 male,
2 female) and 10 subjects in the second iteration (5 male, 5 female)
remain for statistical analysis.

The individuals' EEG results from the baseline- and training record-
ings were normalized in respect to the first baseline Monday (session
1), thereby showing the ability to increase upper alpha (UA) amplitudes
in relation to the first baseline in percentage. The results obtained
over the week (Monday to Friday) have been plotted in Fig. 15. Each

line represents a subject's ability to increase UA amplitudes: The red
lines represent subjects from the first iteration, the black lines represent
subjects from the second iteration and the bold lines represent the non-
responders. From the graph it is clear that some subjects aremore capa-
ble of increasing their UA amplitudes and increase above 400%, whereas
others experience a decrease (usually the non-responders). In addition,
the subjects who get the highest increase are mainly those who use the
second iteration interface. However, the variance in the subject ability
to increase their UA is also greater.

These results suggest that the ability to control neural activity is very
individual and that the interface should be supportive of the individual's
strategies.

Following the approach of Zoefel et al. (2011), we fitted regression
lines to the individual UA amplitudes as a function of session number
(1–35) and used a one-sample, one-sided t-test to test whether they
were significantly greater than zero, which they were in both iterations
(p b 0.05 and p b 0.03 for the first and second iterations respectively).
We also compared the regression lines between the iterations using
a two-sample, two-sided t-test and found no significant difference
(p N 0.70). This result, in itself, could indicate that the two types of feed-
back are equally effective.

This approach does not, however, separate the effect of training (a
lasting increase in UA amplitude) from the feedback effect (an immedi-
ate increase in UA amplitude during feedback). To isolate the training

Fig. 14. Single-subject EEG neuroimaging study with Easycap 16 channel EEG setup: PCA dimensionality reduction and K-means clustering (K = 10, σ = 3) of 140 IC scalpmaps, activa-
tion time series and event-related changes in power spectra based on 10 trials, each consisting of reading 3 × 20 emotion (blue), face (green) and hand (pink) related action verbs.

Fig. 15. The individuals' upper alpha (UA) amplitude in percentage of theUA amplitude from the fist baseline recording on thefirst day (Monday). Subjects from first and second iterations
aswell as the non-responders fromboth iterations are plotted in red, black and gray, respectively. The average of these groups ismarked by bold lines in corresponding colors. All baseline-
and training recordingshave been plotted in sequence across theweek, e.g.Mondaywill showresults from thefirst baseline, then the5 training recording, endingwith the secondbaseline,
giving a total of 7 points of each day. The results illustrate a large variance in the individual subjects ability to increase UA amplitudes, where subjects from the second iteration were
capable of reaching a greater increase, although some subjects were unable to achieve any increase at all (referred to as non-responders).
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effect, we again follow the approach of Zoefel et al. who quantified the
training effect as the difference between UA amplitude during the first
baseline recording in the first session and the first baseline recording
in the last session and tested for an increase with a one-sample one-
sided t-test. Using this approach we found a significant effect in the
first iteration (p b 0.002) but not in the second iteration (p N 0.14).
This result indicates that the interface used in the first iteration was
more effective for neurofeedback training.

In addition to this, we are also interested in isolating the feedback
effect,whichwe quantify as the difference between themeanUA ampli-
tude across feedback recordings and the mean UA amplitude across
the first and last baseline recording for each session. We compare the
feedback effect from the two iterations using a repeated-measures
ANOVA with session number as within subject factor and iteration
as between groups factor. We found a significant effect of iteration
(F(1,15) = 11.85, p b 0.005) but no significant effect of session number
or the interaction between session and iteration. Based on the lack of
effect of the session number, we averaged the feedback effect across
session number and subjects within an iteration and found that
the mean feedback effect was 0.17 for the first iteration and 0.67 for
the second iteration. This result indicates that the interface used in the
second iteration wasmore effective for inducing an immediate increase
in UA amplitude.

That the feedback effect was higher in the second group without
a corresponding increase in the training effect suggests that the magni-
tude of UA amplitude during feedback does not completely determine
the training effect. This could be due to a ceiling effect, so that UA ampli-
tude during training has no effect above a certain level. Alternatively,
it could also mean that the two groups used different strategies for
increasing UA amplitude during training and that although the second
group's strategy was more efficient for increasing UA amplitude during
feedback, it did not increase the training effect. Such strategic differ-
ences could be facilitated by the difference in the visual feedback stim-
ulus. In the first group participants needed to constantly look at the
feedback stimulus to get feedback, whereas the second group could
look elsewhere intermittently and return their gaze to the feedback
stimulus only when they wished to learn about their performance.
This could change theUA amplitude during feedbackwithout increasing
the training effect as could themere physical differences in the feedback
signals.

In summary, our neurofeedback study confirms thefindings of Zoefel
et al. (2011), provides new insights into the effects of the type of feed-
back provided, and confirms that neurofeedback training is possible
with a mobile setup based on the Smartphone Brain Scanner.

6. Further perspectives

6.1. Hardware

Current consumer-grade and research-orientedmobile EEG systems
are only the first iteration of the hardware. We predict twomajor direc-
tions of the development.

On one hand, the high-density systems will become mobile,
pushing for the best possible quality of the acquired signal in natu-
ralistic conditions. The development of these systems will not be
primarily focused on making them unobtrusive, fashionable, or con-
sumer-operated. From the spectrum of the features offered by the
new EEG hardware, these systems will focus on mobility, portability,
and low-cost. They will be used in the more or less classical experi-
ments, controlled and initiated by the researchers.

On the other hand, more consumer-oriented devices will emerge.
They will be fitted for particular use-cases, which will allow to make
them smaller, concealed, and user-friendly. Such sensorswill not neces-
sarily be seen as EEG devices, but rather as cognitive state monitoring
devices, and in addition to the EEG signal, they may include other
electro-physiological signals, such as EMG, ECG, and skin conductance.

Still, the data available from a large number of such systems bought
and worn by the consumers for their particular function, may offer
an unparalleled opportunity for understanding human brain and cogni-
tive states. Gaining privacy-preserving access to, and analyzing noisy,
not-at-all or poorly annotated data originating from brain state, from
hundreds or thousands of subjects and collected over days, weeks,
or months can become one of the grand challenges for cognitive neuro-
science in the next few years.

The development of neuroheadsets and sensors accompanies
the development of mobile devices, smartphones and tablets, allowing
for personal hubs for interconnected, wearable devices. The increasing
processing power and low-energy protocols (e.g., Bluetooth 4.0, NFC)
turn our personal space into a busy network of devices (phones,
Bluetooth headsets, smart watches, glasses, hearing aids etc.). EEG
sensors, even if equipped with a single electrode, can fit naturally in
such systems, as long as they can provide certain well-defined value
for the user.

6.2. Software

The evolution of the software will be closely coupled with the use-
cases of the hardware solutions. For the research-focused high-density
mobile hardware, the minimal requirement of data collection and
possibly transmission on mobile devices can be easily satisfied with
simple software. In such cases, the already existing frameworks, such
as EEGLAB, can utilize significant processing power of desktop or even
server systems, and can even be used for data processing and transmit-
ting the extracted features back to the user.

For more consumer-oriented sensors, real-time applications, possi-
bly operating directly on mobile devices without server connection,
need to be developed. The Smartphone Brain Scanner is the first frame-
work that enables such development; pushing the limits of what can
be done in terms of creating user value by enabling novel EEG applica-
tions. As themobile devices performing the processing growmore pow-
erful, more complex algorithms can be enabled to compensate for noise
and low density of the systems.

6.3. Experiments

The vast majority of studies of neural and cognitive functions have
so far been set in the laboratory,where the subject is severely restrained
in movement, isolated from the surrounding world, and is required
to carry out the same limited task repeatedly. This is an impoverished
environment that we normally live in and are optimized to function
in; it totally ignores human agency.

Taking EEG out of the laboratory and into the natural world will
allow us tomove beyond these constraints.Measuring the EEG of a free-
ly moving subject will allow us to characterize the neural activity of
many important functions. With wearable EEG we can study natural
motion such as walking and complex composite motion. We can also
study the many cognitive tasks that we constantly perform in their
full complexity. Examples include preference-based choice as we select
given consumer goods over others, the constant updating of working
memory throughout our daily work, and the use of speech in natural
social interactions. Measuring the EEG of subjects in rich natural envi-
ronments will allow us to characterize the neural function of the per-
ceptual systems when they are met with rich multimodal stimuli in
which attention is constantly needed to select the relevant stimuli and
filter out irrelevant stimuli.

The complexity and variability of data collected in the natural envi-
ronment will be tremendous compared to the data collected in the lab-
oratory. In order to derive anything meaningful from it, the amount
of necessary data will be equally tremendous. Wearable EEG offers an
immediate solution as hours, days, even weeks of data can be collected
outside of the laboratory; something which is completely unrealistic in
lab-based experimentation.
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7. Conclusions

Mobile brain imaging, here realized as an EEG system, offers huge
promise for many research areas. Here we show our initial work with
the Smartphone Brain Scanner framework, which can record, analyze,
and 3D real-time visualize EEG signals directly on a mobile device,
using low-cost, consumer-grade neuroheadsets. The signal obtained
in the studies, although of low dimensionality (14 channels) and noisy,
can still be successfully used for multiple classical neuroscience applica-
tions, including brain-computer interfaces (BCIs), analysis of high-level
brain activity, and neurofeedback. The features of the presented system
make it possible to use in domains such as cognitive psychology,medical
applications, social science research, as well as for “self monitoring” as
promoted by the Quantified Self community5.

As the presented framework runs on mobile devices, including
tablets and smartphones, it can be coupled with other embedded sen-
sors in a natural way. In this sense, EEG serves as an extension of the
sensing capabilities of the already existing devices, and can be used
in an integrated way with the other collected data (e.g. location, social
interactions, activity level).

We argue that the presented framework enables a wide variety of
experiments, and the initial set of these presented in this paper serves
as a validation and showcase of the versatility of the framework and
general approach. It is now clear that we are at the stage where hard-
ware is powerful and inexpensive enough to be used for mobile brain
imaging, while at the same time available algorithms can handle noisy
data, allowing us to recover significant information.

The approach to user-oriented and mobile EEG does not end with
the notion of researchers using the mobile devices and consumer-
grade neuroheadsets to collect the data from the subjects.We can easily
imagine that the systems will eventually be able to deliver interesting
data to the public, giving them incentive to invest in their own hard-
ware. In this shift, the data would be collected and uploaded by the par-
ticipants themselves, distributing the cost and difficulty of running
experiments. This presents yet more challenges, such as data quality
control and privacy. On the other hand, it does give a promise of
extremely large datasets created for large populations and over long
periods of time, for only little costs.
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ABSTRACT

With neuroimaging studies showing promising results for
discrimination of affective responses, the perspectives of ap-
plying these to create more personalised interfaces that adapt
to our preferences in real-time seems within reach. Addition-
ally the emergence of wireless electroencephalograph (EEG)
neuroheadsets and smartphone brainscanners widens the pos-
sibilities for this to be used in mobile settings on a consumer
level. However the neural signatures of emotional responses
are characterized by small voltage changes that would be
highly susceptible to noise if captured in a mobile context.
Hypothesizing that retrieval of emotional responses in mobile
usage scenarios could be enhanced through spatial filtering,
we compare a standard EEG electrode-based analysis against
an approach based on independent component analysis (ICA).
By clustering scalp maps and time series responses we iden-
tify neural signatures that are differentially modulated when
passively viewing neutral, pleasant and unpleasant images.
While early responses can be detected from the raw EEG
signal, we identify multiple early and late ICA components
that are modulated by emotional content. We propose that
similar approaches to spatial filtering might allow us to re-
trieve more robust signals in real-life mobile usage scenarios,
and potentially facilitate design of cognitive interfaces that
adapt the selection of media to our emotional responses.

Index Terms— EEG, ICA, Affective Computing, Affec-
tive Response

1. INTRODUCTION

Many of the neuroimaging experiments that use electroen-
cephalograph (EEG) when measuring affective responses
from pleasant or unpleasant images have identified two main
components; early posterior negativity (EPN) emerging be-
fore 300ms and triggering a relative negative peak in the EEG
amplitude [1], and a late positive potential (LPP) emerging
after 300ms [2]. Recent studies indicate that several event-
related potential (ERP) components may be influenced as
early as 50-80ms by emotional words and faces [3]. After

that an N1 component at 130ms, characterized by a parietal
negativity, is modulated by emotional versus neutral content,
followed by the EPN occipital negativity described above.
The early negativities are thought to reflect an increased al-
location of attentional resources elicited in response to what
is initially perceived as salient in contrast to neutral. Sub-
sequently, after 300ms, an initial P3 parietal component,
followed by an occipital positive deflection corresponding to
the LPP described above, and a later central positivity (LCP)
appear likewise to be modulated by emotional content. These
three positive components (P3, LPP and LCP) character-
ized by shifting scalp topologies might be related to memory
encoding and further semantic processing of the emotional
content [4].

The promising results for distinguishing emotional re-
sponses lead to the perspective of applying these to create
more personalised content in real-time [5, 6, 7]. Addition-
ally the emergence of wireless electroencephalograph (EEG)
neuroheadsets and smartphone brainscanners [8] widens the
possibilities for this to be used on consumer level. How-
ever, even when recording EEG under ideal conditions in a
lab, emotional ERP responses are defined by only slight µV
changes within single electrodes that would remain highly
susceptible to noise in a mobile context. An example of this
can be seen in a recent EEG experiment using an auditory
oddball paradigm indicating that the P300 amplitudes might
be reduced by 35% when walking compared to sitting on
a chair [9]. In contrast, a similar mobile EEG experiment
recording P300 responses while standing, walking and run-
ning showed no difference in amplitudes [10] when applying
spatial filtering based on independent component analysis
ICA [11]. Although the rows in the matrix of EEG data
are initially defined by voltage differences measured over
time between each electrode and the reference channel, they
are based on ICA transformed into temporally independent
events that are spatially filtered from the channel data. While
aspects of volume conduction within the brain are not taken
into consideration, the ICA decomposition frequently results
in components that resemble neuroanatomical projections of
dipoles, which in turn reflect synchronous activity of local
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field potentials projected throughout the scalp [12].
Hypothesizing that retrieval of affective responses (ERPs)

might be enhanced through spatial filtering, we compare a
standard EEG electrode-based analysis against an approach
based on independent component analysis (ICA). In the sub-
sequent sections we outline the experimental methods, de-
rived results and discuss our findings.

2. METHODS

In this study we used pictures from two studies, both show-
ing successful discrimination of affective stimuli. One, based
on 96 stimuli from the International Affective Picture System
(IAPS) [13] consisting of 32 pleasant (mean valence/arousal
7.0/5.5), 32 neutral (mean valence/arousal 4.9/3.4), and 32
unpleasant (mean valence/ arousal 2.4/5.9) pictures1. The
other study [14] was also based on stimuli from IAPS, con-
sisting of 22 pleasant (mean valence/arousal 5.3/5.2), 22 neu-
tral (mean valence/arousal 5.2/ 5.2) and 22 unpleasant (mean
valence/arousal 5.0/ 5.3)2.

The stimuli were presented in a random order for 6 sec-
onds in blocks of 5 pictures. Between blocks, the partici-
pant was presented with a pause screen and was instructed to
press enter when he was ready to continue the experiment. A
scrambled image was generated by randomising the stimuli
to achieve a mean luminosity equivalent to that found across
all pictures. The scrambled picture was displayed 3 seconds
before stimuli presentation, while the baseline was recorded.
After the stimuli presentation, a grey screen was presented for
3 seconds.

The subjects (four right-handed males) were seated in a
darkened, sound isolated room, at 50 cm distance from the
screen. All stimuli were presented in colour on a 19 inch
ViewSony GF90 screen. Prior to the experiment, the subjects
were instructed to avoid excessive blinking during the base-
line and picture presentation, and to avoid muscle and jaw
tension and head movements.

EEG data was collected from 64 active AgCl electrodes
(placed according to the international 10-20 system) recorded
on a BioSemi ActiveTwo system at 512 Hz sampling fre-
quency, while the impedance of each electrode was kept

1IAPS stimuli numbers; pleasant: 2208, 2250, 2260, 2501, 2560, 2650,
4611, 4617, 4640, 4653, 4659, 4666, 4687, 4694, 5621, 8041, 8080, 8090,
8116, 8120, 8161, 8180, 8200, 8280, 8300, 8320, 8330, 8370, 8380, 8400,
8420, 8465; neutral: 2020, 2190, 2200, 2210, 2214, 2215, 2220, 2221, 2235,
2240, 2270, 2272, 2278, 2383, 2393, 2410, 2441, 2491, 2493, 2514, 2579,
2745.1, 2749, 2752, 2810, 2850, 2870, 2890, 3210, 5455, 7550, 9210; un-
pleasant: 2120, 2205, 2520, 2590, 2691, 2730, 2750, 2800, 3015, 3030,
3053, 3100, 3170, 3180, 3181, 3400, 3500, 3530, 3550, 6210, 6211, 6212,
6821, 6834, 6838, 9041, 9250, 9254, 9341, 9405, 9800, 9921

2IAPS stimuli numbers; pleasant: 1660, 4656, 4534, 7460, 4680, 5300,
4520, 8460, 4641, 7430, 2208, 8210, 8501, 8080, 8185, 8370, 5910, 2340,
2057, 1710, 1750, 2050; neutral: 5972, 4230, 4004, 4000, 6930, 2661, 8060,
5920, 7010, 6150, 7217, 7002, 7050, 7006, 4800, 8260, 5731, 1121, 8311,
7600, 4598, 4571; unpleasant: 3130, 3100, 2800, 9570, 3261, 9810, 3400,
9500, 9560, 6260, 3160, 6610, 6561, 9520, 1274, 5971, 1052, 9102, 4302,
4770, 1930, 3250

below 50 kΩ. The data was referenced to two mastoid elec-
trodes. After recording, the data was processed using the
EEGLAB plug-in for MATLAB (MathWorks, USA). The
data was filtered offline from 1 to 30 Hz and down sampled
to 128 Hz. Epochs of 3000ms (1000ms pre- and 2000ms post
onset) were obtained for each stimulus from the continuously
recorded EEG. The mean voltage of a 1000ms segment pre-
ceding picture onset was subtracted as the baseline. Then,
extreme noise from movement (muscle activity) or sensor
artefacts was controlled by rejecting epochs with large ampli-
tudes and thresholding the data on all electrodes (except the
frontal electrodes) to +/- 150 µ V. This resulted in rejection of
30.3% of the epoch for one subject in contrast to rejection of
4.1% for the other subjects. Thus one subject was excluded
from further analysis. In the next step, statistically deviat-
ing sensors were replaced with spherical interpolation based
on the remaining sensors. Independent component analysis
(ICA) was used to find distinct source activity across elec-
trodes, such as non-brain components from eye and muscle
activity. Vertical and horizontal eye movements were auto-
matically removed using EyeCatch based on a library of over
half a million independent component scalp maps [15].

Traditionally emotional responses have been analysed
from ERPs by assessing the time windows of the relevant
components (P1, N1, P2, ENP, P300, LLP, slow wave, etc.)
from a Global Field Power plot. This was either followed
by inspection of individual sensor’s ERPs in order to access
which sensors should be included in the statistical analysis,
or by relying on sensor locations from previous studies for
the statistical analysis.

Thus we assessed the relevant time windows from a
Global Field Power plot, and used sensor locations identified
from scalp maps of relevant time windows for the statisti-
cal analysis. The statistical analysis consisted of one-way
repeated anova tests which compared how a within-subjects
experimental group performed in the three experimental con-
ditions (neutral, pleasant and unpleasant). Thereby we com-
pared whether the individual average of selected electrodes
for each condition differed significantly from the aggregate
mean across the experimental conditions.

Furthermore, some studies use methods for topographic
analysis such as Global Map Dissimilarity [16], principal
component analysis [4, 17] or minimum norm analysis [2].
Similarly we used machine learning methods to identify
common patterns of brain activity across the subjects, by
combining PCA, ICA and K-mean clustering, following the
standard EEGlab procedure [19].

We decomposed the EEG data into ICA scalp maps and
time series components, which were grouped by initially
reducing the dimensionality of the feature space to N=10
based on principal component analysis PCA [18], which as
a pre-clustering function computes a vector for each com-
ponent to define normalized distances in a subspace repre-
senting the largest covariances within scalp maps and time



series changes in power. Subsequently we applied a K-means
algorithm (K=10) to cluster similar ICA components and
separate outliers that remain more than three standard devi-
ations removed from any cluster centroid, thereby following
the standard EEGlab procedure [19].

3. RESULTS

The Global Field Power (plotted in Fig. 1) is the squared elec-
trical activity over all sensors, trials, and subjects according
to the procedure of [2]. The following relevant time windows
are drawn based on the Global Field Power: P1 (75-125ms),
EPN (130-225ms), P3 (250-315ms) and LPP (325-525ms).

Fig. 1. The averaged global field power plotted for the three
conditions, neutral (green), pleasant (red), unpleasant (blue)

By plotting the activity of sensors in the corresponding
time windows, we used the following scalp plots to identify
the sensors of interest.

Fig. 2. Scalp maps for the time periods P1, EPN, P3 and LPP
for each of the conditions (unpleasant, neutral and pleasant).

The scalp maps in Fig. 2 reveal sensors contributing to
the deviating activity shown in Global Field Power. In the
time window of P1, the activity is centered around the cen-
tro parietal area (Cz, CPz, CFz) and part of the occipital right
hemisphere (POz, PO4, Oz, O2 and PO8). Although there
is little consistency in which electrodes are examined across
studies, both [20, 21] examine sensors covering the occipital
lobe of an early effect. Thus sensors covering the centro pari-
etal area and the right occipital hemisphere were examined
for an effect in P1 by an average EPR and this was followed
by a statistical anova analysis. Sensors in the temporal occip-
ital area (P7, P8, POz, PO7, and PO8), corresponding to the
sensors used in [22, 21] were analysed for an effect within the
EPN time window. Likewise the sensors covering the centro
parietal (Cz, CPz, CFz) and the temporal parietal area (PO3,
PO4 PO7, PO8, P7 and P8) corresponding to the sensors used
in [22, 21] and the sensors Pz, P1, P2, P5, P6, PO3, PO4,
PO7, and PO8 corresponding to the sensors used in [20] were
analysed in regard to P3 and LPP respectively.

From the paired one-way anova test of each average ERP,
the only significant effect was found in the EPN time window,
see Fig. 3.

Fig. 3. An average ERP of channels covering the temporal oc-
cipital lobe (P7, P8, POz, PO7, and PO8) shows the three con-
ditions pleasant (red), unpleasant (blue) and neutral (green).
A statistical one-way anova on each channel marks the signif-
icant areas (α=0.01) of the ERPs in grey.

This showed a number of short significant time windows
at 133-164ms, 180-188ms and 211-219ms. The first signif-
icant time window distinguishes the neutral condition from
those elicited by pleasant pictures, whereas the amplitudes
of negative pictures are significantly lower in the second and
third windows. These findings are consistent with results
from [21], showing a significant effect for pleasant stim-
uli versus neutral and unpleasant in the early time window
(150-300ms).

From the 20 clustered ICA components, three clusters are
described in this paper (cluster 6, 10, and 12). These three
were shared among all subjects (indicating that these com-
ponents could include more general processing). They were
also based on a relatively large amount of ICs and all of them



showed a significant difference between one or more condi-
tions. Among these, only one cluster (cluster 6) showed a sig-
nificant difference of conditions across both early (<300ms)
and late (>300ms) time windows from a unpaired balanced
one-way anova test. This suggests that cluster 6 represents
neural activity contributing to both early and late emotional
responses. The time course activations corresponding to the
averaged ICA scalp maps in clusters 10 and 12 represent only
short intervals, with a significant effect of condition limited
to late responses.

In Fig. 4, 5, and 6, the averaged ICA scalp maps and
corresponding ERP of clusters 6, 10 and 12 are shown.

Fig. 4. Cluster 6, based on PCA dimensionality reduction and
K-means clustering (K=10,σ=3) of 97 ICA scalp maps found
within all of the 12 sessions, with corresponding ERPs for
pleasant (red), unpleasant (blue) and neutral (green) images.
Significant intervals for differentiating between the emotions
are indicated in grey.

Fig. 5. Cluster 10, based on PCA dimensionality reduction
and K-means clustering (K=10,σ=3) of 69 ICA scalp maps
found within all of the 12 sessions, with corresponding ERPs
for pleasant (red), unpleasant (blue) and neutral (green) im-
ages. Significant intervals for differentiating between the
emotions are indicated in grey.

From the ERPs we see a significant effect (α=0.01) of
conditions in short windows of both early (94-177ms and
133-148ms), medial (312-328ms) and late (445-484ms, 500-
570ms, 688-766ms, 797-828ms, 836-898ms and 922-953ms)
temporal responses. Within these time windows the signifi-
cant effect is mainly between pleasant and neutral/unpleasant,
while we only see a significant effect of unpleasant pictures

Fig. 6. Cluster 12, based on PCA dimensionality reduction
and K-means clustering (K=10,σ=3) of 89 ICA scalp maps
found within all of the 12 sessions, with corresponding ERPs
for pleasant (red), unpleasant (blue) and neutral (green) im-
ages. Significant intervals for differentiating between the
emotions are indicated in grey.

in the early time window (133-148ms).

4. DISCUSSION

Our retrieval of affective ERP components based on a stan-
dard EEG analysis shows that we can differentiate pleasant
from unpleasant and neutral images within three intervals
133-164ms, 180-188ms and 211-219ms. Even though this
corresponds well to earlier reports on N1 and EPN [4, 21],
we see no significant effect in the more pronounced P300 or
LPP from the basic ERP analysis. Although this could be
due to the low number of subjects (making it harder to reach
a significant level), it might also indicate that the later com-
ponents are more sensitive to individual processing. Thus,
using P300 or LPP as a marker for real time classification of
emotions might require extensive training of the classifier to
accommodate the individual differences in late EPR oscilla-
tions. In contrast, using an earlier low-level marker such as
EPN has proved to be sensitive to physical stimulus factors
and indexes early sensory processing within the visual cortex.

However, a spatial filtering based on clustering ICA scalp
maps and time series indicates that we can identify multiple
early and late responses that are modulated by emotional
content. Here, cluster 6 based on 97 ICA scalp maps shows
an early difference at 130ms between pleasant compared to
unpleasant as well as neutral content. In later time windows
it additionally shows a difference between pleasant versus
unpleasant/neutral content at 300ms, 450-600ms and 700-
950ms. The cluster is characterized by a topology indicating
a right lateralized activation in the extrastriate visual cortex
and a polarity shift in the time series changes in power around
300ms. We found similar polarity shifts after 300ms in clus-
ters 10 and 12 in our experiment, but here the significant
differences between emotional and neutral content were lim-
ited to short intervals between 450 and 900ms after picture
onset. However in clusters 10 and 12, based on 69 and 89



ICA scalp maps respectively, the corresponding time course
polarity shifts around 300ms resemble the early negativities
and late positivities reported earlier. In our experiments the
averaged ICA scalp topologies of local field potentials also
resembled these posterior early negativity and late positiv-
ity scalp distributions identified previously in affective ERP
responses [23].

Our results are in line with the findings in a recent
temporal-spatial PCA analysis of emotional ERP responses
[4]. Here, the analysis establishes that the overlapping laten-
cies within early negativities and late positivities represent
distinct ERP components that reflect consecutive stages of
neural processing [4]. Within that study, virtual epochs were
extracted as described by the time course factor loadings for
pleasant, unpleasant and neutral images, indicating that a re-
duced set of principal components is modulated by emotional
content corresponding to the N1, EPN, P3 and LPP time win-
dows. In our study, we also applied PCA as a preprocessing
step before clustering ICA scalp maps and their correspond-
ing ERPs, and similarly found that the significant intervals
for differentiating between the pleasant and unpleasant im-
ages are within an early (<300ms) time window. In contrast,
components emerging later (>300ms) rather indicated the
difference between pleasant versus unpleasant and neutral,
as has previously been reported [17]. This confirms that the
early emotional ERP responses primarily capture the polarity
of valence, that is, whether the images represent something
pleasant or unpleasant. However, the later ERP responses
incorporate complementary aspects of arousal that character-
ize the intensity of the emotional involvement relative to a
neutral state [16].

In order to capture these components in even more noisy
environments, like when accessing audiovisual media in real-
life usage scenarios, other types of spatial filtering might be
required to retrieve robust signals from EEG data, as exem-
plified by the real-time 3D source reconstruction used in the
Smartphone Brain Scanner open-source software project [24],
[8]. This would enable us to gain a more thorough under-
standing of the consecutive steps in affective responses, rang-
ing from allocation of attentional resources and memory en-
coding to aspects of semantic processing. This in turn could
potentially lead to incorporating these components into next
generation cognitive interfaces capable of adapting the selec-
tion of content to our emotional responses.
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ABSTRACT

A class of Brain Computer Interfaces (BCI) involves inter-
faces for neurofeedback training, where a user can learn
to self-regulate brain activity based on real-time feedback.
These particular interfaces are constructed from audio-visual
components and temporal settings, which appear to have a
strong influence on the ability to control brain activity. There-
fore, identifying the different interface components and ex-
ploring their individual effects might be key for construct-
ing new interfaces that support more efficient neurofeedback
training. We discuss experiments involving two different
designs of neurofeedback interfaces and suggest further re-
search to clarify the influence of different audiovisual com-
ponents and temporal settings on neurofeedback effect.

Index Terms— Interfaces design, BCI, Neurofeedback
Training, Audiovisual Components, User Experience

1. INTRODUCTION

Over the last couple of years the number of personal infor-
matics apps has skyrocketed, allowing smartphone users to;
track their sleeping patterns by combining remembrance of
espressos past with built-in motion sensors 1; upload pho-
tos of their lunch for peer approval of the number of calories
consumed 2; or share their exercise progress when running
3 accompanied by minutely detailed monitoring of heartbeat
and respiration rates 4. When it comes to personal informat-
ics apps for monitoring mental state, mobile interfaces have
largely been limited to subjective measurements of mood with
e.g. MoodPanda 5 or measuring brain agility with standard
cognitive tasks using e.g. Quantified Mind6. However the re-
cently launched smartphone brainscanner open-source project

1sleepcycle.com.
2https://itunes.apple.com/en/app/meal-snap-calorie-

counting/id425203142?mt=8
3endomondo.com.
4http://www.zephyr-technology.com/products/bioharness-3/
5moodpanda.com.
6qualified-mind.com

7 [1], enables continuous monitoring of cortical activity in an
everyday context. The smartphone brainscanner combines a
wireless EEG neuroheadset with a smartphone which allows
for real-time 3D brain imaging [2] as well as altering brain
activity on the basis of neurofeedback. With neurofeedback
training, the individual can learn to increase or decrease the
activity of particular brainwave frequencies on the basis of
real-time feedback.

These types of brain machine apps will require novel ap-
proaches to the design of multimedia interfaces, as the user is
no longer simply passively accessing a history of self-tracking
events. Instead the user is actively carrying out a training ses-
sion by generating data in real time by interacting with audio-
visual representations of brainwave activity using a mobile
device.

In the following sections we outline existing neurofeed-
back training paradigms, and extract the underlying audiovi-
sual components from the interfaces. We propose a frame-
work to describe these interface components as part of a feed-
back loop, serving as a basis for designing neurofeedback
interfaces. This work serves as a first step towards under-
standing the effect of interface components on neurofeedback
training. Likewise we conduct an experiment with two dif-
ferent interfaces, illustrating an effect on upper alpha activity
depending on the feedback interface.

2. TRAINING FREQUENCY BANDS

Training neural activity by neurofeedback training has been
applied on various frequency bands. E.g. decreasing theta
(4-7Hz) and increasing beta (15-18 Hz) and cortical sensory-
motor rhythms (12-15 Hz) amplitudes have been applied as
treatment for children with Attention Deficit Hyperactivity
Disorder (ADHD) [3]. Increasing the theta-to-alpha ratio
has shown an increase in artistic performance among musi-
cians [4]. When it comes to alpha band activity, this has
recently been associated with a more basic cognitive pro-
cess [5].

7https://github.com/SmartphoneBrainScanner



An increase of alpha brainwave (8-12Hz) activity is typ-
ically associated with inhibition of neural activity, and is
referred to as event-related synchronisation. Event-related
alpha synchronization may block information processing in
task-irrelevant areas of the brain like the occipital cortex when
closing our eyes [5]. By inhibiting task-irrelevant activity, the
decrease in alpha activity improves the signal-to-noise ratio.
In this sense inhibition is an active process for information
processing [5]. Regarding the upper alpha band (10-12 Hz), it
has been shown that amplitude/power increases as a function
of memory load during the retention period in a memory test.
This probably reflects the effort of keeping a growing num-
ber of items in short-term memory [6]. In contrast, a decrease
in alpha activity (referred to as event-related desynchronisa-
tion) in the upper alpha band (10-12Hz) is typically observed
during actual retrieval of semantic information. The magni-
tude reflects cortical activation [7], meaning that excitation of
neurons increases the more well integrated the information is
[8]. Considering the distribution of brainwave frequencies, an
alpha mean frequency of 10 Hz can be interpreted as the cen-
ter around which the neighboring brainwave bands of delta,
theta, beta and gamma constitute the harmonics at 2.5, 5, 20
and 40 Hz, respectively. Such a phase-coupling of, e.g. al-
pha and beta brainwave activity, is often observed, but if the
power is shifted towards the upper 12.4 Hz or lower 8.4 Hz
range, the alpha activity becomes maximally decoupled as the
frequency ratios between brainwave bands approach an irra-
tional number and oscillations no longer synchronize [9] [5].

Thus neurofeedback experiments aiming to increase
power in the upper alpha range represent a decoupling of al-
pha activity from the surrounding frequency bands. Therefore
any improvement in cognitive performance could reflect an
association between higher alpha frequency and good mem-
ory performance which has previously been shown [8]. How-
ever, when it comes to the design of neurofeedback inter-
faces, they are often conceptualised with little attention to
how the actual feedback of audiovisual elements might affect
the user’s ability to control brain activity.

3. AUDIOVISUAL COMPONENTS

Irrespective of whether the training aims at increasing or de-
creasing one or multiple types of brain waves, it has com-
monly been represented by a simple scaling of visual com-
ponents; like the height of a bar and a color change, or au-
dio components; like high and low pitch tones and a volume
change. The most common auditive component used for audi-
tive or audiovisual feedback is the pitch of a sound [10, 11, 4].
A short high-pitched or low-pitched sound indicates that the
increase or decrease in brain activity has reached a threshold.
Thus the pitch often represents a successful or failed trial. Al-
though pitch is the most common auditive component used in
neurofeedback training, other more continuous sounds could
be used with components such as rhythm and volume as indi-

Fig. 1: In this interface gray indicates brain activity equal to
an average activity (baseline), and gradually turns blue when
activity decreases and red when activity increases.

cators.
In visual interfaces there is more variety in the use of

components. Some studies use simple interfaces where e.g.
a square changes color gradually from blue to gray and red
indicating activity below, equal to and above an average base-
line activity [12] (see Figure 1). This gradual color change
from blue to red can be associated with cold and warm tem-
peratures. Other interfaces indicate increases in activity by
altering the size of a graphical element, such as the height
of a bar [13], which resembles a vertical scale like a tuning
bar. Another method is moving an object on a vertical or hor-
izontal axis [14], resembling a high or low activity. These
interfaces all consist of geometric primitives (e.g. a square),
altered by another component such as color, size or the spacial
distribution within the screen.

Besides representing brain activity, components might be
added to create an atmosphere or simply to make the train-
ing more interesting. An example of this is the neurofeed-
back study of Egner et al. [4] using an auditive feedback to
increase the alpha/theta ratio. A background sound resem-
bling either a ’babbling brook’ or ’ocean waves’ was used
to indicate a relative increase of alpha and theta activity re-
spectively. Additionally, a high-pitched or low-pitched gong
sound would be executed when the activity exceeded a pre-set
threshold of alpha and theta, respectively. The subjects aimed
to increase the amount of theta sound representation. Thus
the background sound would not only indicate the relative ac-
tivity but also contribute to achieving a mental state, whereas
the gong sound would primarily indicate reaching a ’signif-
icant’ activity level; a ’success’/’fail’ scenario. Another ex-
ample is the visual interface used for neurofeedback training
of children with ADHD in Heinrich et al. [15]. Here, the aim
is to make a famous German cartoon mouse do a pole-vault.
This is achieved when a threshold is met; indicated by a pole
changing color from white to blue or red to show a relative
decrease or increase, respectively. In this interface, the color
change of the pole is the main indicator of the brain activ-
ity, much like the interface with a blue/gray/red square men-
tioned above. However, the cartoon mouse creates a ’story’
supporting the training, and might encourage imagination or
trigger-related memories.



Thus these game-like interfaces are basically constructed
from a combination of the same simple components and sub-
stitute generic primitives with more game-like features such
as airplanes [15] or pacmans [3]. 3D games have also been
developed, where high or low activity is represented by e.g.
the speed of a racing car or a dancing robot [16]. These 3D
interfaces can be described as a combination of multiple vi-
sual components. A car speeding up is created by changing
the size and spatial distribution of the surrounding elements at
a faster frequency. These game-like interfaces are commonly
used in clinics for treatment of e.g. ADHD. Whereas the more
primitive interfaces typically occur in scientific settings.

Summing up, we have identified the following audiovi-
sual components, which in combination can describe any in-
terface. All of these change with the EEG sampling frequency
and the screen update frequency.

Auditive components include:
• pitch (low, high)
• volume (soft, loud)
• timbre (dark, light)
• duration (short, long)
• rhythm (temporal distribution)

Visual components include:
• geometric primitives (connected segments)
• color (discrete, gradients)
• size (proximity, scalability)
• movement (horizontal, vertical)
• composition (spatial distribution)

Consequently, when designing new neurofeedback inter-
faces, focus should not only be on how to visualize an in-
crease or decrease of brain activity, but should consider how
components (and combinations of these) might affect the
user’s imagination, or trigger-related memories, etc. Further-
more, no studies have examined which components are in re-
ality causing the greatest effect.

4. TEMPORAL ASPECTS OF NEUROFEEDBACK

The importance of these interface components is due to the
real-time feedback, which creates a tight coupling between
the visual interface and the brain activity. To understand this
relationship and aspects of real-time feedback, we illustrate
how a neurofeedback application is constructed, see Figure 2.

Neurofeedback applications consist of four stages, which
constitute the feedback loop:

Preparation deciding which brainwaves to train and from
which area

EEG data acquisition collecting data on cortical activity

Fig. 2: An illustration of the stages represented in neurofeed-
back applications, with a loop connecting the data acquisi-
tion, interface and response stage. Varying the time span may
cause a measurable effect, from changes in plasticity of neural
networks [17], to behavioral and neuro-psychological [18].

Interface visualizing the relative cortical activity (increase
or decrease) enabling reflection

Response changing behavior or mental strategy

Effect all of which might lead to a long-term effect on cog-
nitive, physiological or behavioral measures.

The loop between data collection, visualization and re-
sponse is completed in milliseconds, creating the real-time
feedback loop between brain activity and visualization. Since
changes in brain activity are monitored at the level of mil-
liseconds, it allows the user to instantly change mental states
on the basis of real-time feedback. Thus this time span should
be considered when developing neurofeedback applications.
Repeating this loop several times creates a continuous repre-
sentation of brain activity during the time span of seconds,
minutes or hours. Within this time span the user can explore
the effect of different strategies of thoughts by receiving and
reflecting on the information provided by the instant real-time
feedback.

5. TESTING TWO NEUROFEEDBACK INTERFACES

To explore the influence components might have on the ef-
ficacy of neurofeedback training, we test two different inter-
faces; one indicating brain activity based on only a color com-
ponent (a blue/gray/red square) and the second interface using
multiple components as indicators.

5.1. Experimental Design

We conducted an experiment with 25 subjects aiming at in-
creasing their upper alpha frequency band (10-12Hz) using
one of the two different neurofeedback interfaces. The first
group of 12 healthy subjects (7 males and 5 females) with
an age average of 23.6 ±1.9 did neurofeedback training on a
replication of an existing interface [12]. The interface is sim-
ilar to that mentioned earlier, consisting of a single square,
with the color being the only component changing. The color



Fig. 3: The second neurofeedback interface where small
squares colored from blue to red that build up columns along
a horizontal temporal plane represent the user’s ability to in-
crease upper alpha brainwave activity.

Fig. 4: The color of the squares indicates the intensity of the
brain activity

changed gradually from blue to gray and red when the brain
activity was below, equal to and above baseline (an average
relaxed brain activity), respectively (see Figure 1). The sub-
jects were instructed to make the square turn red. During the
baseline recording, the subjects were presented with an inter-
face similar to the training interface, however the input values
were randomly generated. The subjects were instructed to
only focus on counting the number of times the square turned
red. This simple cognitive task would help prevent their mind
to wander off, and would make the recording more compat-
ible across subjects. In addition they were told to avoid any
muscle tension and jaw clinching as well as to reduce eye
blinks to a minimum during all recordings.

The second group of 13 healthy subjects (7 male and 6
female) with an age average of 26.6 ± 5.5 did neurofeed-
back training using an interface consisting of multiple pa-
rameters. A pattern of small squares was generated once
a second, if the alpha activity exceeded the baseline activ-
ity. These squares created a column of squares, incrementally
generated along a horizontal axis. This formed a virtual time-
line of columns illustrating the brain activity over a 5-minute
training session, where the color of the squares changed con-
tinuously according to the attained power measure calculated
from a running mean of 2 seconds (see Figure 3). A small
increase above baseline resulted in a dark blue square, which
turned lighter and gradually changed from yellow to orange,
reflecting the magnitude of the attained power measured us-
ing EEG (see Figure 4). Thus this interface consisted of the

following components: a composition of geometrical primi-
tives (formed as squares), changing colors gradually within a
color range (see Figure 4) and the spatial distribution along
a horizontal and vertical axis. The subjects were instructed
to generate as many squares as possible within the columns
and preferably make them turn yellow or orange. During the
baseline recording the subjects were presented with an inter-
face similar to the training interface, however the input val-
ues were randomly generated. The subjects were instructed
to only focus on counting the number of times the squares
turned orange. This simple cognitive task would help prevent
their mind from wandering off, and would make the recording
more compatible across subjects. In addition they were told
to avoid any muscle tension and jaw clinching, as well as to
reduce eye blinks to a minimum during all recordings.

The training of both groups consisted of five sessions dur-
ing one week from Monday to Friday. Each session started
and ended with a 5-minute baseline recording, and in between
five, 5-minute training sessions were conducted. Each sub-
ject received a total of 25 training recordings and 10 baseline
recordings.

To record the brain activity the Smartphone brainscanner
was used, transmitting EEG signals to a USB-dongle con-
nected to a tablet. The setup had a sampling frequency of 128
Hz with feedback every 125 ms, giving the user an impres-
sion of live feedback. The Emotiv neuroheadset used in the
experiment consisted of 16 electrodes, including 2 reference
electrodes (P3/P4). The remaining electrodes were positioned
at AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8,
AF4 according to the international 10-20 system. The live
feedback was constructed from O1 and O2.

5.2. Data Analysis

For the analysis we were interested in cortical information
from the occipital lobe covered by O3, O4, P3 and P4. Since
P3 and P4 were reference electrodes, the signal could be
reconstructed by re-referencing. Thus the signal from the
frontal electrodes AF3, AF4, F3 and F4 (furthest away from
the area of interest) was averaged and referenced to P3 and
P4, allowing P3 and P4 to be included in the data processing.
This and all the following data processing was done offline
using EEGLAB [19]. The raw signal from the electrodes was
transformed into a power spectrum using Fast Fourier Trans-
formation.

With the alpha frequency band varying with age, possible
neurological diseases and memory performance [8], the upper
alpha frequency band had to be determined for each individ-
ual. By identifying the peak in the power spectrum (the indi-
vidual alpha peak (IAF)), the upper alpha frequency band was
set as a band of 2 Hz above IAF (from IAF to IAF+2Hz). The
upper alpha frequency band was determined for each subject
by the first baseline recording of each session. The mean am-
plitude of the upper alpha band was calculated for all baseline



Fig. 5: A comparison of the first interface (plotted in red) and
second interface (plotted in green) shows a significant differ-
ence in the users’ ability to increase upper alpha brain activity
when using the second interface for training. In contrast non-
responders experience a slight decrease. The bars indicate the
standard error of the mean.

and training recordings using a fast Fourier transformation.
However two subjects (1 male and 1 female) from the first
iteration of the experiment did not complete all the training
sessions, and were therefore excluded from further analysis.
In addition it has repeatedly been reported that some subjects,
referred to as non-responders, are unable to change ampli-
tudes of the brain frequencies significantly [3, 14, 20, 12].
The reasons for this have not been determined, but might be
due to pure physiological reasons [14] such as the thickness
of the skull. Thus subjects who did not show a significant in-
crease between the very first baseline (baseline 1 in session
1) and the training recordings from the last session (Friday)
were considered non-responders. As a result, 3 subjects (2
female, 1 male) from the first iteration and another 3 subjects
(2 male, 1 female) from the second iteration were considered
non-responders and where excluded from the statistical anal-
ysis.

Each subject’s EEG results from all recordings was nor-
malized in respect to the first baseline Monday (session 1),
thereby showing the ability to increase UA amplitudes in re-
lation to the first baseline in percentage. The average results
of the two groups have been plotted in Figure 5. The results
show a steady increase in the baselines (gray dots) for both
groups, which is similar to the results from Zoefel et al. [12].
In contrast the non-responders (blue) experience a slight de-
crease in baseline activity. Furthermore the plot shows a clear
increase in brain activity during the training recordings of
subjects of the second iteration (green) compared to the sub-
jects of the first iteration (red).

From the results above a paired, one-tailed t-test was con-

ducted for both the first and the second group, testing the
effect of training (difference between the very first baseline
and the very last baseline) on the responders. Both inter-
faces showed a significant increase from the first baseline of
the first session (Monday) to the first baseline of the last ses-
sion (Friday), with t(6)=4.46, p=0.002 and t(9)=3.47, p=0.003
for the first and the second group, respectively. To compare
the results of the two groups using different interfaces, we
conducted 2, two-sample t-tests (assuming unequal variance);
one testing the difference in training effect; the other testing
the difference in feedback effect. The tests showed no signif-
icant difference between the two interfaces in training effect
(t(14)=0.66, p=0.522. In contrast the tests did show a sig-
nificantly greater effect of feedback (the difference between
the average baseline and average training recording across all
sessions) for the second group (t(14)=2.70, p=0.020).

This suggests that neurofeedback interfaces should not
only relay the attained power in specific brain wave frequency
bands, but also take into consideration how different interface
components affect the user interaction. Thus we suggest in-
vestigating the efficiency of the individual visual components
in order to combine them into supportive interfaces.

6. CONCLUSION

In contrast to many traditional media interfaces, the audio-
visual components and the temporal aspects of neurofeed-
back interfaces have a direct influence on training abilities.
Thus, considering how the user responds to the audiovisual
representation (the user experience) should be included when
designing neurofeedback interfaces. This calls for more re-
search on the influence of specific audiovisual components
and the temporal aspect. This could be done by either con-
structing a thorough bottom-up analysis of the individual
components; or by a top-down meta-analysis of previous
studies, exploring best-practice combinations of components,
which have led to successful neurofeedback training.
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Abstract— In this paper we present an experiment to measure 
the upper and lower thresholds of the Stimulus Onset 
Asynchrony (SOA) for continuous/discrete apparent haptic 
motion. We focus on three stimulation parameters: the burst 
duration, the SOA time, and the distance between successive 
actuation points. The experimental setup is based on a set of six 
(6) vibrotactile actuators to investigate effects of the distance 
between successive actuation points (over the range 4 cm to 20 
cm) on the respective SOA thresholds. We found that as the burst 
duration increases, subjects detected the simultaneous-discrete 
boundary at decreasing SOA. Furthermore, we found that the 
larger the inter-actuator distance, the more linear the 
relationship between the burst duration and SOA. Finally, the 
large range between lower and upper thresholds for SOA can be 
utilized to create continuous movement stimulation on the skin at 
“varying speeds”. The results are discussed in reference to 
designing a tactile interface for providing continuous haptic 
motion with a desired speed of continuous tactile stimulation.  

Keywords— Funneling Illusion; Vibrotactile Feedback; Tactile 
Interface Design, Haptics Technologies. 

I.  INTRODUCTION  
An increased demand for computer-mediated interpersonal 

interaction has spurred research to improve the sense of touch 
using haptic devices (both kinesthetic and tactile) [1]. Tactile 
sensation provides a very powerful means of communication in 
our daily interactions, in particular to learn about the physical 
characteristics of the ambient world. For instance, it enables us 
to explore surfaces and textures, and in several cases develop 
personal and emotional connections with objects and 
individuals we touch. Furthermore, tactile stimulation can be 
used as a substitute modality for interaction with people with 
visual impairment or blindness [33].   

The spectrum for vibrotactile stimulation applications is 
wide, and ranges from training and education [17] to health 
care [18-19], social interaction [20], and gaming and 
entertainment [21-22]. For instance, the authors in [23] provide 
the musicians with vibrotactile feedback about their bowing 
and posture using vibration motors that are positioned on their 
arms and torso. A ubiquitous wearable vibrotactile belt is 
proposed to support a novel application of teaching participants 
choreographed dance [17]. In the medical field, a 
vibrating tactile probe is presented [18] that can be used to 
distinguish among different materials. The sensing capabilities 

could be exploited in various biomedical applications, such as 
catheterism and surgical resection of tumors.  

Tactile devices are primarily composed of an array of 
actuators where multiple actuation technologies can be utilized, 
such as vibrotactile motors, electrodes, piezoelectric ceramics, 
pneumatic tubes, shape memory alloys, electromechanical 
actuators (voice coils). In general, tactile arrays are of low 
resolution due to the size of the actuators and the coarse 
sensitivity of two-point limen on the skin [8]. Therefore, in 
order to provide a more apparent and subtle information with 
low spatial resolution devices, such as continuous sensation, 
researchers investigated the display of detailed shapes using 
human sensory illusions [9-10].  

Various sensations can be induced via tactile stimulation, 
such as hardness and softness, roughness of a surface, 
vibration, and warmth and cold [2]. Furthermore, there is no 
doubt that complex emotional sensations such as the 
pleasantness are associated with tactile sensations [3]. These 
complex sensations would be derived from the dynamic 
spatial-temporal patterns of tactile stimulations.  

Funneling [4] and saltation [5] are well-known illusory 
feedback techniques associated with tactile stimulation. 
Funneling refers to stimulating the skin at two distinct points 
with different amplitudes and eliciting tactile sensation in the 
somewhere in between [4]. On the other hand, saltation 
involves stimulating the skin at two locations with proper 
actuation overlap time to give a perceived stimulation in 
between. Varying the amplitude (funneling) and/or time 
interval (saltation) between two adjoining actuators to give 
continuous tactile stimulation has been a subject for research 
for a few years [6, 7].    

The authors in [35] demonstrated that the variables 
producing robust apparent tactile motion are the stimuli 
duration and the stimulus onset asynchrony (SOA). The SOA is 
defined as the time between onsets of subsequent actuations 
[35]. In this paper, we develop a wearable tactile display using 
low-resolution vibrotactile actuators to study the upper and 
lower thresholds of the SOA based on a known human sensory 
phenomenon called the “funneling illusion” [11]. The paper 
presents an experimental study to determine the upper and 
lower thresholds of the SOA to achieve continuous/discrete 
tactile movement using discrete actuators. We investigate the 
effects of spatial and temporal attributes to obtain a smooth, 



continuous movement sensation. Moving tactile sensation is a 
common and effective way to communicate, express, alert and 
direct user’s attention [12]. 

The remainder of the paper is organized as follows: In 
section II we present an overview of the related studies on 
human tactile stimulation. Section III introduces the 
psychophysical experiment setup, apparatus, procedure, and 
implementation details for the tactile armband device. In 
section IV, we present our results and a discussion about the 
interesting findings. Finally, in section V we summarize the 
paper findings and provide perspectives for future work. 

II. RELATED WORK 
The concept of tactile stimulation has been around for 

decades, since Geldard [13] in the 1950s studied the ability of 
the skin to make temporal and spatial discriminations close to 
those achieved by eyes and ears, and highlighted the 
underutilization of tactile channel for presenting information. 
More recently, there has been an increasing interest in 
developing tactile displays in multimodal interfaces (such as 
[14-16]).  

Research in developing high-resolution tactile displays has 
an immense historic background. Early studies reported that 
the intensity of tactile stimulation can be varied linearly and 
logarithmically to provide continuous vibrotactile motion [24]. 
Tan et al. developed a 3x3 vibrotactile array to study the 
impact of a sensory illusion called “sensory saltation” to be 
used as a haptic navigation system to convey directional 
information on the back of a human body [25]. Tactile display 
devices may also be used to represent text or images on the 
skin with high granularity [26]. However these devices are still 
in their infancy due to the poor and limited resolution of tactile 
stimulation, as well as their high cost, maintenance, bulkiness 
and power requirements.   

Researchers are conducting psychophysical experiments in 
order to investigate the spatial/temporal resolution of 
vibrotactile stimuli at various parts of the human body (such as 
the forearm [27], the back [28], and the neck [29]). For 
instance, the authors in [27] evaluated 13 test items of display 
methods, namely stationary and moving vibrotactile stimuli. 
Both display methods show best localization accuracy in the 
vicinity of the joints (elbow and wrist), followed by the 
locations of the actuators themselves.   

Researchers have also focused on the perceptual illusions of 
vibrotactile movement such as the research presented in [15-
16, 30]. For instance, Bonanni et al. [31] used a static vibration 
method to provide affectionate touch via illusory vibrotactile 
movement. Patterns of movement that resemble the act of 
smoothing on the skin were created and tested.  

Vibrotactile movement was explored by comparing three 
different presentation methods, namely saltation, amplitude 
modulation, and a hybrid condition [32]. Results demonstrated 
that modulation method was rated significantly more 
continuous and pleasant, and less arousing compared to both 
the saltation and the hybrid methods. Another effort to measure 
the control parameter space of apparent haptic motion using a 
variety of stimulation attributes and body sites is presented in 

[14]. In one experiment, they measured the range of SOA for 
straight-line apparent motion on the skin in relation to variation 
in frequency, duration and direction of stimulation [25]. Based 
on the measurements, a model that related the perceived 
illusory motions to the stimulation parameters was developed. 
The work was extended in [28] to vary frequency, intensity, 
duration, and body site.  

Designing tactile displays based on apparent tactile motion 
is challenged by the fact that there is insufficient understanding 
of the parameter space where the motion exists. Previous 
studies have focused on identifying variables that control the 
illusion by demonstrating various control values [34], and the 
design of control algorithms that are based on psychological 
modeling of apparent tactile motion [28]. In this paper, our 
goal is to extend the knowledge about such parameters by 
measuring the lower and upper thresholds of SOA timing for 
continuous/discrete apparent tactile motion.   

III. METHOD 

A. Participants 
Ten voluntary participants, 5 female and 5 male, took part 

in the experiment (mean age 27.4 years, SD = 6.97). All the 
participants had a normal sense of touch by their own report 
and were naïve with respect to tactile stimulation display 
devices.  

B. Hardware Platform and Software Interface 
A hardware platform was developed to stimulate a series of 

six vibrating points on the skin of the forearm using 
vibrotactile actuators. The Vibrotactile Actuators are controlled 
by a microprocessor that receives actuation patterns from the 
computer and generates actuation signals that control a driving 
circuit, which eventually feeds the vibrotactile motors with 
appropriate current/voltage. The actuators can be driven 
separately, simultaneously or in sequence. A snapshot of the 
experimental setup is shown in Fig. 1. 

 
Fig. 1 Experimental setup. 



The armband providing the vibrotactile stimulus was 
constructed with six actuators (Pico Vibe 310-177, Precision 
Microdrives) vibrating with a frequency of 700 rpm at the 
minimum intensity 0.25g, and 1400 rpm at the maximum 
intensity of 1.75g. They were placed at a distance of 4 cm from 
center to center of the actuators. A snapshot of the actuators 
configuration in the armband device is shown in Fig. 2. 

 

 
Fig 2: Armband device configuration. 

 

C. Stimuli 
The stimuli were designed to be generally favorable for the 

vibrotactile movement on the forearm region. To keep the 
length of the experiment at a reasonable level, five different 
burst sequence patterns were used: 11, 101, 1001, 10001, and 
100001 (shown in Fig. 3), which are equivalent to physical 
distances of 4 cm, 8 cm, 12 cm, 16 cm, and 20 cm respectively 
between successive actuation points. Furthermore, three burst 
actuation durations, 120ms, 180ms, and 240ms, were used to 
design the stimuli. All fifteen possible combinations of these 
two parameters were used to stimulate the participants’ 
forearm. The movement of the stimuli traveled between the 
elbow and the wrist.   

 

 
 

Fig 3: Visual representation of the Stimulation patterns used in 
the study (distance center-to-center is 4 cm). 

 

D. Procedure 
The tactile armband device was attached to the dorsal side 

of the forearm with the elastic straps, so that the center of the 
first actuator was 4 cm from the wrist. The actuators were 
placed on the non-dominant hand, thus if the subject was right 

handed, the actuators were place around the left wrist. While 
the experiments took place the subjects were listening to pink 
noise in order to mask any noise from actuators. 

The experiment condition was tested in two threshold 
cases: (1) Lower threshold of SOA: the onset threshold 
between the total simultaneity and apparent movement of 
stimulation points, and (2) Upper threshold of SOA: the onset 
threshold between the total discreteness of stimulation points 
and apparent movement of stimulation points.   

We utilized a one-interval, two-alternatives forced-choice 
(1I-2AFC) paradigm combined with one-up one-down adaptive 
procedure to determine the upper and lower thresholds of SOA, 
as used in [28, 14].    

For the runs determining the upper threshold of SOA, the 
start value of SOA was selected large enough so that the 
participant clearly feel independent stimulation points. In every 
trial participant was asked if s/he could feel individual 
“discrete” actuators. They responded by pressing a button 
marked “yes” or “no” using the keyboard. A new trial started 
immediately after the response. For every “yes” response the 
SOA value decreased and for every “no” response the SOA 
value increased for the subsequent trial. Similarly, for the runs 
determining the lower threshold of SOA, the start value of 
SOA was selected small enough such that the participant feels 
simultaneous stimulations (no sense of directionality of the 
stimulation). In every trial they were asked if they felt actuators 
“simultaneous”. For every “yes” response the SOA increased 
and for every “no” the SOA decreased for the subsequent trial.    

The SOA value was changed initially by 16 ms and then by 
4 ms after the first two reversals. A reversal occurred when the 
participant's response changed from “yes” to “no”, or vice 
versa. The experimental run terminated after six reversals at the 
4 ms step-size. Each run typically took 10 trials, which lasted 
about 10-15 minutes. Participants sat comfortably on the chair 
facing towards the computer screen displaying experimental 
protocol. 

E. Data Analysis 
The average SOA threshold was computed by taking the 

mean value of the last five reversals of each run. Repeated 
measures Analysis of Variance (ANOVA) tests were utilized to 
determine significant effects (α = 0.05) of test conditions. 

IV. RESULTS 
Three parameters are considered in this study: the burst 

duration, the burst overlap time, and the actuators distance 
(distance between actuation points). We aim at exploring the 
relationship between these three parameters for the sake of 
generating continuous tactile stimulation, and find the upper 
and lower thresholds for the SOA values. 

A. Upper Threshold for SOA 
The grand average of the upper threshold for the SOA time 

against the burst duration, for various actuators distances, is 
shown in Fig. 4. From the plot in Fig. 4 we clearly see a linear 
correlation between the SOA timings and the burst overlap 
time, with an exception at 4 cm actuators distance, which might 



indicated that these actuators are place too closely together for 
the subject to discriminate the continuous tactile stimulation. 
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Fig. 4: Upper threshold for the SOA against burst time. 
 

Fig. 5 depicts the SOA time in milliseconds against inter-
actuator distance for the upper threshold for three different 
burst duration values (120 ms, 180 ms, and 240 ms). The error 
bars of Fig. 5 represent the standard variation thresholds 
whereas the trends line shows the linear interpolation trends 
against the distance between successive actuation points. Fig. 5 
shows clearly that the further the distance between successive 
stimulation points (4 to 20 cm), the more linear is the 
relationship between the burst duration and the SOA. Note that 
the interpolation line shown in Fig. 5 represents the upper 
thresholds of the linearized distance/SOA relationships for the 
three types of burst duration. The interpolation demonstrates 
that a linear relationship between the SOA and the inter-
actuator distance produces a perceivable tactile apparent 
motion. Therefore, we suggest that these equations sufficiently 
describe the upper threshold for the inter-actuator 
distance/SOA relationship for continuous tactile stimulation. 
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Fig. 5: Upper threshold for the SOA against inter-actuator 
distance.  
 

B. Lower Threshold for SOA 
The grand average of the lower threshold for the SOA time 

against the burst duration is shown in Fig. 6. Fig. 6 clearly 
shows a linear correlation between the burst duration and the 
burst overlap time, except around the 4 cm distance between 
successive actuation points. Again, the reason might be 
because these actuators are place too closely together for the 
subject to discriminate the continuous tactile stimulation.  

 

40#

50#

60#

70#

80#

90#

100#

110#

120#

130#

140#

100# 120# 140# 160# 180# 200# 220# 240#
S
"
m
u
lu
s'
O
n
se
t'
A
sy
n
ch
ro
n
y
'(
S
O
A
)'
(m

s)
'

Burst'dura"on'(ms)'

4#cm# 8#cm# 12#cm# 16#cm# 20#cm#

 
Fig. 6: Lower threshold for the SOA against burst time. 

 

Fig. 7 presents the SOA time against the inter-actuator 
distance, for the lower threshold at 120 ms, 180 ms, and 240 
ms burst duration values. Fig. 7 also shows the standard 
deviations and trends for the SOA time. Fig. 7 shows clearly 
that the further the distance between successive stimulation 
points (4 to 20 cm), the more linear is the relationship between 
the burst duration and the overlap time. Note that the 
interpolation line shown in Fig. 7 represents the lower 
threshold of the linearized inter-actuator distance/SOA 
relationships for the three values of burst duration.  
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Fig. 7: Lower threshold for the SOA against inter-actuation 
distance. 

 

The interpolation line in Fig. 7 demonstrates that a linear 
relationship between the SOA and the inter-actuator distance 
produces a perceivable tactile apparent motion. Therefore, we 



suggest that these equations sufficiently describe the lower 
threshold for the distance-overlap relationship for continuous 
tactile stimulation. 

C. Discussion 
A thorough one-way ANOVA analysis suggested that the 

burst duration was a significant factor for both the upper and 
lower thresholds of SOA [F(2,12) = 196, p<0.01 for upper 
threshold and F(2,12) = 69, p<0.01 for lower threshold]. As the 
burst duration increased, both the upper- and lower-thresholds 
also increased. However, the SOA range between upper- and 
lower-thresholds was greater for larger burst durations, 
indicating broader margins for creating continuous apparent 
tactile motion on the skin. 

In the present experiment one-way ANOVA analysis has 
also shown that the upper and lower thresholds for the SOA 
were not significantly affected by the distance between 
successive actuation points [F(4,10)=0.044, p=0.995]. This 
suggests that by placing the actuators anywhere between 4 cm 
and 20 cm apart, continuous movement stimulation can still be 
generated on the skin – with the exception of measurements 
taken at 4 cm distance.  

The one-way ANOVA analysis for comparison between the 
upper and lower thresholds of the SOA suggested significant 
differences between upper and lower SOA thresholds 
[F(1,26)=6.11, p<0.05].   

All configurations of stimulation patterns are shown to 
generate continuous stimulation with corresponding 
upper/lower thresholds. Furthermore, within upper/lower 
overlap time interval, continuous stimulation can be produced 
at various speed of stimulation. This implies that the designer 
for the tactile display device may simulate various ‘speeds’ of 
tactile stimulation according to the application requirements. 
For instance, a bullet tactile effect would be rendered as a fast 
continuous stimulation whereas an insect walking across the 
human skin would be simulated using slow continuous 
stimulation. 

Fig. 2 indicates that the upper threshold (with exception of 
the 4 cm pattern) is almost independent of the placement of the 
actuators. However this is not the case for the lower threshold, 
where we see a lower threshold for the 4 cm and 8 cm patterns 
compared to the other patterns. This implies that the lower 
threshold for a continuous motion can be lower as actuators are 
placed closer together. Consequently, bringing the actuators 
closer to each other has resulted in a wider SOA space between 
the lower- and upper-thresholds, while maintaining a non-
linear relationship between the burst overlap and the burst 
duration. 

The final threshold (average of upper and lower) for the 
SOA marks the value below which the stimuli are perceived to 
be simultaneous, and above which the stimuli are perceived to 
be discrete. Values of SOA at the average threshold and 
upwards can be used to control the speed of movement of the 
stimulus. 

 

It is also worth highlighting that the 4 cm configuration (for 
both upper and lower thresholds) is characterized by a non-
linear behavior, probably because the actuators are placed too 
close to each other for the user to discriminate spatial 
differences.  

A similar experiment by Israr et al. [28] compares the upper 
and lower thresholds of patterns created from three actuators 
with distance of 2.35 inches (app. 6 cm) and 4.7 inches 
between actuators with the burst durations 240 ms. Israr et al. 
found a significant difference of spacing with larger variance of 
the upper threshold. If we look at the threshold values, the 
upper and lower threshold is quite similar when the burst 
duration is 120 ms for both experiments. However this is not 
the case when we look at the results for burst durations of 240 
ms: here our results show significantly higher values for both 
lower and upper threshold. The reason for this is unknown, but 
it could indicate that stimulation of the actuators from our 
experiments and that of Israr et al., feels different when the 
burst duration is increased. We therefore suggest a further 
investigation of the perception of continuous motion using 
different actuators. 

V. CONCLUSION AND FUTURE WORK 
The motivation of this work has been to derive 

specifications for the design and development of tactile 
stimulation interfaces based on psychophysical experiments. 
The long-term goal is to study tactile stimulation for affective 
communication. The key contribution of this paper was to 
measure the SOA space for continuous tactile stimulation 
(upper- and lower-threshold SOA values). We also investigated 
and reported the effects of burst duration, burst overlap time, 
and the distance between successive actuation points on 
generating continuous tactile stimulation.  

  Our immediate future work is to expand our work to 
various parts of the human body such as shoulder, back, or 
neck (the current study is focused on the forearm). We also 
would like to study further for correlations between continuous 
tactile stimulation and emotional developments. This would 
enable several applications in social media and gaming by 
enabling users to communicate emotions over the Web. 
Finally, we plan to develop an authoring tool through which 
users may create their own tactile stimuli and use the tactile 
device to display the corresponding stimulus. 
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Vibrotactile Alarm System For Reducing 
Sleep Inertia  

Camilla Birgitte Falk Jensen, Georgios Korres, Carsten Bartsch, Mohamad Eid 

Abstract— There has been a vast development of personal informatics devices combining sleep monitoring with alarm 
systems, in order to schedule the alarm to reduce sleep inertia. Many of these systems implement algorithms based on 
psychophysiological measurements such as heart rate, body movement or brain signal. In contrast to these devices, we present 
a wireless armband alarm system, named Aegis that uses vibrotactile stimulation as a silent alarm to wake up the user and 
thereby minimizing sleep inertia. Furthermore, the utilization of haptic modality as an alarm eliminates noise disturbance of 
roommates, spouses or family members sharing the same sleeping space. The paper investigates the emotional ratings and 
level of attention towards different haptic patterns, in order to choose a haptic pattern that complements a pleasant awakening. 
Performance evaluation of the proposed solution has successfully demonstrated the ability of Aegis to identify various sleep 
stages (awake, REM and non-REM). The results from the attention task and the subjective valence rating suggest that the 
vibrotactile stimulation should be based on the continuous modulation, since this not only is very perceivable but also highly 
rated with positive attention. 

Index Terms—H.5.1.d Evaluation/methodology, H.5.2.g Haptic I/O, J.8.h Health care, J.9.d Pervasive computing, J.4.b 
Psychology, H.5.2.q User-centered design. 

——————————   !   —————————— 

1 INTRODUCTION
CCORDING to the National Sleep Foundation (NSF), 
sleep is a physical and mental resting state that is 

essential for a person’s health and wellbeing [1]. Irritabil-
ity, moodiness, daily sleepiness, and disinhibition are 
some of the first signs a person experiences from lack of 
sleep [2]. Furthermore, the degradation in sleep quality is 
associated with long-term health consequences such as 
chronic medical conditions such as diabetes, high blood 
pressure, and heart disease, among others [3].  

1.1 Sleep Phases 
Researchers have identified four different stages of 

sleep, known as N1, N2, N3 and N4; cycling over and 
over throughout the night [4]. For simplicity, we classify 
sleep into awake, REM (Rapid Eye Movement) and non-
REM phases. Non-REM phases include N1 (conscious 
awareness of the surroundings slowly disappears within 
20 minutes after sleep onset) and N2 (increased appear-
ance of sleep spindles and complete withdrawal from 
external awareness). Adults spend at least 50% of total 
sleep time in light sleep (non-REM).  

REM phases include N3 and N4, commonly summa-

rized as slow wave sleep (SWS) or deep sleep [5]. Togeth-
er, N1 and N2 are known as light sleep, characterized by 
the lowest arousal threshold (level of stimulation needed 
to wake up an individual while in a particular stage) of all 
sleep stages.  
The REM phase is identified by rapid eye movement 

and intense atony of skeletal muscles. Abruptly waking 
someone during the REM phase can cause sleep paralysis, 
which is defined as the sudden experience of an inability 
to move combined with terrifying visions to which one is 
unable to react due to this paralysis. This phenomenon 
occurs due to the particular biological attributes seen in 
REM sleep: complete muscle paralysis, dreaming, and 
irregular breathing and heart rate [2]. A sudden snap 
back to consciousness often results in the brain’s recogni-
tion of these sensations as panic, suffocation, and visual 
hallucinations.  

Immediately after REM, however, a period of light 
sleep returns, and the body has completed one entire 
sleep cycle. Therefore, waking during light sleep limits 
sleep inertia effectively. An individual moves through 
several sleep cycles of approximately 90 minutes in which 
non-REM and REM alternate [6].  

1.2 Methods For Sleep Monitoring 
Nowadays there exist several methods to measure the 
quality of sleep and identify sleep phases, such as the 
polysomnography (PSG) procedure [7], self-rated ques-
tionnaires instruments such as Pittsburgh Sleep Quality 
Index (PSQI) [8], and lately using biosensors [9]. Alt-
hough PSG provides accurate monitoring and assessment 
of sleep quality, it is highly expensive, intrusive, and re-
quires specialized centers [7]. PSQI is commonly used, 
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however, its subjective nature makes it less reliable [8]. 
Sleep has also been monitored using sophisticated bio-

sensor equipment, including the electroencephalograph 
(EEG) to capture brain signal, electrooculogram (EOG) to 
read eye movements, electrocardiograph (ECG) for cap-
turing heart signal, and electromyogram (EMG) to meas-
ure muscles activities [10]. More technologies have been 
developed such as measuring respiration and wrist/body 
movement using ECG sensor, accelerometer or event au-
dio and video. With the improvement in mobile sensor 
and sensing technologies, it is now possible to monitor 
sleep ubiquitously. 
Sensory technologies are used nowadays to continu-

ously and automatically detect sleep cycles and provide a 
quantitative means to measure the quality of sleep [11, 
12]. A common and simple technique uses actime-
ter/actigraph [13, 14]; a watch shaped accelerometer 
worn on the wrist to measure the user activity during 
sleep. Other researchers have used HRV and respiratory 
signals (captured using an ECG sensor) to detect sleep 
fragmentations (number of sleep micro-arousals) and de-
tect sleep cycles [15, 16]. 

Several sleep-tracking applications (mostly mobile 
phone applications) and related devices already exist in 
the market, such as Sleep Cycle alarm clock [17], SOM-
NOwatch™ plus EEG 6 device [47] and SleepMiner [18]. 
For instance, SleepMiner is an Android-based smart 
phone application that predicts the quality of sleep based 
on daily contexts [18]. Several features such as daily activ-
ity, living environment and social activity are extracted 
from mobile phone data, and then a machine-learning 
algorithm is proposed to measure the sleep quality. In the 
performance evaluation, we use the SOMNOwatch™ 
plus EEG 6 device as a reference device due to its high 
repulation as a robust and reliable commercial system for 
detecting sleep stages.  

1.3 Adaptive Alarm Systems 
In contrast to regular alarm clocks, an adaptive alarm 
clock chooses an optimal time to wake up the user using 
contextual knowledge (such as calendar information, 
sleep quality, and psychophysiology). Most alarm sys-
tems use auditory modality to display the alarm signal. 
Sony has recently patented an alarm pillow with elec-
trodes on the surface to come in contact with the head to 
read brain wave signals [7]. The system analyzes the col-
lected signals to determine when the user goes into the 
REM or non-REM stages and turns on a buzzer attached 
to the pillow as soon as the person gets out of the deep 
sleep. The alarm pillow may not provide continuous 
sleep monitoring since contact between the sleeper and 
the pillow is not guaranteed. 

An adaptive alarm clock was developed in [19] where 
the clock predetermines in what state the observed user 
will be at the time of supposed alarm-firing, and adjusts 
that instant to a more favourable one such as when the 
user is in light sleep. A webcam is used to measure 
movements and estimate the quality of sleep. However a 

webcam may compromise the sleeper confidentiality. 
Several projects are available to download and run on 

various mobile device platforms such as Nokia, Apple 
iPhone, Windows Mobile, etc. HappyWakeUp application 
[20] is available to Nokia and iPhone mobile platforms 
that wake the sleeper during shallow sleep (non-REM 
stage). The application detects user movements in a bed 
using the microphone of the mobile phone. Macjek Drejak 
Labs developed a sleep cycle mobile application that uses 
embedded accelerometers that are equipped with modern 
smart phones [21]. The user makes different movements 
in bed during different sleep phases, which is used to 
detect sleep cycles. Similar prototypes are also available 
such as the Zeo Personal Sleep Coach [22], EASYWAKE-
me [23], and wakeNsmile [24]. 

Aegis system, introduced in our previous work [25], 
utilizes acceleration data to measure a movement index 
and define the firing time for the alarm, and uses haptic 
modality (vibrotactile feedback) for displaying the alarm 
signal where four (4) vibrotactile motors vibrate simulta-
neously, with constatnt vibration intensity, to stimulate 
tactile sensation. In this paper, we study various tactile 
stimulation patterns (such as simultaneous, successive 
and continuous) that result in minimized sleep inertia.  

The remainder of the paper is organized as follows: In 
section 2 we present the software architecture and hard-
ware implementation of the Aegis system and details of 
the sleep stage extraction algorithm. Section 3 introduces 
the vibrotactile stimulation literature and defines stimula-
tion patterns to be examined in this study. In section 4, we 
present the experimental setup, performance analysis and 
discuss our findings. Finally, in section 5 we summarize 
the paper and provide perspectives for future work. 

2 AEGIS DESIGN AND IMPLEMENTATION  
Aegis utilizes the accelerometer embedded in a armband 
to determine the optimal times to wake up the sleeper. 
When the user is ready to go to sleep, he/she puts on the 
armband device and sets an interval for the alarm time. 
During sleep, the Aegis system records the nighttime 
movements of the user and analyzes them using the body 
movement index algorithm presented in [46] to detect 
sleep stage. The system searches for a point – within the 
time interval provided by the user – where the user is in 
non-REM sleep and provides vibrotactile stimulation to 
wake him/her up so as to minimize sleep inertia.  

Fig. 1 shows an overview of the proposed Aegis sys-
tem. The user’s movements are captured by the armband 
device and sent to the sleep management center that is 
hosted on a mobile device (or a nearby computing device) 
via Zigbee technology. The sleep management center pro-
cesses the collected data and identifies sleep phases 
(awake, REM and non-REM), and sets a vibrotactile 
alarm. Furthermore, the collected data are stored and 
may be streamed to a third party  (such as a family mem-
ber or a therapist) using the Data Center module. In the 
following a brief introduction to Aegis components is 
given. 
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2.1 Input Interfaces Modules 
The Input Interfaces Module reads psychophysiological 
data about the user, along with the context, and passes 
the collected data to the Sleep Management Center. The 
components of the Input Interfaces Module are described 
briefly here: 
• Motion Sensors: Hand movement is tracked using an 

accelerometer to identify deep and shallow sleep so 
that the alarm can be set accordingly. Other motion 
sensors may be added to the Input Interfaces Mod-
ule to achieve a higher accuracy of detecting sleep-
ing phases.  

• Context: The context component collects information 
related to the place, time, and circumstances around 
the sleeping user. Examples of contextual infor-
mation include, but not limited to, location, ambient 
noise and light conditions.  

2.2 Adaptive Alarm 
!The Adaptive Alarm module is the heart of the !Aegis sys-
tem. It includes the Sleep Stage Extraction component and 
the Alarm Response component that defines the vibrotac-
tile stimulation pattern that should be used to wakeup the 
sleeper. ! 

2.2.1 Sleep Stage Extraction 
The Sleep Stage Extraction component analyzes body 
movement from the accelerometer to classify sleep stages 
into awake, REM and non-REM.  Signal artifacts, caused 
mostly by sleeper movements that may severely deterio-
rate the accelerometer readings and thus the motion esti-
mation, are removed via a preprocessing phase. The sleep 
stage extraction flowchart is shown in Fig. 2. 

The preprocessing phase is adopted from the work 
presented in [48]. The raw three-axis acceleration data are 
converted first into the SI units (!/!!) by a calibration 
procedure. The three signals (!! , !!, !!) are then passed 
through the following phases:  

 
(i) Low Pass Filter: A second order low-pass filter with a 
cutoff frequency of 18 Hz is applied to cancel out high 
frequency noise. The transfer function of this filter is: 
 

!(!) = 0.0625+0.125!−1+0.0625!−2
1+1.3!−1−!0.5!−2

,!                 (1) 
 

(ii) Signal Derivation and Aggregation: A second order de-
rivative operation is applied to remove baseline wander 
and gravity components. The transfer function for the 
derivative operation is shown in equation (2). Next, the 
three axis-acceleration signals were combined into a sin-
gle (axis-independent) signal by calculating the absolute 
sum.   

!(!) = 1
!2 [1− !

−1]2!                       (2) 
 
(iii) Feature Extraction: Before extracting features, two sep-
arate integration operations are applied over two seconds 
(!!) and four seconds (!!) window. The two signals have 
different response characteristics to different periods of 
movement activity. Feature extraction was based on the 
calculation of the body movement index [46]. For each 30-
second epoch (!) a movement index !(!) was calculated 
using equation (3). The average over a window of 18 sub-
sequent epochs of the body movement index is used for 
each epoch.   

! ! = ! (!2/!4)2! !                       (3) 
 
(iv) Classification and Evaluation: Naïve Bayes classifiers 
[49] are used to distinguish awake, REM and non-REM 
sleep using the body movement index feature. Evaluation 
was performed by recording data with the SOM-
NOwatch™ plus EEG 6 device [REFx]. Two healthy sub-
jects (one male and one female) were recorded during 
seven consecutive nights. Aegis system was placed at the 
subject’s arm, while reference hypnograms were collected 
using the SOMNOwatch™ plus EEG 6 device.  

The reference data is also divided into 30-second 
epochs from the accelerometer signals, and was prepro-
cessed with the DOMINOlight software (SOMNOmedics 
GmbH). The body movement index feature was used to-
gether with the ground truth information recorded from 
the SOMNOwatch™ plus EEG 6 device to train the Naïve 
Bayes classifiers extract sleep stage (awake, REM and 
non-REM). A snapshot comparing results we got using 
Aegis system and the SOMNOwatch™ plus EEG 6 device 
for detecting awake, REM and non-REM over 8 hours of 
sleep is shown in Fig. 3. 

 A total of 12550 epochs were collected from the two 
subjects and used for training and evaluation, 18.2% of 
those epochs were REM-epochs. Results for classification 
of REM, non-REM and Awake phases are given in Table I  

 
Fig. 1. Software architecture for the Aegis system. 

 
Fig. 2. Sleep stage extraction flowchart. 
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for each subject and over a course of seven days. The clas-
sifier has an average accuracy of 94.24% compared to the 
reference SOMNOwatch™ plus EEG 6 measurements.  

2.2.2 Alarm Response 
The Alarm Response component is responsible for deter-
mining, based on the corresponding sleep stage, the vi-
brotactile stimulation pattern that must be applied to 
wakeup the sleeper. There are three types of vibrotactile 
stimulation patterns that we are exploring: simultaneous 
stimulation where all actuators vibrate at the same time, 
successive stimulation where actuators vibrating sepa-
rately one after the other, and continuous stimulation 
created from an overlap of vibration from different actua-
tors. Fig. 4 explains graphically the differences between 
the three types of stimulation patterns. 

2.3 Data Center 
!The Data Center is a repository to store data related to the 
Aegis system and a streaming server to share the collect-
ed data with a third party. The streaming server delivers 

real-time data as well as previously captured data (histor-
ical data), as needed. 
• Server: The server is a facility that is !capable of 

streaming data stored in the Data Center to a third 
party via a Web Service Architecture or a cloud 
computing architecture (this component is not im-
plemented in the current prototype).  

• Data Records: The Data Records component is a da-
tabase that saves data about the sleeping behavior of 
the user as well as the history of sleep patterns. For 
instance, the Data Records component includes the 
time-stamped movement information and a snap-
shot of the context at every phase of the sleeping cy-
cle. The database tables the following information:  

o The time at which the user set his/her alarm 
o The time Aegis chose to wake him/her up 
o Duration of sleep 
o Location of sleep 
o Ages of cohabitants 
o Age of user 
o Chronotype architecture for the Aegis system 

• Sleep Profile: The Sleep Profile stores the user’s per-
sonal information including age and gender, prefer-
ences as for sleeping context (ambient noise, light 
condition, room temperature, etc.). 

2.4 Aegis System Implementation 
!The prototype implementation, as shown in Fig. 2, !is 
composed of an accelerometer to measure user’s hand 
movements, a microprocessor to read acceleration data, 
implement the sleeping management logic, activate the 
vibrotactile motors, and communicate sleep-related data 
to a remote server, and a battery.  
The wristband device is composed of the following com-
ponents: 
• ADXL-335 accelerometer  
• Arduino Mini Pro  
• XBee transceiver module  
• Six vibrotactile actuators  
• DeadOn DS3235 RTC (Real Time Clock)  
• Power cell and 3.7 V Lithium battery and voltage 

regulator 

3 VIBROTACTILE STIMULATION 

The concept of tactile stimulation has been around for 
decades, since Geldard [27] in the 1950s studied the tem-
poral and spatial aspects of tactile discrimination on skin 
and wrote: “for some kinds of messages the skin offers a 
valuable supplement to ears and eyes”. Early research on 
haptic stimulation has focused on applications aiding 
blind or visually impaired people [28], but later develop-

 
Fig. 3. Example hypnogram with the different sleep stages (Awake, REM and non-REM) over around 8 hours of sleep. 

TABLE 1 
CLASSIFICATION ACCURACY (AWAKE, REM AND NON-REM) 

Days Subject 1 (male) Subject 2 (female) 
Error SleepTime Error SleepTime 

1 6.06 % 7.45 hrs 6.48 % 7.90 hrs 
2 5.69% 8.03 hrs 6.21% 7.69 hrs 
3 5.22% 7.82 hrs 5.62% 7.21 hrs 
4 5.81% 7.45 hrs 5.12% 7.68 hrs 
5 6.12% 6.81 hrs 5.90% 7.10 hrs 
6 5.10% 6.65 hrs 6.01% 7.32 hrs 
7 5.26% 7.88 hrs 5.80% 7.22 hrs 
Average 5.67% 7.37 hrs 5.84% 7.40 hrs 
Stddev 0.42% 0.53 hrs 0.37% 0.25 hrs 
 

 
Fig. 4. The burst pattern and how this is perceived for three different 
modulations; simultaneous, continuous and successive. 
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ments included entertainment and gaming [29], mobile 
and touchscreen interaction [30], emotional and interper-
sonal communication [31, 32, 33], and health care (such as 
physical rehabilitation) [34]. 

In relation to these novel application areas, there has 
been a growing interest in the subjective responses to dif-
ferent haptic patterns. The haptic pattern can be described 
from the following modulations; simultaneous, continu-
ous and successive stimulation (as shown in Fig. 4). Sim-
ultaneous stimulation comprises all actuators vibrating at 
the same time. This is known to cause an illusion of sensa-
tion displacement, know as the Funnel illusion [35]. Con-
tinuous motion can be created from an overlap of vibra-
tion from different actuators. Actuators vibrating sepa-
rately create the successive stimulation. 

These modulations can be modified by changing the 
frequency, amplitude (intensity), Burst Duration (BD), 
Inter-Burst Interval (IBI), spatial distribution and direc-
tion, which result in different haptic patterns. 

Many studies have compared the subjective ratings of 
different haptic patterns using the classic 9-point valence 
and arousal scale (commonly used to measure emotions 
[36]). The valence level indicates how positive or negative 
a stimulus is, whereas the arousal level indicates how 
calm or exiting the stimulus is. An example of how emo-
tions can be distributed into these two scales is shown in 
Russell’s model [37] shown in Fig.5. In addition some 
studies compares different patterns on additional scales 
such as cognitive scales of continuity [38], smoothness 
[39],  strength and rhythm [40], or speed [39]. 

Due to the multiple possibilities for modulating haptic 
patterns, many studies choose to keep some parameters 
fixed, while concentrating on the effects of others, which 
often results in different varying results. However many 
studies on affective haptic report continuous motion be-
ing perceived as pleasant, whereas simultaneous stimuli 
were rated more unpleasant [41, 39]. Other studies focus 
more on how the different parameters contribute or affect 
the continuous feeling [29, 38, 42]. 

Raisamo et al. [41] found a correlation between contin-
uous motion being perceived as pleasant, whereas simul-
taneous stimuli were rated more unpleasant. While others 
examined the effect of frequency, amplitude, duration, 

direction and body site on continuity and subjective pref-
erences [29, 38], Rahal et al. showed an effect of gender, 
limb size and intensity [42]. 

Although most studies on affective haptic report pref-
erences towards more continuous stimulation, this might 
not be the most suitable haptic stimulation when used as 
an alarm clock. In this case a soothing continuous motion 
might not draw enough attention upon itself to cause the 
user to wake up. Instead it might become integrated into 
the user’s sleep or even dream. However using a very 
arousing and aggressive stimulation could result in an 
unpleasant awakening that might lead to a dislike of the 
product. Thus we are interested in examining not only the 
subjective emotional ratings of haptic patterns but also 
how fast the subject’s attention is shifted to the different 
haptic patterns. 

The majority of attention research has focused on sin-
gle sensory modalities, such as vision, audition, touch 
and even olfaction and gustation. However in everyday 
life we commonly operate across different sensory modal-
ities to facilitate the selection of relevant information. The 
classic “cocktail party problem”, where we direct our au-
ditory attention to one particular voice in order to have a 
conversation in a noisy environment is actually mislead-
ing: we often rely on many other sensory modalities as 
visual information from lip-movements, facial expres-
sions, and gestures. In addition we often ignore irrelevant 
sensory inputs, such as the feel of one’s clothes (tactile), 
the smell of someone’s perfume (olfactory), and perhaps 
even the taste of one’s drink (gustatory). 

Attention can be divided into endogenous and exoge-
nous attention: The endogenous attention describes the 
voluntarily direction of attention to a particular point, 
such as attending to one person at a cocktail party. In con-
trast, exogenous or involuntary attention is the reflexive 
shifts of attention to unexpected or uninformative event, 
such as someone calling your name at a cocktail party, or 
if a fly suddenly lands on your arm [43]. 

However it is difficult to say what our attention is di-
rected towards when we sleep, since this might depend 
on the sleep phase and the individual. Hypothesizing that 
our attention is not necessarily directed towards tactile 
inputs, we are interested in measuring the exogenous 
attention towards different haptic stimuli in a multimodal 
scenario. 

4 PERFORMANCE EVALUATION 
This section introduces the design, setup, and evaluation 
of an experiment investigating 1) the effectiveness of vi-
brotactile stimulation to draw the user’s attention and 2) 
the emotional responses to different stimulation patterns. 
Thus we created a dual-task paradigm, where the subject 
is performing two tasks at once, thereby forced to divide 
her attention between the two tasks [44, 45]. The para-
digm consists of a haptic detection task (where the user 
has to respond when detecting a haptic stimulus) and a 
visual identification task (where the subject has to identi-
fy the correct target among different distractor stimuli). 

 
Fig. 5. Russell’s model [37] illustrates how the valence and arousal 
scale can be used to describe different emotions.  
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4.1 Vibrotactile Armband Device 
The tactile armband device is composed of 6 vibrotactile 
actuators that are aligned 4 cm apart along the arm. The 
armband device is capable of producing three types of 
tactile stimulation: simultaneous stimulation, successive 
stimulation and continuous stimulation. The three modes 
are explained in equation (4). A demonstration of the con-
tinuous stimulation algorithm is shown in Fig.6. 

 
! = ! ∗ !!,!                                        (4) 

 

!ℎ!"!!!
! = !0!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"#$%&'()*$!!!"#$%&'"#()!
! < !1!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"#$%#&"&'!!"#$%&'"#()
! > !1!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"##$!!%&$!!"#$%&'"#()

!!

 
Where T is the burst duration, τ is the inter-burst interval 
and α is the mode factor. Simultaneous stimulation in-
volves stimulating the motors at the same time (α=0 or 
τ=0) to produce the highest sense of vibration possible 
where intensity of vibration can also be controlled. Suc-
cessive stimulation has one motor stimulated at a time 
(α>1 or τ>T); there is no inter-burst stimulation. Continu-
ous stimulation is based on the funneling illusion concept 
[35] and produces apparent tactile motion along the arm-
band surface.  

The stimulation intensity is controlled by adjusting the 
duty cyle of the Pulse Width Modulation (PWM) signal 
that feeds the vibrotactile actuators. Increasing the duty 
cycle of the PWM signal would increase the effective 
voltage applied to the actuator and thus the vibration 
intensity. The change in the intensity of vibration is linear 
over time, and is described by equation (5). 
 

! = !!"# ∓ !!!"# − ! !!"# ∗ !!"#$%&"!"" ,!                 (5) 
 
where Imin = 0.25g, Imax = 1.25g, and StepSize = +10 
when intensity increase and StepSize = -10 when intensity 
decreases.  

4.2 Experimental Setup 
The wristband providing the vibrotactile stimulus was 

constructed with six actuators (Pico Vibe 310-177, Preci-
sion Microdrives) vibrating with a frequency of 700 rpm 
at the minimum intensity 0.25g, and 1400 rpm at the max-
imum intensity 1.75g. They were placed at a distance of 
4 cm from center to center of the actuators. We created 8 
patterns based on the three modulations described earlier: 
simultaneous, continuous and successive. A summary of 
the stimulation patterns is shown in Table 2. 

Similar to other alarm clocks with increasing volume, 
our patterns increase in amplitude (intensity) as time 
passes. This was chosen partially to examine how easily 
the different patterns were perceived and in attempt to 
make a smooth waking. Thus all of the patterns started 
from an intensity of 0.25g, which is almost not perceiva-
ble and ended after 35 to 40 seconds with an intensity of 
1.75g, which is easily perceived. The intensity increased 
linearly with time. 

Three of the patterns, one from each modulation type, 
were altered by this intensity increase: the simultaneous 
stimulation has burst duration of 100 ms and an inter-
burst interval of 300 ms. The relatively short burst dura-
tion was chosen due to the effect of multiple actuators 
vibrating simultaneously, which intensifies the stimula-
tion. The continuous stimulation was characterized by a 
burst duration of 300 ms and an overlap of 120 ms (corre-
sponding to 40% of the burst duration). The successive 
stimulation comprised of a 150 ms burst duration and an 
inter-burst interval of 150 ms.  

In an attempt to avoid the bias that the stimulus 
would become integrated in the user’s sleep, the next pat-
terns were created with either increasing speed or chang-
ing direction to increase variations.  

Three patterns (one for each modulation) were, in ad-
dition to the intensity increase, altered by an increase in 
velocity. This implied a change in the inter-burst interval 
from 500 ms to 100 ms for the simultaneous modulation.  
As for the continuous stimulation, this resulted in a 
change in burst duration from 500 ms to 100 ms, while the 
overlap changed from 200 ms to 40 ms. Furthermore, the 
successive stimulation increased in velocity by a change 
in burst duration from 250 ms to 50 ms and in inter-burst 
interval from 250 ms to 50 ms.  

The last two patterns are based on continuous and 
successive modulation and vary in intensity and change 
in direction, starting with vibration of the first to the sixth 
actuator, and then in reversed order.  

The experiment was conducted on 12 participants, all 
of them were students or employees of NYU Abu Dhabi, 
5 were female and 7 males. Two of the male participants 
were left-handed all others were right-handed. The aver-
age age of the participants was 29.2 years ranging from 19 
to 41 years. A snapshot of this experimental setup is 
shown in Fig 7. 

The actuators were placed on the non-dominant hand, 
thus if the subject was right handed, the actuators were 
place around the left wrist. While the experiments took 
place the subjects were listening to pink noise in order to 
mask any noise from actuators. 

 
Fig. 6. Tactile stimulation algorithm.  
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TABLE 2 

OVERVIEW OF THE DIFFERENT PATTERNS 
Pattern Modulation Feature Attributes 
1 Simultaneous Intensity increase Imax=1.25g, Imin=0.25g, StepSize=0.1g, Duration=2 sec, α=0 
2 Simultaneous Intensity + velocity increase Imax=1.25g, Imin=0.25g, StepSize=0.1g, Duration=2 sec, α=0, 

timeStepSize=0.1sec 
3 Continuous Intensity increase Imax=1.25g, Imin=0.25g, StepSize=0.1g, Duration=2 sec, α=0.5 
4 Continuous Intensity + velocity increase Imax=1.25g, Imin=0.25g, StepSize=0.1g, Duration=2 sec, α=0.5, 

timeStepSize=0.1sec 
5 Continuous Intensity increase + direction change Imax=1.25g, Imin=0.25g, StepSize=0.1g, Duration=2 sec, α=0.5, 

timeStepSize=0.1sec 
6 Successive Intensity increase Imax=1.25g, Imin=0.25g, StepSize=0.1g, Duration=2 sec, α=3 
7 Successive Intensity + velocity increase Imax=1.25g, Imin=0.25g, StepSize=0.1g, Duration=2 sec, α=3, 

timeStepSize=0.1sec 
8 Successive Intensity increase + direction change Imax=1.25g, Imin=0.25g, StepSize=0.1g, Duration=2 sec, α=3, 

timeStepSize=0.1sec 
  

The experiment consisted of two parts; 1) the dual-task 
paradigm followed by 2) subjective emotional ratings of 
the haptic patterns. The dual-task paradigm combined a 
visual (conjunction) search task [39] with a simple haptic 
detection task. In the visual search task, the subject 
searched for a target, a red plus sign “+”, among distrac-
tors that share two visual properties, color and orienta-
tion, green and red letters “x” and green plus signs “+”. 
An example with the target present is shown in Fig. 8. If 
the target was identified, the user responded by pressing 
“c” for cross, but if there is no target, the user should 
press “n” for no cross. In 40 % of the trials the user would 
also be presented with a haptic stimulus, and should re-
spond to this by pressing space. To minimize anticipation 
effects of simultaneous changes of visual stimuli and ap-
pearance of haptic stimuli, the haptic stimulus would 
start randomly within the first 3 seconds from the begin-
ning of the trial. Each haptic pattern started with an in-
tensity of 0.2g, which is almost not perceivable. The inten-
sity then increased over time until it reached 1.6g. Mean-
while the step size for increase in the intensity was the 
same across patterns. All 8 patterns were presented 3 
times in random order. The experiment stopped as soon 
as the user detected all 8 haptic patterns, three times.  

Before the experiment, the user was instructed to first 
of all respond to the haptic stimuli as fast as possible. Af-
ter which he should respond correctly to the visual search 

task, and lastly doing this as fast as possible. The user 
would be notified whether his/her response was correct 
or incorrect after each trial, so that he/she could adjust 
his/her strategy. In addition the subject was told to place 
his/her right and left index fingers on the “n” and “c” 
keys respectively. With these keys place at equal distanc-
es to the space key and by instructing the subject to use 
index finger of the dominant hand to press the space, we 
hoped to minimize effects on the response time. 

In the second part of the experiment the user was pre-
sented a haptic pattern and was asked to rate this on a 
9-point valence and arousal scale (see Fig. 9). The user 

 
Fig. 8. The visual search task, where the subject is seeking to identi-
fy a red cross (+).  

 
Fig. 9. The 9-point arousal scale used to rate how arousing the hap-
tic simulation was.  

 
Fig. 7. The experimental setup.  
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could repeat the stimulus by pressing “r”. Before the ex-
periment, the valence and arousal scale was explained to 
the user and three practice trials were performed, so the 
subject was familiarized with the scale. The stimulus pre-
sented in the practice trials was not used in the actual 
experiment. One subject did not complete the second part 
of the experiment and was therefore excluded from the 
analysis of the emotional ratings. 

4.3 Analysis and Results 
The average response time of the three trials for each hap-
tic pattern and for every subject was calculated. The data 
is plotted in a standard box plot (see Fig. 10); showing the 
mean as black diamonds and the median, upper and low-
er quartile in boxes while the whiskers represent the max-
imum and minimum values. The numbers on the x-axes 
correspond to the pattern numbers in Table 2. The outli-
ers are marked as circles, all of which came from the same 
subject. Indicating that this subject had a different thresh-
old for tactile stimulation. A larger response time for the 
patterns based on the simultaneous modulation is clearly 
observed from Fig. 10, which is supported by the follow-
ing statistical tests. 

Conducting one-way ANOVA analysis, both with and 
without outliers, showed no influence of outliers on the 
results. Thus we included the outliers in our analysis, and 
the results showed a significant effect of the patterns  
F(7,88)=25.61, p<0.001. 

To test for interaction effects two two-way ANOVA 
tests were conducted. One was testing two modulations 
(continuous and successive) with three features (intensity, 
intensity+velocity, intensity+direction). The other was 
testing three modulations (simultaneous, continuous, and 
successive) with two features (intensity and intensi-
ty+velocity). The first ANOVA test showed only a signifi-
cant effect of modulation F(1,71)=42.249, p<0.001, suggest-
ing that perception of patterns based on the continuous 
pattern are significantly different from patterns based on 
the successive pattern. The second ANOVA showed 
likewise a significant effect of modulation F(2,71)=80.33, 
p<0.001, however it also revealed an interaction effect 
between modulations and features F(2,71)=3.79, p=0.028. 
To examine the interaction effect, a permutation test with 

paired t-test (and 10000 reputations) and a Bonferroni 
correction of the significance level (α=0.05/15) is con-
ducted. The results revealed significant difference with 
p=<0.007 on all levels except from the tests where modu-
lation was similar and features were different. This indi-
cates that the features have different effects depending on 
the modulation, however not as significant as with the 
effect of feature. 

The results of the emotional ratings on valence and 
arousal are shown in the boxplots below, Fig. 11 and Fig. 
12. The boxes represent the median, upper and lower 
quartile; the black diamonds represents the mean; and the 
whiskers represent the maximum and minimum values. 
The valence data shows a large individual difference 
amongst subjects, which in most cases are larger com-
pared to the arousal ratings. 

By conducting a repeated one-way ANOVA test we 
found a significant difference between the valence ratings 
of the patterns with F(7,81)=7.39, p<0.001, however we 
found no significant difference for the arousal ratings. To 
examine the valence data further, two two-way ANOVA 
tests were conducted: one testing two modulations (con-
tinuous and successive) for three features (intensity, in-
tensity+velocity, intensity+direction), the other testing the 
three modulations (simultaneous, continuous, and suc-
cessive) with two features (intensity and intensi-
ty+velocity). The first ANOVA showed no significant 
effect of modulation and feature. There was no significant 

 
Fig. 12. The subjective arousal (calm-energetic) ratings of 8 different 
haptic stimuli, with diamond representing the mean.  

 
Fig. 11. The subjective valence (negative-positive) ratings of 8 differ-
ent haptic stimulations, with diamond representing the mean.  

 
Fig. 10. The response time of 8 different haptic patterns, with dia-
mond representing the mean and circles the outliers (consisting data 
from only one subject).  
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difference between any of the patterns based on the con-
tinuous or successive patterns. The second ANOVA 
showed only a significant effect of modulations 
F(2,65)=20.29, p<0.001. Post hoc t-test with Bonferroni 
correction (α=0.05/3) revealed patterns based on the sim-
ultaneous modulations were significantly different from 
those based on both continuous (t=6.16, p<0.001) and suc-
cessive (t=3.96, p<0.001). 

To sum up, the results on response time showed a 
clear effect of modulations. With the subjects responding 
quickest to the continuous patterns and slowest to the 
simultaneous. However the slow reaction times for the 
simultaneous patterns (especially pattern 2) might be ex-
plained by the long inter-burst interval (of 500ms). How-
ever it is also surprising to see how fast and similar the 
response times of the continuous patterns (pattern 3, 4, 
and 5) across subjects are. 

The results from the emotional ratings show greater 
differences amongst subjects, compared to the response 
times, suggesting that there might be personal prefer-
ences towards different haptic patterns. Similar to earlier 
reports on valence ratings, we also see higher ratings to-
wards patterns with more continuous motions, suggest-
ing that these are preferred over discrete motions. How-
ever we do not see any significant effect of the arousal 
data and no correlations between arousal and valence 
data. 

Therefore, in order to create an effective haptic alarm, 
that is not only effective but also smooth and pleasant for 
waking up a person, our results suggest to preferably 
utilizing the continuous modulation. 

5 CONCLUSION AND DISCUSSION 
This paper presents a novel clock alarm system named 

Aegis – a smart wireless wristband arm system for sleep 
management and reducing sleep inertia. An experimental 
study was conducted to investigate vibrotactile patterns 
as silent clock alarm response to wake a user in a smooth 
and pleasant manner. The results from the attention task 
and the subjective valence rating suggest that the haptic 
alarm for the Aegis system should be based on the con-
tinuous modulation, since this not only is very perceiva-
ble but also rated as more positive.  

However, as the prototype evolves, further improve-
ments can be made to the system. The hardware could be 
optimized in terms of size (for example, the circuit should 
move to a smaller microprocessor board for even more 
compact assembly), and sensory data may be saved in 
internal non-volatile memory. A mobile device applica-
tion may also be developed to provide a convenient inter-
face to configure the system. In addition more usability 
studies could be performed over longer time intervals to 
further analyze the system and derive a more robust and 
personalized performance. One can imagine that the hap-
tic patterns could provide the user with more information 
than the alarm onset. E.g. different patterns could indicate 
how close the systems alarm onset is to the users preset 
alarm time, thereby indicating how fast one needs to get 
ready. This is similar to Lylykanga’s examination of pat-

terns representing information on motion (e.g. decelerate, 
accelerate or keep speed constant) [39]. 

For future research it would be interesting to test the 
effectiveness of the different patterns in real waking-up 
scenarios and whether the haptic patterns could also be 
used to influence a users sleep phase, e.g. moving them 
from a deep sleep to light sleep before waking the user. In 
this case it might be useful to create patterns based on the 
simultaneous modulation, which are not that easily per-
ceived. 
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