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Abstract 10 
Livestock manure is commonly applied on agricultural land for its fertilising properties. However, 11 

the presence of toxic substances in animal manure such as pathogens, antibiotics and heavy metals, 12 

can result in damages to ecosystems and human health. To date, although relevant for policy-13 

making, e.g. regulation framing, their releases to agricultural land have been incompletely and 14 

inconsistently quantified at global and national scales. Here, we thus developed a generic 15 

framework for estimating such releases based on the quantities of manure applied and 16 

concentrations of toxic substances. Applying this framework, we built a global release inventory for 17 

arsenic, cadmium, chromium, copper, mercury, nickel, lead and zinc differentiated into 215 18 

countries and 15 years (period 2000-2014). Comparisons with more narrowly-focused inventories 19 

showed overall consistency in our inventory results, although a number of uncertainties and 20 

limitations were identified. In particular, the need for harmonising sampling and analytical methods 21 

for estimating heavy metal contents in manure and generating more country-differentiated data, 22 

especially for developing countries, should be prioritised by future research studies. Using life cycle 23 

impact assessment methods, it was additionally found that mercury, zinc and copper are the 24 

substances contributing the most to the toxic impacts on human health and freshwater ecosystems 25 

resulting from manure application to land. While countries such as China, India, Russia, Brazil and 26 

the United States of America contributed to half the heavy metal releases from manure application 27 

worldwide, the impact intensity per area of agricultural land was observed to be highest for island 28 

countries, the European Union and South-East Asia because of higher per-area applications of 29 

manure. These findings demonstrate the need to perform country-specific impact assessment to 30 

support policy-making regulating the concentrations of toxic substances such as heavy metals in 31 

utilised manure. 32 

Keywords 33 
Manure management, heavy metal concentration, inventory, toxicity, impact assessment, life cycle 34 
assessment  35 
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1. Introduction 36 
Reusing animal manure as an organic crop fertiliser has been shown to enable a better use of 37 

nutrient sources and to help reduce pollution due to nitrogen leaching compared to utilisation of 38 

conventional mineral fertilisers (e.g. EC, 2012; Kramer et al., 2006). In addition, the application of 39 

animal manure on agricultural land has been reported to result in high crop productivity and soil 40 

fertility over longer time periods than synthetic fertilisers, thus making it a relevant alternative 41 

(Hepperly et al., 2009; Jensen, 2013; Redding et al., 2016; Russo and Taylor, 2010). However, 42 

animal manure contains traces of antibiotics, heavy metals and pathogens, which may damage 43 

ecosystems and human health (Eneji et al., 2003; Kumar et al., 2005, 2013; Millner, 2009; 44 

Nicholson et al., 2003). These potentially toxic substances may affect not only the plants through 45 

direct uptake (Kornegay et al., 1976; Tien et al., 2016; Zhou et al., 2005), but also the grazing cattle 46 

and humans by ingestion of contaminated food and water (Kumar et al., 2013). Manure treatment 47 

(e.g. anaerobic digester, chemical addition, thermal treatment) may help reduce the concentrations 48 

of antibiotics and pathogens to reach limits defined by authorities, e.g. the European Union (Bicudo 49 

and Goyal, 2003; Dolliver et al., 2008; EC, 2011). For many other pollutants (including heavy 50 

metals), some countries have implemented national regulations setting concentrations thresholds for 51 

composted waste (Cai et al., 2007; DüMV, 2012; MoE, 2006)  52 

Estimating the current inputs of toxic substances to soil and their potential damage on the 53 

environment can aid define proper concentration thresholds and prioritise pollutants to address in 54 

policy-making. To date, the total releases of harmful substances resulting from the application of 55 

manure in a given country have only been quantified in few studies and for specific cases. 56 

Inventories of heavy metal releases have been built for the world as a whole in 1988 (Nriagu and 57 

Pacyna, 1988), for England and Wales in 2000 (Nicholson et al., 2003), for France in 2012 (Belon 58 

et al., 2012) and for China in 2005 (Luo et al., 2009). As an intermediate step to derive a global 59 

toxic release inventory (hence not disclosed), Cucurachi et al. (2014) quantified total heavy metal 60 

releases from manure application in Europe in 2010, using country-specific manure production 61 
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statistics combined with average heavy metal contents for Europe. The European inventory was 62 

thus used as a basis to extrapolate to the global scale using different proxies, i.e. gross domestic 63 

product, carbon dioxide emissions or mercury emissions. Likewise, Sleeswijk et al. (2008) 64 

estimated heavy metal releases from manure application in the world in 2000 based on total 65 

livestock statistics, excretion rates and heavy metal concentrations reported for the Netherlands 66 

(detailed results not available either). Although highly relevant in environmental policy-making 67 

context, e.g. to aid frame existing or new regulations, none of these studies address a consistent 68 

national and temporal differentiation in their estimates of chemical releases from manure 69 

application in a global perspective.  70 

In this study, we therefore aim to (i) develop a harmonised framework for estimating the total 71 

releases of toxic substances to agricultural soil resulting from the application of manure in a given 72 

country; (ii) apply this framework to derive national inventories of heavy metal releases in the 73 

world in the period 2000-2014 ; and (iii) quantify the impact of these releases on ecosystems and 74 

human health. The focus on heavy metals was motivated by their data availability and their 75 

environmental relevance as they range among the top contributors to damages on human health and 76 

freshwater ecosystems (Laurent et al., 2011). 77 

2. Materials and methods 78 

2.1. Release inventory framework 79 
The release of a substance to agricultural soil is directly related to the quantity of applied manure 80 

and to the concentration of the substance in the manure. The latter mainly depends on the amount of 81 

substance present in the feed ingested by the animals, which is regulated for each livestock (EC, 82 

2003, 2002). Furthermore, the form of the manure, either as a liquid or a solid waste, influences its 83 

composition and thus its content in toxic substances (Amlinger et al., 2004). 84 
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Following the method used by Cucurachi et al. (2014), we propose a general framework to estimate 85 

the input quantity Q(S)l,t,c,y of a substance S to the agricultural soil resulting from the application of 86 

manure of type t (solid or liquid) from the livestock l in the country c in year y – see Equation 1: 87 

yctlyctlyclyctl SCPMSQ ,,,,,,,,,,, )(××=)(  (Equation 1) 88 

Where Ml,c,y is the quantity of manure from the livestock l applied in the country c in year y (in kg 89 

N-content); Pl,t,c,y is the proportion of manure managed through a solid or liquid system (type t) for 90 

the livestock l in the country c in year y (in %); C(S)l,t,c,y is the concentration of substance S in 91 

manure of type t from the livestock l in the country c in year y (in g/kg N-content). 92 

2.2. Data collection  93 

2.2.1. Manure applied to soil Mc,y,l 94 
Quantities of manure applied to soil, expressed as kg of nitrogen content (kg N-content), can be 95 

retrieved from the statistic division of the Food and Agriculture Organization of the United Nations 96 

(FAOSTAT) for 215 countries across the world from 2000 to 2014 (FAOSTAT, 2015a). The 97 

quantity of nitrogen in manure applied to soil is calculated by FAOSTAT following the 2006 98 

Intergovernmental Panel on Climate Change guidelines for estimating nitrous oxide emissions from 99 

nitrogen present in the manure added to agricultural soils by farmers (FAOSTAT, 2015a; IPCC, 100 

2006). It is expressed as the amount of nitrogen excreted by livestock, net of the nitrogen losses due 101 

to manure management systems, plus the nitrogen contribution from bedding materials when 102 

present. The amount of nitrogen excreted is obtained by multiplying the number of livestock heads 103 

in a country by typical animal masses and by nitrogen excretion coefficients specific to each 104 

livestock. Thus, FAOSTAT (2015a) assumes that the totality of livestock manure is used for crop 105 

fertilisation. 106 

The applied manure data set is differentiated into 16 livestock species: buffaloes, cattle (dairy, non-107 

dairy), sheep, goats, swine (market, breeding), chickens (layers, broilers), turkeys, horses, donkeys, 108 

mules, camels, ducks, and llamas (FAOSTAT, 2015a). Manure from horses, camels, lamas, mules, 109 
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donkeys and buffaloes represented only 0.4% of the total manure applied in Europe, and 7.2% in 110 

the world (FAOSTAT, 2015a). Because their manure is poorly used and seldom analysed (see 111 

Section 3.1), these livestock were considered as cattle (non-dairy) when building the inventory of 112 

heavy metal releases. For the same reason, turkey was treated as broiler poultry. 113 

2.2.2. Manure management system Pl,t,c,y 114 
Livestock excreta can be collected as solid manure (i.e. scraped from the floor with beddings) or 115 

liquid slurry (i.e. flushed out of enclosed areas). The choice of the manure management system 116 

depends on many factors, including the type of livestock, the size of the farm, the management 117 

costs and the environmental and regulatory policies (BIOFerm, 2009; Westerman and Bicudo, 118 

2005). The proportion of cattle (dairy and non-dairy), swine and poultry kept on either solid or 119 

liquid manure management systems was compiled for 17 European countries from a questionnaire 120 

addressed to experts across the United Nations Economic Commission for Europe (UNECE) in 121 

2003 – see Table B1 (Kuczyński et al., 2005). For a specific livestock, the proportion of animals 122 

kept on a liquid manure management system is considered equivalent to the proportion of excreta 123 

collected as liquid slurry, and likewise for solid manure management systems and solid manure. 124 

The analysis of the proportion of animals kept on a liquid manure management system (Table B1) 125 

shows clear differences between the types of livestock. While most of the swine are kept on liquid 126 

manure management system, nearly all layer chickens are kept on solid manure management 127 

systems. These proportions also vary considerably between EU countries, for example ranging for 128 

non-dairy and dairy cattle from 0-3% in Hungary to 100-100% in the Netherlands (Table B1). For 129 

poultry, slurry was assumed to have the same heavy metal content as solid manure as very little data 130 

exist on heavy metal concentrations in poultry slurry. This assumption should be acceptable because 131 

liquid manure management system is rarely used for poultry (see Table B1). For countries for which 132 

no information exist about the type of manure management systems, the geometric means of the 133 

available data were used as approximations. This assumption is deemed of little influence on the 134 

total releases as the metal concentrations show little variations across solid and liquid manure for a 135 
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given livestock (see Section 3.1). Further work is required to refine this assumption and extend data 136 

of manure management systems to all countries in the world. 137 

2.2.3. Heavy metal content in manure C(HM)l,t,c,y 138 
Heavy metals are commonly added to animal feeds for health and welfare reasons, and a large part 139 

of the consumed heavy metals may then be excreted and end up in manure (Faridullah et al., 2014; 140 

Nicholson et al., 2003). In intense pig farming, the amounts of copper and zinc eliminated through 141 

the animal manure can thus correspond to 72-80% and 92-96% of the amount ingested, respectively 142 

(Mantovi et al., 2003). Most studies investigating heavy metal contents in manure report 143 

concentrations in milligram of heavy metal per kilogram of dry matter (mg/kg.dm) (Amlinger et al., 144 

2004; Møller et al., 2007). To obtain the heavy metal content C(HM)l,t,c,y in g/kg N-content, 145 

information about the dry matter content and the nitrogen content in manure are necessary, as 146 

shown in Equation 2. 147 

[ ] [ ] yctl
yctlyctlyctl N

DMHMHMC
,,,

,,,,,,,,,
1%)( ××=                    (Equation 2) 148 

Where [HM]l,t,c,y is the concentration of heavy metal HM in manure of type t from the livestock l in 149 

the country c in year y (in g/t.dm); %DMl,t,c,y is the dry matter content in manure of type t from the 150 

livestock l in the country c in year y (in %); and [N]l,t,c,y is the nitrogen content in manure of type t 151 

from the livestock l in the country c in year y (in kg-N/tonne fresh matter). 152 

The organic matter and nitrogen contents in manure strongly depend on its treatment, making 153 

difficult any time or country differentiation (Amlinger et al., 2004; Faridullah et al., 2014; 154 

Westerman and Bicudo, 2005). Typical dry matter content and nitrogen content on a fresh weight 155 

basis in solid manures and slurries from cattle, pig, sheep, duck, layer, broiler and turkey have been 156 

retrieved from Chambers et al. (2001). Albeit old, these data are assumed to be valid for the purpose 157 

of the current study. Further studies to determine dry matter contents and nitrogen contents in 158 

manure are recommended to improve the accuracy of these estimates. 159 
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With respect to heavy metal concentrations, the Assessment and Reduction of Heavy Metal Input 160 

into Agro-ecosystems (AROMIS) database contains information about the concentrations of 161 

cadmium, chromium, copper, nickel, lead and zinc in animal manure. These data were compiled 162 

from 32 reports and scientific articles published prior to 2003 for 10 European countries – see Table 163 

B2 (KTBL, 2005). In spite of its relative comprehensiveness, the AROMIS database does not 164 

document arsenic and mercury concentrations, does not provide any data related to non-European 165 

countries and does not include data more recent than 2003. New European regulations concerning 166 

heavy metal contents in animal feeding stuffs were implemented in 2002 and 2003 (EC, 2003, 167 

2002), and may have resulted in changes in heavy metal concentrations in manure. The AROMIS 168 

database includes only 1 study carried out after these regulations from 2002 – 2003, and could 169 

therefore be assumed outdated. To address these gaps, an additional literature review was 170 

conducted, using Web of Science database (Thomson Reuters, 2017) and Google Scholar 171 

(https://scholar.google.com), with the keywords ‘heavy metal’, ‘content’, ‘concentration’, ‘manure’.  172 

2.3. Impact assessment 173 
To evaluate the toxicity-related environmental impacts caused by the releases of heavy metals to 174 

agricultural soil, the USEtox 2.02 model was used (Hauschild et al., 2008; Rosenbaum et al., 2008). 175 

It is a scientific consensus-based model for characterising impacts of chemicals on human health 176 

(termed ‘human toxicity’, differentiated between cancer and non-cancer effects) and freshwater 177 

ecosystems (termed ‘freshwater ecotoxicity’), and it is typically used in life cycle impact 178 

assessment (Hauschild et al., 2013, 2008; Rosenbaum et al., 2008).  179 

The model enables the calculation of substance-specific characterisation factors (CF), which are 180 

used to assess their potential environmental impacts. These CF are the product of three factors, 181 

which describe the transport and distribution of the substance in the different environmental 182 

compartments (i.e. fate factor), the increase in the amount of substance transferred to living 183 

organisms (i.e. exposure factor), and the resulting probability of adverse effects in the organisms 184 

(i.e. effect factor) (Rosenbaum et al., 2008). In USEtox 2.02, CF are available for the ionic forms of 185 
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the eight heavy metals considered in this study, with arsenic being differentiated between arsenic III 186 

and V, and chromium being differentiated between chromium III and VI. Chromium is primarily 187 

emitted as chromium III and, while chromium VI is highly toxic, it is likely reduced to chromium 188 

III in soil (EFSA, 2009). The CF for chromium III was therefore selected for the purpose of this 189 

study. As emission distribution of arsenic species remain unclear, the average of the CF for arsenic 190 

III and arsenic V was used to characterise arsenic releases (Fantke, 2016).  191 

Characterised impact scores were calculated by combining release data with CF for each heavy 192 

metal, thus leading to impact results for human toxicity (cancer and non-cancer), expressed in 193 

number of disease cases, and freshwater ecotoxicity, expressed as potentially affected fraction of 194 

species integrated over time and volume (PAF.m3.day). Within an impact category (i.e. human 195 

toxicity or freshwater ecotoxicity), the impact scores of all metals can be compared against each 196 

other to identify the highest contributor, and they can be aggregated to obtain a total impact score 197 

from the application of manure to agricultural soil (only covering impacts from heavy metals). 198 

Assuming an equal weighting factor of 1, cancer and non-cancer effects can be aggregated together, 199 

thus yielding a single impact indicator result for human toxicity (Rosenbaum et al., 2008).  200 

To facilitate the interpretation of the results across countries, “impact intensities” can be calculated. 201 

These are defined as the toxicity impact scores divided by the area of cultivated agricultural land, 202 

thus reflecting the magnitude of the toxic impacts stemming from a unit of agricultural land on 203 

which manure is assumed to be applied. Cultivated agricultural land was defined as the sum of 204 

arable land, permanent crops, and permanent cultivated meadows and pastures (data retrieved from 205 

FAOSTAT (2015b)). 206 

3. Results and discussion 207 
The results of the study and their analyses are presented in Sections 3.1-3.4, each addressing a key 208 

aspect. The literature review of heavy metal concentrations in manure is addressed in Section 3.1 as 209 

it reports an up-to-date attempt at consolidating different data sources to obtain consistent 210 
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concentration estimates. The resulting inventory of heavy metal releases is documented in Section 211 

3.2 and it is later compared with alternative literature sources for validation purposes in Section 3.3. 212 

Finally, Section 3.4 describes the use of the inventory for toxicity impact assessment of manure 213 

application (focus on heavy metals).  214 

3.1. Review of heavy metal concentrations in manure 215 
In addition to the AROMIS database (see Table B2), the literature review has led to identifying 17 216 

scientific articles, covering arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury 217 

(Hg), nickel (Ni), lead (Pb) and zinc (Zn) in solid manure and/or slurry from cattle, swine, goat, 218 

sheep and poultry, in European countries (7 studies) and non-European countries (10 studies). The 219 

compilation of heavy metal concentrations is available in Table B3. As most available data applies 220 

to Europe, heavy metals concentrations reported in European countries are analysed separately from 221 

non-European countries in the subsequent sections. 222 

3.1.1. European countries 223 
For a given livestock and heavy metal, ranges of concentrations reported for each individual 224 

country in the AROMIS database overlap each other. It means that there appear to be no significant 225 

difference in the heavy metal content in manure among European countries (see Table B2). 226 

Furthermore, for a given country and heavy metal, concentrations reported in more recent scientific 227 

articles fall within the ranges of those in the AROMIS database. These results hence suggest that 228 

there is no significant change over time for European countries and that the concentration values 229 

from the AROMIS database can be considered valid for the period 2000-2014 (see Tables B2 and 230 

B3). Considering the lack of significant time or country differentiation, the high influence of living 231 

conditions and measuring methods on the results (see Section 3.1.3) and the low amount of studies 232 

available per country, it is therefore assumed that heavy metal concentrations are homogeneous in 233 

Europe for the whole period 2000-2014 of the inventory.  234 

For cadmium, chromium, copper, nickel, lead and zinc, the AROMIS project reported the European 235 

means of concentrations weighted by the number of samples in each study to correct for potential 236 
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biases due to individual sampling and analytical errors (KTBL, 2005). Because the articles from the 237 

literature review rarely document the number of analysed samples and have concentrations similar 238 

to the ones reported in the AROMIS database (see Table B2 and B3), the weighted means were 239 

directly used in the inventory. For heavy metals and livestock not included in the AROMIS project 240 

(i.e. arsenic and mercury; duck, sheep and goat), geometric means were calculated from the data 241 

retrieved for Europe from the literature review (see data in Table B3). The resulting heavy metal 242 

concentrations representative for Europe are reported in Table 1. 243 

As illustrated in Table 1, which highlights in bold the highest metal concentrations for each heavy 244 

metal, copper and zinc show the highest concentrations in swine manure. Manure from sheep and 245 

goat present the highest concentrations of arsenic, chromium, mercury, nickel and lead due to 246 

maximal values reported by Amlinger et al. (2004). Heavy metal contents in manure from such 247 

livestock have rarely been quantified and additional analytical studies should be conducted to 248 

reduce the uncertainty associated with these values. It was noted that for most livestock, heavy 249 

metal concentrations in manure do not necessarily respect the thresholds defined by national 250 

legislations, e.g. in Denmark (MoE, 2006) and Germany (DüMV, 2012) (data not shown here). 251 

 252 

Table 1. Heavy metal contents in manure C(HM)l,t by livestock and manure type retained for 253 
European countries  254 

Livestock Manure 
type 

As Cd Cr Cu Hg Ni Pb Zn 
(in g/kg N-content) 

Dairy cattle 
Solid 3.46E-2 1.25E-2 3.13E-1 9.58E-1 5.00E-3 1.83E-1 1.58E-1 4.96E+0 
Liquid 1.44E-2 8.00E-3 1.38E-1 8.40E-1 1.80E-3 1.24E-1 1.12E-1 4.14E+0 

Non-dairy 
cattle 

Solid 3.46E-2 1.25E-2 3.13E-1 9.58E-1 5.00E-3 1.83E-1 1.58E-1 4.96E+0 
Liquid 1.88E-2 1.04E-2 1.80E-1 1.10E+0 2.35E-3 1.62E-1 1.46E-1 5.40E+0 

Swine 
Solid 3.46E-2 1.79E-2 5.00E-1 8.46E+0 1.07E-3 2.96E-1 1.29E-1 3.31E+1 
Liquid 9.60E-3 3.00E-3 9.40E-2 1.93E+0 6.00E-4 1.20E-1 3.00E-2 9.34E+0 

Sheep & goat  6.75E-2 1.41E-2 8.10E-1 1.36E+0 7.08E-3 4.35E-1 4.07E-1 6.16E+0 
Layer chicken  9.56E-3 7.50E-3 1.22E-1 1.16E+0 9.38E-4 1.31E-1 6.00E-2 8.83E+0 
Broiler chicken 1.02E-2 8.00E-3 4.00E-1 1.78E+0 1.00E-3 1.24E-1 7.40E-2 7.06E+0 
Duck  1.95E-2 2.25E-2 2.78E-1 2.84E+0 2.11E-3 3.39E-1 1.97E-1 1.54E+1 
Standard deviation 1.70E-2 5.19E-3 1.98E-1 2.09E+0 2.06E-3 1.02E-1 9.68E-2 7.98E+0 
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3.1.2. Non-European countries 255 
As shown in Table B3, heavy metal contents in manure could be retrieved from 10 publications 256 

covering 8 non-European countries (i.e. China, Pakistan, Turkey, Nigeria, Japan, Malaysia, 257 

Thailand and Brazil). This underlines the lack of data and the need for further research in this area. 258 

To build interim inventories at national and global scales, extrapolations and assumptions are 259 

therefore necessary. Concentrations in non-European countries were compared to the average 260 

values retrieved for Europe as part of the literature review, and the heavy metal contents were 261 

observed to be generally higher for non-European countries than for European countries (values 262 

higher than 1 in Figure 1). For copper and zinc, concentrations however remain in the same ranges 263 

as in Europe or end up lower than the means calculated in Table 1 (e.g. Adesoye et al. (2014), 264 

Faridullah et al. (2014)). Higher heavy metal contents in manure in non-European countries may be 265 

due to less restrictive regulations concerning animal feed, or to higher background concentrations in 266 

the environment caused by other sources of pollution, e.g. intense traffic and industrial activities 267 

(Wang et al., 2013). 268 

 Large data gaps exist with respect to non-European country coverage (only 8 represented countries) 269 

and large discrepancies are observed in the estimation of the heavy metal contents in manure, with 270 

differences of more than one order of magnitude for some metals within a same country, e.g. 271 

Pakistan and China for mercury (see Figure 1). These shortcomings, along with the lack of 272 

harmonised heavy metal extraction methods (see Section 3.1.3), led to privilege the use of the 273 

means established for Europe, as reported in Table 1. These are recommended for use until more 274 

consistent sets of data become available, although studies specifically addressing developing 275 

countries should carefully check for possible underestimations when using these proxies. 276 
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 277 

Figure 1. Heavy metal concentrations of manure reported for non-European countries normalised 278 
by the average concentrations in Europe for (a) sheep and goat, (b) poultry, (c) cattle, and (d) swine. 279 
Average concentrations in Europe are reported in Table 1. Note logarithmic scale on y-axis. 280 

3.1.3. Sampling and analytical methods 281 
Several publications have highlighted the influence of different parameters on the measured heavy 282 

metal content in manure (e.g. Eckel et al. (2005), Faridullah et al. (2012)). They have shown that, 283 

irrespective of the livestock, the heavy metal contents in animal manure vary in a broad range 284 

across studies as it highly depends on the animal diet, age and living conditions (Bolan et al., 2004). 285 

Manure treatments such as composting or ashing also influence its organic matter content and heavy 286 

metal concentrations (Amlinger et al., 2004; Faridullah et al., 2014; Gul et al., 2015; Hsu and Lo, 287 

2001; Lv et al., 2016). 288 

Regarding the sampling and analytical methods, unrepresentative sampling due to manure 289 

inhomogeneity may result in up to 50% error in measures of heavy metal concentrations (Amlinger 290 

et al., 2004; Eckel et al., 2005; Gonçalves Júnior et al., 2007). In addition, the metal extraction and 291 

determination methods (including type of extractant, pre-treatment of the sample, digestion) differ 292 

across and within countries (Amlinger et al., 2004). The choice of the extractant determines which 293 
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chemical forms of the metals are measured, such as the exchangeable fraction, the organically 294 

complexed form, and the residual part (Eneji et al., 2003; Faridullah et al., 2012; Irshad et al., 295 

2013). In an effort to align the studies, the commonly used aqua-regia extraction method, which 296 

determines the pseudo-total concentration of metals, could be used as a basis for further 297 

harmonisation (Amlinger et al., 2004; ISO, 1995). More time-consuming sequential extraction 298 

procedures can complement this approach and help characterise each chemical fraction of metals, 299 

thus providing more relevant information when it comes to assessing the quantities of heavy metal 300 

bioavailable to plants or susceptible to leak into water bodies. 301 

Therefore, the potential variations in heavy metal concentrations reported across countries may 302 

reflect the livestock living conditions, but also result from differences in manure treatment or 303 

sampling and analytical methods. The paucity of available data confirms that consistent country and 304 

time differentiation of heavy metal concentrations in manure is currently not possible. This calls for 305 

future studies reporting on the content of contaminants in manure to transparently document the 306 

techniques used and strive for harmonisation with the aqua-regia extraction method, possibly 307 

complemented with sequential extraction procedures. In the current study, provided the limited 308 

amount of data available (see Section 3.1.1-3.1.2), no categorisation of the reported heavy metal 309 

content according to the extraction techniques used was attempted.  310 

3.2. Inventory results 311 
The framework defined in Equation 1 was applied to develop a global inventory of heavy metal 312 

releases (arsenic, cadmium, chromium, copper, mercury, nickel, lead and zinc) differentiated into 313 

215 countries and 15 years, i.e. from 2000 to 2014. The detailed inventories at those scales are 314 

available in Appendix A. 315 

3.2.1. Influence of livestock differentiation 316 
For each heavy metal, the substance concentration in manure only varies within one order of 317 

magnitude across the different livestock and types of manure (liquid or solid state), with a maximal 318 

standard deviation of 7.98 for zinc (see Table 1). The contribution of a livestock to the releases of a 319 
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heavy metal in a given country is therefore typically driven by its contribution to the quantities of 320 

applied manure, as illustrated in Figure 2, where similar livestock distributions were noted for 321 

manure application and nickel releases in Belgium in 2012. 322 

At national level, releases of heavy metals with higher standard deviations are typically driven by 323 

the contribution of the livestock with the highest concentration in manure. In such cases, the 324 

distribution of livestock in manure application may therefore depart significantly from that in 325 

specific metal releases. For example, the contribution of swine manure to the total releases of 326 

copper in Denmark in 2012 (77%) was higher than its contribution to the quantity of applied 327 

manure (59%) since swine manure – liquid or solid – has among the highest copper concentrations 328 

(Figure 2). 329 

 330 

Figure 2. Contribution of livestock to the applied manure and the resulting releases in 2012. 331 

A strong linear correlation between the national releases of a given heavy metal and the total 332 

quantity of applied manure is observed across countries, with correlation coefficients r-squared (i.e. 333 

r2) ranging from 0.953 to 0.994 (Table 2). The inclusion of country-specific heavy metal 334 

concentrations is expected to reduce the quality of this correlation because the heavy metal contents 335 

in manure are likely to be higher in non-European countries like China (see Section 3.1.2). 336 

However, in the absence of data allowing for country differentiation of metal concentrations in 337 

Manure Cu

Sheep & goat

Swine

Poultry

Cattle, non-dairy

Cattle, dairy

Denmark

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Manure Ni

  

 

 

Belgium

14 



manure, national heavy metal releases can be extrapolated from the total application of manure (i.e. 338 

regardless of the livestock distribution) with the metal-specific proxies presented in Table 2.  339 

Table 2. Proxies for extrapolating heavy metal releases from the total application of manure 340 

 
Proxy 

(kg/kg N-content) R2a 

As 2.46E-05 0.973 
Cd 1.04E-05 0.994 
Cr 2.97E-04 0.992 
Cu 1.81E-03 0.967 
Hg 2.81E-06 0.953 
Ni 1.87E-04 0.988 
Pb 1.32E-04 0.974 
Zn 8.56E-03 0.970 
aLinear regression on 3225 points 341 

3.2.2. Geographical variations 342 
In 2013, the total quantities of applied manure per country ranged from 8.26E+03 kg N-content 343 

(Tokelau) to 5.52E+09 kg N-content (China). As a result, the total per-country releases varied by up 344 

to 6 orders of magnitude for a given heavy metal. In 2014, the top 5 countries in the world with 345 

respect to heavy metal releases from manure application were China (e.g. 22% of global Ni 346 

releases), India (9% for Ni), the United States of America (7% for Ni), Brazil (6% for Ni) and the 347 

Russian Federation (4% for Ni). In comparison, the 28 European Union members represented 18% 348 

of the global releases of nickel. The actual contributions of countries like China or India are likely 349 

to be more important as the heavy metal content in manure is expected to be higher in non-350 

European countries – see Section 3.1.2. 351 

3.2.3. Temporal variations 352 
The quantity of applied manure by livestock is the only time-dependent parameter in the developed 353 

inventory. The correlation between heavy metal releases and manure inputs (see Section 3.2.1) 354 

therefore entails that, in a given country, heavy metal releases follow a temporal evolution that is 355 

very similar to the one of the total quantity of applied manure. Using the country classification 356 

defined by the United Nations to differentiate developed economies, economies in transition and 357 

developing countries (UN, 2014), distinct trends could be observed for each group of countries – 358 

15 



see the example of zinc in Figure 3. In developing economies (red lines), total releases have 359 

generally increased by a factor of 1-2.5 between 2000 and 2014 (exception of Sao Tome and 360 

Principe and Rwanda). In contrast, heavy metal releases have generally decreased by a factor 361 

ranging from 1 to 2 in developed countries (blue lines). No general trend could be observed for 362 

economies in transition (in yellow). 363 

At the global scale, there has been a linear increase of soil-borne releases for all heavy metals 364 

between 2000 and 2014, with R-squared values higher than 0.959 (thick black curve in Figure 3). 365 

Each year, the releases of heavy metals were thus calculated to increase by 5.57 t/yr (As), 23.9 t/yr 366 

(Cd), 80.8 t/yr (Cr), 479 t/yr (Cu), 0.58 t/yr (Hg), 46.6 t/yr (Ni), 31.0 t/yr (Pb) and 2.27 kt/yr (Ni). 367 

These values are believed to be sufficiently representative at global scale to be used as basis to 368 

develop forecast heavy metal release inventories. 369 

  370 

Figure 3. Temporal evolution of zinc releases by country indexed on values in 2000. STP: Sao 371 
Tome and Principe, RWA: Rwanda 372 

3.3. Validation of the framework 373 
The globally-differentiated inventory described in Section 3.2 demonstrates the operationalisation 374 

of the proposed framework although several uncertainties and limitations can be noted given the 375 

current level of data availability. Taking the different terms of Equation 2, the quantity of applied 376 
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manure was found to be the most influential parameter to the determination of heavy metal releases 377 

(see Section 3.2.1) and may be overestimated since it does not consider other utilisations of manure 378 

than for fertilising purposes (FAOSTAT, 2015a). Although it was evaluated to be less influential, 379 

the proportion of animals kept on liquid or solid manure management system was averaged for all 380 

non-European countries based on European data, which may not be representative. Finally, the 381 

discrepancies observed in the measuring and analytical methods used to determine heavy metal 382 

concentrations and the lack of sufficient number of country-specific data on the heavy metal, 383 

organic matter and nitrogen contents in manure led to calculating concentration means 384 

representative for all years and countries. As indicated in Section 3.1.2, these can be questioned as 385 

concentrations are very likely underestimated for developing countries due to lower regulations. 386 

Further studies addressing these shortcomings and providing harmonised and country-specific data 387 

are therefore recommended to improve the overall quality of the inventory. 388 

To test the precision of the inventory results, comparisons were performed with previous studies 389 

having disclosed national or regional inventories of heavy metals, viz. releases resulting from 390 

manure application in England and Wales, in France, in China and in the whole world – see Table 391 

3. 392 

Nicholson et al. (2003) estimated the heavy metal releases in England and Wales resulting from 393 

manure application based on livestock numbers, excreta production quantities, and average heavy 394 

metal concentrations in manure. Heavy metal releases calculated in our study for the United 395 

Kingdom are found to be 1.1 to 7.1 times higher than in Nicholson et al. (2003) – see Table 3. The 396 

discrepancies may be explained by the different geographical scope, i.e. Scotland and Northern 397 

Ireland being included in our study and not in Nicholson et al. (2003), and by the generally lower 398 

manure concentrations in Nicholson et al. (2003). For example, the chromium concentrations used 399 

by Nicholson et al. (2003) are ca. 50% smaller than the European geometric means calculated in the 400 

AROMIS project (Table B2). 401 

17 



While Belon et al. (2012) generally used the same methodology as Nicholson et al. (2003), the 402 

study also accounted for the type of effluents and the time spent by animals inside and outside the 403 

farm buildings. The authors estimated heavy metal releases, which are 1.4 to 3.2 times higher than 404 

the values from our inventory (see Table 3). The concentration data used by Belon et al. (2012) 405 

could only be retrieved for swine, and are 1.1 to 1.9 times higher than those used in our inventory 406 

for this livestock. The absence of further documentation precluded any further analysis of the 407 

discrepancies, including the possible influence of the time spent inside and outside the farm on the 408 

heavy metal concentration of manure. 409 

When calculating the heavy metal inputs to agricultural soil due to the application of manure in 410 

China, Luo et al. (2009) applied the same method than Nicholson et al. (2003). However, Luo et al. 411 

(2009) used concentrations higher than those applied in our inventory (see Figure 1), thus resulting 412 

in systematically higher release estimates. As discussed in Section 3.1.2, there is a likelihood that 413 

estimates for non-European countries are underestimated in our study, thus calling for developing 414 

approaches to derive more consistent release inventories for these countries. 415 

At global scale, Nriagu and Pacyna (1988) built an inventory based on the combination of annual 416 

global discharge to soil of animal waste and manure with ranges of heavy metal concentrations. 417 

They disregarded any differentiation of livestock. Heavy metal releases calculated in our inventory 418 

are observed to fall within the ranges found by Nriagu and Pacyna (1988) for cadmium, copper, 419 

mercury and zinc, while they are up to two times lower than the minimum of the ranges for arsenic, 420 

nickel and chromium (Table 3). The higher releases obtained by Nriagu and Pacyna (1988) are 421 

likely explained by the use of concentrations ranges higher than those in our study and the lack of 422 

livestock differentiation.  423 

Table 3. Comparison of heavy metal inventory results with retrieved literature sources. 424 

Region Year Reference Unit As Cd Cr Cu Hg Ni Pb Zn 
United 
Kingdom 2000 This study t 18 6.5 203 909 2.1 119 97 4200 

England 
& Wales 2000 Nicholson et 

al., 2003 t 16 4.2 36 643 0.3 53 48 1858 
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Ratio      1.1 1.6 5.6 1.4 7.1 2.2 2.0 2.2 
France 2012 This study t 24 10 256 1199 3 156 120 5840 

France 2012 Belon et al., 
2012 t 78 13 371 2578 6 368 307 11795 

Ratio      0.3 0.7 0.7 0.5 0.5 0.4 0.4 0.5 
China 2005 This study t 127 54 1522 10057 14 1011 689 47812 

China 2005 Luo et al., 
2009 t 1412 778 6113 49229 23 2643 2594 95668 

Ratio      0.1 0.1 0.2 0.2 0.6 0.4 0.3 0.5 
World 1988a This study kt 0.5 0.2 6.1 35.1 0.1 3.8 2.8 163.9 

World 1988 Nriagu and 
Pacyna, 1988 kt 1.2-4.4 0.2-1.2 10-60 14-80 0-0.2 3-36 3.2-20 150-320 

Ratiob      0.2 0.3 0.2 0.7 0.6 0.2 0.2 0.7 
a Backcasting using linear extrapolations from our inventory and the mean increase rates estimated for each 425 
metal in Section 3.2.3.  426 
b Based on the median of the range calculated by Nriagu and Pacyna (1988) 427 

In light of these comparisons, the developed inventory therefore appears consistent with the 428 

available literature since our estimations of heavy metal releases remain in the same order of 429 

magnitude as those reported in other individual studies (except for arsenic and cadmium in China; 430 

see Table 3). The four comparisons additionally reflect the importance of country-specific heavy 431 

metal concentrations in addition to the quantities of applied manure.  432 

3.4. Impact assessment 433 

3.4.1. Heavy metal contribution 434 
As illustrated in Figure 4, mercury (52%), zinc (87%) and copper (94%) are the most contributing 435 

substances for human toxicity (cancer effects), human toxicity (non-cancer effects) and freshwater 436 

ecotoxicity impacts, respectively. These metals should therefore be addressed in priority through 437 

regulations limiting their concentrations in feedstuff and/or manure applied to land. 438 

These results however are associated with some uncertainties because they are based on averaged 439 

quantities of heavy metals, the chemical forms of which are not specified. The use of sequential 440 

extraction procedures could help mitigate those uncertainties and estimate heavy metal release 441 

inventories which are consistent with the life cycle impact assessment method (see Section 3.1.3). 442 
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 443 

Figure 4. Heavy metal contribution to (a) human toxicity (cancer effects), (b) human toxicity (non-444 
cancer effects) and (c) freshwater ecotoxicity resulting from manure application in the world in 445 
2013.  446 

3.4.2. Impact intensity  447 
Impact intensities for human toxicity and freshwater ecotoxicity are linearly correlated with the 448 

quantity of manure applied per area of agricultural land, with r-squared values of 0.993 and 0.994, 449 

respectively. As observed in Figure 5 for human toxicity, European countries and South-East Asian 450 

countries are regions with large impact intensities due to intensive manure application per 451 

agricultural area. The geometric mean of the human toxicity impact intensities reached 5.11E-01 452 

cases/km2 in the European Union in 2013 while it was equal to 1.45E-01 cases/ km2 for the world. 453 

Although they were among the top countries in terms of absolute human toxicity impact score (see 454 

Appendix A), India, Russia, Brazil and the United States had human toxicity impact intensities 455 

close to the global mean, with values ranging between 9.21E-02 and 1.72E-01 cases/km2 in 2013. 456 

Because of the aforementioned linear correlation, a similar pattern is observed for freshwater 457 

ecotoxicity impact intensities. Studies aiming at refining data such as heavy metal concentrations 458 

and quantities of applied manure should therefore focus on these regions to enable the development 459 

of more accurate assessments and help implement consistent regulation frameworks aiming at 460 

reducing these impacts. 461 

Albeit not visible in Figure 5, many of the top-ranking countries with respect to their toxicity 462 

impact intensities were observed to be small islands and territories (15 out of the top 20). In 463 

particular, Singapore ranked first with a human toxicity impact intensity of 8.50E+01 cases/km2 due 464 
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to large inputs of manure in comparison to the available area of agricultural land. The second 465 

country (Saint Kitts and Nevis) obtained an impact intensity 10 times lower, i.e. 8.27E+01 466 

cases/km2, which still was 57 times higher than the global mean. Such outlying results are 467 

interpreted as misreporting of manure application data. FAOSTAT indeed reports that 43% of the 468 

total manure applied in Singapore in 2013 originated from swine (FAOSTAT, 2015a) while pig-469 

farming was phased out by the government in the mid-80s (Chien-Fang and Savage, 2015). In 470 

addition, the potential imports of manure and the usage of manure for other purposes than crop 471 

fertilisation (e.g. heating) are not included in the data reported by FAOSTAT (2015a). Results 472 

should therefore be used with caution in countries where applying manure to agricultural soil is not 473 

the main practice (see also Section 3.3).  474 

 475 
Figure 5. Map of human toxicity impact intensities (aggregated cancer and non-cancer effects) in 476 
2013, created with QGIS 2.18.0 (QGIS Development Team, 2016).  477 

4. Conclusions and recommendations 478 
A framework was developed for estimating soil-borne releases of potentially toxic substances from 479 

the application of manure on agricultural land. When applied to eight heavy metals typically present 480 

in manure, it allowed calculations of national inventories for 215 countries over 2000-2014. 481 

Although the results showed good consistency with previous inventories performed for single 482 
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countries or the entire world, several points were identified as requiring further research. In 483 

particular, additional studies are required to get country-specific and harmonised data on heavy 484 

metal contents in manure. 485 

The characterisation of impacts on human health and freshwater ecosystems resulting from manure 486 

application evidenced the contribution of mercury, copper and zinc, as well as important impact 487 

intensities in Europe and South-East Asia. Policy-making addressing manure management should 488 

therefore target these specific metals and regions for framing regulations on heavy metal contents in 489 

feedstuff and manure. In a broader perspective, these findings and recommendations also 490 

demonstrate the need and relevance of such country- and time-differentiated global inventory of 491 

toxic releases that can be used for example with life cycle impact assessment to support effective 492 

policy-making. 493 
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Appendix A. Supplementary Results (electronic file) 496 
Contains inventories of the releases of arsenic, cadmium, chromium, copper, mercury, nickel, lead 497 

and zinc to agricultural soil resulting from the application of manure for 215 countries between 498 

2000 and 2014. Inventory results by country, year and livestock, and aggregated totals by country 499 

and year are both available. Impact scores for human toxicity (aggregated cancer and non-cancer 500 

effects) and freshwater ecotoxicity by country in 2013 are also presented. 501 

Appendix B. Supplementary Materials (electronic file) 502 
Table B1 displays the proportion of cattle (dairy and non-dairy), swine and layer chicken kept on a 503 

liquid manure management system in 17 European countries. 504 

Table B2 is a compilation of heavy metal concentrations extracted from the AROMIS project, 505 

indicating calculated ranges and geometric means of data for each metal, country and livestock. 506 

Table B3 presents the heavy metal concentrations retrieved from the literature review.507 
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