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ABSTRACT  

In order to controllably grow single-wall carbon nanotubes (SWCNTs), it is required a better 

understanding of the growth processes and how they are influenced by external parameters such as 

catalyst and gaseous environment. Here, we present direct evidence of growth termination of individual 

SWCNTs and successive growth of additional SWCNTs on Co catalyst particles supported on MgO by 

means of environmental transmission electron microscopy (TEM). Such in situ observations reveal the 

plethora of solid carbon formations at the local scale while it is happening and thereby elucidate the 

multitude of configurations resulting from identical external synthesis conditions, which should be 

considered in the quest for controlled SWCNT growth. Using CO and a mixture of CO and H2 as 

carbon sources, we show that the growth of SWCNTs terminates with a reduced tube-catalyst adhesion 

strength. Two main reasons for the cessation are proposed: insufficient active carbon species and a 

certain amount of stresses exerted at the tube-catalyst interface. Interestingly, it was observed that 

catalyst particles stayed active in terms of nucleating additional solid carbon structures after growth 

termination of the first SWCNT. These observations elucidate the importance of an in-depth 

understanding of the role of catalysts and carbon sources in the continued growth of SWCNTs. 

Furthermore, it serves as a guide for further control of carbon nanostructure synthesis via catalyst 

engineering and synthesis optimization.  

KEYWORDS  

Single-Wall Carbon Nanotube, Catalytic Growth, Termination Mechanism, Multiple Nucleation, In 

Situ, Transmission Electron Microscopy 

Controlling the structure and thereby properties of single-wall carbon nanotubes (SWCNTs) during 

synthesis has become a central issue in nano-electronics applications.1 In recent years, much effort has 
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been devoted to designing novel catalysts2-3 and optimizing synthesis parameters.4 As for chemical 

vapor deposition processes, the choice of catalysts and carbon source mainly manifest their roles on the 

SWCNT structures at the initial and final growth stages.6 A catalyst nanoparticle usually acts as 

template in the nucleation of a carbon dome,5-8 which can eventually lift off the surface of a particle as 

a cap.9-11 The particle-carbon bonds at the growth front at the cap/tube also prevent their closure by 

carbon-carbon bonding.12 Additionally, a cap can only elongate to form a tube by further incorporating 

active carbon species (e.g., C2 dimers13) to its open edge which is attached to a particle. If the carbon 

source is cut off or pulsed, the CNT structure14-16 can be distorted around the tube-catalyst interface and 

result in growth termination17 or the formation of a disordered band.18 In order to further elucidate the 

local impact on the growth mechanisms including growth termination, the growth of individual 

SWCNTs has been monitored directly in the present work.  

Remarkable progress has been made in the studies of the termination mechanisms, mainly for multi-

wall CNTs (MWCNTs) or a mixture of MWCNTs and SWCNTs on the macroscale, but the 

conclusions remain controversial or ambiguous. For instance, Reilly and Whitten19 proposed that 

encapsulation of the catalysts by amorphous carbon causes the growth termination of CNT arrays. 

Etchants, such as H2O vapor, O2, or H2 radicals, are thus widely used to increase the CNT growth 

efficiency,17, 20-21 indicating that the catalyst activity can be improved by etching amorphous carbon at 

the catalyst surface. In contrast, Amama et al.22 argued that the growth termination of vertically aligned 

CNT arrays resulted from Ostwald ripening of catalyst particles, which could be inhibited by the 

addition of water. Except for catalyst deactivation, previous studies also attribute growth termination to 

reduced carbon diffusion or supply during CNT growth. For example, the growth of vertically aligned 

CNT arrays usually follow an exponential decay model23 but sometimes also show an abrupt 

termination,24 due to the presence of amorphous carbon at a later stage of the CNT growth limiting the 
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local supply of carbon atoms to the catalysts. Based on the few works on the growth termination of 

SWCNTs, Maruyama et al.25 found that the growth of a SWCNT vertical film obeys a similar 

exponential decay model, possibly due to the diffusion resistance of the carbon source through a CNT 

film, catalyst poisoning and SWCNT burning by residual oxidant gases. They further clarified that the 

diffusion of the carbon source to the base of the vertically aligned SWCNTs was severely limited 

compared to MWCNT arrays;26 Picher et al.27 used in situ Raman measurements to investigate the self-

deactivation of SWCNTs. They claimed that defect-healing at the tube-catalyst interface is limited by 

an improper combination of growth temperature and precursor partial pressure.  

  Due to the complex chemical processes of CNT growth and insufficient details given by optical 

techniques or post-synthesis observations, it remains a challenge to clarify the above controversial 

issues. As a powerful approach for characterizing nanostructures during the growth of CNTs, in situ 

transmission electron microscopy (TEM) reveals more details about the roles of catalysts on MWCNT 

termination.28-29 However, direct evidence accounting for the growth termination of individual 

SWCNTs has been lacking. In the present study, we monitored the growth kinetics of individual 

SWCNTs from Co/MgO catalysts in situ by means of environmental TEM (ETEM). An image Cs-

corrected FEI Titan microscope equipped with a differential pumping system allows us to visualize the 

detailed structures of catalysts and CNTs at high resolution.30 A MEMS based heating holder provides 

precise temperature control with stability in the micro kelvin range. The in situ growth of SWCNTs at 

low CO pressure revealed a plethora of solid carbon structures, although mostly based on single layer 

carbon variants. The local impact from the environment (structural and environmental) apparently has a 

large influence on the growth mechanisms and the success rate of longer SWCNTs and suggests that 

unravelling the complexity of the growth mechanisms is key to exploit the prospects of tailored 

SWCNT growth. In order to explore the roles of catalyst and carbon supply on SWCNT termination, 
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SWCNTs grown under CO at varying pressures and mixtures of CO/H2 were compared. Reducing 

tube-catalyst adhesion strength by necking and broadening of the tube diameter acts as the ways of 

SWCNT growth cessation. In addition, we show that catalysts remain active in successively forming 

new SWCNTs, suggesting that other factors than the self-deactivation of catalysts result in the growth 

termination of SWCNTs. 

RESULTS  

Catalytic growth of fullerenes 

  The nucleation of a cap from a catalyst particle can be considered as the initial step for SWCNT 

growth. However, if a SWCNT close its growth edges at the initial stage, which originally bonded to a 

catalyst particle, a spherical cage (named fullerene) is generated from the catalyst particle instead of 

growing into a cylindrical tube.31 The details of the chemical vapor deposition process of fullerenes32-33 

have rarely been reported before.  

  Prior to SWCNT growth, the Co/MgO catalyst sample (see Materials and Methods and Figure S1 in 

Supporting Information) was first heated to 300 oC inside the TEM in the presence of 1.6 mbar CO to 

in situ form nanoparticles on the crystalline MgO surface (Figure S2 in Supporting Information). After 

that, the temperature was increased to 700 oC, and then the pressure of CO was raised to 5.3 mbar to 

trigger the subsequent growth of SWCNTs. Figure 1 depicts in situ TEM observations of the formation 

and detachment of a fullerene from a catalyst particle (highlighted by the sketches below). A graphene 

dome was initially bound to the tip of the 1.6 nm particle (0 s), from which a spherical cap was lifted 

off (12 s). As it is a projected image, it is challenging to distinguish between an open cap and a closed 

fullerene. The dome subsequently detached itself from the particle and became a fullerene with a 

diameter similar to that of the particle (the diameter would indicate C240 fullerene, in case it would be a 

defect-free structure). Note that fullerene structures were distinguished from SWCNTs based on a 
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series of images. The stable configurations lying on MgO supports also benefit for the structure 

identification. Interestingly, the particle was able to nucleate another dome and lift off a cap at the same 

site (70 s). These double nucleation processes from the same particle possess a tangential connection, 

different from the perpendicular nucleation of several SWCNTs from the local area of a large catalyst 

particle,34-36 indicating that the catalyst remains active for an extended period. During the above 

process, the crystalline orientation of the catalyst particle exhibits negligible changes (<5o within 70 s), 

as represented in the sequence of TEM images and inserted fast Fourier transforms (FFT) in Figure 1. 

By measuring the lattice fringes of the particle (calibrated by the lattice fringes of the support MgO), 

cobalt carbide phase (Co3C or Co2C, d≈0.23 nm) rather than metallic Co phase (dmax≈0.20 nm) was 

determined. In agreement with Sharma’s work,11 such carbide phase might take as the active phase for 

catalytic growth of carbon nanomaterials. Therefore, the morphological evolution might be ruled out as 

a possible cause for the growth termination.28  

    

Figure 1. TEM images and sketches (below) of nucleation and dissociation processes of caps 

(fullerenes) on a crystalline particle. The FFT of the high-contrast particle is inserted in each image. 

The scale bar is 2 nm.  

  Fullerene formation requires the formation of pentagons during the growth process. That means the 

formation of carbon pentagons would trigger a cap formation and closure.12 It is reported, that high CO 
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pressures (≥1000 mbar) and thermodynamic processes are usually needed to promote the CO 

disproportionation reaction to grow SWCNTs efficiently.37-39 For example, if the CO pressure was 

slightly increased by tens or hundreds of mbar from atmospheric pressure, the yield and selectivity of 

SWCNTs were enhanced significantly.37, 40-42 Therefore, the CO disproportionation reaction is believed 

to be the rate-limiting step for tube growth.38 Here under a relatively low CO pressure (<10 mbar) in 

the ETEM environment, the disproportionation rate of CO is supposed to be very low, causing non-

consecutive incorporation of carbon atoms in the growth of a CNT (lack of active carbon species) at the 

vicinity of the particle. Carbon pentagons, vacancies or other defects then accumulated around the tube-

catalyst interface, and finally resulted in a cap closure and a separation from the particle. The formation 

of fullerenes can be regarded as the cessation of an extreme short SWCNT. The exact structure of these 

fullerenes does not affect the presented mechanism. The detachment of caps from the catalysts can be 

observed repeatedly in this work (see Figure S3 in Supporting Information), and it does not seem 

limited to a specific condition. This implies, that a low CO pressure is one of the main reasons for the 

inefficient SWCNT growth.  

Growth termination of a short SWCNT 
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Figure 2. The growth and termination of a short SWCNT (< 5 nm). (a) A series of time-resolved TEM 

images showing the growth process of a SWCNT over a period of 52 s. The inserted sketches at 30 and 

37 s show the relationship between the tube and the particle outlined by a dotted circle. The red arrows 

indicate the growth direction of the tube, and at 52 s, the tube seems to shrink back to the particle in an 

opposite direction. (b) A profile of the tube length vs. time. 

  With a ~20% higher CO pressure but using the same Co/MgO catalyst system as above, a series of 

time-resolved TEM images were captured at 700 oC and 6.5 mbar CO, representing the growth and 

termination processes of a SWCNT (Figure 2). From the first frame acquired (here defined as 0 s), we 

can see that a lift-off cap is tangentially7 connected to a particle. In a time frame of up to 30 s, a 

SWCNT with a diameter about 1.6 nm was formed. Its growth direction changed as marked by red 

arrows, suggesting the formation of a weak metal-carbon or metal-substrate adhesion strength. 

Meanwhile, the particle restructured to a droplet-like shape and was partially encapsulated in the tube 

(see the inserted sketch, the dotted circle outlines the particle). The SWCNT soon stopped growing at 

37 s, after reaching a total length of 4.2 nm. At the same time, the catalyst particle reverted back to a 

Page 8 of 30

ACS Paragon Plus Environment

ACS Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



9 

 

spherical shape. The sketch inserted shows the way the SWCNT terminated by necking down the tube-

catalyst interface, where the tube diameter was reduced. Note that the SWCNT continued growing even 

though the particle changed its morphology (30 s) and tended to change the catalyst-support 

interaction.28 In other words, there must be a reason other than the change of catalyst morphology that 

hinders the continued growth of the SWCNT. The length of the SWCNT was measured based on the in 

situ observations, and the tube growth rate can be calculated from the profile in Figure 2b. It was found 

that the growth rate is not constant, and a rough calculation indicates that about 10 carbon atoms were 

integrated into the tube per second at the early growth stage (~0.05 nm/s) and about 40 carbon atoms at 

the late growth stage (~0.2 nm/s). The growth terminated just after the abrupt increase of the growth 

rate. After that the tube length shrunk slightly (52 s), meaning that the interface was not strongly 

bonded. At the atomic level, the accelerated growth (or a fast cap lift-off), relative to a limited carbon 

supply rate to the catalyst particle, leads to a reduced catalyst-tube adhesion strength,31, 43 which does 

not allow defect healing and finally creates more defects and forms a necking interface. Although 

simulation results suggest that the slower carbon supply rate should promote the defect healing,43 the 

tube growth rate at which carbon atoms are incorporated into the growing structures is too slow in this 

study (an average growth rate of around 0.1 nm/s), hindering the efficient defect healing. This fact 

suggests that a possible reason for SWCNT termination would be a dynamic imbalance of the faster 

consumption of carbon atoms for the tube growth and a limited provision of active carbon species at 

the growth front.  

Multiple nucleation of SWCNTs and their structural evolution  

  The multiple nucleation of caps from the same catalyst particle signifies the growth termination of the 

initial SWCNT/cap, i.e., the broken of the interfacial carbon-metal bonds (the reduced tube-catalyst 

adhesion strength). In order to explore the role of catalysts on the growth termination of SWCNTs in 
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detail, we have grown SWCNTs under a CO pressure of 7.6 mbar (an increase by ~40% compared to 

the sequential growth of fullerenes in Figure 1).  

 

Figure 3. The termination and structural revolution of the SWCNTs grown at 700 oC in 7.6 mbar CO. 

(a) Schematic of ejected weakly-attached fullerene/SWCNT from the particle, d is the distance between 

two particles. (b-i) A series of TEM images showing the “reversible” growth of SWCNTs. Multiple 

carbon structures settled close to the particles with matched sizes (panel b); Reactions between these 
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carbon structures and the bigger particle in panels d-f, the FFTs inserted show the lattice fringes of the 

catalyst; Panels g-h show a new SWCNT and a peapod structure formed from the particle; The solid 

carbon structure was finally etched away (panel i). (j) Profiles of the length of SWCNTs/fullerenes vs. 

time.  

  Figure 3 shows the evidence of growth cessation of several short SWCNTs and their following 

interactions with the catalyst particle. The schematic and TEM image in Figures 3a-b represent a 

SWCNT (defined as tube i) tangentially connected to the high-contrast particle, with two detached 

SWCNTs (tube ii and tube iii) nearby and a fullerene close to another particle. Based on this tangential 

growth mode and their correlated sizes, we assume that the ejected carbon structures had been 

catalytically grown from the nearby particles, thus the two short tubes are the result of multiple 

nucleation from the same particle. This assumption has been confirmed by an in situ observation, that 

the tube i was abruptly ejected from the particle and settled down in a different direction at 12 s (Figure 

3c), similar to the previous report.44 Remarkably, the possibility of electron beam (e-beam) damage 

effect on the termination process can be excluded, since the detachment of the tube ii and tube iii from 

the particles was observed at the region without previous e-beam illumination. Figures 3c-j illustrate 

the subsequent evolutionary dynamics of these SWCNTs when in close contact with the particle. From 

12 to 162 s, the particle moved forward to “eat” the as-grown tubes gradually. During the process, a 

crystalline structure of the particle becomes visible. The measurements made from FFTs in Figures 3d-

f shows that the lattice spacing of the catalyst particle is 2.48 Å, 2.11 Å and 2.18 Å, respectively. As 

argued above, they can be ascribed to several planes of Co2C or Co3C. These carbide structures which 

fluctuate during CNT growth are similar to the in situ work by Yoshida.45 The lattice fringes of the 

same particle fade out as a new tube (tube iv) nucleated from it at 205 s (Figure 3g). Subsequently, 
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another new nuclei (tube v) embedded in tube iv at 323 s. They finally formed a peapod structure with 

tube v abruptly detaching itself from the particle (Figure 3h). The above observations show the partial 

decomposition of the original SWCNTs and the nucleation of new structures at the same nanoparticle. 

This also shows how the tube length varies over time in the profile in Figure 3j. The red arrow lines 

indicate the shortening of solid carbon frameworks, while the blue arrow lines indicate the process of 

new SWCNTs forming. This alternation process signifies a local carbon cycle assisted by the catalyst 

particle. The catalytic carbon gasification assisted by molecular etchants has been observed,46 but this 

is not the main reason for the disappearance of the tubes here, otherwise the process should not be 

“reversible” for the new growth run. Under the typical electron density of around (2~5) x104 e/nm2, we 

have performed a blank experiment to study the e-beam effect (Figure S4 in Supporting Information). It 

has been found that there is little influence on the sample with an illumination of ~1 min, though slight 

damages were observed in ~7 min. Note that most of the reactions in this work occurred over a very 

short period of time, so we assume that the e-beam damage effect is negligible for most of the 

phenomena. Whereas, under a more intense e-beam illumination, we have indeed observed some severe 

damage on the carbon structures and the particle, accounting for why the newly formed tube appeared 

shorter and why there was no new carbon structure generated after 659 s. The multiple and oscillating 

growth of SWCNTs from the same particle further confirms the long lifetime of catalysts and that the 

inadequate carbon supplies from low pressure CO is responsible for the discontinued growth of a long 

SWCNT.  
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 Figure 4. The growth and termination processes of a SWCNT and its evolution to a MWCNT. (a-f) 

Sequence of TEM images showing a defective SWCNT (marked by a dotted curve) elongated and 

broadened in diameter while consuming the initial-formed MWCNT (indicated by a red arrow) as solid 

carbon source. (g-i) Multiple tubes nucleated from the same particle. A kink in the SWCNT wall is 

indicated by a white arrow in panes c-i. (j) Growth kinetics of an initial SWCNT and its evolution to a 

MWCNT.  

Page 13 of 30

ACS Paragon Plus Environment

ACS Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



14 

 

Except for the nucleation of several discrete fullerenes/SWCNTs as shown above, Figure 4 shows a 

slightly different phenomenon of multiple nucleation of SWCNTs. An as-grown MWCNT (indicated 

by a red arrow) was found close to the catalyst particle with an identical diameter, which is very likely 

to be the initially product grown from the particle (Figure S5 in Supporting Information). Therefore, 

the dynamic growth process of the nanotube in Figure 4 is supposed to be the second nucleation from 

the same particle. As the newly formed SWCNT (marked by a dotted curve in Figures 4a-c) grew 

longer, the original MWCNT, with the sidewall partially contacting the particle, became smaller. This 

suggests that the formation of the new carbon structure is at the cost of this solid carbon, in agreement 

with the above phenomenon in Figure 3. Accompanied with that, the SWCNT continued growth and 

even after its cessation, new layers were able to nucleate from the same particle (Figure 4h). The white 

arrows in Figures 4c-i indicate a kink in the SWCNT wall, which might result from the deformation of 

the catalyst particle surface.47 Using the kink as a reference point, the length of the tube as a function of 

time was measured, as presented in the profile of Figure 4j. Clearly, after the SWCNT growth cessation 

at around 150 s, it can be further pushed forward by the growth of an inner layer until around 190 s. 

Three additional SWCNT inner walls were formed sequentially from the same site of the particle 

(Figure 4i). This provides direct evidence of a “shell by shell” sequential nucleation process for a 

double-wall CNT (DWCNT), a triple-wall CNT and a MWCNT (see Figure S6 in Supporting 

Information). In addition, when following the growth of the initial SWCNT (Figures 4e-f), we see that 

its diameter broadened at the SWCNT-catalyst interface, to an even larger size than the particle. This 

intermediate state in the dynamical process, further reduced their circumferential contact area, namely, 

the SWCNT-catalyst adhesion strength, thus triggered the growth termination of the initial SWCNT. 

This gradual termination process is more moderate than the termination by necking down the interface, 

allowing for additional nucleation of inner walls. This enlargement of the tube diameter is one way to 
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decrease the tube curvature energy and thereby the total energy level of the system. However, the exact 

reason for the changes, also on the catalyst-SWCNT adhesion strength, is still an open question. It may 

rely on tunable intermediate states of cobalt carbide,48 or be susceptive to growth conditions, here the 

active carbon supply. The active carbon atoms from the low-pressure gaseous carbon supplies and the 

involved solid carbon frameworks fluctuated during the tube growth, which might alter carbon 

chemical potential gradient (alter the driving force for the CNT growth) around a catalyst particle.47  

Growth termination of a long SWCNT  

  The above observations suggest that in order to grow longer SWCNTs the pressure of the active 

carbon supply must be increased. However, the ETEM setup only allows a slight increase in CO 

pressure. Slightly longer SWCNTs (<5 nm) were then obtained compared to the fullerenes in Figure 1. 

In order to increase growth efficiency, we used H2 as an agent to assist the disproportionation or 

hydrogenation of CO50 based on the reactions of 2CO=C+CO2 and CO+H2=C+H2O. A previous report 

shows, that the addition of H2 facilitates the synthesized carbon with quantitative analysis.51 When 

using a mixture of CO/H2 at a ratio of 5:2, the amount of the produced carbon should be over 6 times 

higher than when using pure CO, with Fe as catalysts. Here, under a total pressure of 7.4 mbar at 700 

oC with a ratio CO/H2 of 5:2, the SWCNT yield and growth rate were both improved compared to pure 

CO treatment (Figure S7 in Supporting Information). This indicates that either more active carbon 

atoms are provided at the growth front or carbon atoms are more efficiently incorporated into the tube 

(Table S1 in Supporting Information). Both are critical to the balance of a continued growth of 

SWCNTs. 
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Figure 5. Growth and termination of a long SWCNT (~35 nm) using a mixture of CO/H2 (5:2) as 

carbon sources. (a-d) A series of TEM images showing the growth of a SWCNT with the front segment 

bended during growth, the curved angle is marked. (e) Length of the SWCNT vs. growth time. (f-g) 

Multiple nucleation of caps (multi-layered graphene) from the same catalyst particle. (h) The related 

nucleation kinetics of the caps.    

  Figure 5 shows a time-sequence of TEM images extracted from Video S1 in Supporting Information, 

which represents the growth and its termination of a long SWCNT (~35 nm). The average growth rate 

of this tube is about 0.1 nm/s, similar to the above observations when using pure CO. The comparable 

growth rate indicates a similar incorporation rate of carbon atoms in the growth of a SWCNT (Cinc'(t)), 
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meaning that the supply rate of active carbon at the growth front (Csup'(t)) was the limiting factor in the 

above experiment. This is in agreement with the previous report52 that too slow a carbon supply rate 

would form defect ridden tubes. We found from TEM images in Figures 5a-d that the diameter of the 

SWCNT is not constant (in the range of 1.7 to 2.8 nm), indicating that the tube wall has a high defect 

density. Interestingly, the front segment of the SWCNT bended during growth, and the curved angle 

decreased distinctly when the kink hit the support (Figures 5c-d), implying that a certain amount of 

stresses, probably exerted from the underlying and nearby supports, was applied to the tube along its 

growth direction. As a result, the carbon incorporation process for the SWCNT growth fluctuated 

slightly, which might account for the formation of the defective tube. In fact, this compressive stress 

can be delivered to the tube-catalyst interface, as confirmed by the clearly deformed particle and the 

broadened tube diameter in Figure 5d. Consequently, at 115 s, the SWCNT was totally blocked by the 

support and the growth halted with an abrupt stop in carbon incorporation (Cinc'(t)=0). Nevertheless, 

under this condition, the catalyst particle was still able to nucleate more than 10 graphene layers in the 

following 5 min. The thickness of the stacking layers (L1) is up to 5 nm (Figures 5f-h). Notably, the 

early stages of this hemisphere growth contain several graphene layers whose open edges are 

disconnected from the catalytic particle, which is different from the energy-favored configuration.37 

Herein, we attribute the formation of this unfavorable configuration to the large driving force (chemical 

potential gradient around a catalyst particle) provided by the consecutive gaseous carbon supplies.49 

When the number of layers reached 6~8, the dangling bonds of the innermost cap starts to attach to the 

particle in order to decrease its energy. Meanwhile, the inner cap elongated into a tube (L2) and finally 

ceased growing when the curvature of the innermost tube became too large to be favored in terms of 

energy.  
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Based on the above evidence, the growth termination is attributed to the stresses exerted on the 

SWCNT or the SWCNT-catalyst interface, which broke the carbon equilibrium for SWCNT growth by 

suppressing the continuous incorporation of carbon atoms into the tube. Because the active carbon 

supply rate is much higher than for pure CO, we thus assume it as a consecutive process, which makes 

excessive active carbon atoms (Csup'(t)> Cinc'(t)) available and finally leads to multiple nucleation of 

new caps. This conclusion can be confirmed by the fact that, rather than growing several SWCNTs 

from a stable particle (a root growth mode that SWCNTs mainly followed in this work), here the 

particle can be pushed forward by the multi-layer graphene.53 This complex structure is usually 

ascribed to nanotube poisoning at the growing end.17 This formation of the “dead” SWCNT is clearly 

different from the previous termination mechanism of MWCNTs, which was related to catalyst 

poisoning either by H2 modification52 or carbon encapsulation.19  

DISCUSSION 

By in situ TEM observations of the dynamical changes of nanostructures under several growth 

conditions, we have clarified the roles of catalysts and carbon sources on the growth termination of 

SWCNTs. The as-grown allotropes we have presented, such as fullerenes, peapods, MWCNTs, short 

and long SWCNTs, etc., can be regarded as the initial or evolved structures of SWCNTs. They are 

thereby appropriate examples, showing the long-lasting activity of catalysts regarding the multiple 

nucleation and SWCNT structural dependency on an active carbon supply. For instance, the formation 

of a fullerene can be regarded the cessation of an extreme short SWCNT (Figure 1). The sequentially 

formed peapod and MWCNT (Figures 3 and 4) result from the termination of the initial SWCNT and 

the multiple nucleation of new caps/SWCNTs from the same particle. The multi-layered graphene 

(Figure 5) is also the result of the multiple nucleation of caps from the same catalyst particle. Even 
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though in situ TEM is a technique with limited statistics, we had at least three similar examples for 

each phenomenon to insure the validity of our results. It thus can be seen that, the formation of these 

various allotropes of SWCNTs all indicate some common causes for the SWCNT termination, even 

though they are following different termination paths as illustrated in the schematic of Figure 6. 

As discussed above, both a non-steady supply of active carbon atoms (schematically shown as C2 

dimers) limited by CO pressure and a suppression of carbon incorporation into the tube by stress 

exerted at the interface can be the reasons for a necking or broadening SWCNT-catalyst interface. In 

both cases, an imbalanced transport rate of carbon (Csup'(t) ≠ Cinc'(t)) through/over catalyst particles 

reduced the catalyst-SWCNT bond strength and finally ceased the SWCNT growth. In the former case, 

the SWCNTs that abruptly terminated growing can further detach from the particle or rotate around it 

(Figure S6 in Supporting Information). With continuous carbon supplies, several fullerenes, SWCNTs, 

or peapod structures nucleate from the same particle. In the latter case, the SWCNT with its broadened 

diameter is only weakly connected to the particle, and can gradually form a “dead” SWCNT or a 

DWCNT (only double growth is illustrated) when incorporating more active carbon atoms. Note that in 

this study, both of the tube detachment and multiple nucleation of tubes can be the subsequent results 

of the weakened tube-catalyst interfaces, hence signifying the growth termination.  
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Figure 6. Growth termination of an individual SWCNT and its possible evolutions without and with 

additional carbon supplies. In the former case, SWCNT growth halted with a necking tube-catalyst 

interface, when active carbon supply rate (Csup'(t)) decreased or carbon incorporation rate (Cinc'(t)) 

increased abruptly. On the contrary, SWCNT growth was hindered in the way of forming a broadening 

interface. In both cases, the terminated tubes are weakly connected to the particle and can evolve to 

different structures.   

As we are mainly investigating well separated individual particles, the influence of a change in gas 

diffusion through a CNT carpet52 can be excluded. Meanwhile, because it is impossible to clarify all the 

possible factors in one work, the deactivation of catalysts by carbon encapsulation thereby cannot be 

totally ruled out, even though it is rarely experimentally observed in this work. This study suggests us 

that the equilibrium of the transport rate of carbon (Csup'(t) ⇄ Cinc'(t)) through/over catalyst particles is 

the key for continued growth, with catalyst particles remaining active at all times. As stated above, 

active carbon atoms were supplied to the growth front. This process includes adsorption and 

dissociation of carbon precursors on the catalyst surface and transport of the active carbon atoms to the 

growth front. While the process of consecutively incorporating carbon atoms means the transport of 

active carbon atoms to assemble SWCNT structures. Experimentally, different carbon transport 

processes have been discussed for SWCNT growth, such as bulk diffusion through particles,38 45 

surface diffusion55-56 and subsurface diffusion57 over particles. Our observations show, that both solid 

carbide and droplet-like particles catalyze the nucleation of fullerenes or SWCNTs, indicating that 

some of the cases co-exist. For the growth of SWCNTs, carbon diffusion through the bulk or 

subsurface of particles might be the dominating diffusion paths. Nevertheless, we see less sensitivity of 

the growth rate to temperature (in the range of 650 to 900 oC) when using CO and comparable growth 
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rates for CO and CO+H2, indicating that the exact diffusion process, however, is not the limiting factor. 

Instead, the creation of atomic carbon has a stronger influence on the growth rate, in line with the 

literature.38 Even though we have not discussed the carbon solubility58 or the composition59 of catalysts 

as impact factors for the continued growth of SWCNTs in this work, their functions, combined with 

growth conditions, should be considered in relation to the growth termination of a SWCNT, especially 

when carbon source is sufficiently supplied. It was calculated that it is energetically favorable for 

SWCNTs synthesized from noble metal catalysts to close their open ends.31 However, recent 

experimental work have demonstrated that Cu,60 Au,61 and Pt62 catalyst particles are able to grow 

SWCNTs efficiently under proper growth conditions. As carbon solubility is much lower, the transport 

process of carbon atoms to the growth front might be a rate-limiting step, different from metals like Co 

or Ni. Therefore, the parameters that influence this step, such as the choice of growth temperature,63-64 

catalyst composition3, 65 or size,61, 65 should also be considered. These may contribute to the reaction 

equilibrium (Csup'(t) ⇄ Cinc'(t)) for the continuous growth or structure controlling of SWCNTs. The 

SWCNT growth termination studies with noble metal catalysts following this work are in progress.  

When the above equilibrium is broken, we see from the schematic in Figure 6 that SWCNTs cease 

growing or evolve into new structures. We have also demonstrated at nanoscale that with insufficient or 

non-steady active carbon supply, the initial SWCNTs contact with catalyst particles can be etched, 

resulting in the following equilibrium (M being the metal catalyst).  

                                                           C·(g)+C(s) 
�

⇔ SWCNTs  

The “reversible” growth processes in Figure 3 suggest that the growth of CNTs is a dynamic balance 

between providing active carbon atoms at the growth front and incorporating solid carbon in the 

growing tube within a certain time frame. It agrees with the report66 that SWCNT growth is a 
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competitive process between a tube elongation and a tube etching by catalysts. This means the 

accumulation rate of active carbon atoms at the growth front (Csup'(t)) should be equal to the SWCNT 

growth rate (Cinc'(t)). This active carbon consists of both gaseous and solid carbon (C·(g) and C(s)). Only 

when gaseous carbon supplies are insufficient and solid carbon sources are in direct contact with 

particles, do they compensate for the reaction. Here we are able to observe the etching process of as-

grown CNTs, due to the low activation energy in the CNT synthesis stemming from the 

disproportionation of CO.38, 54 With higher growth rates of SWCNTs (Figures 2-4) than carbon supply 

rates, or a resistance to incorporate carbon atoms (Figure 5) at the latter growth stage, the growth stops 

due to the broken carbon equilibrium. Additional solid carbon sources, like as-grown tubes, are able to 

be involved in the above reaction for an additional growth of SWCNTs (Figures 3 and 4). From this 

point, we can see the importance of the carbon cycle on the quality or uniformity of CNT structures. 

  Generally, this growth termination strongly relies on the balance in a carbon cycle through or on 

particles. Namely, factors or conditions distorting the equilibrium, such as changes of carbon 

supplies,24, 27, 67 structural evolution (or phase changes) of catalysts,28 exertion of internal68 or external69 

forces, etc., which can induce growth termination. The key factors accounting for the limited growth 

may be different when using different catalysts and carbon-containing precursors. From this 

conclusion, we can predict, that defective tubes with amorphous carbon adsorbed or kinks formed on 

the wall, rarely form too long structures, because the internal stresses produced on the wall might 

disrupt the equilibrium and hinder the elongation of SWCNTs. This agrees well with some of the 

known phenomena, such as that long CNTs are only produced with aligned orientation and high 

quality,70-72 and that randomly oriented SWCNTs are statistically much shorter than the aligned 

SWCNTs,73 etc. By a combination of limited carbon supply in the late growth stage of CNTs, due to 

geometrical limitations, and stresses of structural disorders,24 the CNT growth in vertically aligned 
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arrays follows an exponential decay growth model.23, 27 It suggests that the termination mechanism 

proposed in this study might be extended into high pressure regimes, even though it was performed at 

low pressure. We can also take advantage of the termination mechanism to control the growth kinetics 

of SWCNTs. For instance, a suitable force and growth window is needed to adjust the CNT length by 

artificially designing a crossing tube as a barrier,68 or to engineer the morphology of CNT arrays by 

applying external forces.74 With an accurate measurement or control of the exerted forces in the future, 

the relationship between the force and SWCNTs with a specific structure might be further clarified. 

CONCLUSION 

  In summary, we have investigated in real time the growth kinetics and termination of SWCNTs by 

Co/MgO catalysts. From the above evidences, we present that SWCNTs cease growing in two ways: 

necking or broadening the tube-catalyst interface. The sequential nucleation processes from the same 

particle produce new structures such as fullerenes, peapods, and MWCNTs, suggesting the long-lasting 

activity of catalysts. While replacing a pure CO precursor with a mixture of CO and H2, the growth of a 

longer tube and its cessation by stresses exerted on the tube-catalyst interface were observed. 

Therefore, it is proposed that the possible reasons for the discontinued growth of SWCNTs might be 

the broken carbon cycle through or over catalyst particles. Though for a different catalytic system or 

condition, there may exist some other factors disrupting the SWCNT growth, e.g., factors influencing 

the features of catalysts. Special attention should be paid to the stability of carbon supplies and the 

growth environments in the future studies. This termination mechanism lends support to many 

phenomena of CNT growth and provides great insights which enables further control over the structure 

of SWCNTs individually or on a macroscale.   

MATERIALS AND METHODS 
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The Co/MgO catalysts were prepared by the impregnation method75 with Cobalt (III) acetylacetonate 

(98%, Aldrich) solution, followed by a calcination at 800 oC for 20 h, the loading of Co is ~7 % in 

mole ratio. The sample was dispersed in ethanol and drop-casted on a MEMS-based micro-heater from 

DENSsolutions. After drying at room temperature, the sample was investigated in an ETEM (FEI Titan 

80-300ST) operated at 300 kV. CO was let into the microscope, building up a pressure of 1.6 mbar 

under constant flow. In order to form distinct Co particles on the MgO support, the sample was heated 

to 300 oC. After that, the pressure of CO was increased to 5.3-7.6 mbar and the temperature was 

increased up to the target growth temperature of 700 oC. As a comparison, we used the same catalyst 

system to grow SWCNTs with a mixture of CO and H2. The specimen was heated to 700 oC and 

reduced under H2 (2 mbar) for 1 h, then a flow of CO and H2 (5:2 in volumetric ratio) at a total pressure 

of 7.4 mbar was introduced into the TEM chamber for CNT growth. During the above processes, the 

kinetics of particles and SWCNTs were observed and recorded on a Gatan US1000 camera with an 

exposure time of 0.5 s. Their structural characterization was performed during or after growth. 
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