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 
Abstract—Accurate parameters of transmission lines are 

critical for power system operation and control decision making. 
Transmission line parameter estimation based on measured data 
is an effective way to enhance the validity of the parameters. This 
paper proposes a multi-point transmission line parameter 
estimation model with an adaptive data selection scheme based on 
measured data. Data selection scheme, defined with time window 
and number of data points, is introduced in the estimation model 
as additional variables to optimize. The data selection scheme is 
adaptively adjusted to minimize the relative standard deviation 
(RSD) of estimated parameters.  An iterative technique derived 
from the Newton method is adopted to solve the proposed model 
by fitting the relationship between the RSD and data selection 
scheme with exponential functions. Simulated data are applied to 
illustrate the performance of the proposed model. Some 500kV 
transmission lines from a provincial power system of China are 
estimated to demonstrate the applicability of the presented model. 
The superiority of the proposed model over fixed data selection 
schemes is also verified. 

Index Terms—Adaptive data selection, parameters estimation, 
power systems, supervisory control and data acquisition system 
(SCADA), transmission line, wide area measurement system 
(WAMS) 

I. INTRODUCTION 

UMERICAL simulation is essential for power system 
analysis, operation and control decision making. Accuracy 

of advanced applications, such as state estimation, dynamic 
simulation, and emergency control, is highly dependent on the 
accuracy of equipment models and parameters. Reports of 
some blackouts show that the detailed dynamics can hardly be 
reproduced by numerical simulation due to the inaccuracy of 
equipment parameters [1]-[3]. It is crucial to improve the 
quality of equipment parameters to ensure stable and secure 
operation of modern power systems [4]-[7].  

Transmission lines are key components of power systems, 
and parameters of transmission lines can be calculated with 
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designed layout theoretically or measured with field tests, 
assuming that the operating and geographical conditions 
remain unchanged [8]. However, it will lead to great error if the 
operating conditions are changed, e.g. the geographical 
condition along a transmission line can hardly be uniform and 
the ambient temperature is always varying. For the field test 
method, the transmission line to be tested needs to be switched 
out of service, and predefined voltages are applied to the 
transmission line with dedicated equipment [9]. The line 
parameters can be deduced with recorded voltage and current. 
The drawback of offline tests lies in its inability to take into 
account of actual operating conditions, especially for parallel 
transmission lines, mutual inductance of which cannot be 
neglected. 

The deployment of supervisory control and data acquisition 
system (SCADA) and wide area measurement system (WAMS) 
provides online measured data of substations under actual 
operating conditions. With the online measured data, 
transmission line parameters can be estimated to overcome the 
drawbacks of the offline test method. In most literatures, phasor 
data are used for estimation. Various parameters were 
estimated in [10] with phasor data corrected. Transmission 
lines with distributed parameters were estimated in [11] for 
protection applications. Phasor data were also used in [12] to 
estimate a two-port model with ABDC parameters. In [13], a 
dynamic discrete filtering algorithm was applied to perform 
transmission line parameters estimation by minimizing the 
residual least absolute value. In [14], a single point estimation 
model was proposed to estimate the parameters of long 
transmission lines. In [15], with field SCADA data, a 
multi-point parameter estimation model was developed based 
on the Levenberg-Marquardt algorithm. In [16] and [17], 
WAMS and SCADA data were incorporated for estimating 
multi-terminal transmission lines with a nonlinear weighted 
least square algorithm. 

For multi-point estimation models, estimation results will be 
more accurate theoretically if more data points are used. 
However, due to measurement error, more data points tend to 
increase the chance of nonconvergence of estimation [15]. 
Therefore, it is necessary to select appropriate measured data 
for estimation. In [16] and [17], a scheme of selecting 3 
measurement points was proposed for estimation. In [10], 8 sets 
of simulated data within 16 minutes were chosen for estimation 
with even time interval of 2 minutes. In [12], 200 measurement 
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points with different loading conditions were chosen from 
measured data in 1 day with sampling intervals of 5 minutes. 
Through extensive tests, a data selection scheme was developed 
in [15] to show how to select 6 data points from a time window 
of 30 minutes.  

The aforementioned data selection schemes in literatures are 
different which indicates that there is no uniform data selection 
scheme suitable for all lines. Those data selection schemes 
select a fixed number of data points from fixed length of time 
window regardless of measurement accuracy. The 
measurement accuracy, however, varies from line to line due to 
the measurement noise of remote terminal units (RTU) and 
phasor measurement units (PMU). Therefore, when estimating 
transmission line parameters with measured data of different 
accuracy, fixed data selection scheme is not suitable for all 
transmission lines. It is necessary to choose appropriate data 
selection scheme for different lines according to the unique 
measurement accuracy of each transmission line. 

This paper proposes a transmission line parameter 
estimation model with adaptive data selection scheme to 
estimate parameters considering different measurement error. 
The major contribution of this paper is twofold. First, adaptive 
data selection scheme is introduced to the estimation model as 
additional variables to optimize. The solved data selection 
scheme is adaptive to lines to improve the accuracy of 
estimated parameters. Second, relative standard deviation 
(RSD) instead of absolute error of estimated parameters is 
chosen to minimize in the proposed model. It improves the 
practicability of the proposed model since the absolute error 
cannot be obtained due to the unavailability of accurate 
transmission line parameters.  

The rest of this paper is organized as follows. The basic 
transmission line parameter estimation models are introduced 
in section II. The parameter estimation model with adaptive 
data selection scheme is proposed and solved in section III. The 
detailed explanation of why RSD can be chosen as objective to 
minimize is also presented in section III. To demonstrate the 
feasibility of the proposed method, seventy 500kV 
transmission lines from a provincial power system of China are 
estimated based on measured data in section IV, followed by 
conclusions in section V. 

II. BASIC PARAMETER ESTIMATION MODELS 

A. Single-Point Parameter Estimation Model 

The lumped symmetry π equivalent model of transmission 
lines illustrated in Fig. 1 is widely used for power system 
analysis. The resistance R, reactance X, and shunt susceptance 
B are parameters to be estimated. U, I, P, and Q are voltage, 
current, active power, and reactive power of the sending side 
(with subscript s) or the receiving side (with subscript r). 

 

Fig. 1.  Symmetry π equivalent model of transmission line. 

Transmission line parameter can be estimated with SCADA 
or WAMS data. Since SCADA is a basic infrastructure of 

modern power systems and covers wider areas than WAMS 
[15], the SCADA data are used in this paper to build the 
following parameter estimation model. 

With an independent set of variablesR, X, B, rU , rI  sU , 

sI , Ps, Qs, Pr, and Qr can be expressed as follows,  
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If the angle of rU  is treated as reference, i.e., the angle of 

rU  is 0, the independent set can be rewritten as R, X, B, Ur, Ir, 

rwhere r is the power factor angel of the receiving side. 

With the new independent set, sU  and sI can be expressed as,  
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With measured data, line parameters are usually estimated in 
literatures with such method as least square (LS) algorithm to 
minimize the residual of estimated quantities. However, due to 
the unavailability of phase angles in SCADA, for sU  and sI , 
only their magnitudes can be compared with their measured 
counterparts. Therefore, the residual to minimize can be 
defined as, 
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where Um
i, I

m
i, P

m
i, and Qm

i are measured value of U, I, P, and Q 
of side i, and U

i, I
i, P

i, and Q
i are the difference between 

estimated and measured U, I, P, and Q of side i. The difference 
between estimated and measured quantities at side i is defined 
as, 

-V m
i i iV V   

where V represents U, I, P, or Q. 
With the Us Is, Ps, Qs, Pr, and Qr equations obtained in (1) 

and (2), the 6 independent variables R, X, B, Ur, Ir, r can be 
estimated with one measured data point, i.e. a group data of U, I, 
P, and Q sampled at the same time. However, since 
measurement errors are inevitable for field SCADA data, more 
data points are preferred to get better results by increasing 
redundancy of estimation equations. It leads to the following 
multi-point estimation model. 

B. Multi-point Parameter Estimation Model 

With N data points selected from time window [t, t+T], (3) 
can be applied to measured quantities of the N data points, and 
the objective function of the multi-point parameter estimation 
model can be expressed as minimization of the following 
residual, 



Changgang Li, et al, Measurement-Based Transmission Line Parameter Estimation with Adaptive Data Selection Scheme 
 

3 

2 2 2 2

1 ,

1

8

U I P QN
ik ik ik ik
m m m m

k i s r ik ik ik ik

Res
N U I P Q

   
 

        
                    

   (4) 

where t is the starting time of the time window, T is the window 
size, and k is the index of selected data points. 

For a series of measured data, they can be divided into W 
successive windows: [t0, t1], [t1, t2], …, and [tW-1, tW] with 
uniform T, i.e. tw-tw-1=T for w=1, 2…W. For window [tw-1, tw], N 
data points can be selected and the multi-point estimation 
method can be applied to get the estimated parameter xew, where 
x could be R, X, or B. With the W windows, the average value 
and standard deviation of estimated parameters can be 
calculated as, 
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and the RSD of estimated parameters can be defined as, 

                                    x
x
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The average value xav can be treated as the final estimated 
result, and its credibility can be evaluated with x which 
measures the dispersibility of estimated results in W windows. 

When the accurate values of the transmission line 
parameters are available, the absolute error of the estimated 
parameter can be obtained as, 

                         0

0

100%av
x

x

x

x
 


                          (7) 

where x0 is the accurate value of parameter x. 

C. Effects of T and N on Estimation 

For modern measurement systems, a large amount of 
measured data are available. For the SCADA data with 
resolution of 1 minute, 1440 frames of data can be obtained per 
day. For PMU data with rate of one frame per cycle, about 4~5 
million frames of data can be obtained per day. For multi-point 
parameter estimation models, due to the computation burden 
and numerical convergence, it is not necessary to use all 
measured data. Appropriate data should be selected to feed the 
estimation algorithm. 

The window size T affects how many windows can be 
evenly divided. Greater T will lead to less W and less 
computation burden. However, if T is too great which would 
result in very few W, the RSD will give little information of the 
distribution of estimated results. Moreover, to get reasonable 
estimated results, the data used for estimation should be 
representative, i.e., the diversity of loading levels in a time 
window should be as much as possible. Due to the repetitive 
feature of load variation, a similar repetitive mode can be 
observed for transmission lines in different days. A typical 
window size of 1 to 2 days is suitable to cover the diversity of 
operation modes. 

The number of data points for estimation in a time window, 
N, affects the estimation process in two ways. Firstly, greater N 

will lead to more equations of (1), and the computation burden 
will be increased exponentially. Secondly, for a given time 
window [tw-1, tw], the diversity of line loading levels is fixed, i.e. 
the difference between the peak and valley loading levels is 
fixed. Greater N will lead to less difference between selected 
data points, and numerical convergence will deteriorate. 

T and N jointly determine the data selection scheme. The 
whole data with bad data eliminated are firstly divided into W 
windows of length T. Then N data points are selected from each 
window for estimation. To cover as many loading levels as 
possible, the measured data in each time window are sorted 
with ascending current, and N data points with equal current 
interval are picked in this paper. 

III. MULTI-POINT PARAMETER ESTIMATION MODEL WITH 

ADAPTIVE DATA SELECTION SCHEME  

A. Basic Adaptive Parameter Estimation Model 

The target of parameter estimation is to get the parameters of 
transmission lines as accurate as possible. Therefore, the 
objective of parameter estimation model can be intuitively 
defined as the minimization of absolute error of estimated 
parameters, 
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where h is the sampling interval of measured data, and F(T, N) 
and G(T, N) are functions to represent the relationship between 
the absolute errors and the data selection scheme. With T and N 
adjusted, (8) can be used to adaptively select measured data for 
estimation of each transmission line. As X and B have great 
influence on the characteristics of transmission line, X and B are 
the two key parameters focused on in this paper. 

Two difficulties are encountered when solving (8). First, 
since the accurate values of estimated parameters are unknown 
under the circumstance of estimation, the absolute error of 
estimated parameters is unavailable. Second, F(T,N) and G(T,N) 
are implicit functions of T and N. It is hard to get their analytical 
expression and solve the model. To overcome the two 
difficulties, (8) should be transformed into a solvable form 
which is discussed in the next subsection. 

B.  Improved Adaptive Parameter Estimation Model 

The absolute error (7) and the RSD (6) are the two indices of 
estimated parameters. To find the relationship between the 
absolute error and the RSD, some simulated data are generated 
in the following way to perform parameter estimation with (4). 

(1) Get U, P, and Q of receiving side from SCADA. General 
operation modes of the transmission line are kept in the data. 

(2) Assuming that U, P, and Q at the receiving side are 
accurate, the corresponding I at the receiving side and U, I, P, Q 
at the sending side are calculated with given R0, X0, and B0. 
Now the simulated data with no measurement error at both 
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sides are generated. 
 (3) Noise following normal distribution (Gaussian 

distribution) is added to the simulated data to construct 
measured data with noise. It should be noted that the noise 
generated in computers are pseudo-random numbers. To draw 
general conclusions, 100 tests were performed to generate 
different noise. Average results of the 100 tests are examined to 
reveal the influence of T and N on the estimated parameters.  

A 500 kV transmission line (line 26# in section IV) with 
given R0=0.7232Ω X0=10.1248Ω and B0=73.766S is modeled. 
The sampling time interval is 1 minute, and generated data of 
66 days without noise are shown in Fig. 2. Noise with normal 
distribution is then added in the following subsections for 
further analysis.  

 
Fig. 2.  Simulated data for line 26#  without noise.  

With N=200, the estimated results with measurement error 
of 3% and 6% are illustrated in Fig. 3 as right-pointing triangle 
and circle markers with variable T.  

 
Fig. 3.  Estimation results of line 26# with different time window sizes and 
different noise levels  (N=200). 

It can be seen from Fig. 3 that with the same noise level, time 
window greatly affects the accuracy of estimation results. Both 
absolute error and RSD decrease with increasing window size. 
The trend of RSD is similar to that of absolute error. With the 
same time window, both absolute error and RSD increases with 
increasing noise level.  

Similar conclusions can be drawn with fixed T and variable 
N. With T=1 day, the estimated results are shown in Fig. 4 with 
variable N. Both absolute error and RSD decrease with 
increasing number of selected data points. With the same N, 
greater measurement error would lead to less accurate 
estimated results. 

 
Fig. 4.  Estimation results of line 26# with different data points number and 
different noise levels (T=1day) . 

From Fig. 3 and Fig. 4, it can be concluded that when RSD is 
reduced, the estimated results are improved. Therefore, for field 
power systems where accurate transmission line parameters are 
unavailable, the accuracy of the estimation results can be 
reflected by the RSD. The minimum of the RSD can be selected 
as the objective to obtain the estimated parameters. Thus, the 
difficulty of getting absolute errors when accurate values of 
parameters are unknown is overcome, and an improved 
parameter estimation model with adaptive data selection 
scheme is formulated as, 

    

 
 

min ,

. .

,

,

1

X B

X

B

s t

f T N

g T N

N

T Nh

 





 






 

                                     (9) 

where f(T, N) and g(T, N) are nonlinear functions of the 
relationship between the RSD and the data selection scheme. 

The estimation model (9) is a multi-objective optimization 
problem. To simplify the solution to model (9), the estimation 
model is transformed into a single-objective optimization 
problem in this paper by minimizing the average of X and B, 

min 0.5( )X B                                (10) 

C. Iterative Solution to the Proposed Model 

To solve the nonlinear model (9), an iterative technique 
derived from the Newton method is adopted in this paper. 
Suppose in the n-th iteration, the window size is Tn and the 
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number of selected data points is Nn, Xn and Bn can be 
determined with the parameter estimation model. The 
correction equation of T and N, i.e. Tn and Nn, can be 
described as, 

            
min

min

-
=

-

Xn X n n n

Bn B n n n

f f
T TT NJ
N g g N

T N
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      (11) 

where Xmin n and Bmin n are the minimum value of X and B in 
the n-th iteration. The elements of the Jacobin matrix J are 
partial derivatives of f(T, N) and g(T, N) over T and N.  

Similar to F(T, N) and G(T, N), f(T, N) and g(T, N) are 
implicit functions. The partial derivatives in (11) cannot be 
explicitly expressed. Moreover, without knowing f(T, N) or 
g(T, N), Xmin n or Bmin n cannot be obtained. To overcome the 
difficulties, an approximation technique is introduced as 
follows to solve the estimation model for better practicability. 

According to Fig. 3 and Fig. 4, the relationship between the 
RSD and T and N generally follows exponential functions. 
Thus, f(T, N) and g(T, N) can be decoupled into fN(T) and gN(T) 
with fixed N, and fT(N) and gT(N) with fixed T. The decoupled 
functions can be approximated with exponential functions as, 

/( ) e XT T
N XT XTf T A C                          (12) 
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N BT BTg T A C                          (13) 
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            /( ) e BN N
T BN BNg N A C                        (15) 

where AXT, CXT, TX, ABT, CBT, TB, AXN, CXN, NX, ABN, CBN, and NB  

are variables for fitting the 4 decoupled functions. The fitted 
fN(T), gN(T), fT(N), and gT(N) of the line 26# with n=1 are shown 
in Fig. 3 and Fig. 4 as solid lines. 

With the approximated decoupled functions, the Jacobin 
matrix, J, can be approximated by, 
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                                 (16) 

The minimum value of fN(T), gN(T), fT(N), and gT(N) are AXT， 
ABT, AXN, and ABN. Thus, Xmin n and Bmin n can be approximated 
as, 
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Once J, Xmin n, and Bmin n are obtained, the correction of T 
and N can be calculated with (11). The new window size Tn+1 
and the number of selected data points Nn+1 can be updated as, 

             
1

1

0.5l

n n n

n n n

T T T

N N N










  




                           (18) 

where  is the optimal factor and l is the iteration for searching 
the optimal factor . If the objective (10) calculated with new 
Tn+1 and Nn+1 are greater than that calculated with Tn and Nn, 
will be halved  till (Xn+1+Bn+1) is less than  (Xn+Bn). The 
maximum iteration for updating  is denoted as lmax. 

To improve the convergence, ΔTn and ΔNn should be 
checked before updating Tn+1 and Nn+1. According to extensive 
tests on simulated data, T has great impact on Xn and Bn, and 
ΔTn is limited to the range of [-0.1, 0.1]. If ΔTn is out of the 
range, ΔTn is set as 0.1 or -0.1 depending on the sign of original 
ΔTn. ΔNn will be scaled accordingly. 

Fig. 5 shows the flowchart of solving the proposed 
estimation model. After loading the measured data and 
eliminating bad data in step ①, initial line parameters and some 
arguments of the estimation process are set in step ② where 
nmax is the maximum iteration. The kernel estimation process in 
section II.B is shown in step ③. Then fN(T) and gN(T) are fitted 
with fixed N, and  fT(N) and gT(N) are fitted with fixed T in step 
④ for getting Jacobian, Xmin n, Bmin n, ΔTn, and ΔNn in step ⑤. 
With step ⑥, T and N are updated with (18). The RSD with the 
new T and N are calculated in step ⑦ for checking convergence 
in step ⑧. The convergence criteria are discussed in the next 
subsection. 

 
Fig. 5.  Flowchart for solving the proposed estimation model. 

D. Convergence Criteria 

Due to the random measurement error, the inconsistency 
between the actual estimated results and fitted smooth 
exponential functions may result in failure to converge for the 
proposed method with typical convergence criteria. To improve 
convergence and practicability, three practical convergence 
criteria are adopted to check whether the estimation should be 
stopped.  

(1) When objective of the (n+1)-th iteration doesn’t change 
comparing with that of the n-th iteration, i.e., the average value 
of Xn+1 and Bn+1 is equal to the average value of Xn and Bn,  
the estimation will stop, 

1 10.5( + )=0.5( )Xn Bn Xn Bn                          (19) 

(2) When the objective function of the (n+1)-th iteration is 
worse than the objective function of the n-th iteration and the 
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objective function of the n-th iteration is also worse than the 
objective function of the (n-1)-th iteration, the parameters 
estimation will stop, i.e., 

max

1 1

-1 -1

( + ) / ( )

( + ) / ( )

0.5

Xn Bn Xn Bn

Xn Bn Xn Bn

l

    
    



   


 
 

               (20) 

where  is the threshold of deterioration () .  
 (3) When n is greater than nmax, the parameters estimation 

will stop. If estimation stops when this condition is met, it is 
desirable to adaptively change the initial values as discussed in 
section III.F. 

E. Impact of Measurement Error on Estimation 

To numerically check the impact of measurement error on 
line parameter estimation, measurement error of 3%, 6%, 9%, 
and 12% were added as in section III.B. Estimated results are 
illustrated in TABLE I. The Res is the residual defined in (4) 
with estimated parameters, and the Res0 is the residual obtained 
with accurate line parameters. 

TABLE I 
 ESTIMATED RESULTS OF LINE 26# WITH DIFFERENT LEVELS OF 

MEASUREMENT ERROR 

Error/% ΔX/% ΔB/% X B Res/% Res0/% 

0 1.467×10-7 1.221×10-7 1.527×10-9 4.492×10-10 4.062×10-7 2.206×10-14 

3 1.587 0.951 0.0561 0.0374 0.936 0.915 

6 2.460 1.710 0.0983 0.0601 1.889 1.840 

9 3.498 3.163 0.1244 0.0981 2.836 2.767 

12 4.732 4.221 0.1693 0.1153 3.898 3.719 

As shown in TABLE I, the estimated results are accurate 
when there is no measurement error. With increasing 
measurement error, the absolute error and RSD of estimated 
line parameters generally increase in a linear manner. 
Comparing Res with Res0, it can be found that the residual is 
mainly contributed by the measurement error. With greater 
estimation error of line parameters, the residual contributed by 
inaccurate line parameters increases. For the case with 
measurement error of 12%, the inaccurate estimated line 
parameters contribute about 4.8% to the residual. 

F. Adaptive Initialization of T and N 

The initial values of T and N affect the convergence of the 
estimation model. For field measured data with error, f(T,N) 
and g(T,N) are not smooth. Inappropriate initial values of T and 
N may increase the number of iterations or make the estimation 
results trapped in local optimum. It is necessary to select 
appropriate initial values for different transmission lines.  

In this paper, a N0-based scheme is proposed to set up initial 
values of T and N. With a given number of data points used for 
estimation, i.e. N0, (12) and (13) are fitted. To choose a 
reasonable T from (12) and (13), a small number  (0<≤) is 
defined to indicate how far the RSD is from its desired 
minimum value. Let, 

/

/

e

e

X

B

T T

T T












                                (21) 

Thus, the initial value of T can be determined as, 

    1 max log , logX BT T T                  (22) 

With T1 selected, N1 should be updated in a similar way as T1 
with fitted (14) and (15), 

    1 max log , logX BN N N               (23) 

Once T1 and N1 are determined, line parameters can be 
iteratively estimated with the method shown in Fig. 5. 

If the estimation fails to converge within nmax iterations, 
greater  should be adaptively set to get new initial values for 
estimation till converged results are obtained. For example,  
can be doubled to get reduced T1 and N1 to improve the 
convergence. An external loop can be added to Fig. 5 to control 
the update of , as shown in Fig. 6. 

  
Fig. 6.  Flowchart for estimation with adaptive update of  

IV. CASE STUDIES 

To verify the feasibility of the proposed model, a provincial 
power system in China with forty two 500kV substations and 
seventy one 500kV transmission lines are tested. Seventy lines 
are successfully estimated with three months of measured data 
with sampling interval of 5 minutes (288 data points per day), 
while the other one cannot be estimated due to loss of measured 
data. Through extensive tests, estimation configuration 
parameters in this paper are set as: 1.05, nmax=50, lmax=10, 
N0=50, and initial =0.02. 

A. Demonstration of Estimation with Adaptive Data Selection 
Scheme  

A transmission line (line 36#) with database parameters 
R=1.2497Ω, X=18.67Ω, B=298.6S is used to demonstrate the 
estimation process. To show the process of selecting initial 
value of T and N for iteration, the fitted fN(T)and gN(T) are 
illustrated in Fig. 7(a) as solid lines with fixed N0=50.  

 
Fig. 7. The process of selecting initial T and N for line 36#.  

It can be seen from Fig. 7(a) that the RSD of X and B 
decreases exponentially with increasing T, which verifies the 
conclusion made with simulated data. With the fitted fN(T) and 
gN(T), T1 is determined as 0.9620 days with (22). With 
T1=0.962 days, fT(N) and gT(N) are fitted in Fig. 7(b), and 
N1=49 is selected with (23). 

With T1=0.962 days and N1=49, parameters of line 36# is 
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estimated with the proposed estimation model iteratively. 
Estimation converges in 3 iterations. The fitted curves of each 
iteration are shown in Fig. 8, and Fig. 9 shows the iteration of 
X, B, N, and T. 

 
Fig. 8.  Fitted fN(T), gN(T), fT(N) and gT(N) of each iteration of line 36#. 

 
Fig. 9.  Iteration of X, B, N, and T of line 36#. 

It can be observed from Fig. 8 and 9 that the RSD decreases 
with iterations for better credibility and the data selection 
scheme is optimized. After 3 iterations, the estimation stops 
because of convergence criteria (1). T and N converge to 1.012 
days and 80, respectively. 

TABLE II lists the estimated results of line 36#. Though the 
final estimated results are almost the same as that of initial 
iteration, X and B reduce from 0.1690 and 0.0185 (iteration 0) 
to 0.1351 and 0.0156 (iteration 3). It indicates that the estimated 
results of iteration 3 are better than iteration 0. 

TABLE II 
ESTIMATED PARAMETERS OF LINE 36# OF EACH ITERATION 

Iteration 0 1 2 3 

X(Ω) 17.42 11.31 17.43 17.39 

B(μS) 297.4 297.1 297.5 297.6 

B. Adaptive Scheme v.s. Fixed Scheme 

To further verify the performance of the solved scheme 
(scheme 1 with T=1.012 days and N=80), 6 other schemes are 
compared in TABLE III. Schemes 2～5 are derived from 
scheme 1. The data point number of scheme 2 is half of scheme 
1. The time window of scheme 3 is half of scheme 1. For 
scheme 4, the data point number is the same as that of scheme 1, 
and the time window is reduced to N/288, i.e., all data points in 
the time window are selected. Scheme 5 has the same time 
window as scheme 1, and all data points in the time window are 
selected. Scheme 6 is the 6-point in 30 minutes scheme of [15] 
and scheme 7 is the 200-point in 1 day scheme of [12].  

TABLE III 
ESTIMATED RESULTS OF LINE 36# WITH DIFFERENT DATA SELECTION 

SCHEMES 

Scheme T(days) N X(Ω) B (S) σX σB 

1 1.012 80 17.39 297.6 0.1351 0.0156 

2 1.012 40 17.28 297.3 0.1468 0.0175 

3 0.506 80 17.64 298.0 0.1901 0.0224 

4 0.2778 80 17.58 297.9 0.3253 0.0386 

5 1.012 291 17.39 297.6 0.1345 0.0155 

6 1/48 6 23.32 311.28 0.7168 0.1527 

7  1 200 17.41 297.4 0.1663 0.0181 

It can be seen from TABLE III that the RSD of scheme 1 is 
much less than that of schemes 2~4. The RSD of scheme 5 is 
almost the same as scheme 1, but with greater computation 
burden. For scheme 6, the RSD is much greater than that of 
other schemes which indicates that the estimated results of 
scheme 6 are not trustable. It should be noted that there are only 
6 measured data in 30 minutes for lines in the test system. No 
optimal selection can be performed for scheme 6 which was 
used in [15] to optimally select 6 points from 300 measured 
frames in 30 minutes (1 frame per 6 seconds). The performance 
of scheme 6 can be improved with measured data of higher 
sampling rates. 

For scheme 7, its performance is similar to that of scheme 1 
with slightly higher RSD. Therefore, scheme 7 is a moderate 
scheme for general applications, but won’t always give the best 
estimation results. Detailed comparison between scheme 7 and 
the proposed adaptive data selection scheme is made in the next 
subsection. 

C. Estimated Results of 70 Transmission Lines 

With the proposed estimation model, the estimated RSD and 
absolute error of the 70 transmission lines sorted with 
ascending X are shown in Fig. 10. It should be noted that in Fig. 
10 (c) and (d), the absolute error is calculated with database 
parameters as reference since the accurate transmission line 
parameters are unavailable. 

 
Fig. 10.  Estimation results of 70 transmission lines with proposed model 

As shown in Fig. 10, B is much less than X and X should 
be paid more attention to. There are 51 lines with X less than 
0.3, and 11 lines with X greater than 0.5. Those lines with 
greater X are usually measured with worse accuracy and 
estimation results are not trustable. There are 45 lines with 
estimated X deviating from its database parameter by less than 
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20%, and 7 lines with estimated X deviating from its database 
parameter by greater than 50%. 

Estimated results of 5 example lines are listed in TABLE IV. 
It can be seen from TABLE IV that different transmission lines 
have different optimal data selection schemes for estimation. 
The varying T and N from line to line shows that the data 
selection schemes are indeed adaptively set by the proposed 
estimation model. 

TABLE IV 
ESTIMATED RESULTS OF 5 EXAMPLE LINES WITH MEASURED DATA 

Line T(days) N X(Ω) B (S) σX σB 

1# 1.024 77 12.974 239.608 0.0212 0.0169 

9# 0.823 104 15.581 228.491 0.0543 0.0179 

15# 1.300 101 20.485 314.318 0.0684 0.0047 

48# 2.307 69 6.789 87.146 0.2360 0.0492 

67# 0.385 110 5.712 154.164 0.6640 0.0778 

As a comprehensive demonstration of the performance of 
the proposed estimation model, the estimated RSD of the 
proposed adaptive scheme and the fixed scheme 7 discussed in 
previous section are compared in Fig. 11. 

 
Fig. 11.  Estimation results of 70 transmission lines with adaptive and fixed 
schemes. 

As shown in Fig. 11, X and B of the fixed scheme are 
usually greater than those of the adaptive scheme. Among the 
70 lines, 62 lines (88.6%) have lower X with the adaptive 
scheme than the fixed scheme. Forty nine lines (70%) have 
lower B with the adaptive scheme than the fixed scheme. The 
average improvement of X of the adaptive scheme over the 
fixed scheme is 19.34%, while the best improvement is 74.33% 
(line 23#). The worst case of the 70 lines is line 1#, for which 
the X with the adaptive scheme is 3.17% greater than the fixed 
scheme. The proposed estimation model with the adaptive data 
selection scheme generally provides better estimation results 
than the fixed data selection scheme. 

D. Non-converged Cases 

In field power systems, the estimation may fail to converge 
when iterations reach the maximum, e.g. line 9# with database 
parameter R=1.021Ω, X=14.2429Ω, and B=208.233S. The 
estimated results with initial =0.02 are shown in Fig. 12. The 
estimation stops after 50 iterations. For demonstration, only the 
first 20 iterations are shown. 

 
Fig. 12.  Iteration of RSD and N and T for line 9# with =0.02. 

It can be seen from Fig.12 (a) that the RSD decreases in the 
first few iterations. However, the estimation was trapped into 
oscillation after 3 iterations. When X reaches minima, X is 
0.0543, and B is 0.0179. With increased =0.04, the estimation 
of line 9# converges in 16 iteration as shown in Fig. 13. The 
estimated X is 0.0513 and B is 0.0178 which are slightly 
better than that in Fig. 12. 

 
Fig. 13.  Iteration of RSD and N and T for line 9# with =0.04. 

E. Comments on Computational Efficiency 

The proposed estimation model involves high computation 
burden. In this paper, the estimation was carried out with 
MATLAB® R2014a on a server with two 8-core CPUs (Intel® 
Xeon® E5-2640 v3@2.6GHz) with 3 months of measured data. 
A script-base estimation package was developed with parallel 
computing toolbox enabled to start 15 workers for improving 
estimation speed.  

The average estimation time of the aforementioned 70 
transmission lines is 1568s (26 minutes) per line and the 
average number of iteration is 25.5 per line. Twenty nine out of 
the 70 lines failed to converge in 50 iterations. For the other 41 
lines, estimation averagely converges within 7.5 iterations per 
line, and the average estimation time is 515s (8.6 minutes) per 
line. Among the 41 lines, the longest estimation time is 3296s 
(55 minutes) for line 13# which converged in 28 iterations, 
while the shortest estimation time is 106s (1.8 minutes) for line 
17# with 3 iteration. Since the data selection scheme is 
adaptively optimized for each line, the estimation time of lines 
with less iterations is not always less than that of lines with 
more iterations. 

For such applications as parameter database calibration, the 
estimation will be started when new lines are commissioned, or 
state estimation fails to converge in some areas. Offline 
estimation would be appropriate for those applications, and 
time consumption is not the key restriction. Besides, the 
script-based estimation package can be further optimized with 
better solver, e.g., commercial solver in FORTRAN, to 
improve the estimation speed. 

V. CONCLUSIONS 

When estimating transmission line parameters with 
measured data, the data selection scheme has great influence on 
estimation results. This paper proposes a measurement- based 
transmission line parameter estimation model with an adaptive 
data selection scheme to make the estimation model suitable for 
transmission lines with different measurement accuracy. The 
RSD of estimated parameters is correlated with the absolute 
error of the estimated parameters. Therefore, the RSD of 
estimated parameters is minimized to improve the credibility of 
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estimated results. It is validated by tests with field measured 
data that the proposed estimation model is superior to models 
with fixed data selection schemes. It can be used for calibrating 
transmission line parameter database to improve power system 
operation and control, and is applicable for both SCADA and 
WAMS data. 

De-noising of measured data and eliminating bad data can 
improve the estimation performance, which is one of the key 
issues that should be studied further. The empirical parameters 
used in the paper, such as , nmax, lmax, N0, and initial , are 
determined based on the cases of the test system, and should be 
validated with more test systems. The computation burden of 
the proposed model is much heavier than fixed data selection 
schemes. Though it is not a problem for offline applications, 
more efficient ways to solve the proposed model will help to 
improve its practicability. 
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