Overestimation of closed-chamber soil CO2 effluxes at low atmospheric turbulence

Brændholt, Andreas; Larsen, Klaus Steenberg; Ibrom, Andreas; Pilegaard, Kim

Published in:
Biogeosciences

Link to article, DOI:
10.5194/bg-14-1603-2017

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Overestimation of closed-chamber soil CO$_2$ effluxes at low atmospheric turbulence

Andreas Brændholt1, Klaus Steenberg Larsen1,2, Andreas Ibrom1, and Kim Pilegaard1

1DTU Environment, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
2Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, 1958, Denmark

Correspondence to: Andreas Brændholt (andbr@env.dtu.dk)

Received: 10 November 2016 – Discussion started: 11 November 2016
Revised: 1 March 2017 – Accepted: 7 March 2017 – Published: 28 March 2017

Abstract. Soil respiration (R_s) is an important component of ecosystem carbon balance, and accurate quantification of the diurnal and seasonal variation of R_s is crucial for a correct interpretation of the response of R_s to biotic and abiotic factors, as well as for estimating annual soil CO$_2$ efflux rates.

In this study, we measured R_s hourly for 1 year by automated closed chambers in a temperate Danish beech forest. The data showed a clear diurnal pattern of R_s across all seasons with higher rates during night-time than during daytime. However, further analysis showed a clear negative relationship between flux rates and friction velocity (u_*) above the canopy, suggesting that R_s was overestimated at low atmospheric turbulence throughout the year due to non-steady-state conditions during measurements. Filtering out data at low u_* values removed or even inverted the observed diurnal pattern, such that the highest effluxes were now observed during daytime, and also led to a substantial decrease in the estimated annual soil CO$_2$ efflux.

By installing fans to produce continuous turbulent mixing of air around the soil chambers, we tested the hypothesis that overestimation of soil CO$_2$ effluxes during low u_* can be eliminated if proper mixing of air is ensured, and indeed the use of fans removed the overestimation of R_s rates during low u_*. Artificial turbulent air mixing may thus provide a method to overcome the problems of using closed-chamber gas-exchange measurement techniques during naturally occurring low atmospheric turbulence conditions. Other possible effects from using fans during soil CO$_2$ efflux measurements are discussed. In conclusion, periods with low atmospheric turbulence may provide a significant source of error in R_s rates estimated by the use of closed-chamber techniques and erroneous data must be filtered out to obtain unbiased diurnal patterns, accurate relationships to biotic and abiotic factors, and before estimating R_s fluxes over longer timescales.

1 Introduction

Soil respiration (R_s) in terrestrial ecosystems is the second largest flux of CO$_2$ after gross photosynthesis and was found to account for 63% of ecosystem respiration on average in a study of 18 European forests (Janssens et al., 2001; Raich and Schlesinger, 1992). R_s may exhibit both a strong seasonal and diurnal pattern (e.g. Janssens et al., 2000; Tang et al., 2005) and accurate measurements of R_s at various timescales are thus important to correctly estimate this flux component; i.e. periodic over- or underestimation of R_s may lead to huge errors in annual ecosystem CO$_2$ budget estimates.

CO$_2$ produced in the soil must, in the long term, be emitted from the soil surface (Maier et al., 2011), although, in some ecosystems, leaching of dissolved organic and inorganic carbon may occur (Kindler et al., 2011). R_s is therefore often measured as soil CO$_2$ efflux by the closed-chamber method, which relies on Fick’s law of diffusion and steady-state diffusion rate conditions (Gao and Yates, 1998). Under these conditions, the flux rate can be calculated from the increase in chamber CO$_2$ concentration during the chamber deployment period.

To estimate annual R_s on a site, manual chamber measurements are often performed at regular intervals (e.g. twice a month) at multiple plots, which ideally encompass the tem-
poral and spatial variation in R_s in the studied ecosystem. For logistic reasons manual measurements are, however, most often performed during daytime working hours and therefore do not capture the diurnal variation. To capture the diurnal variation, diurnal measurements campaigns at a few plots are often performed at a high temporal resolution (e.g. every 1–2 h) but the number of campaigns over a full year may often be limited. Using campaign-wise diurnal cycle patterns for the entire year may cause biases, since the diurnal pattern of R_s may itself exert seasonal differences, which may not be captured during a limited number of diurnal measurement campaigns (Ruehr et al., 2010).

The assumption behind the usage of closed chambers for estimating soil CO$_2$ efflux may also be challenged and a number of potential biases have been identified that may cause an over- or underestimation of the true soil CO$_2$ efflux (Davidson et al., 2002; Pumpanen et al., 2004; Rochette and Hutchinson, 2005; Ryan and Law, 2005). Firstly, the increase in chamber headspace CO$_2$ concentration during measurements decreases the concentration gradient between the soil and chamber headspace, thereby theoretically decreasing the apparent soil CO$_2$ efflux according to Fick’s law of diffusion (Gao and Yates, 1998). Consequently, it has often been found that applying a linear fit to the increase in chamber CO$_2$ concentration leads to a systematic underestimation of the measured CO$_2$ efflux compared to the true efflux (Anthony et al., 1995; Venteralea, 2010). To correct for this methodological error a non-linear fit can be applied to the increase in chamber headspace CO$_2$ concentration to estimate the CO$_2$ efflux at time zero, where chamber headspace CO$_2$ concentration is at ambient level. Though theoretically sounder, non-linear fits have been found to increase the uncertainty of the flux estimate (Venteralea, 2010).

Many chambers are placed on a soil collar permanently installed a few centimetres into the soil to secure a good sealing of the chamber to the soil surface, thus preventing lateral transport of air into or out from the chamber in the top soil (Healy et al., 1996; Hutchinson and Livingston, 2001; Livingston and Hutchinson, 1995). However, the soil collar may cause a disturbance to the soil, e.g. by changing the microenvironment, severing plant roots or even increasing root growth (Görres et al., 2016). These disturbances of the soil can potentially change the R_s inside the collar compared to undisturbed soil.

Placing the chamber on the soil before a measurement may also lead to a disturbance in the diffusion-driven soil CO$_2$ efflux. This can either lead to a flush of CO$_2$ from the soil pores into the chamber headspace resulting in a higher soil CO$_2$ efflux (Matthias et al., 1980; Hutchinson and Livingston, 1993) or lead to horizontal transport of gas in the soil resulting in a lower soil CO$_2$ efflux (e.g. Conen and Smith, 2000; Kutzbach et al., 2007; Pedersen et al., 2010).

The conditions of the atmosphere surrounding the chamber may also influence the measured CO$_2$ efflux. An over- or under-atmospheric pressure in the chamber headspace can act to either suppress or increase the CO$_2$ efflux respectively (Kanemasu et al., 1974). To maintain ambient pressure in the chamber headspace, closed chambers often have a vent connected to the atmosphere (e.g. Hutchinson and Mosier, 1981; Savage and Davidson, 2003; Xu et al., 2006). High wind speeds moving over the vent tube may lead to a pressure drop in the chamber headspace, due to the Venturi effect, thereby leading to flux overestimation (Conen and Smith, 1998). Correct vent design has, however, been found to eliminate this effect (Xu et al., 2006).

While the effects mentioned above are well described, the effect of atmospheric turbulence during closed-chamber measurements has received much less attention. Recently, a few studies have demonstrated that low friction velocity (u_s), a measure of atmospheric turbulence, can lead to overestimation of fluxes measured by closed chambers, and that it is especially a problem during night-time where u_s is typically lowest (Görres et al., 2016; Juszczak et al., 2012; Lai et al., 2012; Schneider et al., 2009). It has been suggested that the overestimation of chamber fluxes is because a stratified layer of CO$_2$ builds up at the soil surface during periods of low u_s, but is broken down by the chamber movement at closure (Görres et al., 2016).

The potential overestimation of soil CO$_2$ effluxes due to low u_s has become relevant, especially in recent years. High-frequency soil CO$_2$ efflux measurements have become more widespread by the emergence of commercially available automated closed-chamber systems, as well as increasing integration and usage of chamber flux technologies in international research infrastructures, such as ICOS (Integrated Carbon Observation System), which aims to quantify the greenhouse balance using common approaches and protocols across multiple sites. However, insufficient research has been done on the topic, and there is no consensus on how to account for this effect to get unbiased measurements of soil CO$_2$ effluxes. Thus it is currently unknown what effect this bias has on upscaled annual soil CO$_2$ efflux estimates for different ecosystems, and how unbiased measurements can be performed during low u_s.

Our study had two aims. The first aim was to quantify the effect of u_s on automated closed-chamber soil CO$_2$ effluxes in the short term (i.e. effect on diurnal fluxes) and in the long term (i.e. effect on annual estimates of CO$_2$ efflux). The second aim was to test the hypothesis that the overestimation of soil CO$_2$ fluxes during low u_s was due to insufficient mixing of the open air above the soil surface and to test whether unbiased soil CO$_2$ efflux measurements could be achieved during low u_s by artificially inducing mixing of the air around the soil chambers by a fan.
2 Materials and methods

2.1 Site description

Measurements were performed at the Danish ICOS RI site DK-Sor at 40 m a.s.l. (55°29'13"N, 55°38'45"E). Measurements of tower-based eddy covariance have been running since 1996. The climate is temperate maritime with an annual average temperature of 8.5 °C and an annual average precipitation of 564 mm (Pilegaard et al., 2011).

A dense forest covers the site, and the dominant tree species is European beech (Fagus sylvatica L.) with scattered stands of conifers such as Norway spruce (Picea abies (L.) Karst) and larch (Larix decidua Mill.) constituting 20% of the forest (Wu et al., 2013). The stand of beech around the forest floor. During spring, however, part of the forest floor was further away than 10 m from an individual soil sensor.

Alongside the chamber measurements, wind speed in three dimensions was measured by a sonic anemometer (HS-50 Research Anemometer, Gill Instruments Limited, Lymington, UK) at a height of 43 m above soil surface on the flux tower from which u_* was calculated according to Stull (1988).

2.2 One-year campaign of soil CO$_2$ efflux and friction velocity measurements

Soil CO$_2$ efflux was measured automatically over 1 year from 10 October 2014 to 30 September 2015 (356 days) with five 8100-104 long-term CO$_2$ flux chambers and three 8100-101 long-term CO$_2$ flux chambers in a multiplexed set-up with a LI-8100A Automated Soil CO$_2$ Flux System and a LI-8150 Multiplexer (LI-COR Environmental, Lincoln, Nebraska USA). Measurements were made on permanent, circular soil collars (20 cm diameter) that were inserted 4 cm into the soil prior to the measurement period. The average soil collar height was 5.2 cm with the individual collar heights ranging from 4.5 to 5.8 cm. The automated chambers each measured soil CO$_2$ effluxes once every hour and were positioned within 15 m of the flux tower. Soil CO$_2$ efflux was also measured manually at 12 additional circular plots with soil collars (10 cm diameter) installed 4 cm into the soil as for the automated chambers. The manual plots were positioned close to the automated chamber plots (< 10 m) and also within 15 m of the flux tower. Soil CO$_2$ efflux at the 12 plots were each measured every 2 weeks during daytime between 09:00 and 15:00 CET on days with little or no rain using a portable 8100-102 10 cm survey chamber connected to a LI-8100A Automated Soil CO$_2$ Flux System (LI-COR Environmental, Lincoln, Nebraska USA). Both plots for automated and manual measurements contained bare forest floor including litter but no shrubs or saplings.

There were three gaps in the automatic data collection. From 12 November to 22 November an unknown system failure occurred. From 3 February to 10 February measurements were stopped to prevent damage to the system due to accumulated snow. From 19 May to 23 July the system did not run due to a mechanical system failure, which required repair. This led to a data coverage of 76% of the days (272 days out of 356 days). Chamber closure time was 90 and 150 s for the automated and manual chambers respectively, and the first 20 s after chamber closure was discarded (the dead band).

Soil temperature and soil moisture content were measured at a depth of 5 cm for both the manual and automated measurements. For the automated measurements, six soil thermometers were distributed close to the soil chambers, such that no soil chamber would eliminate the bias of low u_* on measured chamber soil CO$_2$ effluxes. The artificial air mixing for each chamber was provided by 30 cm diameter table fans facing the chamber (Model 546601, HP Schou A/S, Kolding, Denmark) positioned 3 m from the soil chamber and at a height of 30 cm from the soil surface to the middle of the fan. The fans provided a wind speed of 1.2–1.5 m s$^{-1}$ at the chamber collars.

During the first 10 days of the campaign, fans were installed at three chambers, resulting in three chambers with artificial air mixing and three chambers experiencing ambient condi-
tions. During the last 10 days of the campaign, the fans were moved to the other three chambers, thus providing a data set with 10 days of ambient air and 10 days with artificial air mixing on all six chambers. \(\text{\(u_s \)} \) at a height of 43 m above the soil surface was calculated similarly to the 1-year campaign.

2.4 Data analysis

All data analysis was done using R (R Core Team, 2014). Because the current paper focuses on the potential error of low turbulent air mixing and because fluxes calculated using non-linear regression fitting may add additional aspects of uncertainty to the calculated fluxes, we focused on \(\text{CO}_2 \) effluxes calculated on a time and area basis by applying linear regression to the increase in chamber \(\text{CO}_2 \) concentration during chamber closure time. However, non-linear effluxes were calculated as well, and at four different dead bands of 10, 20, 30 and 40 s (see Supplement). The linear fluxes were calculated in R (R Core Team, 2014) using the lm function and the non-linear fluxes were calculated by fitting the non-linear equation suggested by Hutchinson and Mosier (1981) with the nlsLM function (minpack.lm package) for model fitting in R. Quality control for the automated chamber effluxes was done by removing fluxes with an \(r^2 < 0.95 \) of the linear regression before further analysis, equal to 17% of the measurements for the 1-year campaign and 1% of the measurements for the fan experiment campaign. For the manual measurements, the quality control was done in the field directly following a measurement. If the coefficient of variance of the flux (as provided by the LI-COR software immediately following a measurement) was higher than 1.4, the measurement was discarded and an extra measurement was performed on the soil collar.

The calculated effluxes for the 1-year campaign were paired with \(\text{\(u_s \)} \) data from the eddy covariance system in the mast (43 m). The \(\text{\(u_s \)} \) values were used to create sub-datasets by a \(\text{\(u_s \)} \) threshold filtering technique, where effluxes measured at \(\text{\(u_s \)} \) values lower than a specific threshold value had been filtered out and removed from the dataset (Aubinet et al., 2000). Twelve different \(\text{\(u_s \)} \) threshold values were used, ranging from 0.1 to 1.2 m s\(^{-1}\), with a successive higher \(\text{\(u_s \)} \) threshold value of 0.1 m s\(^{-1}\). Thus, 12 different sub-datasets each with a specific \(\text{\(u_s \)} \) threshold value were derived from the 1-year campaign soil \(\text{CO}_2 \) effluxes. The number of soil \(\text{CO}_2 \) effluxes was 43 505 for the unfiltered dataset. For the 12 different sub-datasets going from a \(\text{\(u_s \)} \) threshold value of 0.1 to 1.2 m s\(^{-1}\), the number of soil \(\text{CO}_2 \) effluxes was 32 966, 26 848, 22 185, 18 557, 15 787, 13 449, 11 472, 9 533, 7 950, 6 571, 5 481 and 4 571 respectively.

For each of the sub-datasets, diurnal ensemble averages of soil \(\text{CO}_2 \) efflux were calculated for each of the four distinct seasons at the site: summer (July and August), autumn (September, October and November), spring (March, April and May) and winter (December, January and February).

The annual \(\text{CO}_2 \) efflux was obtained for each sub-dataset from the mean soil \(\text{CO}_2 \) efflux for each hour of the day for each month. From this a daily mean was calculated for each month. Monthly soil \(\text{CO}_2 \) effluxes were calculated as the sum of the daily soil \(\text{CO}_2 \) efflux in the respective month and the annual soil \(\text{CO}_2 \) efflux was calculated. One period of data outage due to system failure (20 May to 22 June) was gap filled by linear interpolation between hourly values of mean diurnal patterns that were calculated from the adjacent periods of the data gap.

In addition to the annual soil \(\text{CO}_2 \) effluxes using all 24 h throughout the day, the daytime annual soil \(\text{CO}_2 \) efflux was calculated in a similar manner, except that only measurements made between 09:00 and 15:00 CET were used.

The manually measured soil \(\text{CO}_2 \) effluxes were used to parameterise the empirical model

\[
R_s = R_{283} \exp \left[-E_0 \left(\frac{1}{T_s + 273.15 - T_0} - \frac{1}{T_s - T_0} \right) \right],
\]

of Lloyd and Taylor (1994), where \(T_s \) is soil temperature at 5 cm depth and \(R_{283} \) is the base respiration at a soil temperature of 10°C. \(T_0 \) and \(E_0 \) are fitted parameters. The model was fitted using non-linear least squares regression based on a Levenberg–Marquardt algorithm using nlsLM in the R package minpack.lm (Elzhov et al., 2015). The model was used to form a continuous time series of mean daily soil \(\text{CO}_2 \) effluxes throughout 1 year by using a continuous measurement of soil temperature measured at 5 cm depth at the site as input to the model. From the modelled daily soil \(\text{CO}_2 \) effluxes, monthly soil \(\text{CO}_2 \) effluxes were calculated as the sum of the daily soil \(\text{CO}_2 \) effluxes in the respective month. From this the annual soil \(\text{CO}_2 \) efflux was calculated as the sum of all the 12 monthly \(\text{CO}_2 \) effluxes.

3 Results

3.1 Friction velocity and soil \(\text{CO}_2 \) effluxes

Soil \(\text{CO}_2 \) efflux generally exhibited a diurnal pattern inversely related to the diurnal pattern of \(\text{\(u_s \)} \), with the highest effluxes seen during night-time, when \(\text{\(u_s \)} \) was lowest (Fig. 1). During summer, autumn and spring, \(\text{\(u_s \)} \) showed a clear diurnal pattern with highest values during daytime and lowest values during night-time (Fig. 2a, b, d), while this pattern was weaker during winter (Fig. 2c).

Average hourly soil temperature for the automated soil chambers measured at 5 cm depth showed no diurnality during winter (Fig. 3c). However, for summer, autumn and spring a slight diurnal pattern was observed with lowest temperatures at 07:00–10:00 CET and highest temperatures late in the afternoon or early in the evening (Fig. 3a, b, d).

When comparing the soil \(\text{CO}_2 \) effluxes measured with the automated chambers during the 1-year campaign with \(\text{\(u_s \)} \), we found a clear relationship with higher soil \(\text{CO}_2 \) effluxes at
lower \(u_{*} \) values (Fig. 4), i.e. a significant negative correlation between \(u_{*} \) and soil CO\(_2\) efflux for all seasons \((P < 0.001, r^2 = 0.065)\). The relationship seemed, however, to level off at a \(u_{*} \) threshold value of approximately 0.7 m s\(^{-1}\). Further increasing the \(u_{*} \) threshold value only led to a small or no further decrease in estimated effluxes.

Based on this result, we then calculated the mean diurnal pattern of soil CO\(_2\) efflux for each season during the 1-year campaign at different \(u_{*} \) threshold values (Fig. 5). With no \(u_{*} \) filtering, the soil CO\(_2\) efflux showed a clear diurnal pattern across all seasons with highest effluxes during night-time. This was inversely related to the diurnal pattern of \(u_{*} \) (Fig. 2). The difference between night-time and daytime was most pronounced during summer, where night-time (21:00–03:00 CET) effluxes were 35% higher than daytime (09:00–15:00 CET) effluxes. Applying a successively higher \(u_{*} \) threshold value decreased the difference between daytime and night-time effluxes for all seasons. The most dramatic effect was seen between no \(u_{*} \) threshold value to a value of 0.3 and 0.5 m s\(^{-1}\). Increasing the \(u_{*} \) threshold value from 0.5 to 0.7 m s\(^{-1}\) only led to a slight change in the diurnal pattern. The \(u_{*} \) filtering acted primarily by lowering the high night-time effluxes and only by slightly lowering the daytime effluxes. This uneven lowering of effluxes across the day changed the distinct diurnal pattern with a large difference between night-time and daytime effluxes, i.e. at a \(u_{*} \) threshold value of 0.5 and 0.7 m s\(^{-1}\), the diurnal pattern of soil CO\(_2\) efflux for summer was more uniform across the day, with only slightly lower effluxes in the afternoon. The change in the diurnal pattern in response to an increased \(u_{*} \) threshold value was also seen for the other seasons. For winter and spring, the diurnal pattern of soil CO\(_2\) efflux became more uniform, with no apparent difference between night-time and daytime effluxes (Fig. 5k to o and p to t respectively). For autumn, applying a \(u_{*} \) filtering procedure reversed the diurnal pattern from the highest effluxes being seen during night-time, to the highest effluxes being seen during daytime.

Looking at mean daily soil CO\(_2\) effluxes from the automated chambers revealed that they generally followed the soil temperature throughout the year (Fig. 6a). The same was found for the soil CO\(_2\) effluxes based on the manual chamber measurements and the output of the empirical model (Fig. 6c). A high day to day variability was found throughout the year for the automated measurements, which was especially pronounced during summer. Although following the same seasonal pattern, the modelled effluxes based on the manual measurements were slightly lower than those from the automated measurements (summer: 2.97 for the manual vs. 4.10 µmol m\(^{-2}\) s\(^{-1}\) for the automated measurements, autumn: 2.36 for the manual vs. 2.86 µmol m\(^{-2}\) s\(^{-1}\) for the automated measurements, winter: 0.485 for the manual vs. 0.608 µmol m\(^{-2}\) s\(^{-1}\) for the automated measurements), except for spring where the manual measurements were the highest (1.19 for the manual vs. 1.04 µmol m\(^{-2}\) s\(^{-1}\) for the automated measurements). Applying a successively higher \(u_{*} \) threshold value to the automated soil CO\(_2\) effluxes gen-

Figure 1. Example of mean hourly soil CO\(_2\) effluxes from the eight automated chambers (solid line) and mean hourly friction velocity \((u_{*}) \) at 43 m above the soil surface (dashed line) for 10 days during August 2015.

Figure 2. Mean (± standard deviation) diurnal pattern of friction velocity \((u_{*}) \) at 43 m above the soil surface for summer (a), autumn (b), winter (c) and spring (d).
3.3 Daytime soil CO₂ effluxes vs. daily effluxes

To assess the consequences of using only daytime soil CO₂ efflux data, instead of data for the entire day, when upscaling to annual soil CO₂ efflux, we calculated annual soil CO₂ effluxes for the 1-year campaign at different u_a threshold values using only fluxes measured between 09:00 and 15:00 CET, and compared these to the annual soil CO₂ effluxes calculated using effluxes for the entire day at different u_a threshold values (see Sect. 3.2).

At no u_a filter, the annual daytime soil CO₂ efflux was 13 % lower than the annual entire-day soil CO₂ efflux (808.9 vs. 703.3 g C m⁻² year⁻¹ for the annual entire-day and daytime soil CO₂ effluxes respectively) (Fig. 8). Increasing the u_a threshold value decreased the difference between annual daytime soil CO₂ effluxes and entire-day effluxes, with a steep decrease from 13 to 4.5 % observed between no u_a filtering to a u_a threshold value of 0.3 m s⁻¹ (705.4 vs. 673.7 g C m⁻² year⁻¹ for the annual entire-day and daytime soil CO₂ effluxes respectively). Further increasing the u_a threshold value only resulted in a minor change in the relationship between the annual daytime soil CO₂ efflux and the entire-day efflux. However, they were almost identical at a u_a threshold value of 1.2 m s⁻¹ (596.9 vs. 595.5 g C m⁻² year⁻¹ for the annual entire-day and daytime soil CO₂ effluxes respectively).

3.4 Fan experiment campaign

The observation that u_a filtering profoundly affected estimated soil CO₂ effluxes led us to design a simple fan experiment to test whether the bias of low atmospheric turbulent mixing on the measured chamber soil CO₂ effluxes could be eliminated by ensuring adequate mixing of air around the soil chamber. When no fan was installed, a significant negative relationship was found between soil CO₂ efflux and u_a ($r^2 = 0.040$, $P < 0.001$, slope = −0.377, data now shown) comparable to the 1-year campaign (Fig. 4). However, with fans installed the negative relationship changed into a significant positive relationship ($r^2 = 0.080$, $P < 0.001$, slope = 0.353), clearly indicating a strong effect of installing fans. With no fans, the soil CO₂ efflux showed a clear diurnal pattern with highest effluxes during night-time (Fig. 9a).
and b). However with fans, the opposite diurnal pattern with highest effluxes during daytime was seen. The change in diurnal pattern when using a fan was primarily due to a decrease of the high night-time effluxes (50% lower for effluxes measured at 21:00–03:00 CET). However, a decrease in daytime effluxes was also observed when using the fans (26% lower for effluxes measured at 09:00–15:00 CET).

4 Discussion

4.1 Friction velocity and soil CO₂ effluxes

Soil CO₂ effluxes generally followed the seasonal changes in soil temperature, being highest in summer and lowest in winter. Our 1 year measurement series with a total of 52 131 individual soil CO₂ efflux measurements from eight auto-
matic chambers clearly showed a negative relationship with the level of atmospheric turbulence (u_a), which was especially visible during periods with similar soil temperature, where apparent rates of soil CO$_2$ effluxes were clearly higher at lower compared to higher u_a values.

For closed-chamber measurements to represent real R_s, we assume steady-state diffusion from the source in the soil to the atmosphere according to Fick’s law. Accordingly, there must be a constant concentration of atmospheric CO$_2$, for the flux to be stable, and the physical application of a closed chamber should not change or break down any CO$_2$ gradients. Otherwise advection may take place. Our data strongly indicate that these assumptions are likely not met during low u_a, when the high soil CO$_2$ effluxes were observed.

u_a typically varies on a daily basis with low u_a during calm nights and high u_a during daytime (Stull, 1988). This is in agreement with our results (Fig. 2). The low atmospheric turbulence during calm nights has been found to cause a build-up of CO$_2$ above the soil, because of improper mixing of the layer of air above the surface (Brooks et al., 1997). This lowers the concentration gradient of CO$_2$ from the soil to the atmosphere, causing a build-up of CO$_2$ in the soil (Wohlfahrt et al., 2005; Flechard et al., 2007). This acts to suppress the apparent soil CO$_2$ efflux, and may also lead to a higher apparent soil CO$_2$ efflux once turbulence is re-established, because of the subsequent release of the CO$_2$ that has been build up in the soil (Massman et al., 1997). Our chamber measurements, however, show higher and not lower soil CO$_2$ effluxes during low u_a. It is unlikely that u_a has a direct effect on the biological activity of bacteria, fungi and/or plant roots in the soil, and thus it seems evident that the apparent increase in soil CO$_2$ efflux measured during low u_a is a measurement bias of the closed-chamber technique. Only a few studies have demonstrated the potential problem of using closed chambers during periods with low atmospheric turbulence (Görres et al., 2016; Koskinen et al., 2014; Lai et al., 2012; Schneider et al., 2009). Görres et al. (2016) suggested that during low atmospheric turbulence, the chamber causes a disturbance and/or mixing of the stratified layer of still air above the soil surface, as the chamber moves on to the soil at the beginning of a measurement, while Lai et al. (2012) accredited the error to a similar effect by the internal chamber fan. In both cases, the CO$_2$-rich air just above the soil surface is instantly mixed with less CO$_2$-rich air from above. This causes a sudden drop in the CO$_2$ concentration just above the soil surface, which in turn increases the concentration gradient between the soil and the atmosphere, thus leading to an apparent high CO$_2$ efflux being measured by the chamber (Görres et al., 2016). Our results support this hypothesis. In addition, we observed that soil temperatures were similar in the data sets with different u_a threshold values (data not shown), indicating that the relationship between flux rates
and u_s were not confounded by such potential differences in the different subsets of observations. We also showed that this error of overestimation of soil CO$_2$ effluxes during low u_s had a dramatic effect on both the diurnal pattern of soil CO$_2$ efflux, and on the estimate of annual soil CO$_2$ efflux, as we will discuss this in the following sections. An alternative and/or additional reason for the stable conditions above the soil surface during calm periods may be the stratification of the air caused by cooling due to longwave net radiation loss from the soil as suggested by Riederer et al. (2014). This aspect was, however, not addressed in the current study.

4.2 Diurnal pattern of soil CO$_2$ effluxes

The hourly measurements of soil CO$_2$ effluxes showed a clear diurnal pattern, generally with the highest effluxes during night-time, when no u_s filter was applied to the data (Fig. 5a, f, k, p). Soil temperature at 5 cm depth, however, did not show a diurnal pattern for winter, and only a slight diurnal pattern for the other seasons with the highest temperatures late in the afternoon or early in the evening (Fig. 3). This could indicate a hysteresis between soil CO$_2$ efflux and soil temperature for summer, autumn and spring. A few studies with automated closed chambers have found a similar hysteresis between soil CO$_2$ efflux and soil temperature (e.g. Phillips et al., 2011; Savage et al., 2013; Tang and Baldocchi, 2005). The hysteresis has been explained as a result of priming of the soil bacteria by carbon exudates from plant roots (Kuzyakov and Gavrichkova, 2010). During daytime in the growing season, plants assimilate carbon via photosynthesis. Parts of the assimilated carbon go to the roots via the phloem, and is released into the rhizosphere (Kuzyakov, 2002). Once in the soil, this carbon is readily consumed by bacteria leading to an increase in R_s. Even though photosynthesis takes place during daytime, the increase in R_s has been found to lag after photosynthesis, because the photo assimilates need to be transported from the leaves to the roots via the phloem. Varying lag times have been found, with the shortest times for short plants such as grasses, and lag times of up to 4–5 days for mature trees (Kuzyakov and Gavrichkova, 2010). However, when applying a successively higher u_s threshold value, the diurnal patterns of soil CO$_2$ efflux across all seasons changed, mostly due to removal of the overestimated night-time effluxes. For our measurements, the overestimation of chamber effluxes due to low u_s thus works as a selective systematic error that mostly applies to night-time of the diurnal pattern. This is in agreement with other studies (Görres et al., 2016; Koskinen et al., 2014; Lai et al., 2012; Schneider et al., 2009). During summer, we observed that the difference between night-time and daytime was smaller than during spring and autumn, and only the fluxes between 10:00 and 20:00 CET were slightly lower than the night-time fluxes. It is possible that this pattern is due to an increase in the night-time soil respiration due to priming of the soil organisms via carbon flow from the roots into the rhizosphere and soil. This was, however, not tested in the present study. For the other seasons priming is not as likely, since only low or no photosynthesis takes place during this time. During winter and spring, the diurnal patterns changed from a clear diurnal pattern with highest night-time fluxes to no difference between night and daytime fluxes when applying the u_s filtering. During autumn, it changed from a clear diurnal pattern with highest night-time fluxes to a pattern where the fluxes seem to be slightly higher at daytime.

Our results show that overestimation of soil CO$_2$ effluxes at low u_s can change the apparent diurnal pattern of soil CO$_2$ effluxes, and they highlight the importance of taking this source of error into account, since negligence of the problem may lead to misinterpretation of the relationship between R_s and its physical drivers like temperature and soil humidity, as well as lead to erroneous estimation of lag times between R_s rates and flow of carbon from recent plant assimilates. Much research has been done on time lags between inputs of carbon via photosynthesis and R_s using closed chambers (Högberg et al., 2001; Tang et al., 2005). We expect that it is possible that overestimates of soil CO$_2$ effluxes at low u_s may have influenced the interpretation of the diurnal pattern in some previous studies that have not taken overestimation of effluxes during low u_s into account. It could therefore be valuable to re-evaluate these studies by including data of u_s if such data are available.

4.3 Annual soil CO$_2$ effluxes

The u_s filtering had a considerable effect on the annual soil CO$_2$ efflux estimates based on the automated chamber measurements by decreasing the annual efflux in response to increasing the u_s threshold value. This could be expected from the observed negative relationship between soil CO$_2$ efflux and u_s. The annual soil CO$_2$ efflux modelled from the manual daytime-only chamber measurements measured at 12 soil collars within 10 m from the automated chambers was 666.6 g C m$^{-2}$ year$^{-1}$. During daytime (09:00–15:00 CET) u_s was usually high (Fig. 2). The risk of overestimation of a fraction of the manual soil CO$_2$ efflux measurements due to low u_s can therefore be viewed as minor. The automated chamber annual soil CO$_2$ efflux including all data was 808.9 g C m$^{-2}$ year$^{-1}$, i.e. a value much higher than the 666.6 g C m$^{-2}$ year$^{-1}$ from the manual chambers. However, the annual soil CO$_2$ efflux estimate from the automated chamber measurements decreased to 663.4 and 596.8 g C m$^{-2}$ year$^{-1}$ at a u_s threshold value of 0.5 and 1.2 m s$^{-1}$ respectively, i.e. much closer to the annual soil CO$_2$ efflux from the manual measurements (Fig. 7). Thus, it seems that the automated measurement and the manual daytime measurements provide comparable estimates of annual soil CO$_2$ effluxes, when the effect of low u_s is accounted for, as part of the quality checking procedure for the automated measurements. This seems to increase the confidence in the much less frequent manual measurements, and poten-
tially shows that daytime only measurements, at least in our case, was not a major source of error for the upscaling to an annual estimate of soil CO$_2$ efflux. This is in agreement with Juszczak et al. (2012), who found that there was no difference between daytime and night-time effluxes when the correct u_s threshold value had been applied. To exemplify this, we compared the annual soil CO$_2$ effluxes from the automated chambers with estimates of annual soil CO$_2$ effluxes based on only daytime (09:00–15:00 CET) soil CO$_2$ effluxes from the automated chambers. The daytime annual soil CO$_2$ efflux was 13 % lower than the annual entire-day soil CO$_2$ efflux with no u_s filter, and decreased to 4.5 % at a u_s filter of 0.3 m s$^{-1}$ (Fig. 8), i.e. resulting in more comparable annual soil CO$_2$ effluxes when the overestimation of u_s is accounted for.

4.4 Fan experiment

Mixing of the air around the soil chambers with fans had a considerable effect by decreasing the measured soil CO$_2$ effluxes (Fig. 9). The biggest difference was seen during nighttime, but even at daytime a smaller effect was observed. This selective lowering of effluxes changed the apparent diurnal pattern, such that the highest flows now were measured during daytime. By using a fan we hypothesised that the effect of breaking the stratified layer by the chamber during low u_s would not occur because the artificially induced wind continuously ensured proper mixing of the air around the chamber and thus likely prevented a build-up of a stratified layer of CO$_2$. We believe that the assumption for a steady-state rate of diffusion of CO$_2$ out of the soil is closer to being fulfilled with a fan, since the proposed mechanism for the apparent higher soil CO$_2$ efflux at low u_s can no longer take place due to mixing of the air by the fan prior to the measurement. Thus chamber soil CO$_2$ measurements are no longer overestimated at low u_s, which is also seen by there being no negative relationship between soil CO$_2$ effluxes and u_s when a fan was used. However, when using the fans we also observed an apparent decrease in the measured daytime soil CO$_2$ effluxes, when u_s was generally high. We suggest three potential causes of this difference in the daytime effluxes. Firstly, the fan experiment campaign ran over 20 days; i.e. 10 of the days were with a fan installed and 10 days were without a fan. Thus a comparison for a chamber is made at different times, and differences in environmental conditions may have caused differences in the rates of R_e between the two periods. Indeed, a difference in the mean soil temperature at 5 cm depth of 1 °C was found between the two periods. However, the difference in soil CO$_2$ effluxes was found for both groups of chambers, i.e. both for the ones with a fan installed during the cold period and for those with a fan installed during the warm period, and thus the potential di-rectional bias of differences in soil temperature during the two periods can be ruled out. Secondly, the slight decrease of daytime effluxes when fans were installed could be cause low u_s was sometimes observed also during daytime, although to a much lesser degree than during nighttime. A similar small decrease of the daytime effluxes for the 1-year campaign when increasing the u_s threshold value was also observed (Fig. 5), highlighting that there may still be such an effect even during daytime. Thirdly, it is possible that, although a fan eliminated the bias of low u_s on chamber effluxes, the wind induced by the fan introduced another potential bias to the measurement. Steady-state diffusion rate of CO$_2$ out of the soil with and without a chamber is a requirement for unbiased chamber measurements of soil CO$_2$ efflux. However, the rate of diffusion of a gas out of the soil is known to be highly sensitive to wind speed at the soil surface, and higher wind speeds can increase the diffusion rate or even cause advective transport out of the soil (Janssens et al., 2000; Roland et al., 2015). This effect is well known to cause severe overestimation of soil CO$_2$ effluxes when soil chambers are equipped with a heavy internal fan because the resulting wind speed inside the chamber is much higher than outside (e.g. Hanson et al., 1993; Hooper et al., 2002; Le Dantec et al., 1999). The LI-8100A chambers used in our experiments do not have an internal fan. Instead they rely on the air movement that is created when air is pumped to and from the chamber in combination with the spherical shape of the chamber for adequate mixing of chamber air (LI-COR Biosciences, 2015). The wind speed in the LI-8100A chamber may therefore be fairly low compared to outside conditions. It is therefore possible that we see the opposite effect of what is seen in chambers with an internal fan, namely that the wind speed in the chamber is lower than outside, resulting in a lower rate of diffusion and consequently a lower measured soil CO$_2$ efflux, and that this effect increases with the installation of fans that increase the wind speed outside the chamber. A similar effect has also been found to occur during natural conditions outside the chamber where soil effluxes measured by micrometeorological methods have been found to increase with increasing ambient wind speed (Denmead and Reicosky, 2003). To eliminate this potential bias due to difference in wind speed, a closer matching of the chamber wind speed with the ambient wind speed can be attempted, as suggested by Rochette and Hutchinson (2005). It is possible that a lower wind speed induced by a fan would be adequate to eliminate the effect of low u_s. This would potentially lower the difference in wind between the outside and inside of the chamber, thus minimising the potential bias due to different wind speeds. This was, however, not tested in the current study.

4.5 Towards unbiased soil CO$_2$ effluxes

Chamber-based measurements of soil efflux of CO$_2$ and other greenhouse gases play an important role in constraining the global carbon cycle. Thus it is crucial to obtain unbiased measurements that are as close to the true rates of emissions or uptake as possible. Many biases have already been quan-
tified or even eliminated through methodological and technical advances. Here we showed that the bias of soil CO$_2$ efflux measurements at low u_a can be accounted for by using a u_a filtering procedure. However, we do see a number of challenges with this methodology that need to be addressed. One challenge is to choose the correct u_a threshold value. A similar challenge has faced the eddy covariance method, where multiple methods have been developed to determine the right u_a threshold value (Gu et al., 2005). One method is to subjectively choose the appropriate level, e.g. based on visual inspection of scatter plots of night-time fluxes versus u_a (Gu et al., 2005). For our data, this would mean choosing a u_a threshold value, where further increasing the u_a threshold value would no longer change the observed mean soil CO$_2$ effluxes. When looking at the diurnal patterns in Fig. 5, only a small further change in the diurnal pattern is seen between a u_a threshold value of 0.5 to 0.7 m s$^{-1}$, thus indicating that a u_a threshold value between 0.5 and 0.7 m s$^{-1}$ would be appropriate. A slightly higher u_a threshold value seems to apply to the mean hourly soil CO$_2$ effluxes aggregated into groups based on u_a values (Fig. 4), where no decrease in effluxes is seen after the binned group with u_a values of 0.7–0.8 m s$^{-1}$. Interestingly, a similar levelling off of the decrease in the estimated annual soil CO$_2$ efflux in response to an increasing u_a threshold value was not seen (Fig. 7). Instead, the annual soil CO$_2$ efflux continued to decrease slightly even after the big decrease, which was seen up to a u_a threshold value of 0.7 m s$^{-1}$. This indicates that effluxes are still to some extent influenced by u_a at these high levels. We analysed the data to see if the u_a filtering had an influence on soil temperature, which potentially could selectively remove higher effluxes measured at higher temperatures, leaving only measurements in colder periods at high u_a threshold values (data not shown). The results could, however, not explain the continuous decrease in soil CO$_2$ efflux. Thus it remains an open question as to why this decrease is still seen. One possible explanation is that the u_a used in this experiment was measured above the canopy at a height of 43 m. The soil chambers, however, were positioned at the soil surface and it is possible that the measured turbulence at 43 m was not well coupled to u_a above the soil surface surrounding the soil chambers (Thomas and Foken, 2007). A second anemometer installed closer to the soil surface (see Thomas et al., 2013) might have provided a clearer u_a threshold value.

Another method to determine the u_a threshold value is to use objective statistical methods such as the moving point test also commonly used in eddy covariance data analysis (Gu et al., 2005). We suggest testing some of these methods for determination of the u_a threshold value for chamber CO$_2$ effluxes in future studies.

We tried to see if using a stricter flagging of data based on the r^2 value of the linear fit to the increase in CO$_2$ concentration during chamber closure could also be used to remove overestimated effluxes (data not shown). A similar effect of u_a on effluxes could, however, be seen even when a higher r^2 value was used to quality check the data, indicating that even during low atmospheric turbulence the increase in chamber CO$_2$ concentration often followed the expected pattern. High r^2 values and near-linear increases in chamber CO$_2$ concentration during chamber deployment alone can therefore not be used as the only means of quality checking, as this may still lead to falsely accepting overestimated measurements during low turbulence.

Although we have here shown that a u_a filtering procedure seems to have a good potential to be used for quality control of closed-chamber measurements of soil CO$_2$ efflux, it ultimately leads to data gaps that need to be filled using the appropriate gap filling techniques, e.g. based on established empirical relationships between measurement bias and u_a (Lai et al., 2012). Data gaps, however, equal loss of data and thus methods should be developed to be able to observe unbiased chamber measurements also during periods with low atmospheric turbulence. Valid chamber measurements during periods with low u_a are especially important since this coincides with periods of data gaps in fluxes estimated by the eddy covariance technique. Thus it is clear that chamber measurements during these periods cannot be used as ground truth for the eddy covariance flux estimates (Görrès et al., 2016). Our results from the fan experiment have shown promising results in terms of removing the negative relationship between u_a and soil CO$_2$ effluxes. This is, to the best of our knowledge, the first time this has been attempted, and we expect that this method has a future potential. A few others have touched upon how to get unbiased chamber effluxes during low u_a. Lai et al. (2012) found that closed-chamber CH$_4$ and CO$_2$ effluxes were overestimated at low u_a. However, by increasing the chamber closure time to 30 min, they found that fluxes were no longer influenced by u_a after 13 min of chamber closure time, thus yielding reliable fluxes. However, it can be argued that longer chamber closure times introduce other potential biases for most closed-chamber systems, because the chamber headspace concentration of CO$_2$ or CH$_4$ changes more and therefore affects the concentration gradient between soil and atmosphere, which can ultimately lead to an underestimation of efflux rates instead. We only used a chamber closure time of 90 s for the 1-year campaign, because this time was sufficient to adequately measure an increase in chamber headspace CO$_2$ concentration over time. We did, however, test whether flux estimates were affected by using different dead bands of 10, 20, 30 and 40 s respectively, or by using linear or non-linear flux calculation methods (see Supplement). In all cases we observed a similar pattern of overestimation of soil CO$_2$ effluxes during low u_a as reported here for linearly calculated effluxes with a dead band of 20 s. Thus neither the dead band nor the flux calculation method could eliminate the effect of low u_a on soil CO$_2$ effluxes.

Even though automated closed-chamber systems are based on the same principle of passive, steady-state diffusion of gases between the soil and the chamber headspace during chamber closure, they come in a wide variety of designs with
various shapes and sizes. We expect that chamber design may influence the effect of \(u_s \), although it remains to be tested. Görrès et al. (2016), however, also argued that automated chambers have the potential to provide unbiased chamber fluxes during low atmospheric turbulence by fulfilling certain design criteria that ensure that the stable atmospheric layer of air above the soil surface is not broken up during a measurement. These design criteria include a low chamber height of less than 20 cm and a low chamber closing speed in the horizontal plane, both aiming at keeping the chamber in the same horizontal plane, where there is no steep CO\(_2\) gradient. This approach is directly in contrast with the approach we used with fans, where we ensured mixing of the air above the soil surface at all times, such that any stratification was eliminated before the beginning of a measurement. The proposed design criteria may lead to a lower disturbance of the air column above the soil surface, but it is uncertain if it is possible to eliminate disturbance of the air completely. One of the fundamental principles of closed-chamber measurements is mixing of air inside the chamber. Even with a low chamber height we suspect that mixing of stratified air just a few centimetres from the soil surface may lead to an overestimated flux during low \(u_s \).

5 Conclusions

The study had two major results. Firstly, we showed that soil CO\(_2\) effluxes measured by automated closed chambers were overestimated at low \(u_s \) throughout 1 year in a Danish beech forest and that this overestimation considerably biased the diurnal patterns of soil CO\(_2\) effluxes and led to an overestimation of the annual soil CO\(_2\) efflux. We recommend that any analysis of soil CO\(_2\) efflux measured by automated closed chambers must consider overestimation of effluxes at low atmospheric turbulence, to yield unbiased estimates of soil CO\(_2\) effluxes. This is crucial when investigating temperature responses of \(R_s \) and biological links in ecosystems between CO\(_2\) production and \(R_s \) on a short timescale, but also for correct estimation of annual soil CO\(_2\) effluxes. We have shown that a \(u_s \) filtering procedure can be used to remove data that are influenced by insufficient turbulence. The drawback of this postprocessing method is, however, a loss of data and thus a loss of information during atmospheric conditions where the eddy covariance method cannot be applied. Our analysis highlights the need for methodological developments, which will allow for unbiased chamber measurements to be made also during low atmospheric turbulence. We see the results from our fan experiments as a significant step along the way. Here we showed that ensuring continuous mixing of air around the soil chamber by a fan eliminated the overestimation of soil CO\(_2\) effluxes due to low \(u_s \), thus enabling reliable chamber measurements even at low \(u_s \), even though the continuous mixing of air may have introduced a new bias during chamber measurements. Additional studies are needed to further explore this approach.

Data availability. The LI-COR chamber raw data and the meteorological data used in this study can be found at doi:10.5281/zenodo.438015 (Brændholt et al., 2017).

The Supplement related to this article is available online at doi:10.5194/bg-14-1603-2017-supplement.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. This study was funded by the free Danish Ministry for Research, Innovation and higher Education, the free Danish Research Council (DFF – 1323-00182).

Edited by: G. Wohlfahr
Reviewed by: three anonymous referees

References

Davidson, E. A., Savage, K., Verchot, L. V., and Navarro, R.: Minimizing artifacts and biases in chamber-based measure-

Maier, M., Schack-Kirchner, H., Hildebrand, E. E., and Schindler, D.: Soil CO2 efflux vs. soil respiration: Implica-

