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Abstract

How to best reschedule their fleet of rolling stock units during a disruption is an optimization
problem regularly faced by railway operators. Despite the problem’s high complexity, it is still
usually solved manually. In this paper we propose a path based mathematical formulation and
solve it using a Branch-and-Price algorithm. We demonstrate that, unlike flow based approaches,
our formulation is more easily extended to handle certain families of constraints, such as train unit
maintenance restrictions. The proposed algorithm is benchmarked on several real-life instances
provided by the suburban railway operator in Copenhagen, DSB S-tog. When used in combination
with a lower bound method taken from the literature we show that near-optimal solutions to this
rescheduling problem can be found within a few seconds. Furthermore, we show that the proposed
methodology can be used, with minor modification, on a tactical planning level, where it produces
near-optimal rolling stock schedules in minutes of CPU time.

Keywords: Railway Optimization, Rolling Stock Rescheduling, Disruption Management

1. Introduction

During the daily operations of a railway company unplanned events inevitably occur, disrupting
the planned service. Depending on the severity of a disruption, vehicle and crew schedules may
need to be revised in order for the railway operator to continue to operate. Common examples of
disruptions include, but are not limited to: crew sickness, vehicle malfunction, signalling system
and infrastructure failures, and weather conditions. In some cases, such disruptions render the
planned, schedules infeasible and require immediate response. Deciding on what actions to take
during a disruption is termed disruption management and can be a non-trivial task (see, e.g., [19]).
Ascertaining the extent of a disruption is not easy, and the large number of possible decisions
makes it difficult for dispatchers to find high quality solutions to the rescheduling problems. If not
handled well, the effects of a disruption can easily cascade, creating even more problems. In this
paper we focus on rescheduling a fleet of rolling stock units during a disruption. This is termed
the Rolling Stock Rescheduling Problem (RSRP); a problem which has received relatively limited
attention in the literature. Some contributions do exist, see, e.g., [27, 20].

Given a disruption, the RSRP involves optimally reassigning a fleet of rolling stock units
to a set of timetabled train services while respecting a number of operational constraints and
business rules. Rolling stock units (henceforth referred to as units) are divided into a set of
types. A unit refers to the smallest inseparable vehicle we consider, i.e., a set of rail cars which,
for practical reasons, must remain connected together. Two units of the same type have the
same physical characteristics. Units can be combined in different ways, yielding different so-called
compositions. A composition is a set of units in a specific order. Different compositions give the
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Figure 1: An example of a timetable for a single line with trip services going between two end stations. Two trip
sequences marked red and dashed blue have been highlighted for illustrative purposes.

flexibility to modify the maximum number of passengers a service can cater for. Not all units
can be assigned to all services, composition changes can only occur at certain stations, involving
(de)coupling activities, whereby units must be removed from or added to a composition. Whenever
(de)coupling is needed, units must be shunted from, or to, the station’s depot. A depot typically
consists of several parallel tracks where units not in service can be parked. When solving the
RSRP, consideration must be given to the available space in the entire network’s set of depots as
well as the location where units terminate in the revised schedule. The aim is typically to cover
the expected demand while minimizing operating cost and deviations from planned activities.
From a rescheduling perspective, several feasible schedules may exist and it is important to find a
cost-efficient solution as rolling stock is one of the major expenses for any railway company. Given
the time pressure to quickly find a good solution during a disruption, we are motivated to develop
an optimization based decision support system to solve the RSRP.

The main contributions of this paper are a new mathematical model for the RSRP and the
development of a Branch-and-Price (BAP) algorithm to solve this formulation. Column generation
is a well known technique that has been successfully applied to many problems. It is already state-
of-the-art for railway crew rescheduling [29, 30]; however, applications in rolling stock scheduling
are limited to tactical level planning problems (see, e.g.,[25, 6, 8, 28]). To the best of our knowledge
the proposed algorithm is the first attempt at using column generation for the RSRP. A key feature
of the proposed mathematical model is that we model individual units as opposed to aggregated
unit flows. Modelling on an individual unit level has the added benefit that unit specific constraints
(e.g., maintenance restrictions) can be considered. The proposed methodology is benchmarked on
real-life disruption instances provided by the suburban train operator in the Copenhagen region,
DSB-Stog. We demonstrate that, when used in collaboration with a lower bound method taken
from literature, near optimal rolling stock schedules are obtained within seconds. Additionally, we
demonstrate the model’s ability to adhere to maintenance requirements as well as highlight the
model’s applicability at a tactical level where it is used in a scheduling capacity as opposed to a
rescheduling one. For the latter we show that optimized rolling stock schedules can be obtained
in minutes.

This paper is structured as follows. A description of the problem is given in Section 2, and
relevant literature is reviewed in Section 3 . Section 4 presents our mathematical formulation of
the RSRP, while Section 5 describes the BAP algorithm. Computational results are presented
in 6, and the conclusions from this research are summarised in Section 7.

2. Problem Description

A timetable states the departure and arrival times of all operated train services. It usually
consists of a set of lines, where each line typically runs between two end stations and stops at a
sequence of intermediate stations. The term trip is used to refer to the traversal of a given line
in a given direction at a certain time. In other words, a trip is an individual journey that starts
at a particular station and terminates at a particular station (usually the line’s end stations).
In some cases, a trip may originate or terminate at stations other than the corresponding line’s
end stations. Figure 1 shows a time-space diagram for multiple trips of a specific line. A trip
sequence denotes a continuous sequence of trips which can be performed by the same physical
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Figure 2: The S-tog railway infrastructure network. The depot and end stations are highlighted.

train composition. That is, if the same composition is assigned to every trip in the sequence
then no units in the composition will be going in or out of a depot and no shunting activities are
performed. Trip sequences typically span a whole day and stay within a single line. In some cases,
a trip sequence alternates between two different lines in the network. Note that rolling stock is
allowed to circulate between several trip sequences. The majority of trips are revenue generating;
however, several dead-heading trips, or non-revenue generating train movements, may be scheduled
to re-position units.

To provide a service, railway operators need a detailed schedule that specifies what rolling stock
will be used between every two consecutive stops in the timetable and where any composition
changes will occur. A trip can be partitioned into a sequence of subtrips, where each subtrip
defines a shorter segment of the trip, which is delimited by key stations. Stations of interest could
be, for example, terminal stations, turning stations, and stations where (de)coupling, and hence
a composition change, is possible. Figure 2 illustrates such key stations in DSB S-tog’s network.
Allowing composition changes from subtrip to subtrip provides more flexibility than simply fixing
the composition of a train service for an entire trip.

Note that, depending on the type of disruption, there are potentially more such points of
interest in the RSRP compared to its tactical level counterpart. An infrastructure blockage may
require trains to turn around at stations where they are usually not permitted to do so.

At DSB S-tog, the fleet of units available is comprised of two different types, and all units can
be coupled to any other unit in the fleet. The main distinguishing characteristics of each type are:
the seating capacity, the unit’s length, and the operating cost. All units are self propelled, and all
train drivers can operate both types. Examples of the various compositions are shown in Figure 3.
In this work the compositions will be implicitly determined by the individual assignment of units
to subtrips. We argue that the composition plays a smaller role in this study for two reasons.
Firstly, compositions on subtrips typically range from one to two units in size at DSB S-tog. This
means that there are no ordering conflicts when coupling or (de)coupling units. An uncommon
composition with three units can occur; however, in this composition all units must be of the
shorter type. Secondly, during a disruption, the ordering of individual units is not a governing
priority.

In this paper, the definition of (de)coupling is consistent with the one which appears in several
existing papers (see, e.g., [18]). Recall that a coupling is performed whenever a unit is moved
from a depot and onto a train service. Likewise, a decoupling is performed whenever a unit leaves
a train service and enters a depot. In both cases a change in train composition is made. Recall
that a trip sequence can be serviced by the same composition without requiring any shunting
activity; as long as a unit performs subtrips of the same trip sequence in succession, no coupling
or decoupling is needed. A subtrip can have one predecessor and one successor subtrip which in
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Figure 3: Examples of train compositions.

turn are in the same trip sequence.
Given a disruption, the RSRP entails reassigning units to every subtrip over a pre-specified

time horizon. We assume a revised timetable is given, specifying which trips should be operated.
Any changes to this compared to the original timetable may render the rolling stock schedules
and other planned activities infeasible. Figure 4 provides an example of a disrupted line due to
a blockage in both directions between two stations. In our case study the railway infrastructure
owners have exclusive control over all train activities, while train operators (i.e., DSB S-tog) have
a supporting role. The infrastructure owners respond to a disruption quickly by making trip
cancellations or alterations. Predefined emergency plans exist and are used as guides for handling
the disruption. Their immediate goal is to avoid delay propagation and further escalation. Once
a revised timetable is available, a new candidate rolling stock schedule must be provided by
the rolling stock dispatchers within a short time. This must adhere to a number of operational
constraints such as fleet capacity, unit location, and depot capacity. Furthermore, each unit
has a maximum distance it can travel before maintenance is necessary, known as a distance-to-
maintenance restriction. Therefore a unit cannot be assigned a sequence of subtrips with total
mileage greater than its distance-to-maintenance. Attempts are also made to operate as many
subtrips as possible and to match the composition seating capacities with the forecast passenger
demand on each subtrip. The obtained rolling stock schedule states a chronological list of tasks
performed by every available unit.

In reality, the timetable and rolling stock schedule are not determined completely indepen-
dently. The infrastructure owner cannot expect train operators to operate a timetable that is
infeasible with respect to rolling stock, and they are also not interested in cancelling more train
departures than necessary. Thus, when rescheduling rolling stock, it makes sense to integrate
timetable decisions to some degree. In this paper we assume that subtrips do not have to be
assigned any units; however, a large penalty cost is incurred every time this occurs. Not assigning
any units to a subtrip indicates that it is cancelled. We do not, however, assume there is a penalty
for cancelling deadheading subtrips as these do not affect the public timetable.

Depending on the time of the day and the location of the disruption, the available time before
a decision must be made ranges from 3 to 20 minutes. Finding a feasible rolling stock schedule
in such a short time frame is very challenging. The new plans may be far from optimal since
the issues are usually resolved sequentially by degree of severity using rules of thumb, while only
considering the immediate future. Units associated with cancelled trips are often put into the
nearest depot without considering the long-term consequences. After the disruption is resolved
the original timetable is restored by the infrastructure owners; at which point, DSB S-tog has, by
contract, 60 minutes to recover the rolling stock (and all other) schedules. It may, however, be
impossible to cover all subtrips at this point in time due to the effects of the disruption. Rolling
stock dispatchers must thus be able to find new plans quickly both during and after the disruption.
This motivates the use of a computer-aided decision support system.

The primary objective when solving the RSRP is feasibility; however, if more than one feasible
schedule exists, some will be more attractive than others. Therefore, we also include the following
secondary objectives: the number of subtrip cancellations, number of (de)couplings, seat shortage,
end-of-day depot balances, and operating costs. Cancelling subtrips is highly undesirable as this
is closely connected to DSB S-tog’s reliability performance. Although perhaps necessary at times,
(de)coupling activities may affect the robustness of a schedule. A (de)coupling can easily take
more time than is expected due to manual interaction and unforeseen technical difficulties. In
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Figure 4: A disrupted timetable due to infrastructure blockage between København Central Station (KH) and
Østerport Station (KK). The updated timetable resolves the situation by turning the train services at stations KH
and KK.

addition, it also requires coordination with a second train or a depot driver. Minimizing the
number of (de)couplings is thus important. Performing (de)couplings outside critical time periods
as well as reserving enough time for the required operations could also be beneficial. In this paper
we impose a minimum time required to perform (de)couplings. Minimizing seat shortage is also
important. The train operator attempts to satisfy the actual demand on a trip by supplying
enough seats to cover some percentage of the passengers. Therefore, it is not only necessary to
cover a trip but also to assign units (i.e., a composition) that collectively provide enough seats.
The end-of-day balance specifies how many units of each type are required in each depot at the
end of the day to ensure operations can start smoothly the following morning. It is therefore
important, when recovering a schedule, that this is adhered to as closely as possible. Otherwise,
expensive deadheading movements will be required to reposition the units. Finally, it is important
that unnecessary use of the units is avoided as units are expensive to operate.

In the literature, and also at DSB S-tog, the number of cancellations is usually the most impor-
tant objective and is therefore given a cost that is significantly higher than the other objectives.
The seat and operational objectives are conflicting and a non-trivial trade-off must be found. A
train operator strives to meet the passenger demand, but not at all costs. For example, the opera-
tor would not couple an extra unit on a subtrip to ensure one extra seat. In the computational tests
in Section 6, we investigate this trade-off and try to find a sensible balance. In rescheduling prob-
lems it seems natural to minimize the deviation from the original schedule. Examples include [27]
and [30]. In this regard, we penalize the end-of-day imbalances, but do not penalize missed or
unplanned shunting operations (in addition to the normal cost) during disruptions. Changing
plans is understandably a nuisance that requires communication and coordination. However, with
the recent advancements in mobile technology we believe that this is a diminishing issue.

3. Literature

Most literature related to passenger railway optimization (from an operator perspective) can
be categorized by the problem it addresses, e.g., timetable planning, rolling stock scheduling, crew
scheduling, or shunting. In this section we limit our discussion to the somewhat more scarce
literature on rolling stock scheduling with an emphasis on real-time disruption management. For
an overview of different railway optimization problems the reader is referred to [13], while [10], [24],
and [21] provide overviews in a disruption management context. We consider self propelled trains
units that do not require a powered locomotive for pulling the train. Several papers exist that
consider the locomotive and carriages problem, see, e.g., [1, 14, 15, 16, 33, 26].

The rolling stock scheduling problem has been studied in a variety of different settings using
different mathematical models and targeted time horizons. The rolling stock scheduling problem
faced by the Dutch railway company Nederlandse Spoorwegen (NS), described in [18], is a good
reference for the problem we consider. The problem involves assigning compositions to every
departure. The aim is to cover every train service while respecting several constraints such as fleet
capacity, composition change restrictions and allowing trains to be combined and split.
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The strategic or tactical rolling stock scheduling problem has been studied in various forms
over the past two decades. The aim of such problems is to determine the fleet size or to find
a feasible rolling stock schedule. An early approach by Schrijver [32] minimizes the number of
required trains to satisfy passenger demand. This approach does not consider train compositions,
composition changes, depot parking nor maintenance. A small data-instance from NS is presented
and solved within seconds.

A richer formulation is considered in [3]. The model considers the compositions of train arrivals
and departures, assuming a single line and one family of compatible units. A generic workday on
a line from NS is solved within 1-2 hours. We essentially consider a variant of this rolling stock
scheduling problem; however, we also model individual rolling stock trajectories and restrict the
number of parked trains to the capacity, i.e., total track length in meters, at each station depot.
We do not include constraints limiting the composition changes.

A similar setting spanning multiple lines using one family of unit types is the focus of [28]. The
authors present a BAP method which outperforms a commercial solver. Computation times are
less than a minute for the larger data instance consisting of three lines. A few what-if scenarios are
considered that quantify the effect of changing the fleet composition (and platform lengths) and
allow shunting at a new station. Compared to our work, the authors present a different column
generation decomposition of the formulation in [3]; sequences of composition changes are modelled
as variables, while we model unit trajectories as variables.

An extension of the model in [3] is described in [18]. This model allows combining and splitting
trains. The authors consider a subset of lines from NS and solve the problem as a Mixed Integer
Program (MIP) using a commercial solver. In addition, a heuristic based on the Linear Program
(LP) relaxation is used. Good quality solutions are found within hours. The solution model was
used as a supportive tool for generating the Dutch timetable of 2005.

In [11], the authors consider a formulation similar to [18], trying to optimize the robustness
of the rolling stock schedule while penalizing high densities of standing passengers. Deadheading
units is allowed in order to increase capacity. Robustness is modelled by penalizing the total
number of coupling operations, and by giving shunting operations during rush hours a special
penalty. Two data instances are considered: a single day of a single line from the Spanish rail
company, RENFE, with 4 depot stations and 320 train services, and two lines with 9 depot stations
and 400 train services. Optimality is proven within minutes using a commercial MIP solver.

A two-stage optimization model is presented in [9] for solving the rolling stock scheduling
problem with a set of generated failure scenarios. The model is similar to the one presented
in [18], but without minimum shunting time, nor the combination and split of trains. A full MIP
is presented and solved heuristically using Benders decomposition. The data instance considers
one day of single line from NS with up to 400 trips and 28 failure scenarios. The solution method
is able to find good solutions within 2 minutes.

Assigning self propelled units is the focus of [8]. The authors propose a heuristic based on a so-
called customary column generation methodology. Solely the number of units used is minimized.
The paper also presents several theorems and one lower bound scheme. Unlike our approach, [8]
do not include costs for shunting, seat shortage and driven mileage. Furthermore, demand is
modelled as a hard constraint and shunting capacity constraints at station depots are not included.
An extension considering maintenance is proposed stating that all units must contain at least one
maintenance opportunity during a weekly schedule.

A column generation approach for the Train Unit Scheduling Problem is presented in [25].
The authors consider the tactical level problem of generating a rolling stock schedule, propose an
integer multicommodity flow formulation not that dissimilar to the formulation we present, and
describe a BAP procedure to solve it. Promising results are obtained on real life instances that
are provided by the major passenger train operator in Scotland, ScotRail. The largest of these
instances contains around 500 train trips. As a comparison, we consider instances with more than
1,000 trips.

A locomotive assignment problem, which is structurally similar to the problem considered in
this paper, is presented in [33]. The authors propose a column generation solution method that
relies on heuristic fixing in a Branch-and-Bound (BAB) methodology. Sufficient engine capacity
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(number of locomotives, horsepower and tonnage) must be assigned to train segments in order to
pull the preassigned train cars. Like our work, units must be assigned to cover the train segments
in order to meet a demand and total mileage is penalized. In contrast, we propose a full branching
scheme and explicitly model train (de)coupling activities. Other minor modeling differences exist
such as allowing cancellations, and end-of-day balance deviations.

The assignment of locomotives and cars at VIA Rail Canada is discussed in [15]. In contrast
to our work, this problem involves assigning rail cars to satisfy demand as well as sufficient
traction engines to pull the cars. The authors benchmark a column generation framework using
heuristic branching and fixing rules to obtain solutions of good quality. In comparison, we model
seat shortages and cancellations as soft constraints using penalties and do not need constraints
to ensure sufficient traction. We include coupling costs directly in our algorithm, whereas [15]
resolve these switching operations in a second phase. Depot capacity constraints are modelled,
and sufficient time in a single planning cycle to perform maintenance is ensured. Subsequent work
in [16] presents a benders decomposition framework that improves computational times, especially
for the larger instances.

Several studies consider a short-term rolling stock problem aiming at rescheduling a few days
before the day of operation. Compared to a long-term model such approaches have to deal with a
greater level of detail and cannot assume a clean-slate approach as the availability of the different
resources is fixed. In [7] a rebalancing problem, where the goal is to minimize inventory end-of-day
deviations from the original plan, is considered. Two very fast heuristic methods, which aim to
improve existing schedules, are presented. The authors prove that the rebalancing problem is
NP-hard. The problem of rescheduling locomotives and carriages at VIA Rail Canada is studied
in [26], while in [5], a schedule planning system and a tactical capacity-adjustment system for
increasing revenue at SNCF is described.

A version of the RSRP is considered in [27]. The authors address a problem that is very
similar to the one that we consider. A rolling stock scheduling framework is presented that uses
time horizons to overcome disruption uncertainty and runtime difficulty. The optimization model
is similar to the model presented in [18], but adapted to be executed in a rolling horizon. The
main goal is to minimize the number of cancelled trains, end-of-day off-balances and changes to the
original shunting plan. The end-of-day inventory balances are heuristically determined through
the shorter horizons; each of which is solved using a commercial MIP solver.

Recovering rolling stock schedules is also the focus of [12]. The authors present an approach
which integrates rolling stock and dynamic passenger demand. The model may cancel train services
on predetermined lines, insert emergency train services and determine the direction of one-way
tracks in case of one-way blocked segment. Passenger demand is updated iteratively after solving
the rolling stock model until the demand stabilizes. The solution method is benchmarked on a 2
hour disruption case study provided by RENFE, consisting of 5 lines, 10 depot stations and 760
train services. Solutions are found within a few minutes. The case study does not reveal significant
changes in passenger demand after the first iteration.

Finally, a variety of DSB S-tog related problems are studied in [19]. One of these focuses on the
reinsertion of train lines once a disruption has been resolved. The model considers the distribution
of available trains and the time required for drivers to reach them. The model is solved as a MIP
which minimizes the time of the last inserted train. Test instances are solved within 30 seconds.

In summary, various models and methods have been proposed to solve variants of the rolling
stock scheduling problem (both in planning and from a disruption perspective). To the best of
the authors’ knowledge, this paper is the first to present a path based formulation of the RSRP.
We describe a BAP approach to solve this formulation, highlight its flexibility at including certain
maintenance restrictions, and also demonstrate its applicability to the tactical level planning
problem of rolling stock scheduling.

4. Model

We now define the RSRP and our notation more formally before presenting the proposed
mathematical model. To distinguish between parameters and decision variables, the latter always
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S Set of stations
D Set of stations that have an associated depot
T Set of subtrips
U Set of unit types
A Set of all arrival events across all stations in S
Pd Set of all possible paths starting at station d
P Set of all possible paths

Table 1: List of sets

λu
p An integer variable which determines how many units of type u

travel on path p ∈ P
yt Binary slack variable which takes value 1 iff subtrip t ∈ T is not

covered
zt Integer slack variable determining the seat shortage on subtrip

t ∈ T
wu

d Integer slack variable determining end-of-day balance shortage for
unit type u ∈ U at depot d ∈ D

Table 2: List of Variables

appear in bold type. We denote by S the set of key stations, which is an appropriate aggregation
of all stations in the railway infrastructure. The set D ⊆ S defines the set of stations with an
associated depot. Furthermore, we let U be the set of all unit types. Finally, we let T be the set
of all timetabled subtrips that have to be serviced. A subtrip t ∈ T departs at a certain time from
a source station and arrives at a certain time at a target station. For convenience, we define A to
be the set of all subtrip arrivals. We define depot(a) ∈ D as the shorthand for the depot of the
station where the arrival event a ∈ A occurs.

The RSRP is the problem of finding an assignment of all available units to subtrips. The
assignment of each unit must respect the inherent temporal and spatial constraints. In other
words, a unit can only be in one place at a time and can only be assigned to a subtrip if it
is located at the departure station of the subtrip prior to the subtrip’s departure time. A unit
entering or leaving a subtrip must have reserved enough time to perform the (de)coupling before
being assigned to any other activity. Finally, the depot parking space is limited. This means that
only a certain total length of units can stay parked in depots at any point in time. Consequently,
a unit cannot perform a subtrip and then park if the destination depot is full.

Trip coverage is directly related to trip cancellations, and it is our primary concern to minimize
the number of cancellations. If a subtrip in t ∈ T is uncovered, the trip is considered to be
cancelled. Matching the demand is also important; thus, the seat shortage is minimized. The
number of available seats depends on how many units service a subtrip. The difference between
the available seats and the demand defines the shortage. However, if there is a surplus of seats
then the shortage is zero. The number of (de)couplings affects the robustness of the solution, and
hence should be minimized. We approximate the number of (de)couplings by counting the number
of times a unit enters and leaves a subtrip. This is not an accurate number of required shunting
operations; however, it measures how many times we change the composition of a trip which is
directly related to robustness.

We formulate the RSRP using a path based model with an exponential number of path vari-
ables. We let Pd denote the set of all paths originating at depot d ∈ D. A path defines a feasible
trajectory of a unit and indicates a sequence of subtrips which are serviced by a unit that is
following the path. We only consider paths that can be feasibly performed with respect to time
and spacial constraints. For example, a path cannot contain two subtrips that overlap in time nor
can it perform two tasks in sequence if the arrival station of the first is not equal to the departure
station of the second. The cost of a path depends on the sum of accumulated mileage and number
of (de)couplings performed. Since a path is just a sequence of subtrips, it is easy to count the
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ct1 Cost of cancelling a subtrip t ∈ T
c2 Cost of one seat shortage per kilometre
c3 Cost of one end-of-day balance shortage
c4 Cost of one coupling or decoupling
cu5 Operational cost per kilometre for unit type u ∈ U
su Number of seats on train unit u ∈ U
lu Length of train unit u ∈ U in metres
demandt Seat demand for subtrip t ∈ T
lengtht Maximum train composition length allowed for subtrip t ∈ T
inventoryud Number of units of type u ∈ U starting at depot d ∈ D
eodud Target end-of-day balance for train unit u ∈ U at depot d ∈ D
trackd Combined length of tracks at depot d ∈ D

Table 3: List of parameters

κt Number of kilometres on subtrip t ∈ T
ξp Number of couplings and decouplings imposed by path p ∈ P
κp Number of travel kilometres accumulated on path p ∈ P
αt
p Binary coefficient which takes the value 1 iff path p ∈ P visits

subtrip t ∈ T
βd
p Binary coefficient which takes the value 1 iff path p ∈ P terminates

at depot d ∈ D
γd,ap Binary coefficient which takes the value 1 iff path p ∈ P is staying

at depot d ∈ D on or before the arrival of subtrip a ∈ A

Table 4: List of Coefficients

number of times a unit following the path would enter or exit a depot; we assume a unit has to
be parked whenever the dwell time between two consecutive subtrips is above a certain threshold
(i.e., 10 minutes). The RSRP involves assigning exactly one path to each unit. Note that the
proposed approach does not distinguish between units in service and idle units when a disruption
occurs; both are rescheduled in exactly the same way. The only difference is that an idle unit may
be rescheduled immediately, while a unit in service can only be reassigned a different sequence of
subtrips once it has arrived at the next depot in its planned itinerary.

The mathematical model contains four sets of decision variables. First, λu
p ∈ Z+

0 controls
how many units of type u ∈ U use path p ∈ P, where P :=

⋃
d∈D Pd. Second, yt ∈ {0, 1} is a

slack variable that determines whether a subtrip t ∈ T is cancelled. If set to value 1 subtrip t
is cancelled, otherwise the variable has value 0 and t is not cancelled. Third, zt ∈ Z+

0 is a slack
variable that counts the total seat shortage on subtrip t ∈ T . Finally, wu

d ∈ Z+
0 denotes the

number of units of type u ∈ U that are missing in depot d ∈ D from the scheduled end-of-day
balance. The model now becomes.

Minimize:
∑
t∈T

(
ct1yt + c2κtzt

)
(1)

+
∑
u∈U

∑
d∈D

c3w
u
d (2)

+
∑
u∈U

∑
d∈D

∑
p∈Pd

(c4ξp + cu5κp)λu
p (3)

The notation is summarised in Tables 1, 2, 3 and 4. The objective function is a weighted sum of
five components. In (1) the cost of cancellations and seat-shortage are added. In (2) the end-of-day
balance shortage cost is added. Finally, in (3) the (de)coupling and mileage costs are added.
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∑
p∈Pd

λu
p = inventoryud (πu

d ) ∀u ∈ U , d ∈ D (4)

∑
u∈U

∑
p∈P

αt
pλ

u
p ≥ 1− yt (µt) ∀t ∈ T (5)

∑
u∈U

su
∑
d∈D

∑
p∈Pd

αt
pλ

u
p ≥ demandt − zt (δt) ∀t ∈ T (6)

∑
p∈P

βd
pλ

u
p ≥ eodud −wu

d (ωu
d ) ∀u ∈ U , d ∈ D (7)

∑
u∈U

lu
∑
d∈D

∑
p∈Pd

αt
pλ

u
p ≤ lengtht (φt) ∀t ∈ T (8)

∑
u∈U

lu
∑
d∈D

∑
p∈Pd

γdepot(a),ap λu
p ≤ trackdepot(a) (νa) ∀a ∈ A (9)

yt ∈ {0, 1} ∀t ∈ T (10)

λu
p ∈ Z+

0 ∀p ∈ P, u ∈ U (11)

zt ∈ Z+
0 ∀t ∈ T (12)

wu
d ∈ Z+

0 ∀u ∈ U , d ∈ D (13)

Constraints (4) ensure that the number of paths for a specific unit type leaving a depot cor-
responds to the number of units of that type available at the depot. Note that these constraints
must hold with equality as the subproblem network includes the possibility of assigning empty,
or subtrip-less, paths. Constraints (5) make sure that yt is set to 1 if subtrip t is not covered by
any path. Constraints (6) ensure that the lack of seats is captured by zt, while Constraints (7)
make sure that the end-of-day balance shortage is captured in wu

d for every depot d and unit type
u. Note, that we could as easily model and penalize surpluses; however, assuming the total end-
of-day balances equals the fleet size one rolling stock shortage necessarily results in one surplus.
Thus, it is unnecessary to penalize both. The maximum train composition length is restricted
by (8), according to the platform lengths at the subtrip’s endpoints. Constraints (9) enforce the
requirement that the capacity at any depot d must be respected by every arrival event. If the
track capacity at every arrival is satisfied up until the last arrival, then the schedule respects the
depot capacities throughout the day. Paths can go in and out of multiple depots multiple times
during the horizon, and multiplying γd,ap by the number of units currently residing in the depot
provides the total track usage. Finally, Constraints (10)-(13) restrict the domains of the variables.
Note that the slack variables are naturally integral if the path variables are integral. The nota-
tion for the dual values associated with the constraints of the model’s LP relaxation are given
in parentheses. An important observation is that when including maintenance requirements, the
structure of Model (1)–(13) remains unchanged, since the constraints can be implicitly handled
in the construction of the columns. In other words, a column corresponds to a legal sequence of
subtrips for a specific unit type. Given the exponential number of path variables, it is impractical,
and in certain cases even impossible, to generate them all a priori and explicitly include them in
the formulation. Instead we propose to solve the LP relaxation of Model (1)–(13) using delayed
column generation in which favorable unit paths are generated dynamically. We discuss this in
detail in Section 5.

We conclude this section with a brief discussion on the modifications required in order for
it to use Model (1)–(13) for the purposed of solving the rolling stock scheduling problem on a
tactical planning level. The main differences essentially concern the necessity of constraints (4)
and (7), as well as the nature of constraints (5). Typically, initial inventories and end of day
balances are not fixed when planning the circulation of rolling stock units. We, however, assume
that the planner will experiment with different scenarios or try to minimize the needed inventory.
Furthermore, it is usually not common to allow cancellations at the planning level. While this
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can be more strictly enforced by removing the yt variables, a sufficiently high penalty in the
objective for cancellations will achieve the desired result. Arguably, the input and model required
for solving the tactical and rescheduling case is very similar. In Section 6 we investigate different
planning scenarios by considering different parameter settings for the different costs. In particular
we examine how the algorithm behaves when 1) including cancellation costs and a small cost
for coupling; 2) introducing a seat shortage penalty; 3) introducing a mileage penalty; and 4)
introducing maintenance constraints.

5. A Branch-and-Price Algorithm

In this section we propose a BAP algorithm for solving the RSRP. This well known technique for
solving large-scale integer programs combines column generation with BAB [4]. Column generation
is typically preferred when the mathematical model contains a vast number of variables. To
implement column generation, one relaxes all integrality restrictions and decomposes the problem
into a master problem and one or more independent subproblems. The master problem contains
only a subset of the variables for the full problem, and is typically referred to as the Restricted
Relaxed Master Problem (RRMP). The subproblems are optimization problems responsible for
generating variables (or columns) that are not included in the RRMP, but which have the potential
to decrease the RRMP’s objective function value. More specifically, each subproblem utilizes the
dual information from an optimal solution to the RRMP, and attempts to identify negative reduced
cost columns that can be added to the RRMP. Column generation refers to the iterative procedure
between master and subproblems that must be performed. Incorporating this into a BAB setting
in which columns are generated (or “priced”) at each node of the BAB tree gives rise to the BAP
terminology. This section focuses on specific details concerning our BAP approach.

Figure 5 illustrates the steps in the algorithm. First, a master problem is generated with an
initial subset of columns. This set of columns can be obtained using a simple greedy heuristic
that ensures a feasible solution to the RRMP exists. Different greedy strategies were explored;
however, preliminary testing showed no significant improvement over just initially assigning an
empty itinerary to each of the rolling stock units. The RRMP is solved and the dual values are
used to find variables with negative reduced cost by the subproblem. In this implementation of
BAP, when solving a subproblem we find, and use, if favourable, the lowest reduced cost path
per unit type. Whenever new variables are found the RRMP must be re-solved, otherwise the
RRMP is optimal. A BAB node is finished when an optimal solution to the RRMP is found. If the
solution is feasible and respects the integral constraints of the original master problem, then the
upper bound is updated otherwise new branching nodes are created. The algorithm terminates
once all nodes are processed.

5.1. Master Problem

The RRMP is obtained from Model (1)-(13) by replacing Constraints (10)-(13) with

yt ∈ [0, 1] ∀t ∈ T (14)

λu
p ∈ R+

0 ∀p ∈ P,∀u ∈ U (15)

zt ∈ R+
0 ∀t ∈ T (16)

wu
d ∈ R+

0 ∀u ∈ U , d ∈ D (17)

and restricting the set of path variables from depot d ∈ D to a subset of paths Pd ⊂ Pd. Each
column defines a legal sequence of subtrips for a unit originating from depot d.

5.2. Subproblem

The role of a subproblem is to identify one or more negative reduced cost columns. As indicated
above, this can be viewed as the pricing step in the conventional simplex algorithm, with the
exception that all variables are not stored explicitly. Variables with negative reduced cost for the
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No
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Figure 5: Flow diagram for the proposed Branch-And-Price framework

RRMP are returned by the subproblem(s). We formulate the problem of finding such variables as
a Shortest Path Problem on an acyclic time-space network (see, e.g., [33] and [15]). A subproblem
is defined for each unit type. This implies that, in the absence of individual restrictions, any
unit of the given type can perform the path. When individual restrictions, e.g., maintenance
are considered, a unit can only perform a path if sufficient miles (or time) is left before the
unit requires service. As mentioned above, with or without such constraints, the master problem
remains unchanged, this extension only affects the subproblem. The underlying network structure
of each subproblem is identical since we assume any unit can perform any subtrip; however,
some parameters of each subproblem must be modified to reflect the individual unit types. In
what follows we present a more detailed description of the time-space network. To ease the
understanding, the network is introduced in stages.

5.2.1. Underlying Network

To generate a column, one must identify a feasible sequence of subtrips starting at one depot
and ending at another. Modelling all such possibilities for a given planning horizon can be achieved
via a time-space network. In such a network, every node corresponds to a particular event. Here
an event can refer to a departure, a passthrough, or an arrival. A departure event refers to the
start of a trip sequence, while an arrival event is associated with the end of a trip sequence. A
passthrough event represents a midway stop between two subtrips and has one incoming and one
outgoing subtrip. Note that, in implementation, such events should be preprocessed as two such
subtrips can be reduced to one. As every subtrip indicates the movement of a train between two
particular stations at a certain time, it can be introduced as an edge in the time-space network.

Associated with each subtrip edge is a passenger demand and an operating cost cu5κt. Recall
that the operating cost depends on the unit type under consideration. Furthermore, each subtrip
is associated with a constraint from (5), a constraint from (6), and a constraint from (8). Thus, the
reduced cost contribution (or weight) of each such edge is ρt := cu5κt−µt−suδt−luφt. Additionally,
edges which indicate a depot arrival are adjusted by −luνa consumption of depot track capacity
(see Constraints (9)). By adding a super source as well as a super sink node, connecting the
former to all departure events and the latter to all arrival events, we obtain an acyclic, time-space
network, in which all trips within the planning period are implicitly represented by paths. Note
that the weight of edges emanating the origin is c4 − πu

d , while edges to the sink have weight
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c4 − ωu
d . The cost c4 indicates that the unit enters or exits a trip sequence.

Figure 6 below illustrates such a time-space network for a simplified example with three sta-
tions, two of which are depot stations (denoted d1 and d2). The example contains two trip
sequences (each having three trips) having 6 subtrips each (numbered 1-6 and 7-12, respectively).
All nodes corresponding to station events are ordered in time, and appear on the same horizontal
level. The network is labelled assuming we are pricing a unit of type u ∈ U . An example path from
depot station d1 ∈ D to depot d2 ∈ D is given, along with a selection of example edge weights.
Note that this network does not allow (de)coupling during a trip. The subtrips a ∈ A and a′ ∈ A
denote the two arriving subtrips, one at each depot (subtrips 12 and 6, respectively).

O D

d1

d2

c4
− π

u
d1

1

2
3

4 5

6 (a′)

c4 − ωu
d2
− luνa′

c
4 −

π u
d
2

7

8
9,ρt

10 11

12 (a)
c4 − ωu

d1
− luνa

Figure 6: Simplified example of the acyclic time-space network. This figure illustrates the subtrips of two trip
sequences. The black solid path is an example of a possible unit path. The current network does not capture depot
details.

While this time-space network includes all subtrips in the planning horizon, it is inflexible in
the sense that it does not permit a unit to be decoupled from a trip sequence; since each node in the
graph has degree at most two, each path must consist of a sequence of consecutive subtrips. This
is not ideal; it may be preferable to allow units to follow only part of a trip sequence. To provide
such flexibility, we duplicate all nodes for station events occurring at depot-stations, creating a
platform event node as well as a depot event node. This creates more possibilities for a unit, given
its location at the time of the respective station event. A platform event stipulates that the unit
type is at the platform and will perform the outgoing subtrip, while a depot event indicates that
the unit is positioned in the depot and cannot perform the outgoing subtrip.

To allow a unit type to remain parked at a depot-station we introduce edges connecting consec-
utive depot events at the same station. Similarly, we introduce coupling edges. Such edges connect
depot events with platform events and indicate that the unit type will be coupled to other units
to perform the outgoing subtrip. Coupling edges must respect a minimum coupling time, meaning
a depot event cannot connect to the station platform event before the coupling time has elapsed.
Similarly, decoupling edges are introduced, each of which connects a platform event with a depot
event. In contrast to coupling edges, the edges do not connect platform and depot events at the
same station, thus eliminating the possibility of coupling a unit without taking a subtrip. Again,
we assume a minimum duration on decoupling edges. This is modelled by connecting these edges
to the target depot-station after the decoupling is completed. Note that the introduction of decou-
pling edges implicitly duplicates the number of subtrip edges that terminate at depot-stations. All
coupling and decoupling edges are assigned an additional cost c4 to reflect the price one must pay
to perform a coupling. By counting the number of coupling edges used in any path from the source
to the sink, one can determine how many times the unit is coupled and/or decoupled from a trip
sequence. All (de)coupling edges must be adjusted by the dual contribution from Constraints (9)
since any such edge indicates the consumption (or release) of depot track capacity. This dual
contribution on any decoupling edge is given by −luν̌a, for subtrip a ∈ A where ν̌a =

∑
a′∈A+

a
νa′ .

Here A+
a gives the set of all subtrips in A arriving at depot d = depot(a) ∈ D whose arrival time

is at least as large as that of subtrip a ∈ A. Similarly, the depot track dual contribution on any
coupling edge is luν̂a, where ν̂a =

∑
a′∈A−a νa′ . The set A−a is the set of all subtrips departing from

d ∈ D a departure time at least the arrival time of a ∈ A.
Constructing such a network allows units to perform non-consecutive subtrips, include the
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coupling costs, and respect the minimum coupling durations. The last feature allows us to monitor
when a unit type will be available to perform certain subtrips if (de)coupling decisions have been
made. The shortest path in this network identifies the column with minimum reduced cost.
Figure 7 shows how the network of Figure 6 can be extended to include depot subtrips as well as
(de)coupling edges. Stations with depot tracks have depot event nodes and are coloured in light
gray. Note that all (de)coupling edges have not been included; however, an example of each can
be seen in two of the three example paths provided. The solid black path depicts a unit which
is coupled to the second outgoing subtrip at depot d2 ∈ D. This unit performs four consecutive
subtrips. The dashed path also illustrates a unit that performs four consecutive subtrips; however,
this unit performs the first outgoing subtrip at station d2 ∈ D. This unit is decoupled after its
fourth subtrip. In contrast, the gray path gives an example of a unit that stays at depot-station
d1 ∈ D during the planning period. As in Figure 6, a selection of arc weights have been included
for expository purposes.
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Figure 7: A simplified example of the acyclic time-space network showing some of the possible coupling arcs. Only
two of the stations have an associated depot. Three possible unit paths have been highlighted.

In the absence of unit specific restrictions (e.g., a distance-to-maintenance), the subproblem is
a standard shortest path problem on an acyclic graph. The shortest path can therefore be found
using a directed acyclic graph shortest path algorithm with linear time complexity. The nature of
the time-space network in Figure 7 is such that we can also satisfy requests which ask specific units
to end at specific depots. Deadheading trips can also be included. Including such a trip simply
involves adding an edge between station depots. Note that the network may contain negative edge
weights; however, negative cycles cannot exist due to its acyclic nature.

The main motivation for considering a path based formulation is, however, to allow the in-
corporation of unit specific requirements. In Section 6 we consider the situation in which units
have distance-to-maintenance restrictions. When including such a requirement, generating path
variables entails solving the more difficult Shortest Path Problem with Resource Constraints (SP-
PRC), see, e.g., [23, 17], as we must monitor the total length (in km) when generating a sequence of
subtrips for a unit with a distance-to-maintenance restriction. A standard label setting algorithm
is used to solve this SPPRC. This particular problem has just one resource, the distance travelled,
and this is constrained to be less than the remaining distance-to-maintenance. A label setting
algorithm relies on a resource extension function. When solving the subproblem for a specific
unit, if adding a subtrip to a partial path results in violation of the resource constraint, the path
is pruned. Label setting algorithms also rely heavily on dominance to remove suboptimal partial
paths. When considering distance-to-maintenance, one label dominates another if the partial path
associated with the first label has a cost which is at least as good as that of the second label, and
has a remaining distance-to-maintenance which is at least that of the second label. We do not de-
scribe this algorithm in detail as the implementation is quite straightforward considering we only
have one resource and the underlying graph is a directed acyclic graph. We refer the interested
reader to [22] for details on solving the SPPRC. Note that, on any given day, there may be several
units for which the distance-to-maintenance requirement is unlikely to be violated. For such units
the subproblem is solved by unit type, while for maintenance critical units, the subproblem is
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solved by individual unit.

5.3. Branching

The column generation process terminates with an optimal solution to the RRMP. If the
variables satisfy the integrality constraints, a feasible solution to the RSRP has been found, and
we can update the upper bound and prune the current branch. This, however, does not always
happen, and we need to define branching rules in order to enforce integrality.

Branching on path variables in the RRMP is not preferable in general. Forcing a fractional
path variable to take the value zero or one in separate branch nodes complicates the subproblem.
In the zero branch the subproblem will (without alterations) likely return the forbidden path as a
new variable. Thus, in order to disallow specific paths we need to solve the kth-shortest (resource
constrained) path problem, just to make sure that we have the shortest path that is not forbidden
by branching rules. In addition, the efficiency of branching on paths is uncertain as the total
number of paths is extremely large. We propose branching on certain characteristics of the paths
instead, which is easier to handle in the subproblems.

We propose two sets of branching rules sufficient to force integrality. The first enforces inte-
grality on the number of paths originating and terminating at a depot. In an integer solution,
the number of paths leaving a depot (as the first action) can never be fractional. For example, if
the sum of units that depart from a station is fractional, say f ∈ R, then we create two branches
where the sum is ≤ bfc on the first branch and ≥ dfe in the other. The same holds for the number
of paths entering (as the last action) a depot. This rule can be applied on two levels, either for
a specific unit type or aggregated over all types. Our BAP algorithm imposes this rule on an
aggregated level where possible, otherwise on a specific unit type.

Even if the paths respect the integrality requirements above, the solution may still be fractional.
The second set of branching rules enforces integrality on subtrip coverage. The subtrip cover is
equal to the sum of paths that service a subtrip. We therefore ensure that the total subtrip cover,
say f ∈ R, is integer by imposing that the cover is ≤ bfc in one branch and ≥ dfe in the other.
This branching rule can also be applied on two different levels. Where possible, we aggregate over
unit types, otherwise we create a branch based on a specific unit type.

In the absence of unit specific constraints, and strictly positive (de)coupling costs, the above
two branching strategies collectively provide a complete branching strategy.

Theorem 1. In the absence of unit specific constraints, and assuming strictly positive (de)coupling
costs, the aforementioned branching rules provide complete branching strategy.

Proof. Assume we have an optimal solution to Model (1)–(13). Furthermore, assume without loss
of generality that no two paths are identical.

We prove, by contradiction, that every subtrip is covered by integral paths. If all subtrips are
covered by integral paths, then it follows naturally that the paths flowing in and out of depot
sources and target nodes are integral.

Assume that an optimal solution is found but one (or multiple) subtrip is covered by multiple
fractional paths, say p1 and p2. These paths must diverge before or after some subtrip, otherwise
they are identical. Assume the paths diverge after some subtrip, the other case is analogous. The
case is illustrated in Figure 8.

After visiting a subtrip s1 paths can either continue on the successor subtrip s2 or decouple into
the associate depot. Thus one of them will decouple. However, if a fraction of the flow decouples,
then a different fractional path p3 must be coupled on the successor path in order to maintain the
integral sum of s2. We note that the fractional path which is leaving s1 or entering s2 can consist
of multiple paths, but the sum is fractional. We also note that, without loss of generality, paths
p1, p2 or p3 can further be a group of paths.

We now argue that this cannot be an optimal solution since a better alternative exists. Consider
replacing p2 and p3 with new paths p4 and p5, where these paths are the results of swapping the
subpaths of p2 and p3 after the (de)coupling position. Path p4 now continues along p1 on s1
and s2 while path p3 simply stays in the depot instead of coupling on to s2. The new resulting
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solution (p1, p4, p5) omits a coupling and decoupling penalty, thus obtaining a lower cost. Note
that swapping subpaths is always possible in the absence of unit specific requirements. Thus we
arrive at a contradiction, as the solution was assumed to be optimal.

Station A

Station B

Station C

p1
p2

p3 coupling
decoupling

s1

s2

Figure 8: Illustration of a subset of a rolling stock schedule. Three fractional paths are shown covering two subtrips
in the same trip sequence.

When unit specific constraints are considered, the above two branching strategies are insuffi-
cient. In particular, it may not necessarily be possible to swap subpaths of units. Swaps can only
be made if they respect the individual requirements of the two units involved. As such, to ensure
completeness of the branching procedure, in this case we define a third branching strategy based
on constraint branching. This technique was first proposed in [31] for set partitioning problems.
Instead of branching on original or subproblem variables, which often is imbalanced or ineffective,
the authors show a more balanced approach is to branch on a characteristic of the problem, where
any modifications can be easily incorporated in the variable generation process. For the set par-
titioning problem, the authors observe that, in an optimal integer solution, any two constraints
are either covered by the same variable, or they are covered by different variables. Branching
on this characteristic leads to a situation in which multiple variables are potentially banned in
each branch, thus leading to a more balance tree. For this particular problem we can observe
that in any optimal solution to the RSRP, any subtrip is either covered by a unit or it is not. In
the branching process we can therefore, if necessary, force particular units to perform particular
subtrips. As the cover of a subtrip is allowed to be greater than one, however, this weakens the
power of the constraint branch. Furthermore, applying the branching scheme on specific units
introduces two main disadvantages. Firstly, such a rule will not have a significant effect since we
have many similar train units. Secondly, variations of the subproblem must be solved for every
unit depending on its individual branching constraints.

We prioritize the branching candidates by always favouring the first set over the second, and
by preferring aggregation over unit specific rules. When considering unit specific requirements, we
include the third branching strategy as a last resort. To reduce the size of the BAP tree, branching
candidates are considered using a strong branching approach. In this work, we adopt a variant
of so-called Full Strong Branching, where all possible branching candidates are generated in each
branching node and ordered by fractional distance, see e.g., [2]. In our variant, not all candidates
are considered; the candidates are evaluated in order until no better candidate has been found for
a certain number of iterations.
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5.4. Lower and Upper Bounds

To improve the performance of the algorithm we incorporate additional procedures to provide
improved bounds on the solution quality. The first of these aims to quickly find an upper bound
for the optimal solution and involves solving a model of the form (1)–(13), where the column set
is restricted to those that have been generated while solving the LP relaxation, to optimality.
This procedure is run as soon as the LP relaxation has been solved to optimality and uses the
commercial solver CPLEX. This much smaller integer program typically takes a few seconds to
solve and in many cases provides a feasible integer solution to Model (1)–(13) of good quality.
The second technique attempts to provide a tighter lower bound than that obtained the optimal
solution to the LP relaxation, and involves solving the MIP formulation from [18]. This formulation
is stated in full in Appendix A. Recall that the formulation of [18] only focuses at the unit type
level and, via a flow based approach, assigns compositions to subtrips. The model can be solved
independently of what we propose, and we solve it prior to running the BAP algorithm. It is
important to note that this lower bound comes in the form of an integer solution and is found very
quickly, in at most a few seconds. In the absence of unit specific requirements, this would also
be the value of the optimal integer solution obtained using our path based approach. When unit
specific requirements are included, however, the unit type flows obtained from the model in [18]
may not necessarily decompose into a set of feasible individual unit paths. In such cases, it is
therefore only a lower bound, but likely to be significantly tighter than that which is provided by
the LP relaxation.

6. Computational Results

This section evaluates on the performance of the proposed BAP algorithm on real-life data
provided by DSB S-tog and is divided into four subsections. First, Section 6.1, summarizes the
base test instances that were provided by DSB S-tog and used in the experiments. The remaining
three subsections highlight the method’s applicability to different problems. Section 6.2 addresses
disruption management and presents the results of two disruption case studies. Section 6.3 sum-
marizes the results of applying the methodology to the tactical level problem of rolling stock
planning. Finally, Section 6.4 demonstrates the model’s ability to handle unit specific require-
ments by performing some experiments in which a distance-to-maintenance requirement must be
observed.

6.1. Test Instances

The test instances are comprised of a set of timetables (and associated passenger demands)
that were used by DSB S-tog during the spring of 2014. DSB S-tog adopts a weekly periodic
timetable. All weekdays follow the same timetable, while Saturday and Sunday have a different
one. On Friday and Saturday there are, however, additional night-trains. This results in four
different timetables on which we can investigate our solution method. These are the Monday-
Thursday timetable (Mon), the Friday timetable (Fri), the Saturday timetable (Sat), and the
Sunday timetable (Sun). Table 5 summarises the key characteristics of the instances, while Figure 9
gives a detailed overview of DSB S-tog’s network and the lines operated.

Name Stops |T | |T ′| Lines

Fri 28 719 1 086 3 259 A,B,Bx,C,E,F,H
Sat 20 474 706 1 795 A,B,C,F
Sun 19 919 690 1 753 A,B,C,F
Mon 28 017 1 074 3 196 A,B,Bx,C,E,F,H

Table 5: Four timetable and demand datasets provided by DSB S-tog. The columns respectively show the instance
names, total number of stops, the subtrips, the number of non-aggregated train movements, and the lines that are
operated.
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Scenario #1 - Finger

Contingency Plan A.3.10 (Valby - Frederikssund)
Description One track is blocked on one of the fingers
Cancelled lines H
Turned lines C1
Unchanged A1, A2, B1, B2, Bx, C2, E1, E2

Table 6: Finger disruption: The disruption blocks one track between Valby and Frederikssund stations.

Scenario #2 - Central Corridor

Contingency Plan A.0.16 (København H - Østerport)
Description One track is blocked in the central segment
Cancelled lines A2, B2, Bx, C1, E2, H
Turned lines A1, B1, C2, A1, C1
Unchanged E1

Table 7: Central corridor disruption: The disruption blocks one track between København H and Østerport stations

As discussed in Section 2, a subtrip indicates the movement of a train service between two
stations, where the delimiting stations permit composition changes to occur. A timetable can,
however, specify movements between stations where the destination station does not allow this.
There is no need to consider such a movement as an individual subtrip, since no composition
change can occur. We therefore aggregate such a movement to its consecutive movement (and
continue to do so until a destination station with a depot is reached). The resulting aggregated,
movement is then a subtrip using our terminology. Consequently, the set T contains aggregated
movements – or subtrips – as specified in the timetable. To indicate the level of aggregation, we
report, using the set T ′, the number of individual, non-aggregated movements in the timetable
(e.g., including those between stations where composition changes cannot occur). Table 5 indicates
that this leads to a significant reduction in the number of subtrips that must be considered. We
note that considering non-aggregated instances can be misleading as the complexity of the instance
is related to the number of real shunting decisions that can be made. In Table 5 the number of
stops refers to the number of times during the day a train stops at a platform to let passengers
board or alight.

Recall that the essential differences between rolling stock planning and the RSRP are the
timetable, the objective function, and the subtrip demands. For the disruption management case
studies, we utilize the modified timetables operated during each of the disruptions; however, due
to a lack of accurate data, we also use the forecast passenger demands during a disruption. The
recovery problem is, however, much more constrained in terms of the available time in which a
solution must be found.

6.2. Disruption Management

For the given timetables, the number of possible disruption scenarios is very large as there
can be multiple points of failure, different disruption durations, different possible start times for
a disruption, and different levels of severity. In order to analyse the performance of the proposed
algorithm we find it sufficient to consider two different types of disruption, with different severities.
The topology of the infrastructure is star-shaped (see Figure 9), which means that two interesting
cases appear: A disruption in the central corridor (between Dybbølsbro and Østerport), or a
disruption along one of the fingers. In the central corridor there is one track in both directions,
and all lines through this corridor must share the track capacity. The timetables operated during
a disruption are generated according to existing contingency plans. We test different start times
and durations of both disruption types. Table 6 and 7 describe the two selected cases.
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Figure 9: DSB S-tog network overview
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Quality

Inst Disruption |T | Time (s) Cols Gap1 Gap2 Cover Seat Mileage

Fri 9:00-10:00 823 5 2,563 0.9% 3.4% 100.0% 99.0% 122.9%
Fri 9:00-13:00 814 6 2,608 0.0% 3.2% 100.0% 99.4% 124.8%
Fri 11:00-12:00 703 5 2,234 0.3% 3.8% 100.0% 99.1% 121.3%
Fri 11:00-15:00 692 5 2,483 0.3% 2.1% 100.0% 99.0% 122.7%
Fri 15:00-16:00 456 3 1,456 0.0% 0.8% 100.0% 98.9% 118.3%
Fri 15:00-19:00 442 3 1,362 0.0% 1.2% 100.0% 99.2% 118.8%

Mon 9:00-10:00 807 5 2,642 0.1% 2.6% 100.0% 98.9% 126.1%
Mon 9:00-13:00 798 6 3,391 0.6% 2.8% 100.0% 99.1% 126.3%
Mon 11:00-12:00 687 6 2,460 0.9% 4.0% 100.0% 98.8% 124.5%
Mon 11:00-15:00 676 5 2,854 0.5% 2.9% 100.0% 98.9% 121.6%
Mon 15:00-16:00 440 5 1,626 0.0% 2.4% 100.0% 98.2% 119.0%
Mon 15:00-19:00 426 3 1,416 0.7% 2.1% 100.0% 98.2% 121.1%

Table 8: The results obtained solving the first type of disruption case. The first columns show the instance,
disruption duration, number of subtrips and runtime. Cols shows the number of generated columns. Columns
Gap1 and Gap2 show the optimality gaps to the lower bound from [18] and the LP relaxation of Model (1)–(13),
respectively. Finally, the last few columns measure the quality of the solution in terms of covered subtrips, covered
seats and train unit mileage.

In our experiments, we consider disruption durations of between one and four hours with
three different starting points: 09:00, 11:00, and 15:00. The selected periods overlap with the
peak periods in different ways. Instances Sat and Sun are excluded from consideration as they
are arguably easier to solve. Given the type of disruption (finger, central corridor), duration
and starting point, an updated timetable to operate during the disruption is obtained using the
described contingency plans. The planned rolling stock schedule is assumed to have been used
without modification up until the starting point of the disruption, and the remainder of the day
must be solved. We make the assumption that the duration of the disruption is known in advance.
Disruptions with an unknown duration can be handled using a rolling horizon scheme, whereby an
updated timetable is obtained and an RSRP is solved whenever new information becomes available.
No real-life data could be obtained for doing experiments with maintenance restrictions. However,
in our final experiments we generate a number of realistic datasets for benchmarking this extension.

All tests have been performed on Intel(R) Xeon(R) CPU X5550 @ 2.67GHz with 24GB ram
running Ubuntu Linux 14.04. After observing steadier convergence with the COIN-OR solver
(CLP) compared to CPLEX, it was decided to use this as the LP solver for the RRMP.

The results of the experiments are shown in Tables 8 and 9. The algorithm was set to terminate
and report the best found solution within five minutes or when an optimality gap of 1% is proven.
Since we solve the remainder of the day this means that longer durations and later starting points
result in smaller instances. Note that (de)couplings are given a high penalty during disruptions,
thus favouring fewer composition changes over seat and mileage cover. As an indication, the cost
of a (de)coupling is set to 1,000. Cancelling a subtrip incurs a cost of 50,000. One missing seat
is penalized by 0.1, and this is also the cost incurred in driving a unit one kilometre. Finally, an
imbalance in a depot at the end of the day is penalized by 10,000 for every missing unit.

In Table 8 the results of activating the relevant contingency plan A.3.10 with multiple duration
and starting points can be seen. We obtain very good solutions within a few seconds. Due to a
decrease in the number of subtrips, a low runtime is expected. Again, the lower bound of [18] is
noticeably tighter than that obtained using the LP relaxation. In all cases the final solutions are
found after using the upper bound procedure described in Section 5.4; i.e., after solving a MIP
using the columns generated during the convergence of the optimal solution to the LP relaxation.
No branching is needed in the BAP algorithm. A full cover is obtained in all cases; this means
that all trips in the disrupted timetable can be covered. The cover metric does not include the
trips cancelled due to switching to the contingency plan.

Table 9 shows the results of activating the contingency plan A.0.16 with multiple duration
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Quality

Inst Disruption |T | Time (s) Cols Gap1 Gap2 Cover Seat Mileage

Fri 9:00-10:00 836 11 4,096 0.3% 15.1% 99.8% 98.9% 122.4%
Fri 9:00-13:00 782 18 6,068 0.5% 14.7% 99.8% 98.7% 119.4%
Fri 11:00-12:00 713 8 3,051 0.6% 16.7% 99.8% 98.9% 122.1%
Fri 11:00-15:00 657 10 3,939 0.2% 14.8% 99.7% 98.4% 117.5%
Fri 15:00-16:00 468 6 2,379 0.3% 2.1% 99.6% 97.2% 113.8%
Fri 15:00-19:00 402 5 1,727 0.0% 1.9% 99.8% 98.4% 115.3%

Mon 9:00-10:00 820 13 4,129 0.4% 2.7% 99.8% 98.4% 121.6%
Mon 9:00-13:00 766 14 5,827 0.1% 2.5% 99.8% 98.8% 118.3%
Mon 11:00-12:00 697 10 3,665 0.5% 16.5% 99.8% 98.8% 122.4%
Mon 11:00-15:00 641 8 4,066 0.2% 14.3% 99.7% 98.4% 118.6%
Mon 15:00-16:00 451 6 2,239 0.0% 1.5% 99.6% 97.5% 119.1%
Mon 15:00-19:00 385 6 2,053 0.2% 1.9% 99.8% 97.2% 118.2%

Table 9: Results of solving the second type of disruption case. The first columns show the instance, disruption
duration, no of subtrips and runtime. Cols shows the number of generated columns. Columns Gap1 and Gap2 show
the optimality gaps to the lower bound from [18] and the LP relaxation of Model (1)–(13), respectively. Finally,
the last few columns measure the quality of the solution in terms of covered subtrips, covered seats and train unit
mileage.

and starting points. Good solutions to these problems are also found within a few seconds, and
no branching is necessary. The upper bound procedure from Section 5.4 always provides solutions
within the 1% optimality threshold. Compared to Table 8, the lower bound of [18] is much tighter.
In the worst case the improvement is approximately 15% compared to the objective value of the
optimal solution to the LP relaxation. The larger gaps to the bound provided by the LP relaxation
are probably correlated with the reduced trip cover. We observe that some trips are now cancelled
in the disrupted timetable, and a fractional, optimal solution to the LP relaxation is able to cover
more trips and seats using fewer couplings and mileage. The mileage usage is still comparable to
our previous results. The slightly lower seat cover is mainly due to the fact that additional trains
need to be cancelled.

6.3. Tactical Level Planning

We now demonstrate that Model (1)–(13) can also be applied to the tactical level planning
problem of rolling stock scheduling and that the proposed BAP algorithm can be extended to
include unit specific requirements. From a tactical planning perspective, the most important
objective is the number of subtrip cancellations. All other objectives are of small importance
in comparison. We only expect to see cancellations during a disruption. After cancellations, we
consider end-of-day balance deviations to be the second most important as deadheading units is
an expensive and undesirable activity. Finally, a good balance between demand cover, operational
cost and the number of (de)couplings is sought. In the first experiment we therefore analyse the
performance of the algorithm solely considering the number of cancellations. One cancellation
incurs a cost of 100,000. An insignificantly small penalty of value one is, however, incurred per
(de)coupling since preliminary experiments show that the solution method performs worse without
this. Without a coupling cost the number of alternative optimal paths in the subproblem increases
drastically; the number of different paths (with the same cost) negatively affects the integrality of
the master problem. The results for this test are are shown in Table 10 for the four timetables.
The results show that we are able to solve the planning instances to optimality within a few
seconds. In all cases there is a gap of 0% between the optimal integer solution and the bound
provided by the LP relaxation. This suggests that our formulation has some good properties using
the considered objectives. All instances were solved to optimality before branching could occur.
This experiment provides evidence that the model performs well when the sole goal is to find a
certain (integral) cover, i.e., when all subtrip compositions are given beforehand.
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Inst Horizon |T | Time (s) Cols Gap

Fri 4:40-27:10 1,086 6 1,246 0.0%
Sat 2:00-27:10 706 1 411 0.0%
Sun 2:00-25:38 690 1 350 0.0%
Mon 4:37-25:38 1,074 7 1,584 0.0%

Table 10: The results obtained considering only cancellation costs and a small cost (of 1) for (de)couplings. The
horizon indicates the planning horizon of the instance (given in hours after midnight). Gap indicates the optimality
gap to the LP relaxation of Model (1)–(13).

Inst T Time (s) Cols Gap1 Gap2 Cover

Fri 1,086 31 3,328 4.0% 13.6% 100.0%
Sat 706 1 514 0.0% 0.0% 100.0%
Sun 690 2 472 0.0% 2.8% 100.0%
Mon 1,074 19 2,678 1.5% 9.1% 100.0%

Table 11: The results obtained only considering cancellation costs, a small shunting cost and a seat shortage cost.
The elapsed time is measured in seconds. Gap1 and Gap2 show optimality gaps to the lower bound method from [18]
and the LP relaxation of Model (1)–(13), respectively. Cover shows the percentage of covered seats in the found
solution.

A minimal seat-shortage is desirable and experiments performed using a small (de)coupling
cost (value of 100) and different shortage costs are shown in Table 11. The results show that the
algorithm has difficulty solving the problem to optimality. Seat cover is at 100% which means
seat shortage contributes with a zero cost to the objective. A 5% termination gap was used since
the algorithm has difficulty obtaining solutions close to optimality (i.e. a few percent), let alone
proving optimality, for all datasets. This is even the case if we allow a time limit of one hour.
The gap is therefore solely caused by the number of (de)couplings performed. The relatively
large gap to the LP relaxation is not unexpected since fractional unit paths are able to cover seat
demand more cost-efficiently than integral paths, which have to pay full (de)coupling penalties.
No branching was performed. In a planning context, the number of (de)couplings is not a primary
concern compared to scheduling new (de)couplings during the day of operation.

In planning the goal is to meet the expected demand. A seat-coverage of 100% is ideal; however,
if the cost of covering 99% is significantly less, then this is also an acceptable solution. Table 12
shows the seat cover using varying seat shortage costs. As expected, the seat cover increases as
the seat-shortage penalty increases.

Minimizing cancellations, shunting operations and seat shortages can lead to expensive sched-
ules since train services can be executed with too much capacity. Minimizing the mileage is
therefore also essential in order to avoid unnecessary wear and tear. In the final planning bench-
mark we use varying mileage costs. The results are shown in Table 13. Note, that mileage cover is
relative to the travel-distance of assigning one unit to all subtrips (including dead-heading). Thus
100% is the minimum if no cancellations are made. Using different penalties the total mileage
decreases as the mileage penalty increases. As we aim for a high seat cover the trade-off is between
the number of (de)couplings and mileage. The total runtime ranges up to a few minutes, and with

Instance/Penalty 0.0 0.05 0.1 1.0

Fri 87.04% 99.94% 99.95% 100.00%
Sat 96.90% 100.00% 100.00% 100.00%
Sun 98.16% 100.00% 100.00% 100.00%
Mon 83.14% 99.95% 100.00% 100.00%

Table 12: Seat demand coverage obtained using increasing seat shortage penalties.
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Inst Pen. Time (s) Cols Gap1 Gap2 Seat Mileage (De)couplings

Fri 0.01 100 6,068 2.9% 12.4% 100.0% 126.5% 282
Fri 0.10 113 6,286 1.5% 10.1% 100.0% 126.2% 278
Fri 1.00 590 14,158 0.9% 6.9% 100.0% 119.3% 294

Sat 0.01 5 1,295 0.0% 0.0% 100.0% 100.6% 116
Sat 0.10 5 1,317 0.0% 0.0% 100.0% 100.6% 116
Sat 1.00 20 3,860 0.0% 0.0% 100.0% 100.6% 116

Sun 0.01 4 1,180 0.0% 2.8% 100.0% 100.8% 120
Sun 0.10 4 1,316 0.0% 2.4% 100.0% 100.8% 120
Sun 1.00 23 3,842 0.0% 1.2% 100.0% 100.8% 120

Mon 0.01 45 4,850 1.4% 9.1% 100.0% 126.0% 274
Mon 0.10 48 5,126 0.7% 8.2% 100.0% 125.8% 272
Mon 1.00 255 10,695 0.7% 7.3% 100.0% 119.1% 296

Table 13: The results obtained using increasing mileage cost penalties. A termination gap of 5% was set. The
columns show the instance, mileage penalty, runtime, number of columns generated, optimality gap to the lower
bound of [18], the optimality gap to the LP relaxation of Model (1)–(13), seat coverage, mileage cover and number
of (de)couplings.

a 5% optimality tolerance no branching was performed. The optimality gap to the LP relaxation
also improves as the (de)coupling penalty diminishes (relative to mileage cost), and more columns
are necessary to prove LP optimality. This is because mileage and (de)coupling become more
equally priced in the objective. To provide an indication of the branching performance of the
algorithm, Table 14 summarizes the same tests, where the optimality tolerance is lowered to 0.1%
and a one hour time limit is enforced. The results show that half of the instances time out and that
there is not a dramatic improvement in the optimality gap; no new solutions are found compared
to Table 13. The branching strategies appear to struggle to make an impact on the lower bound.
Similar observations can be made when lowering the optimality tolerance for the larger disruption
cases. However, for the smaller ones, branching is typically not as critical, and therefore these can
be solved to optimality.

The planned cover and mileage at DSB S-tog is consistent with our results and only differ
slightly in value. Table 15 shows the planned and realized schedules for the instances we consider.
Note that the realized schedule summarizes actually what happened in practice when using the
corresponding planned schedule. DSB S-tog has optimization tools available for planning (but
not rescheduling), and the planned schedule has been obtained using such tools. Thus, we cannot
expect to find plans that are significantly better. In general, the planners have achieved a high
seat cover and also a relatively low mileage cover at the cost of more (de)couplings.

6.4. Unit Specific Requirements

As a last experiment we show that the proposed algorithm can naturally enforce unit specific
requirements, regardless of the planning level. To demonstrate this we give some results of adding
mileage restrictions in the form of a distance-to-maintenance to certain units. Recall that this
requirement prevents a unit from being assigned a sequence of subtrips if the combined distance
of the subtrips exceeds the remaining distance-to-maintenance level. To give some context, we
consider the sanding inspection requirement on the units in DSB S-tog’s fleet. This inspection is
crucial as it ensures proper function of the wheel slide protection system. All units must undergo
this inspection every ten megametre.

We were unable to obtain real-life data and instead generate several realistic instances. A
single unit usually drives up to one megametre during a normal weekday and, on average, half
a megametre. Ideally, at the beginning of the planning horizon every unit is assigned a random
distance-to-maintenance having a value between zero and ten megametres; however, we only need
to assign the random distance-to-maintenance on a selected subset of the fleet using an appropriate

23



Inst Pen. Time (s) Cols Nodes Gap1 Gap2 Seat Mileage (De)couplings

Fri 0.01 3,600 42,392 837 2.9% 12.0% 100.0% 126.5% 282
Fri 0.10 3,600 38,589 684 1.5% 10.1% 100.0% 126.2% 278
Fri 1.00 3,600 32,830 144 0.9% 6.5% 100.0% 119.3% 294

Sat 0.01 5 1,295 1 0.0% 0.0% 100.0% 100.6% 116
Sat 0.10 5 1,317 1 0.0% 0.0% 100.0% 100.6% 116
Sat 1.00 20 3,860 1 0.0% 0.0% 100.0% 100.6% 116

Sun 0.01 5 1,180 2 0.0% 2.8% 100.0% 100.8% 120
Sun 0.10 7 1,316 2 0.0% 2.4% 100.0% 100.8% 120
Sun 1.00 34 3,842 2 0.0% 1.2% 100.0% 100.8% 120

Mon 0.01 3,600 62,980 554 1.4% 9.0% 100.0% 126.0% 274
Mon 0.10 3,600 64,489 515 0.7% 8.0% 100.0% 125.8% 272
Mon 1.00 3,600 54,361 144 0.7% 7.0% 100.0% 119.1% 296

Table 14: The results obtained using increasing mileage cost penalties. A termination gap of 0.1% and a time limit
of 3,600s were set. The columns show the instance, mileage penalty, runtime, number of BAP nodes, number of
columns generated, optimality gap to the lower bound of [18], the optimality gap to the LP relaxation of Model (1)–
(13), seat coverage, mileage cover and number of (de)couplings.

Planned Realized

Inst Unit Cover Demand cover Unit Cover Demand cover Couplings

Fri 117.44% 99.91% 117.75% 99.32% 371
Sat 112.41% 99.96% 112.41% 99.81% 205
Sun 109.54% 99.88% 109.71% 99.69% 186
Mon 116.08% 99.99% 116.09% 91.71% 459

Table 15: Shows the statistics of the planned and realized solution for the datasets. The number of couplings is
unavailable in the planned solution and is therefore estimated based on the paths in the realized solution.
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Probability Time (s) Cols Gap (De)couplings Seat Mileage

5% 464 15,135 1.4% 304 100.0% 118.0%
5% 461 15,135 1.4% 304 100.0% 118.0%
5% 450 17,227 2.0% 308 100.0% 118.1%
5% 351 14,441 1.5% 304 100.0% 118.3%
5% 273 11,832 1.9% 306 100.0% 117.9%

10% 401 18,982 1.6% 298 100.0% 120.3%
10% 400 18,982 1.6% 298 100.0% 120.3%
10% 413 16,196 2.6% 312 100.0% 118.2%
10% 621 20,579 1.6% 302 100.0% 119.1%
10% 526 20,358 2.1% 310 100.0% 117.7%

15% 690 25,389 1.5% 302 100.0% 118.8%
15% 686 25,389 1.5% 302 100.0% 118.8%
15% 490 18,522 2.0% 308 100.0% 118.1%
15% 346 16,392 2.6% 310 100.0% 118.7%
15% 222 14,451 2.2% 308 100.0% 118.5%

Table 16: Results of maintenance cases. The first column shows the probability of a unit receiving a limited
mileage during the planning horizon. The other columns respectively show runtime, number of generated columns,
optimality gap to the LP relaxation of Model (1)–(13), number of (de)couplings, seat cover and mileage cover.

random probability (5-15%). As mentioned earlier, there is no reason to place restrictions on units
that will never reach the limit. Hence, such units are, in our opinion, fully unrestricted in mileage
and interchangeable. Using different random seeds we generate and solve different maintenance
instances. Each maintenance instance is based on the Mon timetable, assuming a tactical level
planning problem, and a mileage penalty of 1.0.

The results of the benchmark are shown in Figure 16. No branching was performed. Note that
it is not possible to provide an exact comparison (to the results in Table 13) as we only find a
heuristic solution with a proven low gap. With a noticeable increase in runtime, the demands of
all instances were covered fully, and the total mileage is comparable to the original instance. The
number of (de)couplings is similar, if not slightly higher. In addition some variation comes with
the random selection of units to which a distance-to-maintenance threshold is set.

The optimal solution to the LP relaxation can be used as an indication of how much more
constrained the fleet is. Here, compared to the original instance (Mon), we did not notice a
significant increase in the relaxed objective value (i.e., overall cost) with the more restricted units.
We conclude that the fleet is able to absorb the added restriction without incurring high penalties.
The main aim of this maintenance extension is to highlight that the model can incorporate such
individual requirements. As such, how the distance-to-maintenance is determined and to which
units it is assigned is not deemed significantly important here.

7. Conclusions

In this paper we have proposed a Branch-and-Price algorithm for optimizing the Rolling Stock
Rescheduling Problem. This has been tested on two real-life case studies provided by DSB S-tog.
We have demonstrated that this model is not only applicable in a disruption management setting,
but can also be applied on a tactical level when planning the rolling stock. Finally, we have also
shown that the model and solution approach can incorporate individual unit requirements such
as a distance-to-maintenance constraint.

The BAP algorithm is able to solve all instances to optimality, but this proves to be too time-
consuming in certain settings. Computational experiments revealed that we can find solutions
with a small proven optimality gap for the hardest instances within 20 seconds for the disruption
cases and within a few minutes for the planning instances. In general, the tests show that the
algorithm is able to find good solutions very fast, but on the other hand it is not able to close the
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optimality gap efficiently. An adopted MIP based lower bound efficiently improved the optimality
gap. Further testing also revealed that the individual maintenance restrictions were well handled.

Several promising areas for future research exist. One obvious extension is to impose train
composition and shunting restrictions. This would allow the train operators to more explicitly
control how already running train compositions can be upgraded or reduced in order to improve
robustness or feasibility. The proposed mathematical model mainly consists of several soft con-
straints with non-integral right hand sides. Enforcing hard constraints would limit the solution
space and replacing the demand constraints with the most desired train composition would ar-
guably improve the solution method. Finally, it would be interesting to extend the current models
in order to model already used maneuvers at DSB S-tog during disruptions. Examples include
allowing trains to turn earlier than planned, and allowing two trains to swap services when meeting
at the same station.
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Appendix A. Lower Bound Formulation

The MIP formulation that is used to obtain a tighter lower bound for the proposed path based
formulation is the flow based model of [18]. This formulation assigns compositions to each of the
subtrips while preserving the flow of train units. It does not determine individual itineraries for
each of the train units; however, in the absence of unit specific requirements, any solution to this
flow formulation can be decomposed into a set of train unit paths. For reference, we include all
details of this formulation. To do this, additional variables and notation are needed. These are
included in Tables A.17, Table A.18, and Table A.19. A binary variable qct is introduced for every
subtrip and composition combination. The variable takes on a value of 1 if composition c is chosen
for subtrip t. In addition, the binary variable ra

c,c′ tracks composition changes on connections.

A connection is here two subtrips that are performed in sequence (in a trip sequence). The
mathematical formulation is listed below.

qct Binary variable which takes value 1 iff composition c is chosen for
covering trip t

ra
c,c′ Binary variable which takes value 1 iff a transition from composi-

tion c to c′ is chosen on connection a

Table A.17: Additional variables for the Lower Bound MIP model.

c ∈ C Set of all possible compositions, where a composition c defines a
set of train units

t ∈ T↔ Set of all connections. A connection consists of two subtrips t1, t2
that are in sequence. The destination station of t1 is naturally
the origin station of t2.

Table A.18: Additional sets for the Lower Bound MIP model.
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in(a) First subtrip (incoming) in connection a
out(a) Second subtrip (outgoing) in connection a
source(t) Origin station of subtrip t
target(t) Destination station of subtrip t
dep(t) Departure time from origin of subtrip t
arr(t) Arrival time at destination station of subtrip t

Table A.19: Additional shorthand notation for the Lower Bound MIP model.

Minimize: F (y, q,w, r) (A.1)

∑
c∈C

qc
t = 1− yt ∀t ∈ T

(A.2)

qin(a)
c =

∑
c′∈C

ra
c,c′ ∀a ∈ T↔, c ∈ C

(A.3)

qout(a)
c =

∑
c′∈C

ra
c′,c ∀a ∈ T↔, c ∈ C

(A.4)

0 ≤ inventoryud +
∑
c∈C

unitscu ·
( ∑

t′∈T
target(t′)=d

arr(t′)≤dep(t)

qc
t′ −

∑
t′∈T

source(t′)=d

dep(t′)≤dep(t)

qc
t′

)
∀t ∈ T , u ∈ U ,
d = source(t)

(A.5)

eodud −wu
d ≤ inventoryud +

∑
c∈C

unitscu ·
( ∑

t∈T
target(t)=d

qc
t −

∑
t∈T

source(t)=d

qc
t

)
∀u ∈ U , d ∈ D

(A.6)

trackd ≥
∑
u∈U

lu ·
(
inventoryud +

∑
c∈C

unitscu ·
( ∑

t′∈T
target(t′)=d

arr(t′)≤arr(t)

qc
t′ −

∑
t′∈T

source(t′)=d

dep(t′)≤arr(t)

qc
t′

))
∀t ∈ T ,

d = target(t)

(A.7)

qc
t ∈ {0, 1} ∀t ∈ T , c ∈ C

(A.8)

ra
c,c′ ∈ {0, 1} ∀a ∈ T↔, c, c′ ∈ C

(A.9)

yt ∈ {0, 1} ∀t ∈ T
(A.10)

wu
d ∈ Z+

0 ∀u ∈ U , d ∈ D
(A.11)

Constraints (A.2) ensure that exactly one composition is assigned to each subtrip, unless there is
a cancellation. Some compositions may be invalid on certain subtrips (e.g., due to small platform
lengths), these variables are assumed to be fixed to zero. Constraints (A.3) and (A.4) link the
composition variables with the transition variables. Constraints (A.5) ensure that a non-negative
number of units are in the depot after each departure. For each unit type the right hand side sums
the initial inventory and the units moving in and out of the depot respectively. Constraints (A.6)

27



ensure that sufficient units of every type are available at the end of the day; missing units are cap-
tured in the wu

d variables, which in turn are penalized in the objective function. Constraints (A.7)
ensure that the capacity of every depot is respected at all times; i.e, at every subtrip arrival.
Finally, Constraints (A.8)–(A.11) state the domains of the decision variables. The objective (A.1)
is a function of the decision variables, reflecting the same objective as our previous formulation.
The cancellation cost depends on the number of cancellations, y. The mileage and seatshortage
costs depend on the assigned compositions, q. The end of day deviations, w, are penalized for
every depot. Any (de)couplings are penalized using the r and q variables. The former are used
to penalize whenever compositions change occur, while the latter are also needed for the first and
last subtrips of a trip sequence.
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Maróti, and Morten Nyhave Nielsen. Disruption management in passenger railway trans-
portation. Robust and Online Large-Scale Optimization, pages 399–421, 2009.

[22] Stefan Irnich. Resource extension functions: properties, inversion, and generalization to
segments. OR Spectrum, 30(1):113–148, 2008. ISSN 0171-6468.

[23] Stefan Irnich and Guy Desaulniers. Shortest path problems with resource constraints. In Guy
Desaulniers, Jacques Desrosiers, and Marius M. Solomon, editors, Column Generation, pages
33–65. Springer US, 2005. ISBN 978-0-387-25485-2.

29

http://dx.doi.org/10.1287/trsc.34.2.133.12308
http://dx.doi.org/10.1287/trsc.34.2.133.12308
http://www.sciencedirect.com/science/article/pii/S0191261500000229
http://www.sciencedirect.com/science/article/pii/S0191261500000229
http://dx.doi.org/10.1287/opre.49.4.531.11226
http://dx.doi.org/10.1287/opre.49.4.531.11226
http://www.sciencedirect.com/science/article/pii/S0927050705801069
http://www.sciencedirect.com/science/article/pii/S0927050705801069
http://dx.doi.org/10.1007/978-3-642-05465-5_18
http://dx.doi.org/10.1007/978-3-642-05465-5_18


[24] Leo Kroon and Dennis Huisman. Algorithmic support for railway disruption management. In
Jo A.E.E. Nunen, Paul Huijbregts, and Piet Rietveld, editors, Transitions Towards Sustain-
able Mobility, pages 193–210. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-21191-1. doi:
10.1007/978-3-642-21192-8 11. URL http://dx.doi.org/10.1007/978-3-642-21192-8_

11.

[25] Zhiyuan Lin and Raymond S K Kwan. A branch-and-price approach for solving the train
unit scheduling problem. Transportation Research Part B: Methodological, 94:97–120, 2016.
ISSN 18792367, 01912615. doi: 10.1016/j.trb.2016.09.007.

[26] Norbert Lingaya, Jean-François Cordeau, Guy Desaulniers, Jacques Desrosiers, and Francois
Soumis. Operational car assignment at via rail canada. Transportation Research Part B:
Methodological, 36(9):755 – 778, 2002. ISSN 0191-2615. doi: 10.1016/S0191-2615(01)00027-3.
URL http://www.sciencedirect.com/science/article/pii/S0191261501000273.

[27] Lars Kjær Nielsen, Leo Kroon, and Gábor Maróti. A rolling horizon approach for disruption
management of railway rolling stock. European Journal of Operational Research, 220(2):
496–509, 2012. ISSN 03772217.

[28] Marc Peeters and Leo Kroon. Circulation of railway rolling stock: a branch-and-price ap-
proach. Computers & operations research, 35(2):538–556, 2008. ISSN 1873765x.

[29] Daniel Potthoff, Dennis Huisman, Daniel Potthoff, Dennis Huisman, and Guy Desaulniers.
Column generation with dynamic duty selection for railway crew rescheduling. Transportation
Science, 44(4):493–505, 2010. ISSN 15265447.

[30] Natalia J. Rezanova and David M. Ryan. The train driver recovery problem—a set partition-
ing based model and solution method. Computers & Operations Research, 37(5):845 – 856,
2010. ISSN 0305-0548. doi: 10.1016/j.cor.2009.03.023. URL http://www.sciencedirect.

com/science/article/pii/S0305054809000938.

[31] David M. Ryan and Brian A. Foster. An integer programming approach to scheduling. In
A. Wren, editor, Computer Scheduling of Public Transport: Urban Passenger Vehicle and
Crew Scheduling, pages 269–280. North-Holland, 1981.

[32] Alexander Schrijver. Minimum circulation of railway stock. CWI Quarterly, 6:205–217, 1993.

[33] Koorush Ziarati, François Soumis, Jacques Desrosiers, Sylvie Gélinas, and André Saintonge.
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