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ABSTRACT 

Uniform Fe3O4 microflowers assembled with porous nanoplates were successfully synthesized by 

a solvothermal method and subsequent annealing process. The structural and compositional 

analysis of the Fe3O4 microflowers were studied by X-ray diffraction (XRD), scanning electron 

microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron 

spectroscopy (XPS). The Bruauer–Emmett–Teller (BET) specific surface area was calculated by 

the nitrogen isotherm curve and pore size distribution of Fe3O4 microflowers was determined by 

the Barret–Joyner–Halenda (BJH) method. When evaluated as anode material for lithium-ion 

batteries, the as-prepared Fe3O4 microflowers electrodes delivered superior capacity, better cycling 

stability and rate capability than that of Fe3O4 microspheres electrodes. The improved 

electrochemical performance was attributed to the microscale flowerlike architecture and the 

porous sheet structural nature. 

Keywords: Fe3O4; anode; microflowers; nanoplates; lithium-ion batteries 
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1. Introduction  

Rechargeable lithium-ion batteries (LIBs), which have been widely used in flexible 

electronics, mobile phones, and laptop computers, are one of the great successes of modern 

materials electrochemistry [1, 2]. Recently, high-performance LIBs with higher capacity, longer 

cycle life, and better rate capability have attracted considerable responsiveness for the use in 

electric vehicle market and as energy source of large industrial equipment etc [3, 4]. Developing 

advanced electrode materials is a key element to achieve the required performance and capacity of 

LIBs for the above important applications, since the overall performance of LIBs is highly 

dependent on the inherent electrochmical properties of the electrode materials [5, 6]. Therefore, 

considerable attention has been paid to develop novel materials for both the cathodes and anodes 

of LIBs which are inexpensive, safe and environmentally benign. So far, graphitic/non-graphitic 

carbon [7, 8], transition-metal oxides [9, 10], nitrides [11, 12], alloys [13-15] and their composites 

have been exploited as the anode materials of LIBs. In this context, transition metal oxides have 

received special intersest since they can exhibit about three times higher capacity than the 

commerial used graphite with a capacity of 372 mAh g-1. 

As a typical transition metal oxide, Fe3O4 has gained considerable attention for future LIB 

anodes due to its natural abundance, low cost, environmental benignity, high electronic 

conductivity as well as high theoretical capacity (926 mAh g-1) [16] according to the 

electrochemical conversion reaction Fe3O4 + 8Li+ + 8e- ↔ 3Fe + 4Li2O [17]. Thermodynamically, 

the formation of electrochemically inactive Li2O is favorable during the first discharge process. 

However, the extraction of Li+ ion from Li2O in the charge process is difficult, making the 

conversion reaction is irreversible to some extent [18-20]. Moreover, the weakness of Fe3O4 as 
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anode materials also lies in the large volume expansion and severe particle aggregation durng the 

charging and discharging process, resulting in the deterioration of reversible capacity and poor 

cycling stability [21, 22]. The results are common for transition metal oxide anode materials and 

are one of the major obstacles for this new category of materials to be commercialized. 

Design and synthesis of electrode materials with reasonable composition, morphology, and 

microstructure is reliable to overcome the above limitations and improve the LIB performance. 

For example, Pan et al reported a hybridization strategy for the co-assembly of Fe3O4 

nanoparticles and TiO2 nanorods on pristine graphene nanosheets hierarchical nanostructures [23]. 

The ternary heterostructures delivered superior reversible capacities and rate capabilities. Chen et 

al synthesized porous hollow Fe3O4 beads constructed with nanorods through solvothermal route 

[20]. The products showed a reversible specific capacity of 500 mAhg-1 after 50 cycles at a current 

density of 100 mAg-1. Wang and co-workers studied the effect of Co-doping on the 

electrochemical performance, and found that the solid solution CoxFe3−xO showed excellent cycle 

stability and rate performance [24]. Coating the electrochemically active materials with an 

electronically conductive agents layer, which modify the chemistry at the electrode/electrolyte 

interface, is considered as another effective approach to improve the cycling stability and rate 

capability [25-28]. Such coating not only facilitates the formation of a stable solid electrolyte 

interphase (SEI) layer on the electrode surface, but also enhances the electrode kinetics through 

conductivity improvements [29]. However, the addition of conductive agents unavoidably 

decreases the effective use of active materials. On the other hand, various in-situ techniques (such 

as in-situ x-ray diffraction/tomography [30] and in-situ transmission electron microscopy [31, 32]) 

are employed to investigate the complex phase transition, structural evolution and fundamental 
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mechanisms of electrode materials during the electrochemical reaction. 

Complex hierarchical architectures assembled by low-dimensional nano building blocks 

possess enhanced LIB performance [33, 34]. We have reported a facile synthesis of hierarchical 

porous Co3O4 nanostructures with morphologies including hierarchical nanoflowers and 

hyperbranched nano bundles, which were all built up by numerous nanoparticles with random 

attachment [35]. When evaluated as anode materials for LIBs, the nanoflowers showed higher 

capacity and better rate capability. Wang et al developed a simple ethylenediamine-mediated 

solvothermal followed by decomposition at high temperature to synthesis Fe3O4 hollow 

microspheres, which were assembled by nanoplate building blocks [18]. The electrochemical 

characterization showed significantly improved lithium-storage capabilities with a very high 

reversible capacity of 580 mAhg-1 at a current density of 200 mAg-1 after 100 cycles. 

In this work, we report a facile solvothermal and subsequent annealing method for the 

construction of uniform Fe3O4 microflowers. Microstructure characterizations showed that the 

microflowers were assembled by porous nanoplates as nano building blocks. The unique 

hierarchical nanostructures would enhance their physical/chemical properties while inheriting 

merits of the primary subunits. For example, the porous nanoplates can ensure short transport 

length for Li+ ions and electrons, the microscale flower architecture is favored for preventing the 

aggregation of the nano/microcrystals, and the porous Fe3O4 microflowers can provide extra active 

sites for the storage of ions. When evaluated as anode materials for LIBs, the Fe3O4 microflowers 

exhibited high reversible capacity and excellent cycling performance. It is also anticipated that the 

present Fe3O4 hierarchical architectures will find potential applications in other energy storage 

system when considering the similar microstructure design principles with LIBs. 
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2. Experimental 

2.1. Materials synthesis 

All of the chemical reagents were of analytical grade and used as received without further 

purification. For the synthesis of the Fe3O4 microflowers assembled with porous nanoplates, 

anhydrous ferric chloride (FeCl3, 10 mmol) was dissolved in ethylene glycol (80 ml) to form a 

clear solution, followed by the addition of urea (80 mmol). The mixture was stirred vigorously for 

30 min until it became homogeneous and then sealed in a 100 ml Teflon-lined stainless-steel 

autoclave at 200 oC for 4 h. After cooling to room temperature naturally, a green precursor was 

obtained by centrifuging and sequentially rinsing with water and ethanol for several times, and 

then dried in a vacuum oven at 60 oC overnight. The final products were obtained by heating the 

precursor powder in N2 atmosphere to 400 oC at a rate of 8 oC min-1 and maintaining at this 

temperature for 1.5 h.  

2.2. Structural characterization 

The morphology, composition and crystal structure of the products were examined by 

employing field-emission scanning electron microscope (FESEM; Zeiss, MERLIN, 5 kV), 

transmission electron microscope equipped with an energy dispersive X-ray (EDX) system (TEM; 

JEOL, JEM-2100, 200 kV; FEI, Tecnai G2 20, 200 kV), X-ray photoelectron spectroscopy (XPS, 

Escalab 250, Al Kα), and Raman spectrometer (Renishaw, UK, 633 nm excitation). 

Crystallographic information for the samples was collected using a Bruker Model D8 Advance 

powder X-ray diffractometer (XRD) Cu Kα irradiation (λ = 1.5418 Å). The Bruauer-Emmett-Teller 

(BET) surface area of the powders was analyzed by nitrogen adsorption-desorption isotherm at 77 

K in a Micromeritics ASAP 2010 system. The sample was degassed at 180 ºC before nitrogen 
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adsorption measurements. The surface area was determined by a multipoint BET method. A 

desorption isotherm was used to determine the pore size distribution via the 

Barret-Joyner-Halender (BJH) method, assuming a cylindrical pore model. The nitrogen 

adsorption volume at the relative pressure (P/P0) of 0.994 was used to determine the pore volume 

and average pore size. In order to study the morphology and structure of the Fe3O4 microflowers 

after cycling test, the coin cells were disassembled in Argon atmosphere, and then the electrodes 

were gently rinsed with anhydrous di-methyl carbonate (DMC) to remove residual carbonate 

solvents and LiPF6 salt several times, followed by vacuum drying overnight at room temperature. 

2.3. Electrochemical Measurements 

To measure the electrochemical performance, electrodes were constructed by mixing the 

active materials, conductive carbon black and carboxymethyl cellulose, in a weight ratio of 

80:10:10. The mixture was prepared as slurry and spread onto copper foil (the typical loading of 

the active material is in the range of 3.2-4.5 mgcm-2). The electrode was dried under vacuum at 

120 °C for 5 h to remove the solvent before pressing. Then the electrodes were cut into disks (12 

mm in diameter) and dried at 100 oC for 24 h in vacuum. The cells were assembled inside an 

Ar-filled glove box by using a lithium metal foil as the counter electrode and the reference 

electrode and microporous polypropylene as the separator. The electrolyte used was 1M LiPF6 

dissolved in a mixture of ethylene carbonate (EC), propylene carbonate (PC), and diethyl 

carbonate (DEC) with a volume ratio of EC/PC/DEC = 3:1:1. Assembled cells were allowed to 

soak overnight, and then electrochemical tests on a LAND battery test unit were performed. 

Galvanostatic charge and discharge of the assembled cells were performed at a current density of 

100 mAg-1 between voltage limits of 0.05 and 3 V (vs. Li+/Li) for 50 cycles. For the high rate tests, 
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the discharge current gradually increased from 50 mAg-1 to 100, 500 and 1000 mAg-1, and then 

decreased to 50 mAg-1, step by step. All the charge/discharge tests were performed symmetrically 

at room temperature. The cyclic voltammogram (CV) was performed using a CHI 660D 

electrochemical workstation (Chenhua Instrument, Shanghai). CV curves were recorded between 

0.05 and 3.00 V (vs. Li+/Li) at a scan rate of 0.5 mV s-1. Electrochemical impedance spectroscopy 

(EIS, IM6, Zahner) was carried out by applying an AC voltage of 5 mV over a frequency range of 

100 kHz to 0.01 Hz. 

3. Results and discussion 

The crystallographic structure and phase purity of the as prepared products were 

characterized by using XRD analysis. Fig. 1 shows a typical XRD pattern of the sample 

synthesized by solvothermal reaction and subsequent annealing process. All the diffraction peaks 

can be assigned to (220), (311), (400), (422), (511), (440), and (533) planes of Fe3O4 with inverse 

spinel structure (JCPDS No. 19-0629, a= 8.396 Å). No other diffraction peaks from possible 

impurities are observed, indicating the high phase purity of the products. Moreover, the relatively 

high peak intensities imply that the products are highly crystalline. The average crystallite sizes (d) 

of Fe3O4 phase can be calculated from the physical breadths of the corresponding diffraction peak 

as expressed by the Scherrer formula: d = 0.89λ/βcosθ, where λ is the X-ray wavelength, β is the 

full width at half maximum of the diffraction peak, and θ is the diffraction angle [36]. Here, the 

crystallite size was calculated using the (311) peak. The obtained crystallite sizes is about 9.6 nm, 

this will be further confirmed by FESEM and TEM observations as discussed later. 

Fig. 2a illustrates a typical low-magnification FESEM image of the final product which 

consists of microspheres uniformly distributed on the substrate. The diameter of the microsphere 
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ranges from ~3 to ~6 μm. Higher magnification images (Fig. 2b, c) indicate that the microspheres 

present flower-like morphology characteristic, which is in agreement with that of the precursor 

(Fig. S1). The microflowers consist of two dimensional nanoplates with an average thickness ~60 

nm. In addition, the coarse surface of the nanoplates suggests a highly porous texture (Fig. 2d). 

More structural details of the Fe3O4 microflowers were studied by employing TEM and 

HRTEM characterizations. Fig. 3a-e show typical TEM images of Fe3O4 microflowers with 

different magnifications. The building blocks of the hierarchical microflowers are highly porous 

nanoplates, which are consistent with the FESEM observations. We also find that the porous 

nanoplates consist of interconnected nanoparticles with average size of ~10 nm (Fig. 3d, e). EDX 

result (Fig. S2) shows that the microflowers are composed of Fe and O, and the atomic ratio is 

~3:4 for element Fe to element O, also confirming the formation of Fe3O4. Corresponding EDX 

elemental mapping indicates the uniform distribution of Fe and O across the porous nanoplates 

(Fig. S3). The selected area electron diffraction (SAED) pattern indicates that the as obtained 

Fe3O4 microflowers are polycrystal in nature as shown in the inset of Fig. 3d (see also the enlarged 

view shown in Fig. S4). Fig. 3f shows a typical HRTEM image of a single Fe3O4 nanoplate from 

the microflowers. The lattice spacings of d ~ 3.01 Å and ~4.88 Å are determined, which 

correspond to the (220) and (111) planes of cubic Fe3O4, respectively. The measured angle 

between the (220) and (111) planes is 90o, in agreement with the theoretical value. All results 

clearly demonstrate that we have succeeded in obtaining Fe3O4 microflowers assembled with 

mesoporous nanoplates. To investigate the formation process of the Fe3O4 microflowers, a series 

of time-dependent morphological evolution experiments for the precursors and annealed products 

were performed as shown in Fig. S5. For the precursors, at the early stage of the reaction (15 min), 
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the sample was composed of ~100 nm particles and nanoplates with smooth surface (Fig. S5 top, a 

and g). After 30 min reaction, the smooth nanoplates assembled into a multilayer and network 

structure, resulting in the formation of the hierarchical microflowers (Fig. S5 top, b and h). At the 

same time, the amount of the nanoparticles decreased. As the reaction time was prolonged to 1 h, 

the sample was composed entirely of the microflowers and no nanoparticles remained (Fig. S5 top, 

c and i). Further increasing the reaction time to 2 h, 3 h, and 4 h, the flowerlike character of the 

precursors remained nearly unchanged. Subsequent annealing did not change the morphology very 

much except that the nanoplates were coarse and porous (Fig. S5 bottom). Based on the 

observations described above, a possible formation mechanism of the microflowers is proposed. 

When aqueous solution containing Fe3+ is mixed with ethylene glycol and urea, the initial burst 

nucleation occurs, which leads to the aggregation of the supersaturated nuclei and formation of 

nanoparticles. Those particles then assemble into smooth nanoplates due to Ostwald ripening [37]. 

Meanwhile, the nanoplates crosslinked together in order to decrease the system energy, and the 

microflowers are formed consequently. Similar hierarchical flowerlike nanostructures were also 

reported elsewhere [38]. 

The surface elemental composition and oxidation state of the microflowers were analyzed by 

using XPS in the region of 0-1350 eV. The survey spectrum (Fig. 4a) indicates that the sample 

contains Fe and O. Fig. 4b shows the high-resolution XPS spectra of Fe 2p region, which can be 

fitted with two spin-orbit doublets and a shakeup satellite. The doubles are characteristic of the 

peaks of Fe2+ and Fe3+. The results are consistent with the reported values of Fe3O4 [23, 39, 40]. 

As shown in Fig. 4c, the O 1s spectrum could be deconvoluted into two peaks at 530.27 and 

531.55 eV. The peak at 530.27 eV is a typical state of Fe-O species corresponding to Fe3O4, while 
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the other peak could be attributed to the presence of residual oxygen-containing groups (such as 

O-H) in the sample [41]. The Raman bands ranged from 100 to 800 cm-1 can be assigned to the 

vibration modes of ferrites (Fig. S6) [42]. The results also confirm the formation of Fe3O4 phase. 

The pore structure information, including specific surface area and the porous feature, of the 

Fe3O4 microflowers were studied by measuring nitrogen adsorption–desorption isotherms at 77 K 

(Fig. 4d). The BET specific surface area is as high as 114.9 m2g-1. In addition, the narrow 

mesopore size distribution based on the BJH method of the sample is further confirmed by the 

corresponding pore size distribution curve (the inset in Fig. 4d). The large surface area and narrow 

pore size distribution of the sample are due to the porous nature of the assembled nanoplates and 

the amount of void spaces between the interconnected nanoparticles within each plate. For 

comparison, the microstructure (Figs. S7, 8) and pore structures (Fig. S9) of Fe3O4 microspheres 

are also tested. The BET specific surface area is 86.6 m2g-1, which is smaller than that of 

microflowers. Pore size distribution result implies the existence of mesopore in the microspheres. 

The microstructure characteristics of the yielded Fe3O4 microflowers are favorable for using as 

anode materials in LIBs due to the capability of providing extra active sites for the storage of 

lithium ions and facilitating mass diffusion and ion transport. The synthesized sample is therefore 

anticipated to show good lithium-storage properties.  

We subsequently investigate the electrochemical lithium-storage properties of the as-prepared 

Fe3O4 microflowers. The electrochemical behavior of the assembled cells was first investigated by 

CV experiments between 0.05 and 3 V (vs. Li+/Li) at a scan rate of 0.5 mVs-1, using the Fe3O4 

microflowers as the working electrode and a lithium sheet as both counter electrode and reference 

electrode. Fig. 5a shows the CV curves of Fe3O4 microflowers for the first three cycles. In the first 
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cycle, the cathodic peak at 1.01 V corresponds to the forming LixFe3O4, while the peak at 0.65 V is 

due to the formation of SEI film and Li2O. The anodic peaks at 1.67 V and 1.94 V are attributed to 

the reversible oxidation from Fe0 to Fe3+. The redox peaks in the CV curves are in good agreement 

with the previous reports [40]. In the subsequent cycles, the CV curves overlap very well, 

indicating high electrochemical reversibility. 

The charge-discharge voltage profiles of the Fe3O4 microflowers for the first three cycles at a 

current rate of 100 mAg-1 is shown in Fig. 5b. In the first discharge curve, there is a dominant 

potential plateau (~0.75 V) and a following slope, which represents lithium ion insertion process, 

and the formation of SEI film, respectively. The initial charge and discharge capacities of Fe3O4 

microflowers are 1084.1 and 1365.4 mAhg-1, yielding the Coulombic efficiency values (the ratio 

of charge capacity to discharge capacity) of 79.4%. Such initial irreversible capacity loss should 

mainly originate the formation of SEI layer due to the irreversible degradation of electrolyte and 

other secondary reactions, which is common for transition metal compound anode materials [18, 

43-45]. In the second and third cycles the Fe3O4 microflowers electrode presents much better 

electrochemical reversibility. Fig. 5c shows the charge–discharge cycling performance together 

with the Coulombic efficiency at a current density of 100 mAg-1. From the second cycle onwards, 

the as-prepared Fe3O4 microflowers exhibit excellent cyclic capacity retention with a stable 

capacity ~1080.9 mAhg-1. At the end of 50 charge-discharge cycles, a reversible capacity ~1000.3 

mAhg-1 can still be retained. In contrast, the reversible capacity of Fe3O4 microspheres cell 

decreases to ~305.3 mAhg-1 after 50 cycles of operation. Fig. 5d shows the electrochemical 

performance of Fe3O4 microflowers and microspheres at various rates between 50 and 1000 mAg-1. 

The reversible capacity of the Fe3O4 microflowers cell varies from 1300 mAhg-1 to 840 mAhg-1 at 
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current rates of 50 mAg-1 and 1000 mAg-1, respectively. Nevertheless, the reversible capacity of 

the Fe3O4 microspheres cell rapidly drops from 1028 to 286 mAhg-1. Fe3O4 microflowers cell 

recovers its original capacity (~1285 mAhg-1 for the 50th cycle) when the rate return to the initial 

50 mAg-1. These results demonstrate that the Fe3O4 microflowers electrode possesses good 

electrochemical reversibility. The transfer behavior of lithium ions in Fe3O4 microflowers and 

microspheres electrode was analyzed based on EIS spectra (Fig. S10). The Nyquist plots in the 

frequency range from100 kHz to 0.01 Hz consist of a slope at the low frequencies connected to a 

depressed semicircle at the medium to high frequencies, representing the lithium diffusion process 

inside the electrode material, and the charge-transfer resistance (Rct) on electrolyte and the 

electrode interface, respectively [46-48]. The diameter of the Fe3O4 microflowers is found to be 

much smaller than that of Fe3O4 microspheres, revealing that the Rct value is smaller for Fe3O4 

microflowers [46-48]. The mesoporous structure on the Fe3O4 microflowers, which can reduce the 

effective distance for lithium ions and electrons transport, is responsible for decreasing the Rct 

value and thus benefiting the diffusion kinetics upon cycling. The morphology and structure of the 

Fe3O4 microflowers after rate capability test (50 cycles) were characterized by SEM and TEM 

observations (Fig. S11). It can be seen that the sample still maintains the initial flower-like 

morphology with porous nanoplates as the nano building blocks. The results reveal the good 

structural and morphological stabilities of Fe3O4 microflowers during charge/discharge cycling. In 

addition, the lithium storage properties of Fe3O4 microflower electrodes outperform or can 

compare with other Fe3O4 nanoparticles, hierarchical structures and even some Fe3O4/C 

nanocomposites reported elsewhere (Table S1). Although for some cases, such as yolk-shelled 

Fe3O4@carbon [49] and Fe3O4/graphene sheet composite [40], the current Fe3O4 microflower 
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results are not very satisfactory. It would be anticipated that better LIB performance can be 

obtained when combining the present flowerlike architectures with other modification techniques 

(compositing, doping, etc). 

The above electrochemical measurements indicate the good lithium-storage properties of the 

Fe3O4 microflowers in terms of cycling stability, specific capacity, and rate capability, which can 

be attributed to the following reasons. (1) The microscale flower architecture assembled with 

porous nanoplates is favored for preventing the aggregation of the nano/microcrystals, which is of 

importance for the cycling stability. Moreover, the porous nanoplates can accommodate the local 

volume change during charge/discharge cyclings and are able to alleviate the problem of 

pulverization and aggregation of the electrode material, which are also favorable for improving the 

cycling performance. (2) The porous Fe3O4 microflowers can provide extra active sites for the 

storage of lithium ions, which is beneficial for increasing the specific capacity. (3) The porous 

Fe3O4 microflowers can reduce the effective distance for lithium ions and electrons transport, and 

mass diffusion, resulting in good rate capabilities. 

4. Conclusion 

In summary, uniform Fe3O4 microflowers assembled by porous nanoplates were successfully 

synthesized by a facile solvothermal and subsequent annealing method. When used as the anode 

materials for LIB, the as-prepared sample delivered good lithium storage properties in terms of 

cycling stability, specific capacity, and rate capability. Specifically, the Fe3O4 microflowers 

showed a high reversible capacity of ~1000 mAhg-1 after 50 cycles at a current density of 100 

mAg-1. A capacity of 840 mAhg-1 was still achieved at 1000 mAg-1. It is believed that the superior 

electrochemical performance mainly attribute to the microscale flower architecture and the porous 
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sheet structural nature. The present route to porous Fe3O4 microflowers can also be extended to 

synthesis other metal oxides with similar morphology and enhanced functions. 
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Figure Captions 

Fig. 1. XRD pattern of the as-prepared sample and standard pattern of Fe3O4 phase. 

Fig. 2. FESEM images of the Fe3O4 microflowers with different magnifications. 

Fig. 3. (a-e) TEM images of Fe3O4 microflowers, with the inset in (d) showing the SAED pattern. 

(f) is HRTEM image of a single nanoplate from the Fe3O4 microflowers. 

Fig. 4. (a) XPS survey spectra of Fe3O4 microflowers, (b, c) high-resolution XPS spectra of the Fe 

2p and O 1s regions, respectively, (d) Nitrogen adsorption–desorption isotherms and 

corresponding pore size distribution curve (inset) of the Fe3O4 microflowers. 

Fig. 5. Electrochemical performance of Fe3O4 microflowers: (a) CVs at a scan rate of 0.5 mV s −1 

between 0.05 and 3 V, (b) galvanostatic charge/discharge voltage profiles for the first three 

cycles between 0.05 and 3 V versus Li/Li+ at a current density of 100 mAg-1, (c) cycling 

performance of Fe3O4 microflowers (red lines) and Fe3O4 microspheres (black lines) 

electrodes at a constant current rate of 100 mAg-1 between 0.05 and 3 V, and (d) rate 

capability of Fe3O4 microflowers (red lines) and Fe3O4 microspheres (black lines) 

electrodes at various current rates between 50 mAg-1 and 1000 mAg-1. 
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