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ORIGINALITY-SIGNIFICANCE STATEMENT 

The ability of some types of the food-borne pathogen Listeria monocytogenes to persist in the food-

processing environment for years or decades remains unexplained. Persisting types are often the 

original source of food contamination and the cause of human listeriosis, which has a mortality of 

20-30%. By comparative genomic analysis, we found a low genomic diversity of each sequence types 

(STs) and a low evolutionary rate. Independent analyses of evolutionary rates in three different 

persisting STs estimated each of these STs to have emerged around year 1910, potentially caused by 

acquisition of ST-specific genes that enable adaptation to and survival in the industrial food-

processing environment. Whole genome sequencing is becoming the epidemiological tool for tracing 

food-borne disease outbreaks; however, the reliability of this method requires a detailed knowledge 

of genomic variation within the pathogen investigated.  
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SUMMARY 

Whole genome sequencing is increasing used in epidemiology, e.g. for tracing outbreaks of food-

borne diseases. This requires in-depth understanding of pathogen emergence, persistence, and 

genomic diversity along the food production chain including in food processing plants. We 

sequenced the genomes of 80 isolates of Listeria monocytogenes sampled from Danish food 

processing plants over a time-period of 20 years, and analyzed the sequences together with 10 

public available reference genomes to advance our understanding of inter- and intra-plant genomic 

diversity of L. monocytogenes. Except for three persisting sequence types (ST) based on Multi Locus 

Sequence Typing (MLST) being ST7, ST8 and ST121, long-term persistence of clonal groups was 

limited, and new clones were introduced continuously, potentially from raw materials. No particular 

gene could be linked to the persistence phenotype. Using time-based phylogenetic analyses of the 

persistent STs, we estimate the L. monocytogenes evolutionary rate to be 0.18-0.35 SNPs/year, 

suggesting that the persistent STs emerged approximately 100 years ago, which correlates with the 

onset of industrialization and globalization of the food market.  

 

170 words 
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INTRODUCTION  

The ability of a microorganism to survive and grow for longer periods in a specific niche is referred to  

as persistence and is observed by repeated isolation over time of clonal or close-to-clonal strains  

(Carpentier and Cerf, 2011; Ferreira et al., 2014; Larsen et al., 2014). However, it is often not known  

if persistence is clonal (‘true persistence’) or the result of re-introduction and re-isolation of the  

same type (Ferreira et al., 2014). The term ‘persistence’ is not well defined and is used both for long- 

term survival of specific molecular types in an environment, as it is used in this study (Ferreira et al.,  

2014) but also for persistence in patients as may be caused by formation of persister cells (Lewis,  

2008) or by particular phenotypes such as biofilm formation (Costerton et al., 1999; Romling and  

Balsalobre, 2012). Several foodborne pathogens can persist at farm level and/or in the food  

processing environment for years (Ferreira et al., 2014; Larsen et al., 2014; Martin et al., 2014; Orsi  

et al., 2008a; Wulff et al., 2006). The molecular mechanisms underlying persistence are not well  

understood but biofilm formation or tolerance to desiccation or biocides may be involved (Cossart,  

2011; Ferreira et al., 2014; Larsen et al., 2014).   

The food-borne pathogen L. monocytogenes is a prime example of a bacterium that can persist in  

food processing environments, where specific molecular types are isolated repeatedly (Hein et al.,  

2011; Malley et al., 2015; Orsi et al., 2008a; Ortiz et al., 2014; Vogel et al., 2001; Wulff et al., 2006).  

Listeriosis is caused by consumption of food contaminated with L. monocytogenes and mainly affects  

elderly and immuno-compromised patients with a mortality of 20-30% (Cossart, 2011). L.  

monocytogenes is divided into four Lineages, of which lineage I isolates are often associated with  

human outbreaks, whereas Lineage II isolates are often associated with food and food processing  

environments (Maury et al., 2016; Valderrama and Cutter, 2013). Sequence type (ST) 121 (ST121)  

identified by Multi Locus Sequence Typing (MLST) is a persistent ST, and has been found in fish  

processing plants (Wulff et al., 2006), meat processing plants (Martin et al., 2014; Morganti et al.,  

2015) and in many other food processing plants (Chiara et al., 2014; Ciolacu et al., 2014; Hein et al.,  

2011; Schmitz-Esser et al., 2015). ST121 is the most common ST isolated from food samples;  

however, it is rarely isolated from infected patients (Althaus et al., 2014; Ebner et al., 2015; Maury et  

al., 2016).   

Typing, e.g. by MLST, can provide information on persistence; however, it does not allow analyses of  

clonality due to low discriminatory power. We sequenced the genomes of two ST121 isolates  

isolated six years apart in two different smoked fish productions and found a remarkable genomic  

stability, as they only differed by 18 single nucleotide polymorphisms (SNPs; Holch et al., 2013).  

Similarly, isolates of ST11 that persisted in an American production plant and caused listeriosis in  

1988 and 2000, differed by only one SNP in the core genome (Orsi et al., 2008a). This low diversity  

might be a result of that L. monocytogenes has a conserved genome with a high level of core genes  

and low recombination rates (den Bakker et al., 2008; 2010; 2013; Hain et al., 2012; Moura et al.,  

2016).   

Whole genome sequencing (WGS) is increasingly being used in epidemiology (den Bakker et al.,  

2014; Kvistholm Jensen et al., 2016; Kwong et al., 2016; Le and Diep, 2013; Moura et al., 2016), and  

WGS analysis was essential for unraveling a Danish L. monocytogenes ST224 outbreak in 2014  

(Kvistholm Jensen et al., 2016). However, the genomic stability of L. monocytogenes could cause  

clonal or near-clonal isolates to be isolated from different processing plants and regions, thereby  
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obscuring the true source. The purpose of the present study was to investigate the genomic diversity 

of L. monocytogenes strains isolated over a 20-year period as food processing plant contaminants 

and to address if specific genetic features could be associated with the persistent capability. 

 

RESULTS 

Persisting and non-persisting L. monocytogenes isolates spanning 20 years. In 2013-2014, 233 L. 

monocytogenes strains were isolated from raw material, processing surfaces and product (Table S1 

and S2) from processing plants 3 and 5 but no systematic seasonal variation was observed (Table 

S3). 170 strains were MLST typed (Table S1; Ragon et al., 2008) and 98.8% of the isolates belonged 

to Lineage II and only two strains belonged to Lineage I (ST1). The strains divided into thirteen 

different STs, and ST7, ST8, ST121 and ST398 were isolated from both processing plants. Nine STs 

were detected multiple times (≥3; Table S4), indicating that some STs persist or are continuously 

introduced, and that others occur sporadically.  

From previous studies (Ben Embarek and Huss, 1993; Larsen et al., 2002; Vogel et al., 2001; Wulff et 

al., 2006), 37 strains were selected and included in the study to broaden the range of food 

processing plants (n=11) and the isolation period (1995-2004). MLST-typing of these isolates resulted 

in 10 different STs (Table S4) and ST7, ST8 and ST121 were isolated regularly during both sampling 

periods. We therefore in this study defined them as persisting STs.  

 

Limited clonal persistence in persistent L. monocytogenes sequence types. Ninety strains were 

whole-genome sequenced and SNPs analyzed (Table S5) including 38 isolates 2013-14, 27 isolates 

1995-2004 and 10 isolates of non-smoke houses origin (Fig. 1). Thirteen ST121 isolates isolated 

outside Denmark (Chiara et al., 2014; Fox et al., 2011; Lopez-Alonso et al., 2015; Stessl et al., 2014) 

were included as this appeared to be the dominant persistent ST type world-wide. Finally, two 

reference strains F2365 (Nelson et al., 2004) and EGDe (Glaser et al., 2001) were included to 

represent Lineage I and II, respectively. SNP analysis was performed based on alignment to the 

genome of the reference strain EGDe (21), and the SNP-based phylogenetic relationship based the 

core genome was in concordance with lineage and previously identified MLSTs (Fig. 2a).  

SNP differences in the 47 ST121 isolates varied from zero to 203 (Fig. 2b and Table S6 and S7) and 

the ST121 isolates displaying the largest SNP variation (Y16 and Y20) were isolated from the same 

processing plant (Plant 5) and in the same year (2014). Using an arbitrary and conservative limit of 

≤4 core genome SNPs to define a clonal group of isolates, we detected seven clonal groups of ST121 

isolates (Fig. 2b and Table S7 and S8). Clonal groups with ≤4 SNPs were all specific to the same 

processing plant, indicating that clonal isolates originated from one single source of contamination 

and isolates within plant-specific clonal groups were isolated over a time span from zero to 16 

months (Table S8). Plant-specific clonal groups were also found in ST6, ST7, ST101 and ST204 (Table 

S7 and S8). ST193 was repeatedly isolated from processing plant 3 (45 isolates in total over 16 

months) and was not observed in the other production plant or among the earlier isolates. Six of 

these 45 isolates were genome sequenced (clonal group ST193_M). The SNP variation was 7 to 16, 

which is a high number of SNPs compared to the number observed within the other STs.  
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SNP differences could not directly related to time or space differences. Thus, clonal group ST121_A 

included only two isolates, M40-1 and M103-1, from plant M isolated one month apart. A third 

isolate M165-1 was isolated from the same processor, but differed by 8-9 SNPs to clonal group 

ST121_A. A similar distance was found to a fourth isolate X10 (nine SNPs) which was isolated 12 

years later than M40-1 at another processing plant. 

 

Evolutionary rate of L. monocytogenes in the food-processing environment. The low number of 

SNPs identified in the core genomes between isolates separated by time and location (Table S7 and 

S8) is indicative of a common source. In line with the low SNP variation for M40-1 and X10, three ST8 

isolates (Y14, R479a and 2R167a) were isolated 15-16 years apart and differed by 17-18 SNPs. By 

time-based phylogenetic analysis using BEAST (Drummond et al., 2012), we estimated the 

evolutionary rate of L. monocytogenes within the STs ST7, ST8 and ST121 and found rates of 0.18, 

0.30, and 0.36 SNPs/year, respectively (Table 1). These rates are among the lowest evolutionary 

rates determined for any bacterial pathogen. The estimated time of common ancestor of the three 

persisting STs ST7, ST8 and ST121 was year 1916, 1905, and 1908, respectively, indicating that they 

have emerged independently in the same time period in the beginning of the twentieth century 

(Table 1; Fig. S1a, S1b and S2). This correlates with peak time of the industrialization and creation of 

new niches in food processing plants leading to the emergence of human infection and long-distance 

dispersal via the food chain. 

 

The Listeria monocytogenes core and pan genome. The 90 isolates that represented 15 STs shared a 

core genome of 2,381 genes and a pan genome of 5,454 genes. The largest variation in gene content 

was found between isolates belonging to different STs which on average differed by 447 genes 

(range 219-735 genes), whereas isolates within the same ST on average differed by 146 genes (range 

0-356 genes). Isolates from clonal groups ST121_B, ST121_C, ST121_F and ST193_M (Table S8) had a 

high variation in gene content (maximum number of differences was 104, 39, 95, and 139 genes, 

respectively) due to the presence of different prophages. In contrast, less than five genes 

differentiated isolates within the other nine clonal groups. 

 

Genes potentially related to persistence. It is not understood why some molecular types of L. 

monocytogenes persist in the food-processing environment; however, it could be related to the 

ability to withstand stress (Ferreira et al., 2014; Larsen et al., 2014). Among other, we investigated if 

differences in the alternative sigma factor SigB is involved in stress response could be linked to 

persistence ability however, only one amino acid change (Y226F) was identified between Lineage I 

and II isolates in the protein sequences of SigB. The five-gene islet Stress Survival Islet-1 (SSI-1) (Hein 

et al., 2011; Ryan et al., 2010) and the 12.5 kbp insertion with LM6179_0173 are suspected to be 

involved in persistence (Schmitz-Esser et al., 2015). However, we did not find that these presumed 

persistence genes were limited to the three persisting STs ST7, ST8 and ST121 (Table S9).  

Benzalkonium chloride (BAC)-resistant L. monocytogenes-isolates have been isolated repeatedly 

from a meat production plant indicating a potential link to persistence (Ortiz et al., 2014) and some 
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The ST-specific genes found in the three persistent ST7, ST8 and ST121 were either involved in 

resistance towards phages and disinfectant, which potentially could be linked to a survival 

advantage in the food-processing environment.  

 

DISCUSSION 

Molecular typing methods have been extensively used to trace bacterial disease outbreaks or 

determine persistence of pathogenic bacteria such as L. monocytogenes (Hein et al., 2011; Malley et 

al., 2015; Orsi et al., 2008a; Ortiz et al., 2014; Vogel et al., 2001; Wulff et al., 2006). However, these 

methods cannot determine if a group of bacterial isolates is ‘truly persisting’ (clonal) or if a non-

related isolate of the same type is repeatedly introduced into the environment. Here, we considered 

L. monocytogenes ST7, ST8 and ST121 as persisting STs under the assumption that repeated isolation 

was equal to persistence. However, the SNP analysis demonstrated that some isolates were likely 

‘truly’ persisting clonal groups, but also that new L. monocytogenes clones of the same ST were 

introduced continuously probably by raw materials. Raw materials were repeatedly contaminated 

and on several occasions, isolates belonging to the same clonal groups were sampled from the 

environment and from products. We defined ‘true persistence’ based on Ferreira et al. (2014) and 

used an arbitrary limit of ≤4 SNPs for clonal groups combined with isolation over a longer period of 

time (>2 months). This categorized ST6, ST7, ST101 and ST121 as ‘true persisting’ STs. To the best of 

our knowledge, this is the first longitudinal study using WGS to determine the ‘true’ persistence of a 

bacterial pathogen in processing plants. However, persistence of L. monocytogenes was previously 

studied using WGS (Morganti et al., 2015; Stasiewicz et al., 2015) and in line with Stasiewicz et al. 

(2015), we identified ST6 as a ‘true persisting’ ST. Kwong et al. (2016), analyzed 423 L. 

monocytogenes strains from foods or patients and observed over 200 SNPs within PFGE groups, 

consistent with the large number of SNPs in the MLST groups in this study. PFGE groups that linked 

by epidemiology had less than 10 SNPs, and in patients typically had less than five SNPs. However, 

we and Morganti et al. (2015) show that close-to-clonal groups (4 < SNPs < 20) can be found in 

different processing plants and raise caution when using a higher clonality limit than 4 SNPs for 

outbreak investigations unless there are epidemiological data as found by Wang et al. (2015).  Our 

study highlights that outbreak investigations of L. monocytogenes must consider the low 

recombination rates (Stasiewicz et al., 2015) or the isolation of near-clonal isolates in different 

processing plants (Morganti et al., 2015). This is also supported by Salmonella data where as few as 

15-22 SNPs may differentiate outbreak and non-outbreak isolates (Leekitcharoenphon et al., 2014). 

Collectively these and our study underline the importance of epidemiological data to support WGS 

for outbreak investigations. 

All of the three persisting STs (ST7, ST8 and ST121) had low evolutionary rates in the range 

of 0.18 to 0.36 SNPs/year. This is at the same level as estimated by Moura et al. (2016) finding an 

evolutionary rate of 0.41 and 0.38 substitutions per 1.58 MB per year for SL1 (mainly ST1) and SL9 

(mainly ST9), respectively. We believe this is the lowest evolutionary rate reported for a bacteria and 

it is even lower that the rate of Mycobacterium tuberculosis estimated to 0.3–0.5 SNPs/year (Ford et 

al., 2013). The low evolutionary rate and the large number of core genes (2,381 genes) is consistent 

with a stable genome as found in other studies (den Bakker et al., 2008; 2010; 2013; Hain et al., 

2012; Kuenne et al., 2013; Moura et al., 2016; Orsi et al., 2008b).  
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It is not known, if the ability to be ‘truly persisting’ is an isolate or ST-specific phenotype. 

However, based on the low number of SNPs within one ST and high genomic stability within ST, we 

hypotheses that it is ST dependent and not isolate specific. Thus, all isolates within a ST have the 

potential to be ‘truly persisting’ under optimal condition, which is consistent with a recent study of 

persisting ST8 (Fagerlund et al., 2016). Secondly, this is also in line with many years of research (Hein 

et al., 2011; Malley et al., 2015; Orsi et al., 2008a; Ortiz et al., 2014; Vogel et al., 2001; Wulff et al., 

2006) that have used molecular typing methods, albeit with lower discriminatory power, which 

defined isolates of the same molecular type as persisting. Finally, it is consistent with the stability of 

the gene pool within a ST and supported by the study of Stasiewicz et al. (2015) that could not 

identify persisting genes by enrichment of persisting and non-persisting isolates from the same ST. 

The ST dependency is also found for putative persistence genes, virulence genes and a biocide 

resistance genes (Maury et al., 2016; Moura et al., 2016; Roche et al., 2009). This high level of ST 

dependency allowed us to identify ST-specific genes in ST7, ST8 and ST121 and also Fagerlund et al. 

(2016) found ST8 specific genes. While it is possible that ST specific genes increases the likelihood of 

STs to persist in the processing environment, as also speculated by others (Schmitz-Esser et al., 

2015); functional studies and better annotation of the relevant genes is necessary to help build 

evidence for this. 

Prophages were likely a major source of diversity between isolates of the same ST and also 

the finding of identical prophages in different STs indicated a very high recombination in the 

prophages as has been found in other studies (Fagerlund et al., 2016; Orsi et al., 2008a; Stasiewicz et 

al., 2015). Interestingly, several of the ST specific genes in ST7, ST8 and ST121 were involved in 

phage resistance. Wang et al. (2015) recently suggested that ‘It is not all about SNP’ as they used the 

presence of rare mobile element to support that environmental samples from a processing plant 

having 19-20 SNPs to clinical isolates were the cause of an outbreak. To fully understand the 

diversity of L. monocytogenes prophages, further studies are needed to characterize each prophage 

variation and their potential role in persistence.  

L. monocytogenes is not only a food-borne human pathogen but also a ubiquitous 

saprophyte (Cossart, 2011; Freitag et al., 2009), and it is therefore naturally present on many food 

raw materials. We found as Fagerlund et al. (2016) that different STs and clones were found in raw 

material. Fagerlund et al. (2016) found that three ST8 isolates (MF3949, MF4077 and MF4245) from 

Norwegian salmon procession plant only had 8-16 SNPs to isolate R479a from a Danish fish 

smokehouse. R479a has 18 SNPs to Y14, which is isolated from raw material of Norwegian Salmon at 

plant 5, but Y14 has 14-24 SNPs to the three Norwegian isolates. Thus, the two ST8 isolates from the 

early isolation (R479a and 2R167a) are more closely related to the Norwegian isolates than our 

recent Y14 isolate. This highlights that the food producers must have a high focus on eliminating 

contaminations from raw material in the food processing.  

The estimated time of the common ancestor of the three persisting STs, ST7, ST8 and ST121 

is 1905-1916, which correlates with the onset of industrialization in Denmark and globalization of 

the food market (Anonymous, 2016). This timing is consistent with the root of major sublineages of 

L. monocytogenes as determined by Moura et al. (2016) based on 1,696 isolates. Although these 

estimates should be interpreted with caution, the correlation could indicate that L. monocytogenes 

have evolved with the specialized environments in the dairies and slaughterhouses that provided a 
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new niche. This, in combination with the cooling chains may have caused specific STs to evolve 

characteristics that improved survival in these environments. 

 

EXPERIMENTAL PROCEDURES 

Bacterial strains and growth conditions. Bacterial strains sequenced in this study are listed in Table 

S5. L. monocytogenes-positive samples were received in 2013-2014 from two smoked fish processing 

plants and isolated strains on Listeria selective media. Bacterial stock cultures were stored at -80°C 

and strains grown on Brain Heart Infusion (BHI) agar or in BHI at 37°C with shaking (250 rpm).  

 

Multi-Locus Sequence Typing (MLST). Genomic DNA was extracted with Dynal Dynabeads DNA 

Direct System (Invitrogen) and amplified using TEMPase Hot Start 2x Master Mix Blue II (Ampliqon). 

Sequencing was performed by GATC Biotech AG (Köln, Germany) and Listeria Sequence Typing at 

Institut Pasteur MLST was used for allele analysis (Institute Pasteur, 2014), Ragon et al. (2008)) 

(http://bigsdb.web.pasteur.fr/listeria/listeria.html). 

 

Whole genome sequencing (WGS). Genomic DNA was extracted using DNeasy Blood & Tissue Kit 

(Qiagen) according to the manufacture’s protocol except that cells were pre-lysed with lysozyme for 

30 min at 37°C and the proteinase K treatment was extended to 30 min. DNA concentrations were 

measured and normalized using a Qubit flourometer (Invitrogen, UK) and libraries were prepared 

using Illumina Nextera XT DNA preparation kit. Sequencing of libraries was performed on an Illumina 

MiSeq instrument (Illumina, USA). Samples were multiplexed to 24 samples per sequencing reaction 

and sequenced using 2x150bp paired-end reads. Quality control and de-multiplexing of reads was 

performed automatically by MiSeq software. The average coverage was 72 (ranging from 22 to 191). 

Genomes were assembled de novo using Velvet version 1.0.11 (Zerbino and Birney, 2008) and 

VelvetOptimiser version 2.1.7 (Zerbino, 2010) . The assemblies were optimized to maximize N50 and 

VelvetOptimiser used every odd kmer value between 51 and 137. The raw reads have been 

deposited to European Nucleotide Archive (ENA) under accession number PRJEB14063.  

 

SNP prediction and phylogenetic analysis using core genome. Ten reference genomes were 

downloaded from NCBI and 100 bp paired-end reads were generated by selecting random positions 

in the genome. The 100 bp upstream of each position was used as the first read of a pair and the 

reverse complement of the 100 bp downstream was used as the second read. The fastq files were 

constructed to give coverage of 100 and the Phred score at each position is a random value between 

34 and 39. To identify the core genome of strains EGDe and 6179, all positions in the reference 

genomes that were covered by less than five reads in any of the 90 samples were defined as 

accessory positions and these positions were taken out of the analysis when the distance matrices 

were calculated. The accessory positions accounted for 191,940 bp out of 2,944,528 bp in the EDGe 

and 229,610 bp out of 3,010,620 bp in the 6179 genome. For the SNP calling, reads were mapped 

against L. monocytogenes reference genomes EGDe (NC003210) and L. monocytogenes 6179 
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(HG813249) using stampy version 1.0.22 (Lunter and Goodson, 2011) and samtools version 0.1.13 

with options –M0 –Q30 –o40 –e20 –h100 –m2 –D –S [62]. Maximum-likelihood phylogenetic trees 

were inferred by RAxML version 8.2.4 (default settings) (Stamatakis, 2014) based on an alignment 

consisting of concatenated nucleotide calls from the 58,801 polymorphic positions in the core 

genome. RAxML was run with default settings using a general time reversible model of nucleotide 

substitution (option -m GTRCAT). 

 

Evolutionary rate analysis of ST7, ST8 and ST121. TempEst (Rambaut et al., 2016) was used to 

visualize the temporal signal in maximum-likelihood phylogenies (Fig. S4), and Bayesian analysis of 

evolutionary rates was performed using BEAST version 1.8 (Drummond et al., 2012). BEAST analyses 

were run with default settings using a strict molecular clock model and a HKY substitution model, 

which distinguishes between the rate of transitions and transversions and allows unequal base 

frequencies. Evolutionary rates were calculated from chains of 10 million steps, sampled every 1,000 

steps. The first 1 million steps of each chain were discarded as a burn-in. The effective sample size of 

all parameters were >200 as calculated by Tracer version 1.5 (available 

from http://beast.bio.ed.ac.uk/Tracer), which was also used to calculate the 95% highest posterior 

density (HPD) confidence intervals of the evolutionary rate (i.e. an interval within which the modeled 

parameter resides with 95% probability).  

 

Analysis of core genome, pan genome and accessory genome. All genomes were annotated using 

Prokka version 1.10 (Seemann, 2014), and gene nucleotide sequences were clustered using CD-HIT 

version 4.6 (Li et al., 2001) to obtain non-redundant sets of genes (i. e. the pan-genome) with a local 

sequence identify of at least 90% in an alignment covering at least 80% of the shorter sequence (CD-

HIT-EST package with settings -aS 0.8 -c 0.9’). Hereby, we obtained a set of 5,454 genes with a 

minimum length of 100 nt. Genes were aligned against each of the 90 assembled genomes using 

BLAST version 2.2.30+ (Shiryev et al., 2007), and a gene was defined as being present in the genome 

if an alignment with a sequence identity of >90% covering >25% of the gene was obtained. In 

pairwise comparisons of gene content, genes were only considered absent if no alignment covering 

≥25% of the gene was obtained. 

 

Genome mining for presumptive persistence genes. Sequence analysis of SigB protein was 

performed in CLC Main Workbench 7 (Aarhus, Denmark) using BLAST, alignments and Mega6 

(Tamura et al., 2013) to create Maximum-likelihood phylogenetic trees of DNA and protein 

sequences. Biocide resistance genes were identified using a protein sequence database of 325 

confirmed Biocide Resistance Genes from the BacMet database (Pal et al., 2014) and BioEdit as 

search tool (Hall, 1999). The presence of phage genes was investigated by PhiSpy (Akhter et al., 

2012) and PHAST (Zhou et al., 2011) was used for verification of the results. The presence of 

antibiotic resistance genes was analyzed using ResFinder (Zankari et al., 2012). ST-specific genes 

were validated against NCBI database for the presence in other sequence types.  
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FIGURES AND TABLES 

Fig. 1. Time of isolation of Listeria monocytogenes isolates. Timeline of isolation for of the 90 Listeria 

monocytogenes included in the whole genome sequencing analysis based on the ST. Asterisk 

indicates the number of genomes that was downloaded from NCBI.  

 

Fig. 2. Phylogeny of Listeria monocytogenes isolates based on whole genome sequencing. A) 

Maximum-likelihood phylogenetic relationship of all 90 Listeria monocytogenes isolates. Isolates are 

colored according to origin with red are sampled in year 2013-14. Isolates marked in green are of 

non-Danish origin. B) Maximum-likelihood phylogenetic relationship of the 47 ST121 isolates and 

isolated are colored according to from which processing plant they are isolated.  
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Table 1. The evolutionary rate of the three persisting STs ST7, ST8 and ST121 of Listeria monocytogenes. The evolutionary rate and estimated time of a 

common ancestor were calculated by BEAST using Bayesian evolutionary analysis with a HKY substitution model.  

 Evolutionary rates Estimated time of ancestor 

ST SNPs/year/ 

site 

95% HPD confidence 

interval 

SNPs/year 95% HPD confidence interval Year 95% HPD confidence interval 

ST7 1.27×10
-7

 2.2×10
-

11
 

2.7×10
-7

 0.35 0.00006 0.72913 1916.1 1615-1989 

ST8 6.47×10
-8

 5.3×10
-

11
 

1.5×10
-7

 0.18 0.00015 0.40396 1905.2 1350-1982 

ST121 1.08×10
-7

 6.69×10
-

8
 

1.5×10
-7

 0.30 0.18405 0.41631 1907.8 1852-1948 
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Table 2. MLST-dependency of persistence genes, biocide genes and monocin given as percent isolates carrying the gene.  

MLST ST  # isolates 

Presence of persistence genes (Percent)  Presence of biocide resistance genes (Percent)  

Presence of full 

monocin 

SSI versions
1) 

LM6179_

0173
2) 

 Tn6188 Tn5422 lde mdrL cadA2  pLM80  SSI1 SSI-Li SSI-F2365 

1 3 100  33 33  Yes 

3 2 100  100  Yes 

6 3 100   Yes 

7 7 100  100 100  Yes 

8 7 100  71 100 100  Yes 

9 1 100  100 100  Yes 

14 3 100 100  100 100  Yes 

31 2 100  100 100 100  

lmoB-lmo0127 

deletion 

35 1 100  100 100  Yes 

101 2 100  100 100 100  Yes 

121 47 100 100  100 96 100 100  Yes 

193 6 100  100 100 100  

lmoB-lmo0127 

deletion 

204 4 100  100 100 100 100  Yes 

372 1 100  100 100  Yes 
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398 1 100  100 100  

lmoB-lmo0127 

deletion) 

1) Three version of the SSI island is observed i.e. the five-islet Stress Survival Islet-1 (SSI1) associated with acid and salt stress and assumed to be involved in 

persistance (Hein et al., 2011; Ryan et al., 2010). In same location in other MLST types is either observed the L. innocua version encoded by the lin0464-5, here 

referred to as SSI-Li, or the one-gene islet identical to the one islet observed in F2365 encoded by LMOf2365_0481, here referred to as SSI-F2365.  

2) Schmitz-Esser et al. (2015) showed that nine genomes of ST121 all contained a 12.5 kbp insertion with LM6179_0173 encoding a protein hypothesized to be 

related to persistence. 

Page 21 of 28

Wiley-Blackwell and Society for Applied Microbiology

This article is protected by copyright. All rights reserved.



 

22 

 

Table 3. Genes specific to STs ST7, ST8 and ST121 isolates relative to the 90 Listeria monocytogenes isolates, respectively. ST specific genes Listeria 

monocytogenes ST7, ST8 and ST121 were identified and these genes belong to the core genome of the respective ST, but are not found in any other of the 

90 isolates. Annotation in previously published genomes 10304S for ST7, R479a for ST8 and 6179 for ST121 are given as and references for previously 

characterized genes.  

ST Locus tag  Systematic 

gene 

name  

Description of gene Observed in other ST Reference of published genes 

ST7 LMRG_0005   hypothetical protein with motB domain CC7 + other ST  

 LMRG_0006   hypothetical protein with ParB-like and HNH nuclease 

domains 

CC7 + other ST  

 LMRG_2573   transcription activator of glutamate synthase operon GltC CC7 + CC131  

 LMRG_2574   Acetyltransferase (GNAT) family protein CC7 + CC131  

 LMRG_2575 hsdR RM type I subunit R DEAD/DEAD box helicase CC7  

 LMRG_2576 hsdM RM type I subunit M - N-6 DNA methylase CC7  

  LMRG_2577 hsdS RM type I subunit S  - enzym specificity subunit S CC7  

  LMRG_2891   hypothetical protein with no domain CC7  

  LMRG_2892   hypothetical protein with MTH538 TIR-like domain CC7  

  LMRG_2933   hypothetical protein with domain of Magnesium-

transporting ATPase (P-type) 

CC7 + CC415  

  LMRG_2934   hypothetical protein (ccrB like recombinase gene) CC7  

  LMRG_2935 

(alternative 

location)  

  Integrase with pfam00239 domain CC7  
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  Not found in 

10304S, located 

downstream of 

LMRG_02935 

  hypothetical protein with no domain CC7  

       

 ST8 LMR479a_0530   RM type I subunit S  - enzyme specificity subunit S CC8 + other ST (Fagerlund et al., 2016) 

  LMR479a_0532   RM type I subunit S  - enzyme specificity subunit S  CC8 (Fagerlund et al., 2016) 

  LMR479a_0811   Hypothetical protein with COG4640 domain. CC8 (Fagerlund et al., 2016) 

  LMR479a_1125   RM type III methylation unit CC8 (Fagerlund et al., 2016) 

  LMR479a_1126   RM type III restriction endonuclease CC8 (Fagerlund et al., 2016) 

  LMR479a_1132   ATP/GTP-binding protein  CC8 (Fagerlund et al., 2016) 

  Not found in 

R479a, located 

between 

LMR479a_1132 and 

LMR479a_1133 

  ATP/GTP-binding protein  - Tn916 transposon CC8  

  LMR479a_1133   AIPR protein CC8 (Fagerlund et al., 2016) 

  LMR479a_2950   hypothetical protein with DUF4303 domain CC8  

         

ST121 LM6179_RS01725   hypothetical protein ST121 + other ST  

  LM6179_RS01730   Polymorphic toxin systems   

  LM6179_RS02965 lmoJ2M Modification methylase BspRI ST121 + J2479 (Lee et al., 2012) 
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 LM6179_RS02970 lmoJ2R AlwI restriction endonuclease ST121 + J2479 (Lee et al., 2012) 

  LM6179_RS03050   cell surface protein ST121 + ST11  

 LM6179_RS03705   membrane associated lipoprotein ST121 + other ST  

 LM6179_RS05470   hypothetical protein ST121  

 LM6179_RS05815   hypothetical protein ST121 + other ST  

 LM6179_RS11180 tetR type transcriptional regulator BetI ST121 (Mûller et al., 2013) 

 LM6179_RS11185 qacH SugE protein ST121 (Mûller et al., 2013) 

 LM6179_RS11190 tnpC hypothetical protein ST121 (Mûller et al., 2013) 

 LM6179_RS11195 tnpB integrase/recombinase ST121 (Mûller et al., 2013) 

 LM6179_RS11200 tnpA integrase/recombinase ST121 (Mûller et al., 2013) 

  Not annotated in 

6179 

  CRISPR sequence ST121 

 

 

1) Previously published locus tag in 10304S for ST7, R479a for ST8 and 6179 for ST121
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Supporting information Captions 

 

Fig. S1.Bayesian phylogenetic reconstruction and divergence date estimates of the Listeria 

monocytogenes A) ST7 and B) ST8 isolates. Bayesian statistics were used to estimate the divergence 

times of predicted ancestors. The tree was based on a) 85 SNPs and b) 54 SNPs identified from 

whole-genome sequencing. 

 

Fig. S2. Bayesian phylogenetic reconstruction and divergence date estimates of the Listeria 

monocytogenes ST121 isolates. Bayesian statistics were used to estimate the divergence times of 

predicted ancestors. The tree was based on 223 SNPs identified from whole-genome sequencing. 

 

Fig. S3. Biocide Minimal Inhibitory Concentration (MIC) with a selection of Listeria monocytogenes 

isolates. MIC of biocides used in the processing plants included in the 2013-14 sampling performed 

in TSB with 1% glucose at 20°C with selection of Listeria monocytogenes isolates (Table S5).  

 

Fig. S4. Plot of linear regression analysis of root-to-tip distances against sampling time using TempEst 

(Rambaut et al, 2016).  

 

 

Table S1. Presumptive Listeria monocytogenes-samples included in 2013-14 sampling period. 

Number of presumptive Listeria monocytogenes-samples received at private laboratory from the 

two processing plants during the 2013-14 sampling period and number of samples that were MLST 

typed.   

 

Table S2. Origin of Listeria monocytogenes positive samples from each plant. Origins of samples that 

are MLST typed and of the most abundant MLST STs in each processing plant.  

 

Table S3. Time line of Listeria monocytogenes-positive samples. Number of L. monocytogenes 

samples that were MLST typed each month over the 2013-14 sampling period showing the season 

variation both for all MLST sequence typed isolates and the most abundant MLSTs.  

 

Table S4. MLST distribution of Listeria monocytogenes isolates included in the study. MLST 

distribution within 2013-14 sampling period and the collection of old and reference strains showing 
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the number of isolates of each MLST and how many times this MLST was received at the private 

laboratory. Further showing the number of isolates selected for genome sequencing and the source 

of the isolates from the collection of old and reference strains. 

 

Table S5: List of the 90 Listeria monocytogenes isolates included in the comparative genome 

analysis. List of all isolates included in the genome analysis including place and year of isolated. For 

isolates that are previously published or the genomes that are public available are reference and/or 

accession number given 

 

Table S6. Characteristics of the 90 Listeria monocytogenes dependent on ST. Characteristics of the 

genome sequenced isolated including number of isolates of each MLST, minimum and maximum 

number of core genome Single Nucleotide Polymorphism (SNP) between any two isolates with 

subtype.  

 

Table S7. Distance matrix of Single Nucleotide Polymorphisms (SNPs) of the 90 Listeria 

monocytogenes. Distance matrix of Single Nucleotide Polymorphisms (SNPs) between any two 

isolates based on core genome of EGDe where 229,610 bp of accessory positions have been 

removed. The matrix of within same ST SNPs are marked with blue. Yellow marking is the lowest and 

highest number of SNPs between Lineage I and II isolates. Orange marking is the lowest number  of 

SNPs to another ST. 

 

Table S8. Characteristic of the Listeria monocytogenes clonal and close-to-clonal groups. 

Characteristic of possible Clonal groups divided by the strict clonal group definition (≤4 SNP) or 

groups of close-to-clonal isolates that are plant-specific (>4 SNPs).  

 

Table S9. Genome mining of presumptive persistence genes, biocide genes and phage genes of the 

90 Listeria monocytogenes isolates. Contigs or assembled genomes of each isolate were analyzed by 

blastn against presumptive Listeria monocytogenes persistence and biocide genes identified by 

literature search. If gene was detected in isolate bits score is given. The BacMet database of 325 

verified biocide protein was used for a blastx analysis to identify homologies in the sequenced 

genome. PhySpy was used to analyze for presumptive phage genes and number of presumptive 

prophages detected is given.  
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Fig. 1. Time of isolation of Listeria monocytogenes isolates. Timeline of isolation for of the 90 Listeria 
monocytogenes included in the whole genome sequencing analysis based on the ST. Asterisk indicates the 

number of genomes that was downloaded from NCBI.  
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Fig. 2. Phylogeny of Listeria monocytogenes isolates based on whole genome sequencing. A) Maximum-
likelihood phylogenetic relationship of all 90 Listeria monocytogenes isolates. Isolates are colored according 

to origin with red are sampled in year 2013-14. Isolates marked in green are of non-Danish origin. B) 

Maximum-likelihood phylogenetic relationship of the 47 ST121 isolates and isolated are colored according to 
from which processing plant they are isolated.  
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