
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Apr 25, 2024

Higher-order multi-resolution topology optimization using the finite cell method

Groen, Jeroen Peter; Langelaar, Matthijs; Sigmund, Ole; Ruess, Martin

Published in:
International Journal for Numerical Methods in Engineering

Link to article, DOI:
10.1002/nme.5432

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Groen, J. P., Langelaar, M., Sigmund, O., & Ruess, M. (2017). Higher-order multi-resolution topology
optimization using the finite cell method. International Journal for Numerical Methods in Engineering, 110(10),
903–920 . https://doi.org/10.1002/nme.5432

https://doi.org/10.1002/nme.5432
https://orbit.dtu.dk/en/publications/5dbbef89-695c-44cc-b0ea-59654a291b6e
https://doi.org/10.1002/nme.5432


INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2017; 110:903–920
Published online 19 October 2016 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/nme.5432

Higher-order multi-resolution topology optimization using the
finite cell method

Jeroen P. Groen1,*,† , Matthijs Langelaar2, Ole Sigmund1 and Martin Ruess3

1Department of Mechanical Engineering, Solid Mechanics, Technical University of Denmark, Kongens Lyngby, Denmark
2Faculty of Mechanical, Maritime and Materials Engineering (3mE), Delft University of Technology, Delft, The

Netherlands
3School of Engineering, University of Glasgow, Glasgow, UK

SUMMARY

This article presents a detailed study on the potential and limitations of performing higher-order multi-
resolution topology optimization with the finite cell method. To circumvent stiffness overestimation in
high-contrast topologies, a length-scale is applied on the solution using filter methods. The relations between
stiffness overestimation, the analysis system, and the applied length-scale are examined, while a high-
resolution topology is maintained. The computational cost associated with nested topology optimization
is reduced significantly compared with the use of first-order finite elements. This reduction is caused by
exploiting the decoupling of density and analysis mesh, and by condensing the higher-order modes out of
the stiffness matrix. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the past decades, density-based topology optimization has become a mature design method, with
applications in a variety of industries. Despite the rapid advancements in computer performance,
large-scale topology optimization still comes at a high-computational cost, dominated by the finite
element (FE) analysis [1]. In this article, we extensively describe the advantages and limitations of
multi-resolution methods to reduce this computational cost. Furthermore, we present an efficient
multi-resolution topology optimization algorithm, while maintaining a high-resolution topology.

Currently, the far majority of topology optimization methods uses the same mesh for both density
description and analysis. The density elements are then directly mapped on first-order FE, which
due to their uniform size and shape allow for efficient assembly of the stiffness matrix. The intro-
duction of the finite cell method (FCM) by Parvizian, Düster, and Rank showed that a decoupling
of the density-mesh and analysis-mesh, in combination with higher-order shape functions, can out-
perform the aforementioned approach, for sufficiently smooth density distributions [2–4]. In this
fictitious domain method, multiple density elements are mapped on analysis cells operating at a
higher-order basis. This allows for accurate and efficient analysis of data directly derived from X-ray
scans or quantitative CT scans without the need for meshing [4–7]; however, the method is also very
interesting for topology optimization applications. To demonstrate this, the developers of the FCM
implemented a heuristic optimization method, showing promising results [8]. In a similar approach,
Nguyen et al. report a reduction in computational cost when decoupled meshes, linear shape
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904 J. P. GROEN ET AL.

functions, and a gradient-based optimization method are used [9, 10]. A similar approach is applied
in a very popular topology optimization app for hand-held devices [11], while in a more recent
study, Nguyen et al. have demonstrated the use of higher-order shape functions in combination with
this multi-resolution approach [12].

In this paper, we go a step further and dedicate a large part of our attention to the limits at which
topology optimization using higher-order multi-resolution methods can be performed, because this
will greatly help the method’s maturation. It is known that the FCM shows superior convergence
compared with first-order FE for smooth structures [13]; however, in topology optimization, highly
inhomogeneous topologies belong to the solution space [14]. Filter methods are employed to impose
a length-scale on the solution, and we demonstrate that the quality of the corresponding solution
depends on both filter and properties of the analysis mesh. Using a large number of numerical exam-
ples for typical minimum compliance and minimum displacement problems, we find an indication
of the parameters for which topology optimization using the FCM results in satisfying topologies
(i.e., topologies similar to the ones obtained using standard linear FE).

All experiments shown in this paper have been performed in a MATLAB framework that is cre-
ated on top of FCMLab: A Finite Cell Research Toolbox for MATLAB, developed by Zander et al.
[15]. The developed framework is similar to the efficient 88-line topology optimization code [16],
and the MATLAB implementation of the method of moving asymptotes (MMA) is used to solve the
optimization problem [17]. Using this efficient optimization framework, we present a detailed study
on the computational cost of the method and show its competitiveness compared with the use of lin-
ear FE. To do so, we present a modification to the FCM, where we condense the internal modes out
of the stiffness matrix using the Schur-complement, and show a significant gain in efficiency when
higher-order multi-resolution topology optimization is performed.

The paper is organized as follows: The methodology of the FCM is introduced in Section 2. In
Section 3, the theory used for the topology optimization is described. The limitations of the method
are identified and shown in Section 4. The corresponding tests on the efficiency of the developed
method are shown in Section 5, which also includes a detailed discussion on the performance of the
method. Finally, Section 6 will present the most important conclusions of this study.

2. THE VOXEL-VERSION OF THE FINITE CELL METHOD

In the voxel-version of the FCM, separate meshes are used to describe the geometry and to perform
the analysis. The elements involved with the analysis mesh are called cells, while the geometry
(topology) is described by density elements called voxels (volume pixels). Both cells and voxels
have a uniform shape throughout the design domain and are square in 2D problems and cubic in 3D
problems, as can be seen in Figure 1. The distribution of voxels within a cell can be parameterized
by the amount of voxels in one cell direction (nvoxel ); hence, the total amount of voxels in a cell
.nsc/ depends on nvoxel and the dimension of the design domain.

Figure 1. The different types of meshes used in the finite cell method, with nvoxel D 5.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2017; 110:903–920
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HIGHER-ORDER MULTI-RESOLUTION TOPOLOGY OPTIMIZATION 905

The displacement field in a cell with a complex material distribution cannot be interpolated with
sufficient accuracy using linear shape functions; therefore, the FCM includes the p-version of the
FEM [18]. The voxel contributions to the cell stiffness matrix (kc/ are applied using a composed
integrations scheme, that is, the stiffness matrix and load vector are integrated in the voxels and then
mapped on the cells [2, 4], where the voxel stiffness is interpolated using the solid isotropic material
with penalization (SIMP) method [19]:

kc D
nscX
iD1

�
Emin C NQ�

q
i .E �Emin/

�
k0i (1)

where NQ�i is the physical density associated with the i th voxel, q is the penalization factor, E is the
Young’s modulus of a solid voxel, Emin is a very small value .� E � 10�9/ to avoid ill-conditioning
of the stiffness matrix, and k0i corresponds to the contribution of the i th voxel using a unit stiffness.

2.1. Higher-order shape functions

Integrated Legendre polynomials are used to form the higher-order basis. Contrary to Lagrange
polynomials, Legendre polynomials are hierarchic, that is, the shape functions for polynomial
degree p are included in the approximation space when degree p C 1 is used, as can be seen in
Figure 2.

The corresponding one-dimensional set of shape functions can be defined as follows:

N1.�/ D
1

2
.1 � �/

N2.�/ D
1

2
.1C �/

Ni .�/ D �i�1.�/; i D 3; 4; : : : ; p C 1

(2)

where Ni .�/ corresponds to the i th shape function, and where � corresponds to an integrated
Legendre polynomial.

With the integrated Legendre polynomials as basis functions, the displacement field can be
interpolated:

u.�/ D N1.�/u1 CN2.�/u2 C

pC1X
iD3

Ni .�/ui (3)

Here, u1 and u2 correspond to the nodal displacements, while ui corresponds to the amplitudes of
the higher-order shape functions.

The one-dimensional shape functions can be used in two-dimensional or three-dimensional
problems, by combining the bases in the tensor product space [15]:

N 2D
i;j .�; �/ D N

1D
i .�/N 1D

j .�/; i; j D 1; 2; : : : ; p C 1

N 3D
i;j;k.�; �; �/ D N

2D
i;j .�; �/N

1D
k .�/ i; j; k D 1; 2; : : : ; p C 1

(4)

Figure 2. Set of one-dimensional standard (left) and hierarchic (right) shape function for p D 1; 2; 3 [20].

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2017; 110:903–920
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906 J. P. GROEN ET AL.

In the current code, the full tensor product space was used, due to its support in FCMLab [15].
Alternatively, the trunk space, which is a deflated version of the tensor product space, will produce
an equivalent solution quality with less degrees of freedom, especially for higher-order polynomial
degrees [18, 20]. On a standard quadrilateral element, three different types of modes can be distin-
guished, shown in Figure 3. The nodal modes and edge modes are shared with adjacent cells, while
the internal modes are local to one cell.

2.2. Static condensation

A disadvantage of a higher-order basis is the large amount of internal modes with increasing
p-degree, that is, modes that are specific to only one cell. Figure 4 shows the number of internal
modes and the total number of modes at different p, for both 2D and 3D problems.

These internal modes can be eliminated from the global system of equations by condensing them
out of the stiffness matrix, decreasing the computational cost of the analysis. Furthermore, the
procedure results in a drastic decrease in the condition number, which is highly beneficial when
iterative solvers are considered [21]. The global system of equations can be re-ordered such that the
condensed matrix becomes the Schur complement of Ki i in K.�

Kee Kei

KT
ei Ki i

�²
Ue
Ui

³
D

²
Fe
Fi

³
(5)

where U is the displacement vector, F is the force vector, subscript e denotes the external modes,
while subscript i corresponds with the internal modes. From the second row of the system of
equations, it follows that

Ui D K�1i i
�
Fi �KT

eiUe
�

(6)

Substitution in the first row of Equation (5) yields�
Kee �KeiK�1i i KT

ei

�
Ue D Fe �KeiK�1i i Fi (7)

Figure 3. Two-dimensional mode types [15].

Figure 4. Number of internal degrees of freedom .nint/ and external degrees of freedom .next/ in kc as a
function of p for both 2D and 3D problems.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2017; 110:903–920
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which is the condensed system of equations,

K�Ue D F� (8)

where Ue and F� denote the condensed systems displacements and loads, respectively. Because the
indices of Ki i are purely local to one cell, we can assemble the condensed stiffness matrix .K�/
efficiently by mapping the contributions of the condensed cell stiffness matrices .k�c /:

k�c D
�
kc;ee � kc;eik�1c;i ik

T
c;ei

�
(9)

3. TOPOLOGY OPTIMIZATION

Topology optimization can be seen as a material distribution problem. The goal is to find an optimum
material distribution that minimizes an objective function OF . This function is subject to m con-
straints OGi , of which the first is generally a volume constraint. The design domain � is discretized
into voxels (volume pixels) to which design variables are assigned, all variables together form the
design vector �. The material distribution is allowed to vary between 0 and 1 for gradient-based
optimization.

The discretized topology optimization problem will have a mesh-dependent solution. Further-
more, numerical artifacts, similar to the well-known checkerboard patterns, need to be omitted from
the solution space. To do so, several established filter methods are used in our model, such as the
sensitivity filter, the density filter, the density filter with projection, and robust topology optimiza-
tion [22]. The description of each of these filters and their corresponding sensitivities can be found
in Appendix A. Using these filter methods, the design vector � is linked to the physical density in
each voxel NQ�; hence, the discretized optimization problem can be written as [23]:

min
�
W OF .�/ D F.�;Ue/

s.t. W K�Ue D F�

W OG1.�/ D vT NQ�.�/ � Vmax � 0

W OGi .�/ D Gi .�;Ue/ � 0; i D 2; : : : ; m

W 0 � � � 1

(10)

where v is the vector containing the element volumes, and Vmax is the maximum allowed volume of
the material in the design domain. The optimization problem described earlier is a nested topology
optimization problem, that is, the equilibrium equations are satisfied for each optimization step using
the FCM. For the design update, the MATLAB implementation of the MMA is used [17].

3.1. Definition of test-problems

In this study, four representative test-problems are used to test the limitations and the computational
cost of performing topology optimization with the FCM. The MBB-beam, which is a typical bench-
mark example, is used to test the behavior for minimum compliance problems, where, because of
the symmetry of the design problem, we model only half of the beam. In another, more challenging
minimum compliance problem, a cantilever beam, is subject to a uniform traction load. This will
demonstrate the performance of the method in regions subject to very small loads. Furthermore, the
well-known compliant force inverter is used to identify the performance of the method for mecha-
nism design problems, and the ability of the method to form hinges [24]. Finally, a 3D, and slightly
shortened version of the MBB-beam is used to test the computational cost of topology optimization
with the FCM. Sketches of the domain and boundary conditions of each of these examples can be
found in Figure 5.

In all 2D-examples, plane stress conditions are assumed. For the 2D-version of the MBB-beam,
we chose F D 1, for the cantilever-beam subject to a distributed load F D 1=L, and for both cases
V � D 0:4. For the 3D-version, the domain is extended to the z-direction with depth L=2, while the
domain length in the y-direction is increased fromL=3 toL=2, the corresponding maximum volume

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2017; 110:903–920
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908 J. P. GROEN ET AL.

Figure 5. Design domain and boundary conditions for the optimization problems considered.

is V � D 0:12. Similar to the domain, the boundary conditions are extended in the z-direction, where
the load is now applied as a line load F D 1=L. For the mechanism design, the objective is to
minimize the displacement uout for a given input force fin D 1. The spring coefficients used are
kin D 1, and kout D 0:001, and V � D 0:3. For all optimization problems, L is a unit length, a unit
Young’s modulus is used, � D 0:3, a penalization factor q D 3 is used, leaving just the polynomial
degree p, the amount of voxels per cell direction nvoxel , and the filter radius R as free parameters.
A common formulation to write the objective is

min
�
OF .�/ D LTe Ue (11)

where vector Le takes different forms for the different types of problems. In the minimum compli-
ance problems, Le D F�, while for the mechanism design problem, Le is a vector which contains all
zeros except for the index corresponding to uout , which is set to one. The sensitivity of the objective
w.r.t. physical density NQ�i can be calculated by adjoint sensitivity analysis [25],

@ OF

@ NQ�i
D �Tc;e

 
@kc;ee
@ NQ�i

�
@kc;ei
@ NQ�i

k�1c;i ik
T
c;ei C kc;ei

�
k�1c;i i

@kc;i i
@ NQ�i

k�1c;i i

	
kTc;ei � kc;eik�1c;i i

@kTc;ei
@ NQ�i

!
uc;e

(12)
where � is the adjoint vector that can be obtained using

�Tc;e D �.K
�/�1LTe (13)

it can be seen that for compliance minimization problems � D �Ue .

4. LIMITATIONS OF HIGHER-ORDER MULTI-RESOLUTION TOPOLOGY OPTIMIZATION

The solution space in topology optimization examples consists of highly inhomogeneous topologies.
When first-order FE are utilized, these inhomogeneities can be exploited by the optimizer, resulting

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2017; 110:903–920
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Figure 6. Optimization of the MBB-beam example using a discretization of 180 � 60 voxels.

in checkerboard patterns, where the stiffness of these checkerboards is overestimated [14, 26]. To
circumvent this problem, filter methods are used to impose a length-scale on both material and void.
In a similar fashion, the heterogeneities in the solution space can be utilized when higher-order
multi-resolution topology optimization is performed. To demonstrate this, consider the MBB-beam
optimization example, where p D 4, and nvoxel D 5. In Figure 6(a), a solution is shown, where no
filter method is used.

4.1. The need for restriction of the solution space

The compliance cobj of the highly heterogeneous solution in Figure 6(a) cannot be estimated cor-
rectly by the analysis model .p D 4; nvoxel D 5/. The solution space of the displacement field
does not allow the sharp variations in strains or displacement corresponding to these heteroge-
neous cells; hence, the displacement is underestimated, making the cells artificially stiff. When the
compliance is recalculated in a post-verification step cpost , using a highly accurate analysis model
.p D 3; nvoxel D 1/, it can be seen that the stiffness of the structure is greatly overestimated.

This problem, where the solution field cannot be computed accurately over highly non-smooth
regions, is well known, and generally resolved using a local overlay mesh [4]. For topology opti-
mization applications, the topology is not known a-priori, and hence, we argue that an imposed
length-scale on both solid and void will resolve the problem as well. Here, the length-scale is
imposed using the mesh-independent filter methods (Appendix A) that regularize the solution. If
the filter fully covers an analysis cell, the occurrence of artificially stiff patterns is banned from the
solution space. Nevertheless, we argue that the introduction of a length-scale also works well when
the filter is much smaller than the analysis cell if p is high enough. The introduction of this small
length-scale will make sure that the presence of a density discontinuity within a cell can be captured
by a sufficiently accurate analysis model.

In topology optimization problems, the goal is to locally maximize the mutual energy term
�Tc;ek

�
cuc;e (equal to the strain energy density for minimum compliance problems), such that the

objective is minimized. Therefore, to obtain well-connected structures, it is sufficient that the value
of �Tc;ek

�
cuc;e is worse for discontinuous structures compared with the value for well-connected

designs and that this negative effect is sufficiently reflected in the design sensitivities. If this is
the case, the solution will be directed towards a well-connected design; hence, a very accurate
representation of the solution field over the discontinuity is not required.

To demonstrate this proposition, we go back to the MBB-beam problem of Figure 6(a) where
the strain energy density of the discontinuous cells is greatly overestimated. In Figure 6(b), it is

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2017; 110:903–920
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910 J. P. GROEN ET AL.

shown that an imposed length-scale, although even small, already results in an acceptable topology
that is exactly similar to the design obtained when first-order FE is used, shown in Figure 6(c). The
introduction of a length-scale also works well for high nvoxel in combination with a high polynomial
degree, as explained earlier. This is illustrated by Figure 6(d), where the cell size is 15 voxel-lengths
h, while the filter radius is just 2h.

A relation exists between the filter method on the one side and the quality of the analysis model
on the other side, determining whether an acceptable solution can be obtained. An analysis model
of low quality, that is, low p, high nvoxel , combined with a large R may result in an acceptable
solution; however, a high-quality analysis model with small filter radius R may still overestimate
the cell stiffness in the presence of a density discontinuity. In the previous examples, the chosen
filter-radius R D L=30 corresponds to two voxel-lengths h. In the following, we specify R in terms
of h, because this is an indicator for the locally imposed length-scale on the physical density and
therefore directly linked to the occurrence of these artificially stiff patterns.

4.2. The validity of optimized solutions

The solutions obtained using the FCM as analysis model have to be compared with the well-
established solutions obtained using linear FE. When these solutions are similar in both performance
and topology, they are deemed acceptable/satisfactory.

To test the performance of the optimized designs, we propose two different methods to check the
validity of the results:

� Post-verification: It is extremely important to post-verify the objective and constraints, with
a high-quality analysis model .p D 3; nvoxel D 1/. The artificially stiff patterns shown in
Figure 6(a) can be immediately identified by comparing cpost and cobj . Furthermore, post-
verification of the objective is the only way to obtain a fair comparison between generated
topologies using different analysis models.
� Visual check: The effect of a discontinuity in a low-load region does not always translate into

a large difference between cpost and cobj . For the problem where the cantilever is subject to
a distributed load, disconnected patches of material may occur in the low-load region of the
upper-right corner, as can be seen in Figure 7. The effect of these disconnected regions on the
behavior of the structure is small; hence, they should be identified via a visual check of the
solution.

The visual check may not always work for large 3D examples, for example, discontinuities can
exist within a closed cell. However, in this case, one can also consider the strain energy density for
the solid voxels in the post-verified solution. If these strain energy densities are several orders of
magnitude smaller than for other solid voxels, these solid voxels are non-load carrying and indicate
the presence of a discontinuity.

Figure 7. Optimization of the distributed load optimization example using a discretization of 120�60 voxels,
using sensitivity filtering with R D 2h.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2017; 110:903–920
DOI: 10.1002/nme



HIGHER-ORDER MULTI-RESOLUTION TOPOLOGY OPTIMIZATION 911

Figure 8. Close up of the low-load regions of the distributed load optimization example for a discretization
of 240 � 120 voxels, using sensitivity filtering with R D 2h.

4.3. The occurrence of artificially stiff patterns in low-load regions

Artificially stiff patterns are most likely to occur in regions where the sensitivity analysis cannot
sufficiently reflect the difference between a well-connected and an artificially stiff pattern. This
effect can be captured best by the the distributed load problem (Figure 7), where at the low-load
regions the strain energy density is small compared with the rest of the domain. Correspondingly,
the sensitivities are very small; hence, it can be more beneficial to have a disconnected structure with
a slightly lower strain energy density than a well-connected structure that requires more material.
Therefore, the analysis model has to have a sufficiently high p, such that the negative effect of an
artificially stiff pattern can be reflected in the design sensitivities, and hence, the optimizer will end
up with a well-connected design.

If a sensitivity or density filter is used, it is also possible that gray material, that is, material of
intermediate density, is introduced at these low-load regions. This happens as well when first-order
FE are used, for example, Figure 8(a). However, if these regions of gray material show some local
variation between dense and less-dense voxels, as is the case in Figure 7(a) and (b), then this is still
considered an unacceptable solution. This local variation between dense and less-dense voxels is
caused by the optimizer exploiting the analysis model and will never occur when first-order FE are
used. Therefore, even small variations as in Figure 8(b) are deemed unacceptable.

4.4. The effect of the filter method and filter radius

Maximum design resolution is obtained for a small filter radius R. However, a small R requires
a very accurate analysis model, which means that the method will be computationally much more
expensive than the use of first-order FEs. Therefore, the smallest value of R has to be found, which
allows well-connected solutions for an analysis system of moderate quality. To do so, all 2D experi-
ments have been performed using sensitivity filtering, for differentR, p, for a fixed nvoxel D 10. We
have chosen to keep a fixed, large number of voxels per cell to allow for structural members smaller
than the cell-size. The lowest polynomial degrees for each R that do not result in discontinuous
structures can be found in Figure 9.

It can be seen that the cantilever beam subject to a distributed load is by far the most critical exam-
ple, because of the low load or density regions. The MBB-beam and the compliant force inverter
example show a similar but less critical behavior for small filter radii. Furthermore, it can be seen
that a filter-radius of 1:8h or larger requires an analysis system of moderate p-degree. We choose to
use a filter radius of 2h in the remainder of this study.

Besides the filter radius, the different filter methods have a different effect on the occurrence of
artificially stiff patterns. A detailed description of these filter methods can be found Appendix A. In
Figures 8(a) and 10, the solutions obtained for the distributed load example are shown for all differ-
ent filter methods using p D 6, and nvoxel D 10. As indicated in Figure 9, it is not advised to use
these settings, and for all examples, the obtained solutions were not deemed acceptable. However,
these unacceptable topologies are good indicators of the differences between the filter methods.
For both sensitivity and density filter, the transition between solid and void is gradual; hence, the

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2017; 110:903–920
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Figure 9. Lowest polynomial degree p that did not result in artificially stiff patterns vs filter radius R, for
three different test-problems, using sensitivity filtering.

Figure 10. Optimization of the distributed load optimization example using p D 6, nvoxel = 10, and a
discretization of 240 � 120 voxels. Different filter methods are used with R D 2h.

patches of material are not completely disconnected. The density filter using the Heaviside projec-
tion can easily end up with an artificially stiff pattern, because it only imposes a length-scale on the
solid. Therefore, this filter method will not be considered any further in this study. The modified
Heaviside projection filter normally performs better, because it imposes a length-scale on the void.
However, because it does not put a length-scale on the solid, very thin structural members can occur.
In this example, one of the structural members ends abruptly, as can be seen in the top right cor-
ner. The analysis model is not able to capture this disconnection, and hence, this point is artificially
stiff. Finally, it can be seen in Figure 10(d) that the robust formulation imposes a length-scale on
both solid and void. At first sight, the structure seems to perform well; however, a close-inspection
of the low-load region reveals that the structure performs worse compared with a reference solu-
tion obtained with first-order FE. The optimizer thus ended up at an artificially stiff local minimum;
hence, the solution is regarded as unacceptable.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2017; 110:903–920
DOI: 10.1002/nme
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Figure 11. The compliant inverter example for nvoxel D 20 and p D 13. A discretization of 120 � 60
voxels is used, and sensitivity filtering is applied with R D 2h.

Figure 12. The compliant inverter example for nvoxel D 5 and p D 4. A discretization of 120 � 60 voxels
is used, and sensitivity filtering is applied with R D 2h.

4.5. Experiments on the limits of higher-order multi-resolution topology optimization for R=2h

To attain a good overview of the limits at which higher-order multi-resolution topology optimization
can be performed, all 2D test-problems were solved for different p, nvoxel , for two mesh sizes (i.e.,
coarse and fine) and for the different filter methods (sensitivity filtering, density filtering, density
filtering with the modified Heaviside projection, and robust topology optimization) all with R D
2h. In total, more than a thousand different experiments have been performed, of which the most
important observations are summarized as follows:

� Similarities in generated topologies: The acceptable optimized topologies (i.e., no artificially
stiff patterns) are very similar to the optimized topologies obtained when first-order FE is used.
Because of the self-adjoint nature of minimum compliance problems, the resulting topologies
are almost identical, as can be seen in Figure 6 (b)–(d). The compliant force inverter example is
more prone to end up at local minima due to the more complex nature of the objective function.
Therefore, the solutions show more variation as can be seen in Figures 11 and 12; however,
their corresponding post-verified objectives are all in the same range.
� Effect of analysis model on local minima: The type of analysis model does not seem to have

an effect on the optimizer getting stuck in strong local minima. The use of higher-order shape
functions allows for hinges at cell nodes or within a cell as can be seen in Figures 11 and 12. For
all the performed experiments, we could not identify that one location for a hinge was favored
over another; furthermore, the hinge was able to move freely during the design iterations.
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� Effect of the cell size: A larger nvoxel requires a higher polynomial degree to prevent the for-
mation of discontinuities within a cell. All experiments have shown that the FCM works very
well as analysis model up to nvoxel D 15 or even nvoxel D 20, see for example Figures 6(d)
and 12. However, a large value of nvoxel increases the amount of possibilities in which artifi-
cially stiff patterns can occur. Larger values of nvoxel thus require more degrees of freedom to
prevent the occurrence of these undesired patterns compared with the use of a smaller number
of voxels per cell, for examle, nvoxel < 8. Furthermore, the combination of a high-polynomial
degree and a high number of voxels requires the storage of a large number of voxel contri-
butions to the cell stiffness matrix k0i , especially for 3D-problems. Thus, the cell size poses a
limit on the computational cost, and no values of nvoxel > 15 are recommended.
� Effect of filter methods: The different filter methods have a different effect on the occurrence

of artificially stiff patterns. However, we observed great similarities for the settings of the anal-
ysis method that did result in artificially stiff patterns. If a type of analysis system produced an
acceptable topology using the sensitivity filter, then this analysis system was almost guaranteed
to work as well with the density filter, or with the robust topology optimization formulation.
In a few cases that work well for the other filter methods, the density filter with the modified
Heaviside projection produces artificially stiff patterns, and this is because no length-scale is
posed on the solid part as is discussed in Section 4.4. Nevertheless, this filter method worked
well in almost all cases.
� Effect of the mesh-size: All 2D experiments have been performed on two different mesh sizes

to find the effect of the mesh-size. The MBB-beam has been modelled on a mesh of 180 � 60
elements, and on a mesh of 360 � 180 elements. The cantilever beam is modelled on a coarse
mesh of 120 � 60 elements, and on a fine mesh of 240 � 120 elements, while for the force-
inverter example, a mesh of 120�60 and a mesh of 160�80 has been used. No differences could
be found between the experiments performed on a coarse mesh and the experiments performed
on a fine mesh. The reason is that the filter radius has been linked to the voxel-width h.
� Artificially stiff patterns in the first iterations: Artificially stiff patterns can arise during the

first 10–100 iterations, as can be seen in Figure 13. Here, the stiffness of the horizontal struc-
tural member, which is going through the middle of the top cells, is overestimated. Normally,
these patterns are gradually removed by the filter methods, yielding an acceptable solution.
This effect can still be undesired when topology optimization is performed interactively [11].
Furthermore, it is not always the case that the filter methods are able to remove these patterns,
recall the topology obtained using the robust formulation in Figure 10(d), where this exact
same structural member is part of the final design. This effect is more likely to occur when a
cell consists of a large number of voxels, hence too large values for nvoxel should be avoided.
� Artificially stiff patterns in 3D: Visualization of 3D topologies can be carried out with a

data visualization program, for example, ParaView. Similar to artificially stiff cells in 2D, the
artificially stiff cells in a 3D problem consist of disconnected regions of material, and it is
interesting to note that they seem to occur at the exact same settings for the analysis system as

Figure 13. Optimization of the distributed load optimization example using p D 7, nvoxel D 10, and
a discretization of 120 � 60 voxels. Sensitivity filtering is applied with R D 2h. cobj D 14:9 J, and

cpost D 15:5 J.
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Figure 14. Optimization of the 3D MBB-beam example using a discretization of 80� 40� 40 voxels, using
sensitivity filtering with R D 2h.

in the 2D MBB-beam example. In Figure 14, the difference between an acceptable topology
(a), and one with artificially stiff patterns (b) can be seen clearly. The values for cpost were
obtained with p D 2, and nvoxel D 2, to avoid memory problems in MATLAB.
� Effect of the optimization problem: Because of the occurrence of artificially stiff cells in

low-load regions, the optimization problem with the distributed load is more challenging and
does not work for all combinations of p and nvoxel that work for the MBB-beam and the force
inverter problems. This shows that the choice of analysis model depends on the optimization
problem and corresponding boundary conditions. Furthermore, this shows that the distributed
load optimization problem is good for finding the limits of a multi-resolution analysis method
and should be considered when a new method is tested.

All experiments showed great similarities in the settings for the analysis model that prevented
the occurrence of artificially stiff patterns. Therefore, these settings can be summarized in Table I.
The dark gray colored cells correspond to settings which in some or all of the tested experiments
resulted in artificially stiff patterns. For the light-gray cells, the occurrence of artificially stiff pat-
terns depends on the type of optimization problem and filter method. In some cases, these settings
resulted in artificially stiff patterns for the distributed load problem, but not for the other optimiza-
tion problems. Furthermore, the density filter using modified Heaviside projection is not guaranteed
to work. Therefore, these settings should be used with caution, and post-verification of the results
is advised to make sure the optimized solution is correct. The plain cells indicate settings yielding
acceptable solutions, and based on our numerical experiments, we believe that these settings are rep-
resentative for the settings that can be safely used in comparable topology optimization problems.
However, it is important to note that the presented results are not fully conclusive and should be
interpreted as an indication of which settings are prone to these artificially stiff patterns. The quality
of a solution depends on numerous parameters, such as, the type of optimization problem, bound-
ary conditions, and filter method, and settings indicated here as acceptable might in some cases still
result in overestimation of the stiffness. We can conclude that higher-order multi-resolution topol-
ogy optimization can work for a large number of different analysis systems. These findings can be
summarized as a (conservative) rule of thumb that holds for experiments performed with a filter
radius of R D 2 h,

p > round¹0:75 nvoxelº (14)

Furthermore, we observed that for nvoxel > 8 there are settings for which we cannot confidently
say that they will not result in artificially stiff patterns. In a future study, it would be interesting
to reduce the amount of light-gray cells by looking into the use of a local overlay mesh at high-
contrast regions [4]. Finally, in terms of accuracy, the settings that are indicated by the plain cells
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showed numerical convergence properties that are in line with the accuracy expected of the FCM
method [4]. The normalized error between cpost and cobj showed that p-refinement is more
beneficial than h-refinement.

Table I. Results of the experiments on the limitations of
higher-order multi-resolution topology optimization.

The dark gray colored cells indicate settings that yield artificially
stiff patterns, while for the light-gray settings, the occurrence of
artificially stiff patterns depends on the type of problem and fil-
ter method. The settings for the plain cells are likely to result in
acceptable topologies.

5. NUMERICAL EXPERIMENTS ON THE EFFICIENCY OF THE METHOD

The numerical cost of performing topology optimization is dictated by the cost of the repeated
solving of the analysis equations. In the framework used for this study, the solution is obtained
using the direct solvers implemented in MATLAB. For sparse matrices, the amount of operations
is O(n3=2e ) for 2D problems, and O(n2e) for 3D-problems, where ne is the size of the condensed
stiffness matrix [27]. The actual cost of the solution also depends on the order of the approximation,
linear shape functions will yield a highly diagonal stiffness matrix, while a higher-order basis will
increase the bandwidth, thus increasing the corresponding computational cost. With increasing p,
the amount of internal modes nc;i grows exponentially. For 3D optimization examples, the inversion
of kc;i i , which costs O(n3c;i ) operations, can thus have a large influence on the computational cost.

To show the computational cost for different values of p and nvoxel , two different optimization
examples will be discussed. The cantilever beam subject to a distributed load is used with a dis-
cretization of 240 � 120 voxels, and the 3D version of the MBB-beam is used with a discretization
of 80 � 40 � 40 voxels. In both optimization examples, sensitivity filtering is applied with R D 2h.
All optimization examples were solved using a single-core MATLAB code on a standard laptop PC.
The results for the 2D optimization example can be seen in Table II. For the 3D MBB-beam, it was
not possible to test all settings for nvoxel , due to problem discretization enforced by hardware lim-
itations. The settings that could be tested are shown in Table III. Please note that the setting for the
analysis model resulting in artificially stiff patterns, as well as the settings expected to be compu-
tationally more costly than first-order FE, have been disregarded, where the settings marked with
an asterisk .�/ indicate that they are more costly than first-order FE at comparable quality of the
analysis results.

It can be seen that decoupling of the density-mesh and analysis-mesh can be computationally
more efficient than topology optimization using first-order FE. For 2D problems, an increase in
speed of 2.9 can be achieved while maintaining a high-resolution topology without artificially stiff
patterns. For the settings where we are unsure whether artificial patterns can occur, a speed-up of
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Table II. Normalized speed-up per design iteration for the cantilever beam, subject to a uniform pressure
load.

A discretization of 240 by 120 voxels is used. The settings marked with an asterisk .�/ indicate that they are
computationally heavier than first-order FE.

Table III. Normalized speed-up per design iteration for the 3D
MBB-beam example.

A discretization of 80 by 40 by 40 voxels is used. The settings marked
with an asterisk .�/ indicate that they are computationally heavier than
first-order FE.

3.6 can be achieved. Because this is a minor difference, we would recommend to perform topology
optimization with settings .p D 2; nvoxel D 3/, .p D 3; nvoxel D 5/, .p D 4; nvoxel D 6/,
.p D 6; nvoxel D 8/ or .p D 7; nvoxel D 10/. A higher value for p or nvoxel shows a slight
increase in computational cost due to the inversion of kc;i i .

For 3D problems, the computational cost can be reduced even more. In this optimization example,
no artificially stiff patterns have been spotted for the settings in the light-gray cells, as can be seen
in Figure 14(a); hence, a speed-up in computational time of a factor 67 has been achieved. Still, we
would not recommend to use these settings blindly, especially because the more ‘robust’ analysis
model .p D 3; nvoxel D 5/ results in a computational speed-up of 32. It is interesting to note that in
the 3D-examples a moderately high p seems to be best. The use of p > 4 drastically increases the
cost of the inversion of kc;i i ; furthermore, a higher p increases the number of non-zero elements in
K�, which put a large burden on the memory requirements.

Optimization of the 128,000 design variables using first-oder FE costs around 300 seconds per
design iteration. When we use p D 3, and nvoxel D 5, this is reduced to 9.5 seconds per iteration,
resulting in a total optimization time of only 34 min. We are confident that the optimization time
can be reduced even further by using an efficient multigrid pre-conditioned iterative solver [28]. The
challenge here will lie in finding an efficient multigrid algorithm suited for higher-order methods,
which cannot be exploited by the artificially stiff patterns.

6. CONCLUSION

An efficient approach to perform higher-order multi-resolution topology optimization using voxel-
version of the FCM was presented. The most important finding is that a multi-resolution analysis
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model can overestimate the stiffness of highly inhomogeneous patterns, in a similar fashion as first-
order FE overestimate the stiffness of checkerboard patterns. This problem can be resolved using
mesh-independent filter techniques, where we showed the relation between the quality of the analy-
sis model and the imposed length-scale. Using more than thousand examples, we demonstrated the
limits at which topology optimization, in the framework of higher-order multi-resolution methods,
can be performed. Based on a number of representative test-cases, we have identified settings for
the analysis models for which acceptable solutions were achieved.

By reducing the size of the stiffness matrix using static condensation, we demonstrated that the
computational cost can be decreased significantly compared with the use of first-order FE. In 2D
optimization examples, an increase of speed of a factor 2.9 was achieved, while in 3D topology
optimization problems, an even more promising speed-up of 32 was possible. A 3D topology opti-
mization problem with 128,000 design elements was optimized on a standard PC in 34 min, using
the direct solvers implemented in MATLAB. This overall promising performance paves the way
for further development of the methodology by using efficient multigrid pre-conditioned iterative
solvers. We are confident that this will show further reduction in computational cost and might
further reveal the potential of the method for large-scale topology optimization.

APPENDIX A: FILTER METHODS USED IN THIS STUDY

A.1. Sensitivity filtering

For the sensitivity filter introduced by Sigmund [24], no difference exists between the physical
density and the design vector � D NQ�; however, the voxel sensitivity is now based on the sensitivities
of the surrounding voxels within a mesh-independent radius rmin. These filtered sensitivities are
then used to update the design vector,

@ OF

@�e
D

1

max.�e; 0:001/
Pne
iD1Hei

neX
iD1

Hei�i
@ OF

@ NQ�i
(A.1)

where ne is the number of voxel, andHei is a linear decaying weighting function. The small number
is put in the denominator to avoid division by zero. Hei depends on the distance between the voxel
center and the center of the surrounding voxel, as well as the filter radius rmin:

Hei D rmin � dist.e; i/ (A.2)

A.2. Density filtering

An alternative to the sensitivity filter is the density filter [29, 30]. The physical density of a voxel NQ�e
is defined as the weighted average of the design variables of neighboring voxels in rmin:

NQ�e D
1Pne

iD1Hei

neX
iD1

Hei�i (A.3)

Using the chain rule, the sensitivities with respect to the design variables can be obtained:

@ OF

@�e
D

neX
iD1

@ OF

@ NQ�i

@ NQ�i

@�e
(A.4)

A.3. Density filtering using a projection

A disadvantage of both sensitivity and density filter is that they introduce regions with intermediate
densities. To cope with this, a projection scheme base on a smoothened Heaviside function has been
introduced by Guest et al. [31]. In this approach, the filtered densities . Q�/ using the density filter are
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now referred to as the ‘intermediate design vector’. The physical density NQ� can be calculated using
the threshold method presented by [32],

NQ�e D
tanh.ˇ�/C tanh.ˇ. Q�e � �//

tanh.ˇ�/C tanh.ˇ.1 � �//
(A.5)

where � is the threshold parameter, and ˇ controls the smoothness of the Heaviside function. For
ˇ D 0, the filter gives exactly the same output as the density filter, whereas when ˇ goes towards
infinity, the Heaviside function is approximated. For � D 0, the projection corresponds to the Heav-
iside projection that applies a length-scale on the material, while � D 1 corresponds to the modified
Heaviside projection introduced by Sigmund that applies a length-scale on the void regions [19]. In
the experiments, an initial value of ˇ D 1 is used, which is doubled every 50 iterations until a max-
imum of ˇ D 64. The sensitivity of the objective function w.r.t. a design variable �e can be written
as follows:

@ OF

@�e
D

neX
iD1

@ OF

@ NQ�i

@ NQ�i

@ Q�i

@ Q�i

@�e
(A.6)

A.4. Robust topology optimization

Robust topology optimization has been introduced by Sigmund as a method to perform manufac-
turing tolerant topology optimization [33]. Small changes in manufacturing should not lead to large
changes in functionality. Another positive effect of this method is that it is able to put a length-scale
on both solid and void material, eliminating the longstanding problem of one-node connected hinges
[34].

In robust topology optimization, three different designs are formulated based on the same design
vector. These are a dilated . NQ�d /, intermediate . NQ�i /, and eroded . NQ�e/ design, with thresholds �, 0.5,
and 1 � �, respectively. The optimization problem is now reformulated as a min–max problem.
The sensitivities can be obtained using Equation (A.6). Analogous to [34], the volume constraint is
imposed on the dilated design and updated every 20 iterations.
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