

UV-Vis spectrophotometry for Wastewater Resource Recovery with Algae Photobioreactors

Valverde Pérez, Borja; Wágner, Dorottya Sarolta; Steidl, Michael ; Villez, Kris; Plósz, Benedek G.

Publication date: 2017

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

Valverde Péréz, B. (Author), Wágner, D. S. (Author), Steidl, M. (Author), Villez, K. (Author), & Plósz, B. G. (Author). (2017). UV-Vis spectrophotometry for Wastewater Resource Recovery with Algae Photobioreactors. Sound/Visual production (digital), Department of Environmental Engineering, Technical University of Denmark (DTU).

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- · You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

71828182

UV-Vis spectrophotometry for Wastewater Resource Recovery with Algae Photobioreactors

 $(H_{2}0+0_{2} \leq CO_{2}+H_{2})$

Borja Valverde-Pérez, Dorottya S. Wágner, Michael Steidl, Kris Villez, Benedek Gy. Plósz

DTU Environment Department of Environmental Engineering

Paradigm shift in wastewater treatment

Orcular scheme
Paradigm shift: wastewater→"used water"

Microalgae for used water recovery

DTU

- Most resource recovery schemes are based on chemical processes, e.g. struvite precipitation
- Cultivation of microalgae on used water resources
 - Nutrients recycling through bio-fertilizer production
 - Biofuel production
 - Decoupling food and biofuel production

End use: Fertigation
Biogas production

DTo conversion Department of Environmental Engineering

Experimental set up and operation

- The effect of the variation of N-to-P ratio is tested fed with treated municipal wastewater
- Mixed consortium and mono-culture
- Open system

5

Analytical procedure

Total suspended solids

Nitrate

- Pigments: chlorophyll, lutein, βcarotene and violaxanthin
- Nitrite
- Phosphate
- Stored nutrients
- Microbial diversity
 - Based on morphology of the different species
 - Using microscopy

Predictive model

- Spectra mean-centered
- Principal component analysis
- Principal component regression \rightarrow based on the most informative PCs
- Leave one out cross validation to find optimal model
- Revision of detection limits and signal saturation

Chlorella sp. – process performance

Chlorella sp. – principal component analysis

DTU Environment Department of Environmental Engineering

ntii

Chlorella sp. – principal component regression NO₃ 3 PCs

Chlorella sp. – principal component regression NO₃ 3 PCs

DTU Environment

Chlorella sp. – leave one out cross validation NO₃

Chlorella sp. – principal component regression NO₃ 14 PCs

Chlorella sp. – leave one out cross validation NO₃ without saturation

Chlorella sp. – principal component regression NO₃ 10 PCs without saturation

Department of Environmental Engineering

Chlorella sp. – principal component regression TSS 3 PCs

ΠΤΗ

Chlorella sp. – principal component regression TSS 3 PCs

DTU Environment Department of Environmental Engineering

Chlorella sp. – leave one out cross validation TSS

Chlorella sp. – principal component regression TSS 40 PCs

Department of Environmental Engineering

Chlorella sp. – leave one out cross validation TSS above detection limit

Chlorella sp. – principal component regression TSS 30 PCs above detection limit

DTU Environment Department of Environmental Engineering

Chlorella sp. – principal component regression TSS 10 PCs outliers removed

Department of Environmental Engineering

Chlorella sp. – principal component regression Chlorophyll 3 PCs

Department of Environmental Engineering

Chlorella sp. – principal component regression Chlorophyll 3 PCs

Measured Chlorophyll concentrations (mg L⁻¹)

Chlorella sp. – leave one out cross validation Chlorophyll

DTU Environment Department of Environmental Engineering

Chlorella sp. – principal component regression Chlorophyll 27 PCs

Chlorella sp. – leave one out cross validation Chlorophyll without saturation

DTU Environment Department of Environmental Engineering

Chlorella sp. – principal component regression Chlorophyll 24 PCs without saturation

DTU Environment Department of Environmental Engineering

Variation in microbial diversity

- Contamination by diatoms when N-to-P is lowered to 5
- Washout of diatoms when N-to-P is set back to 17
- Change in abundance of Chlorella and Scenedesmus sp.
- Hypothesis to test:
 - Do changes on shape and size affect the prediction capacity by UV-Vis sensors?

Mixed culture – process performance

Mixed culture – principal component analysis

ΠΤΙΙ

Mixed culture – principal component regression TSS 1 PC

Department of Environmental Engineering

Concluding Remarks

Monoculture

- More complex models required to predict data "out of range"
- Successful predictive models were built for nitrate, suspended solids and chlorophyll

Mixed culture

 Very simple model succesfully predicted the TSS despite contamination in the reactor.

Acknowledgements

The research was partly financed by EU European Commission, (E4WATER Project) and the Integrated Water Technology (InWaTech) project (http://www.inwatech.org)

