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Summary (English)

According to industry leaders, the world is on the verge of the fourth industrial
revolution in which the Internet of Things and cyber-physical systems are central
concepts. Where the previous industrial revolution evolved around electronics, IT and
automated production on machine level, Industry 4.0 will enable a much stronger
interaction between all of these technical achievements, from factory level all the way
down to the individual machine elements. This can be exemplified by its the impact
on machine maintenance. Nowadays, to avoid unwanted machine stops, maintenance
cycles are scheduled based on the principle of the weakest link, e.g., the minimum
expected lifetime of any machine element. In the future individual machine elements
will not only send information about their performance, they will also be able to
compensate for "wear and tear" or adapt to new operating conditions autonomously
in coordination with adjacent machine elements. This requires mechatronic machine
elements, which combine traditional passive mechanical components with sensors,
actuators, electronics and computer algorithms, which thereby become "self-acting"
machine elements, e.g. the piezoelectric air foil bearing (PAFB).

One way of supporting a rotor running at higher speed is by using air foil bearing
(AFB). An AFB utilizes the aerodynamic pressure created by the relative velocity dif-
ference between the rotor and the bearing surface. In an AFB the bearing surface is
flexible and is made up by a thin top foil and a bump foil placed between the top foil and
bearing housing. The PAFB combines the traditional AFB with piezoelectric material
incorporated into the top foil. This creates a link between the mechanical domain of the
traditional machine element and the electrical domain, i.e., ultimately a computer. The
thesis deals with the development of the PAFB, and gives three main contributions: the
design of a multifunctional test facility; the development of a state-of-the-art mathem-
atical model of the PAFB and AFB; and interpretation of numerical results contributing
to the understanding of both AFBs’ and PAFBs’ static and dynamic behaviours. The
facility is designed to experimentally study the PAFB and its sub-systems. This allows for
validation of mathematical models and gain of further knowledge of the PAFB’s static
and dynamic behaviour. The mathematical models, based on the finite element method
(FEM), are created as a combination of AFB models and models of piezoelectric material
and their constitutive equations. The model includes journal, air film, piezoelectric
top foil (PTF), bump foil and electrical circuit. It takes non-linear effects resulting
from the aerodynamic pressure into account allowing for a separation of the top foil
and bump foil. Numerical results obtained with a sub-model of the PTF shows good
agreement with experiments, while simulations of a passive PAFB closely resembles
results obtained with a non-linear AFB model known from literature.



ii Summary (English)

A numerical investigation shows that rotor-bearing sub-harmonic vibrations associ-
ated with large journal unbalance can be eliminated when the top foil is only partly
supported by the bump foil, i.e., "shallow pocket" effect. The aerodynamic forces are
significantly affected by the deformations of the PTF caused by the piezoelectric material
due to an electrical potential difference (EPD) imposed between the electrodes. It is
possible to increase the aerodynamic forces, and thereby the bearing load capacity, by a
factor of two. The future steps in the development of PAFB are the design of feedback
control laws and the experimental validation of a fully-controlled PAFB aided by the
designed test facility and mathematical model derived in the thesis.



Resumé (Dansk)

Ifølge industriens ledere står verden på dørtærsklen til den fjerde industrielle revolu-
tion, hvor "Internet of Things" og "cyber-physical systems" vil være centrale elementer.
Hvor den forrige industrielle revolution var centreret omkring elektronik, IT og automat-
iseret produktion på maskinniveau, vil "Industry 4.0" resultere i en stærkere interaktion
mellem alle disse teknologiske fremskridt, fra fabriksniveau helt ned til maskinelement-
niveau. Dette kan eksemplificeres ved dets indvirkning på maskinvedligeholdelsen. I
dag undgås uhensigtsmæssige produktionsstop ved at planlægge vedligeholdelse efter
princippet om "det svageste led", det vil sige at den korteste levetid dikterer vedli-
geholdelsescyklussen. I fremtiden vil individuelle maskinelementer ikke kun nøjes
med at sende informationer om deres tilstand, men de vil også kunne kompensere for
slid eller i samspil med andre maskinelementer kunne tilpasse sig selvstændigt til en
ændret driftssituation. Dette nødvendiggør mekatroniske maskinelementer, som igen-
nem en kombination af traditionelle maskinelementer, sensorer, aktuatorer, elektronik
og computeralgoritmer udgør intelligente maskinelementer, som for eksempel det
piezoelektriske folieluftleje (PAFB).

En mulighed for understøtning af en rotor som roterer med høj hastighed er bølge-
folieluftlejer (AFB). Et AFB benytter det aerodynamiske lufttryk som dannes på grund
af den relative hastighedsforskel mellem rotoren og lejeoverfladen. I et AFB er le-
jeoverfladen fleksibel og opbygget af en tynd topfolie og en bølgefolie, der er placeret
mellem topfolien og lejehuset. Et PAFB kombinerer det passive AFB med piezoelektriske
materialer inkorporeret i lejets topfolie. Dette skaber en sammenhæng imellem det
mekaniske domæne i det traditionelle maskinelement og det elektroniske domæne,
hvilket i sidste ende er en computer. Afhandlingen omhandler udviklingen af et PAFB, og
har tre primære bidrag: design af en fleksibel testopstilling; udvikling af en "state-of-the-
art" matematisk model af PAFB’er og AFB’er; og præsentation af numeriske resultater
som bidraget til forståelsen af den statiske og dynamiske ydeevne af både AFB’er og
PAFB’er. Formålet med testopstillingen er at foretage eksperimentelle studier af et PAFB
og dettes delsystemer. Dette muliggør eksperimentel validering af den matematiske
model samt indsamling af yderligere viden omkring et PAFB’s statiske og dynamiske
ydeevne. Den matematiske model, som er baseret på finite element metoden (FEM), er
en kombination af en model af et AFB og en model af det piezoelektriske materiale og
dettes konstitutive ligninger. Modellen inkluderer en stiv rotor, luftfilm, piezoelektrisk
topfolie (PTF), bølgefolie og elektriske kredsløb. Modellen tager højde for de ikke-
lineære effekter fra det aerodynamiske tryk, samtidig med at den tillader at topfolien
og bølgefolien ikke er i mekanisk kontakt. Numeriske resultater beregnet med en PTF
sub-model stemmer overens med eksperimentelle målinger, ligesom simuleringer af et



iv Resumé (Dansk)

passivt PAFB stemmer overens med resultater fra en ikke-lineær model af et AFB som
er beskrevet i litteraturen.

En numerisk undersøgelse viser at de subharmoniske vibrationer i et AFB, som
skyldes en stor masseubalance, kan elimineres, når bølgefolien kun delvist understøtter
topfolien. Dette sker på grund af "shallow pocket" effekten. De aerodynamiske kræfter
afhænger i høj grad af PTF deformationer, der skabes af det piezoelektriske materiale,
som følge af forskellen mellem de elektriske potentialer (EPD) på elektroderne. Det er
muligt at øge de aerodynamiske kræfter og dermed lejets bæreevne med en faktor to.
De kommende tiltag i udviklingen af et PAFB er design af "feedback" regulering samt
eksperimentel validering af et fuldt regulerbart PAFB ved hjælp af den konstruerede
testopstilling og den matematiske model udledt i denne afhandling.
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Abbreviations and nomenclature

This nomenclature covers the thesis. The nomenclatures of the appended publica-
tions may differ.

Due to the three different physical domains in the mathematical model and the
multiple numbers of components in the PAFB, the nomenclature used in this thesis
differs some what from what is traditionally used in literature. A given variables is
identified by a combination of character and subscript. The character describes the
physical variable, while the subscript is given by the component, e.g., the thickness of
the air film is ha, while the thickness of the top foil is ht and the top foil radial deflection
is δt.

Abbreviations

AFC Active fibre composite
AFB Air foil bearing
DoF Degree of freedom
DTU Technical University of Denmark
EPD Electric potential difference
FEM Finite element method
FRF Frequency response function
IC Initial condition
IDE Interdigitated electrode
MFC Macro fibre composite
PAFB Piezoelectric air foil bearing
PTF Piezoelectric top foil
RAB Rigid air bearing
SEFM Simple elastic foundation model
THUNDER Thin layer unimorph driver
3D Three spatial dimensions

Latin symbols

A Area
�
m2
�

[A] State matrix
[B] Dimensionless derivative matrix [-]
c Radial clearance [m]
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C Capacitance [F]
[C] Constitutive matrix
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Pa−1

�
d Distributed viscous damping

�
N

s·m3

�
{D} Electric displacement

�
C

m2

�
[d] Piezoelectric constant
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C
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�
kg
s

�
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kg·m
s

�
E Young’s modulus [Pa]
{E} Electrical field

�
V
m
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[e] Inverse piezoelectric constant
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�
F, {F} Force or load [N]
H Electric Enthalpy [J]
{J} Jacobian vector
k Distributed stiffness
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[K] Stiffness matrix
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h Radial thickness [m]
L Lagrangian [J]
lb Half bump length [m]
l Length [m]
m Mass [kg]
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[N] Shape function matrix [-]
p Pressure [Pa]
pA Ambient pressure [Pa]
Q Electric charge [C]
q Generalised Coordinates
r Bearing radius [m]
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t Time [s]
T Kinematic Energy [J]
[T] Transformation matrix [-]
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x , y, z, {x} Location in global coordinates [m]
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( )uu Coupling between displacement and force
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Chapter 1

Introduction

1.1 Background

The wheel is considered by some to be the most important invention of all time.
The uniqueness of the wheel is its ability to transfer reaction forces between rotating
and stationary objects, and as such the bearing is the essential part of this inversion.
Ever since ancient times, bearings have played a vital role for mankind, allowing us
to create carriages, watermills, steam and combustion engines and data drives. In the
present day and age, bearings can be divided into four types: solid lubricated plain
bearings (e.g., bushings); elastohydrodynamic lubricated bearings (e.g., ball bearings);
magnetic bearings (e.g., active electromagnetic bearings); and fluid film lubricated
bearings (i.e., gas bearing). Each type has its own advantages and disadvantages, and
one’s choice of bearing depends on application, performance and cost.

A fluid film bearing uses a lubricant to fully separate two surfaces moving at different
velocities. This type of bearing can be subdivided into four subtypes based on the
lubricant used: liquid or gas, and the lubrication regime: dynamic or static. Generally
speaking, fluid film bearings using a liquid lubricant are installed in heavy machinery
where the rotation speed ranges from less than 100 rpm to around 10,000 rpm. In
contrast, fluid film bearings using gas as the lubricant are found in smaller equipment
and machinery. The weight of the shaft supported by a gas bearing ranges from a couple
of grams up to 50 kg, while rotational speeds ranges from 5,000 rpm to in excess of
500,000 rpm.

Static fluid film bearings utilizes external pressurisation to support the rotor, i.e., the
high pressure from the static lubrication forms the pressure profile in the bearing. The
dynamic fluid film bearing utilizes a combination of a wedge formed in the fluid film
and a relative velocity between the rotating and stationary parts to create the pressure
profile. In this case, the geometry and dynamics of the rotor-bearing system enables
the support of the rotation shaft, i.e., the bearing is self-acting. A bearing of the last
type using gas a lubricant is an aerodynamic bearing, also called a gas or air bearing.
The bearing type is used in the medical (see Pierart 2016), aeronautical (see Agrawal
1997) and food and water treatment (see Larsen 2015) industries; it is also commonly
used in compressors/blowers providing "clean" air (see Walton II et al. 2007). There
are many advantages of using aerodynamic bearings, such as the ones listed below.
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• Low friction between the stationary and rotating parts. The friction forces in
a fluid depend on its viscosity, and the viscosities of gases are generally much
lower than those of liquids. In addition, the friction forces in a gas film are much
lower than the dynamic friction in an elastohydrodynamic or solid lubricated
bearing.

• Lubricant is ample and clean. If the bearing is used in a compressor, the medium
transported can be used for lubrication. For other applications air can easily be
used.

• Reliable operation under extreme temperatures. All components used in an
air bearing can be made out of metal, which has a great geometric stability at
high and low temperatures.

• Simple mechanical design. Few components are used in an air bearing, which
are made of either solids or foils.

• Self-acting during operation. The aerodynamic pressure is self-preserving if the
operational conditions are kept constant, hence it requires no external supply of
any type.

However, aerodynamic bearings also have drawbacks in comparison to other bearing
types. These disadvantages are listed below.

• Demanding manufacturing requirements. Because of the low viscosity of the
gases, the distance between the bearing surface and rotor surface, i.e., the bearing
clearance, must be very small in order to create a sufficient aerodynamic pressure.
A small change in the bearing clearance has a great influence on the bearing
performance, hence the tolerances for the components are very fine.

• Sensitive to misalignments. The fine tolerances within an air bearing translates
in to a requirement of precise alignment of air bearings supporting a rotor. A
slight offset of two air bearings in the radial direction will affect the bearing
clearance in both bearings due to the radial location of the rotor.

• Low load-carrying capacity. This is due to the low viscosity of gases, which a
high rotational speed cannot compensate for.

• Poor damping characteristics. Due to low viscosity of gases, the friction forces
in the air film are low, implying a low dissipation of energy, and thus low level of
damping.

• Limited number of start/stop cycles. Every time the rotor start or stop the
aerodynamic pressure in the bearing will be too low to carry its load. This will
resulted in mechanical contact between the surfaces of the bearing and rotor,
hence wearing them down.

The initial air bearings were inspired by hydrodynamic bearings, which have rigid
bearing surfaces. However, due to the drawbacks listed above, air bearings with rigid
bearing surfaces, i.e., rigid air bearing (RAB), are primarily used for small scale rotating
systems such as dentist drills ect. where it is possible to manufacture both bearings in
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the same machine set-up. For large scale systems, where RABs have proven insufficient,
air foil bearings (AFBs) are used in stead. The AFB is a further development of the RAB,
in which the bearing surfaces are flexible, and commonly made up of foils, hence the
name. Although the AFB is mechanically more complex than the RAB, it is less sensitive
to misalignments, while having better damping characteristics, higher onset speed of
instability and can carry a higher load at comparable minimum air film thickness. In
the continued effort to improve the performance of rotor-bearing systems utilizing
aerodynamic bearings three different approaches have been pursued: 1) improving the
flexible support structure of the AFB; 2) combining the aerodynamic bearing with other
bearing types, thereby creating a hybrid bearing; and 3) enabling a dynamic adjustment
of the bearing performance during operation based on measurements, hence making
the bearing active or "smart". It is in this context that the piezoelectric air foil bearing
(PAFB) making up the ultimate objective of the present PhD thesis.

The piezoelectric air foil bearing

The PAFB resembles the AFB in most ways, as seen from the sketch of the PAFB
shown in figure 1.1. They both have one or more flexible top foils supported in the
radial direction by flexible bump foils and they both utilize the aerodynamic principle
to support a rotating shaft. However, the PAFB incorporates one or more piezoelectric
patches placed on the outside of the top foil, hence turning it into a piezoelectric top
foil (PTF). The piezoelectric patch provides a coupling between the mechanical strain
and stress of the top foil with the electrical potential and charge in the electrical circuit
connected to the electrodes of the piezoelectric patch.

There are no limitations on the location or size of a piezoelectric patch in the PTF.
This results in great flexibility for tailoring the properties of the PAFB to a given set of
operational conditions. The bump foil is removed from the areas of the PTF where the
piezoelectric patches are located, i.e., the PTF is partly supported. This is to prevent
the piezoelectric patches from being damaged by the localised support pressures and
rubbing found in the contact points between the bump foil and the PTF due to radial
support and relative sliding between the PTF and bump foil.

When a piezoelectric patch is neither connected to an electrical circuit, nor is short-
circuited, the properties of the PAFB perform similarly to those of an AFB. However,
when the electrodes on the piezoelectric patch is connected to an electrical circuit
the PAFB possess a coupling between the electrical and mechanical domains. The
effects of the coupling are depicted by the three states of the PTF shown in figure
1.2: (a) initial shape; (b) inward deflected; and (c) outward deflected. When the PTF
deflects an electrical potential difference (EPD) is generates between the electrodes
on the piezoelectric patch, enabling a flow of electrical charge in the circuit, i.e., the
coupling from mechanical to electrical domains. The direction of the flow depends on
the deflection of the PTF. Vice versa, an EPD imposed between the electrodes of the
piezoelectric patch generates a load on the PTF causing it to deflect, i.e., the coupling
from electrical to mechanical domain. The advantages gained by using an PAFB instead
of an AFB are listed below.

• Ability to modify the aerodynamic pressure. This will allow for higher onset
speed of instability, better damping characteristics and increased load capacity.
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(a) View along the axial direction

(b) Radial view towards the bearing centre of the piezoelectric top foils.

Figure 1.1: Sketch of a piezoelectric air foil bearing (PAFB) with three piezoelectric top foils
(PTFs). Each top foil may incorporate multiple piezoelectric patches or none at all. The bump
foil supporting the top foil is removed from the areas there the piezoelectric patches are located
to ensure the support pressure at the contact points does not damage the patches.

• Monitoring capabilities. By measuring the electrical charge flowing in the elec-
trical circuit connected to the electrodes on the piezoelectric patch, the movement
of the PTF can be recorded, and thereby the performance of the PAFB.

The drawbacks of the PAFB are listed below.

• Higher sensitivity to operating temperature. The Curie temperature of the
piezoelectric materials sets the upper limit for the operational temperature range.

• More complex design. A layered top foil including a piezoelectric patch with
electrodes, an electrical circuit and a connection between the electrodes and the
electric circuit.

1.2 State of the art literature study

The PAFB is a new addition to the subgroup of aerodynamic bearings, in which a
piezoelectric patch is incorporated into the well-known AFB in order to create an active
aerodynamic bearing, as described above. The presentation of the current state of the
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(a) Unloaded or initial state of the PTF

(b) Inward deflected state of the PTF (c) Outward deflected state of the PTF

Figure 1.2: Sketch of initial state and two deformed states of an PTF with one piezoelectric
patch. The PTF deformation can be caused by an EPD applied to the piezoelectric patch, while
the EPD can be caused by a deformation of the PTF.

art will therefore focus, on the developments within the field of piezoelectric patches,
as well as AFBs and other air bearing types aiming to enhance the bearing performance,
including active bearings.

Piezoelectric patches

The study of piezoelectric material for sensors and actuators dates back to at least
the fifties, e.g., Thurston (1953). However, the development of piezoelectric patches
originates in the nineties according to Bryant (2007).

The initial flexible piezoelectric patch was the thin layer unimorph driver (THUN-
DER) developed by NASA. This patch consists of a thin piezoelectric sheet covered by
electrodes on each side, as depicted in figure 1.3(a). Two versions of THUNDER patches
exist, distinguishing themselves from one another by the mode they utilize, i.e., the
extension mode, polarised in the thickness direction, and the shear mode, polarised in
the in-plane direction. When an EPD is applied to the electrodes of an extension mode
THUNDER patch, it will expand in the direction of the thickness and contract in the
both of the in-plane directions. An EPD applied to a shear mode THUNDER patch will
cause it to shear.

A further development of piezoelectric patches made by NASA was named the
macro fibre composite (MFC), of which a sketch is shown in figure 1.3(b). Here, the
piezoelectric layer has been exchanged with regular piezoelectric fibres, isolated from
each other, and with two pairs of interdigitated electrodes (IDEs) placed on both sides.
The design of the MFC originates from the active fibre composite (AFC) presented by
Hagood and Bent (1993) and Hagood et al. (1993). The use of IDEs instead of full
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Figure 1.3: Two types of piezoelectric patches: the thin layer unimorph driver (THUNDER) and
the macro fibre composite (MFC).

surface electrodes changes the direction of the electrical field caused by an EPD between
the electrodes enabling an alignment of the electrical field and piezoelectric fibres. The
EPD applied to the IDEs causes an asymmetric deflection of the MFC, i.e., a large
expansion in the fibre direction and a smaller contraction perpendicular to the fibres.
The orientation of the fibres can be used to tailor the response of the host structure.
This enables the primary expansion of the MFC to be aligned with the circumferential
direction of the PTF and thereby the air film wedge, which is of great importance for
the aerodynamic pressure. Hence, MFC patches are used in the PAFB.

Modelling of piezoelectric patches

Modelling of piezoelectric patches is treated extensively in the literature, although
the objectives of the research vary. At least three different objectives can be identified:
1) analytical and numerical models of structures incorporating the THUNDER patches;
2) models of the MFC unit cell; and 3) numerical models of structures with MFC patches.

The first group of mathematical models followed the development of the patches,
hence in the late eighties and early nineties linear models were presented for structures
with THUNDER patches of the extension mode type, e.g., Tzou and Gadre (1989) and
Tzou and Tseng (1991). Subsequent mathematical models included different types of
shear deformation theory, e.g., a first order model by Balamurugan and Narayanan
(2001) and Suleman and Venkayya (1995), a higher order model by Balamurugan
and Narayanan (2009) and Samanta et al. (1996), and a zigzag model by Tzou and
Ye (1996) and Yasin and Kapuria (2013). Mathematical models for the shear mode
THUNDER patch have been presented by, e.g., Benjeddou et al. (1997, 1999), Kapuria
and Hagedorn (2007) and Trindade et al. (2001). These models were developed for
layered beams, plates and shells containing piezoelectric patches and include either
one or two spatial dimensions.

During the period in which the mathematical models for the THUNDER patches
became increasingly sophisticated, further developments within piezoelectric patches
resulted in the AFC and MFC patches, as already described. The greater structural
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complexity of the AFC and MFC patches in comparison with the THUNDER patch,
have made the structures of the AFC and MFC patches an object for investigation. The
primary focus of this research has been numerical validation of analytical models for
material averaging/homogenisation and correction factor for the non-uniform electrical
field due to the IDEs (see Bent and Hagood 1997; Biscani et al. 2011; Deraemaeker
et al. 2009; Nasser et al. 2011, 2008; Park and Kim 2005). These structural models
make up the second group. The third and last group contains 3D structural models of
beams incorporating AFC or MFC patches, e.g., Bilgen et al. (2010), Brockmann and
Lammering (2006), Guennam and Luccioni (2006, 2009) and Nguyen and Kornmann
(2006).

Air foil bearings

Air foil bearings have two sources of non-linearities affecting their performance:
the air film between the rotor and top foil, and the mechanical contact between the top
foil, bump foil and bearing sleeve or housing. The first source of non-linear effect, the
air film, is a general concern for fluid film bearings. This was originally described by
Reynolds (1886) for a thin film of liquid, but the governing equation bearing his name,
the Reynolds equation, is also valid for a thin air film, as shown by Harrison (1913). The
second source of non-linearity, the mechanical contact, is due to the design of the AFB,
and relates to two phenomena: 1) dry friction between the bump foil and the adjacent
structures, and 2) mechanical impact between the top foil and bump foil. Although
these sources of non-linearity are not found in other types of fluid film bearings, they
are among the most commonly encountered non-linearity in mechanical engineering
and therefore well known in literature.

Some of the first researchers to develop theoretical models for the RAB, migrated
from the field of hydrodynamic bearings with their experience of linearising the hydro-
dynamic forces. And as Albert Einstein allegedly said, "Everything should be as simple
as it can be, but not simpler", they linearised the aerodynamic forces turning them
into static loads and spring and damper coefficients as was common for hydrodynamic
bearings (see Lund 1968; Lund 1964) in order to calculate the dynamic performance of
the air bearings.

With the development of the AFB the second source of non-linearities arose. In
the late seventies and early eighties some of the first experimental and numerical
results for AFBs were published in the literature by Heshmat et al. (1982, 1983a,b) and
Walowit and Anno (1975). These authors made an important contribution to the linear
modelling of the bump foil in an AFB through the introduction of the simple elastic
foundation model (SEFM). In this model, the bump foil is represented as a pattern of
unconnected springs supporting the air film between the rotor and top foil. This was
later expanded to include the hysteresis losses due to the friction forces via equivalent
viscous damping (see Heshmat and Ku 1994; Ku 1994). The linearised aerodynamic
forces and the SEFM have since then been used extensively in the literature, (see Kim
and San Andrés 2008; Larsen and Santos 2013; Peng and Carpino 1993). Most of these
models exclude the effects from the top foil, with the reasoning that its contribution to
the structural stiffness is negligible in comparison to the bump foil. In fact, Heshmat
et al. (1983b) assumed the top foil would be rigid enough to prevent sagging between
bumps, but so soft that the deflection would only depend on localised loading. Many of
the authors that have included the top foil structure in the AFB model along with the
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SEFM have done so in order to study the effects from top foil sagging on the equilibrium
position of the journal and the dynamic coefficients (see Carpino and Talmage 2003;
Larsen and Santos 2014; San Andrés and Kim 2007, 2009; Temis et al. 2011; Xu et al.
2013, 2011).

The results steaming from the linearised AFB models show good agreement with
experimental measurement when the rotor unbalance or perturbation from equilibrium
position is small (see Larsen et al. 2015a; San Andrés et al. 2007). Experimental meas-
urements of rotors supported by AFBs do, however, contain sub-harmonic vibrations
in their responses (see Heshmat 1994). These vibrations are related to the non-linear
sources in the AFB, and as the level of unbalance and perturbation increase so too do
their influence, potentially causing bearing failure (see San Andrés et al. 2015).

Arghir et al. (2006) compared linear and non-linear results of a journal supported by
an RAB. They showed the error caused by the linearisation increases for higher excitation
amplitude. Bonello and Pham (2014) and Pham and Bonello (2013) introduced an
efficient computational method for transient simulations of the compressible Reynolds
equation. The method allows the governing equations to be solved simultaneously, and
it was used by Larsen and Santos (2015) in combination with the SEFM to simulate
the steady state response of a rotor supported by two AFB. The main sub-harmonic
vibrations measured experimentally were predicted by the numerical simulations.

Enhanced performance of air foil bearings

In the continuing efforts to improve the performance of aerodynamic bearings, three
general approaches are found in literature: 1) development of better mathematical
models of the AFB in order to push the limits of the technology; 2) research into
alternative top foil supports in order to improve the mechanical properties of the
support structures and thereby the AFB; and 3) switching to an active bearing set-up,
making it possible to compensate for the shortcomings of present-day AFBs.

The first approach, pursuing enhanced performance by means of mathematical
modelling, largely focuses on the bump foil. As such, the aim is to replace the SEFM
with a model that includes the dry friction forces at the contact points (see Hoffmann
et al. 2015b; Le Lez et al. 2009; Lee et al. 2009). The focus of the second approach
is on replacing the bump foil structure with another passive support structure. The
alternative structures found in literature include protuberant foil (see Chen et al. 2015;
Yu et al. 2011), helical springs (see Song and Kim 2007) and metal meshes (see San
Andrés and Chirathadam 2013) including meshes made out of shape memory alloys
(see Ertas et al. 2009b; Ma et al. 2015). While these two approaches have yielded
important insights into various aspects of the AFB, neither of them have resulted in any
significant performance improvements, with the exception of placing shims between the
bump foil and bearing housing at strategically chosen locations along the circumference
of the AFB (see Hoffmann et al. 2015b; San Andrés and Norsworthy 2015). In sharp
contrast to these two approaches stands the third one, as described in the following
paragraph.

Controllable fluid film bearings

The third approach take issue with the active bearings. Among the first publications
on controllable air bearings are Horikawa et al. (1992, 1989) and Shimokohbe et al.
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(1991). The active bearing consists of four tilting pads, each with a piezoelectric stack
actuator behind them. The active aerodynamic bearing supports a vertically placed
rigid journal. Although the rotational speed of the journal is low, i.e., 750 to 1,000 rpm,
the position of the journal can be controlled within 25 nm.

Many similar active bearing designs are found in the literature and they vary with
respect to type of actuator, fluid, and bearing segments. Qiu et al. (2003) also presented
an aerodynamic tilting pad bearing with piezoelectric stack actuators, while Mizumoto
et al. (2010) and Pipeleers et al. (2009) have shown results from circular aerodynamic
bearings with flexible bearing segments controlled by piezoelectric stack actuators.
Similar hydrodynamic bearings have been presented in the literature (see Deckler et al.
2004; Rylander et al. 1995; Santos 1995; Sun and Krodkiewski 2000; Wu et al. 2007),
although other types of actuators have been used in some of the cases. In al these
bearing designs the aerodynamic forces are controlled by changing the thickness of the
air film.

Another method for creating an active fluid film bearing has been presented by
Mizumoto et al. (1996). A piezoelectric actuator is used to control the size of the
orifice area in an aerostatic bearing, hence the restricted flow limits the bearing support
pressure. This type of active control on the bearing performance has also been used
in an active tilting pad bearing, although servo valves were used to control the supply
flows. Bearings combining the hydrodynamic and hydrostatic properties have been
studied (see Haugaard 2010; Salazar and Santos 2015; Santos 2010; Santos and Russo
1998; Varela 2013). The principle has also been used in a combined aerodynamic and
aerostatic bearing, i.e., an active RAB with piezoelectric actuators restricting the supply
flows. This has been investigated by Morosi (2011), Pierart (2016), Santos (2010) and
Theisen et al. (2016). A similar set-up has been studied by San Andrés and Ryu (2008),
where the bearing used flexure pivot tilting pads instead of a rigid bearing surface.

While the aforementioned active air bearings have all shown significant improve-
ments in their performance when compared to their passive counterparts, none of
them are AFBs. Braun et al. (1995) presents an AFB with a polymeric elastic bed
supporting the top foil and piezoelectric stack actuators affecting the bed. A similar
version, although without the polymeric elastic bed, has been patented by Lee et al.
(2003), where the top foil is directly supported by the piezoelectric actuators. No clear
improvements of active AFB performance have been presented in the literature.

1.3 Objectives and original contributions of the project

The objectives at the onset of the PhD project was a theoretical and experimental
investigation of the feasibility of applying "smart materials" to increase the payload, to
suppress vibrations and to reduce energy consumption of rotation machines supported
by gas-lubricated bearings. These objectives were to be achieved via smart materials
coupled to compliant surfaces of an air bearing controlled by an embedded intelligence.
The specific objectives are listed below.

• Mathematical model of an air bearing. Create a model an air bearing consid-
ering compressible fluid and compliant surfaces based on Modified Reynolds
Equation, i.e., model an AFB.
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• Mathematical model of a smart material. Create a multi-physical model of a
smart material and a compliant bearing surface which are coupling via the mater-
ials constitutive equations, i.e., model the PTF. The constitutive equations may
depended on input parameters, such as strain-stress relationship, temperature,
magnetic flux density, current, voltage, chemical composition among others.

• Design and construct a test facility. Design a dedicated test rig, in which several
strategies for controllable gas bearings connected to smart materials can be tested.

• Validation of the mathematical multi-physical models. Validation of the math-
ematical models and evaluation of the performance improvements toward enhan-
cing of bearing load capacity, dynamic stability and reduction of energy losses.

In the context of the state of the art and the objectives of the PhD project, both
described above, the main original contribution of this PhD study is presented in the
two appended papers and this thesis, i.e., the mathematical model of the PAFB, and the
material in the chapter concerning the numerical results. The contributions below are
presented in chronological order.

Publication P1, Nielsen et al. (2016). In this paper the electro-mechanical finite
element used to model the dynamic performance of the PTF is presented. The developed
element is based on an 8-node serendipity isoparametric layered shell element developed
by Panda and Natarajan (1981), which is capable of modelling the static deflection
of a double curved flexible shell. The new element are useful for modelling shell
structures incorporating one or more MFC patches of the expansion type, i.e., utilizing
the d33 piezoelectric constant. The governing equations are deduced from the Lagrange
equation and the linear isothermal constitutive equation of a piezoelectric material.
The electro-mechanical element utilizes first-order shear deformation theory, and the
dead zones in the electrical field associated with IDEs are accounted for. Experimental
results are used to validate the numerical simulations of the mode shapes and resonance
frequencies of an PTF. The validation shows a sound agreement between theory and
experiments.

Publication P2, Nielsen and Santos (2017). The paper presents a non-linear fluid-
mechanical finite element model of an AFB. The air film is modelled with 8-node plane
isoparametric elements, the top foil uses equivalent double curved elements and the
bump foil is represented by a bilinear version of the SEFM. The model contains the
non-linearities of the air film and allows the top foil and bump foil to separate due to
the bilinear SEFM. All governing equations are coupled, enabling simultaneous time
stepping. The numerical results presented in the paper show the dynamic response
of a traditional AFB with a fully supported top foil and three cases of AFBs with a
partly supported top foil. The responses of the AFBs are shown for small and large
journal unbalance at various rotational speeds. The steady state response for a journal
rotation at constant speed and with a small unbalance are trivial in all cases, hence
a harmonic vibration. This is not the case at a larger journal unbalance. Here, the
steady state response of the journal supported by the AFB with a fully supported top
foil contains sub-harmonic vibrations, as expected and documented in literature. These
sub-harmonic vibrations are, however, not visible in the steady state response for the
journal supported by the AFB with the unsupported area of top foil located in the
high pressure zone. By removing the bumps, the sub-harmonic vibrations are also
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removed. This positive effect has been attributed to the shallow pocket forming in the
unsupported area due to a large sagging of the top foil.

PhD thesis. In addition to the publications, this PhD thesis contains the following
original contributions to the current research base.

The mathematical model of the PAFB, which is based on the AFB model presented
in publication P2, and the PTF presented in publication P1. The governing equations of
the PAFB are implicitly coupled and can be solved simultaneously in time. The IDEs of
the MFC patch can be coupled with different types of electrical circuits enabling the
MFC to be used as a actuator or a sensor.

Based on the finding in publication P2 where the sub-harmonic vibrations were
eliminated, a parameter study is performed to investigate the relationship between the
sub-harmonic vibrations and the size of the unsupported area. Results presented in the
thesis indicated that the circumferential length of the unsupported area is of higher
importances than the width, i.e., if the unsupported area extends more than 90◦, the
sub-harmonic vibrations will be eliminated.

In a numerical parameter study, where a MFC is used as an actuator, the change in
the aerodynamic forces are presented in relation to: 1) the size of the MFC patch; 2) the
location of a MFC patch and 3) the EPD applied to the IDEs. The study is conducted with
a fixed journal, hence only the PTF is allowed to move. Varying these three parameters
the forces acting on the PTF changes, hence the PTF deflects into a new equilibrium
position with a corresponding change in the thickness of the air film and aerodynamic
forces. The parameter study shows that it is possible to increase the aerodynamic forces
with up to 139 %.

1.4 Structure of the thesis

The thesis consists of five chapters, one appendix chapter and two appended public-
ations. The five chapters contain highlights from the publications and additional work
and findings obtained during the PhD study, as indicated above. Hence the thesis is
paper-based, although extensive additional work is included in the thesis.

Chapter 2 introduces the test facility designed as a partial fulfilment of the PhD
project. The test facility was manufactured, assembled and is now located at the
Department of Mechanical Engineering at the Technical University of Denmark. A
thorough description of the test facility is given, including the inherent flexibility to vary
the experimental set-up, i.e., test different air bearing designs and measure different
parameters. A schematic validation plan for the mathematical model of the PAFB shows
the capabilities and usefulness of the test facility.

Chapter 3 presents the mathematical model of the PAFB, hence a fusion of pub-
lication P1 and publication P2 as mentioned above. The presentation beginning with
the RAB containing only the air film and is then expanded into the fully coupled fluid-
electro-mechanical system of the PAFB. The chapter ends with the model being validated
by parts, i.e., the PTF is experimentally validated (publication P1), while the passive
part of the PAFB is validated by numerical simulations of an AFB (publication P2).

Chapter 4 deals with the numerical results generated by the mathematical model
and is divided into two part, namely: 1) results from a passive AFB system; and 2)
results from an active PAFB system. Of the first part is a discussion regarding direction
of rotation in an AFB and its effects on the bearing performance. This is followed by
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the parameter study based on the findings presented in publication P2, i.e., varying
the size of the unsupported top foil area as described above. Hereafter, a calculation
of the onset speed of instability for two types of AFB and a discussion of the results.
The chapter ends with results from the second part, a parameter study of the change in
the aerodynamic forces based on the size and location of a MFC patch also mentioned
previously.

Chapter 5 contains the conclusion and treats the further aspects of the PAFB.



Chapter 2

On the design of the test facility
for controllable air bearings

This chapter gives an introduction to the test facility designed, constructed and used
in the initial effort to develop piezoelectric air foil bearings (PAFBs). The chapter begins
with an outline of the general design requirements of, and considerations applied to, the
test facility. A literature review gives an overview of test facilities used for studying air
journal bearings. This is followed by a description of the four modules making up the
test facility created at the Technical university of Denmark (DTU). The versatility of the
manufactured test facility is highlighted with respect to experimental set-ups. The chapter
ends with a description of the secondary makeshift test facility used for identifying the
modal parameters of the piezoelectric top foil.

2.1 Test facilities presented in the literature

In the literature two different types of test facilities are presented for the experi-
mental investigation of journal bearing dynamic performance: 1) a free-floating rigid
or flexible rotor supported by two test bearings (see Balducchi et al. 2014; Belforte et al.
2006; Ertas et al. 2010; Howard 2009; Kim and San Andrés 2009; Morosi and Santos
2012; Rudloff et al. 2012; San Andrés et al. 2007); and 2) a free-floating test bearing
supported by a rigidly rotating rotor, i.e., a rigid rotor supported by two bearings. Both
types of test facilities are sketched in figure 2.1. The designed test facility is of the
second type.

The second type of test facility utilizing the floating bearing strategy was initially
presented by Glienicke (1966) and used to study hydrodynamic bearings. In the original
design the test bearing was located mid-distance between the two support bearings,
i.e., it was a centralized floating bearing. Test facilities for air journal bearings have
since been designed following the same principles (see Ertas et al. 2009a; Heshmat
et al. 1982; Lee et al. 2008). This design configuration has the advantage of being
highly rigid and it is symmetric at the mid-distance, hence in the center of the test
bearing. This supports the common assumption of axial symmetry utilized in bearing
calculations in order to reduce computational effort (see Pierart and Santos 2015).

However, the symmetric test bearing location yields practical disadvantages. The
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Figure 2.1: The two types of test facilities found in the literature.

placement of the test bearing between the two support bearings makes it impossible
to mount and dismount the test bearing without disassembling the test facility. This
is impractical and may make it increasingly difficult to reproduce experimental data
produced prior to the disassembly due to loss of alignment. In addition, the inner
diameter of the support bearings sets the lower limit for the nominal test bearing size,
since the test bearing must pass the land for one of the support bearings before it will
be located at the mid-distance. These disadvantages may be overcome by dividing the
test bearing or the rotor into multiple parts, although, this will only move the alignment
issue to the assembly of the test bearing instead. Also, it limits the types of bearing
that can be tested, since not all bearings can be divided into multiple pieces and still
function as intended.

The alternative to placing the test bearing at mid-distance is to place it on the outside
of the support bearings, i.e., an overhung free-floating test bearing. Test facilities
utilizing this principle are also described in the literature (see Dellacorte 1998; Ruscitto
et al. 1978; San Andrés et al. 2010a; San Andrés et al. 2010b). This configuration
overcomes the difficulties of changing the test bearing without disassembling the test
facility at the cost of symmetry and a comparable lower rigidity of the rotor. This
has been described by Talukder and Stowell (2003), where the advantage of easy
mounting and dismounting of the test bearing is highlighted. Due to the lower rigidity
of the rotor the risk of it bending is higher, which results in an axially non-symmetric
deflection of the rotor within the test bearing and a skewed distribution of aerodynamic
pressure. To avoid these rotor deflection within the test bearing, the operational range
of the "overhung free-floating test bearing" test facility must be below the first natural
frequency and the rotor must be balanced.

A common problem for free-floating bearing designs is to restricting the test bearing
from moving axially without affecting the bearing performance in radial direction. As
indicated by the name "free-floating", the test bearing should ideally be floating on
the air film, but due to unavoidable forces such as gravity and drag forces acting on
the bearing surface, the axial movement of test bearing must be constrained. This
is commonly done by connecting multiple stingers or wires to the test bearing. For
centralised floating bearings the stringer or wires are placed circumferentially at the
axial centre, orientated in the radial direction (see Ertas 2009). A sketch is provided in
figure 2.2(a).



2.2 General design requirements and considerations 15

x
y

z

(a) Common stinger configuration for centralised
free-floating bearings.

x
y

z

(b) Squirrel cage used for overhung free-floating
bearings.

Figure 2.2: Two types of stinger placement used to constrain the unwanted motion of the test
bearing.

A drawback of this types of confinement is that it affects all six degrees-of-freedom
(DoFs) in the fixation point, e.g., a stinger preventing the test bearing from rotating
due to drag forces will also limit the radial motion of the test bearing. This will affect
the test bearing performance and as such it is not ideal. For overhung floating bearings
a flexible squirrel cage is commonly used. In this method the stingers are orientated in
an axial direction and placed along the circumference in one end of the test bearing,
as seen in figure 2.2(b). This configuration also affects the radial motion of the test
bearing, but due to the orientation of the stingers the effects from the high axial stiffness
are eliminated at the expense of introducing an additional moment of inertia between
two stingers placed on each side of the circumference (see Matta and Arghir 2012;
Matta et al. 2010; San Andrés and Norsworthy 2015; San Andrés and Chirathadam
2011).

To obtain the dynamic characteristics of the test bearing, the air film must be
perturbed. There exist two different techniques for exciting the air film: 1) shaking
the rotor or 2) shaking the bearing house. The first resembles rotor-bearing systems
found in industry where fixed bearings support a floating rotor, i.e., the movement of
the rotor affects the air film. The second technique is commonly applied in floating
bearing test facilities, since the rotor is rigidly supported by the two support bearings
and is therefore, ideally, not able to move. However, the first technique has been used
for floating bearing test facilities (see Bellabarba et al. 2005). In that case two active
magnetic bearings were used to support the rigid rotor. This allowed for high-precision
control of the linear placement and tilt of the rotor, and thereby the forces applied to
the test bearing.

2.2 General design requirements and considerations

A rotor-bearing system with PAFB can be divided into the following subsystems:
journal, air film, piezoelectric top foil and bump foil. The same subsystems are found
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in the developed mathematical model of the journal-bearing system with PAFB and for
this reason the validation will be performed in steps follow this division. Figure 2.3
shows the principle of the stepwise validation. Before the construction of the presented
test facility two of the validation steps could be performed on existing test facilities at
DTU, namely the validations of the "structural properties of bump foil" (see Larsen et al.
2014) and "rotor-bearing system properties" (see Larsen et al. 2015a). For this reason
the presented test facility must be able to perform the remaining three experiments
required to validate the mathematical model of the PAFB, namely: validating the "modal
properties of piezoelectric top foil", the "aerodynamic effects" and the "PAFB properties".

By performing simple experiments the number of uncertainties are minimized since
the design parameters are easier to control and monitor. This results in a higher quality
of experimental data, giving better grounds for validating the mathematical model.
The validation may also reveal limitations of the model, since these will be more
obvious due to the high quality measurements. This should provide insights into the
physics governing the subsystem and thereby an increased knowledge of the important
parameters. This is the main reason for validating the mathematical models of the
subsystems instead of only the system model itself.

Based on the objective of the PhD thesis requiring a test facility capable of investig-
ating "several strategies for controllable gas bearings" and the validation requirements
a "free-floating test bearing" test facility has been designed and constructed, as seen
in figure 2.4. The test facility is designed with a vertical journal, as opposed to most
test facilities found in the literature. This enables the test bearing to be mounted on
top of an aerostatic thrust bearing, i.e., the test bearing floats on top of the air cushion.
This eliminates the requirement of stingers, wires or a squirrel cage thereby avoiding
the restrictions on radial motions that they introduce. The high-speed spindle can be
moved in axial direction enabling an easy assembly of, and access to, the test bearing.
The design results in a highly versatile test facility with the capability of being used
for experimental investigations of many different types of air bearings and bearing
sizes. The test facility also accommodates the mounting of a single top foil with a
fixed clamped edge. This enables the study of the top foil interactions with the air film.
Performing multiple experiments with different test bearings and top foil segments
broadens validation range of the mathematical model, just as it can provide a better
physical understanding of the design parameters influencing the bearing performance.

2.3 Overview of the test facility at the Technical University of
Denmark

The test facility, seen in figure 2.4, has been designed with the capability to experi-
mentally investigate top foil and air film interactions, as well as to assess the dynamic
performance of air journal bearings.

The designed and constructed main test facility consists of fourth module modules.
The four comes in two versions. The modules are: 1) frame structure and high-speed
spindle; 2) motor drive, amplifiers and data acquisition system; 3) actuators and sensors;
4a) free-floating test bearing and rigid journal and 4b) clamped flexible test bearing
segment and rigid journal. Components from the four modules are highlighted in figure
2.4. Modules (1) and (2) form the permanent part of the test facility, while modules
(3) and (4) are designed as exchangeable parts making them easy to replace or modify
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Figure 2.3: Stepwise validation of the mathematical model of an AFB and PAFB. The validation
addressed in the PhD thesis is highlighted in green, while the future aspects of the research are
marked in yellow.
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Figure 2.4: The test facility allows for experimental studies of the static and dynamic performance
of an air journal bearing or the response of a single top foil segment. Four modules make up
the test facility: 1) frame structure and high-speed spindle; 2) motor drive, amplifiers and data
acquisition system; 3) actuators and sensors; 4a) floating test bearing and fixed journal and
4b) clamped flexible test bearing segment and fixed journal. Modules 4a and 4b are mutually
exclusive.
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Table 2.1: A list of the properties for the main test facility.

Description Dimensions Unit

Overall dimensions (h× w× l) 922 × 400 × 685.5 [mm]
Maximal rotational speed 45,000 [rpm]
Upper nominal size of test bearing (d × h) Ø105 × 100 [mm]
Shaker frequency range 0-10,000 [Hz]
Shaker frequency force 45 [N]
Displacement sensor range 0-2 [mm]

in order to accommodate the need for different experiments. The main properties of
the test facility are listed in table 2.1. The four modules are presented below, along
with their key components.

Module 1: Frame structure and high-speed spindle

A front view and section view of module 1 are shown in figure 2.5. The module
consists of the frame structure made up by a tabletop (blue), frame and base structure
(orange), high-speed spindle mounted in a guide structure (magenta), aerostatic thrust
bearing (red) located in the tabletop and a spline-hub joint with a torque limiter (green)
placed between the aerostatic bearing and the base structure.

The structure, in which the high-speed spindle is mounted, can be raised and
lowered manually, assisted by the gas spring, along the linear guides and precision
rods located in the tabletop, frame and base structure. This enables the journal to be
moved axially and to be disengaged from the test bearing in a simple manner. The
linear guides and precision rods ensure proper angular alignment of the high-speed
spindle relative to the top part of the aerostatic thrust bearing. This is very important,
since a misalignment between these components will result in a misalignment of the
test bearing and journal thereby increase the risk of rotor-bearing contact at the bearing
edges. Axially alignment of the test bearing and journal is ensured by the free radial
movement of the test bearing, since the test bearing is free-floating due to the aerostatic
thrust bearing it is mounted on.

The high-speed spindle is manufacture by GMN and is of the type HV-P 120 -
45000/18. It runs up to 45,000 rpm and is outfitted with a HSK C-40 tool interface at
the bottom enabling an easy and fast replacement of the journal. The conical interface
ensures a proper fastening of the journal, just as it maintaining the angular alignment
when one journal is replaced by another one.

The test bearing is mounted on top of the aerostatic thrust bearing with four M3 bolts.
A pattern of threaded holes, seen in figure 2.6(a), are placed on three aligned reference
circles in order to accommodate for different test bearing sizes and. Depending on the
diameter of the test bearing, at least one set of holes will be available for fastening.
It is very important the bottom surface of the test bearing, which is connected to the
aerostatic bearing, is perpendicular to the axial direction of the test bearing. This will
ensure that a proper angular alignment of the test bearing and journal can be archived,
according to the description above.

The floating test bearing is supported radially by the aerodynamic forces from air
film located between the journal and the bearing surface. In axial direction, the test
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Figure 2.5: A section view of the frame structure and high-speed spindle module. The frame and
base structure is hatched with orange, the magenta is the high-speed spindle and guide structure,
the tabletop is blue, the red is the aerostatic thrust bearing and the green is the torque limiter
and spline-hub joint.

bearing is supported by a combination of gravity and the lift provided by the aerostatic
thrust bearing. This support in combination with the aerodynamic forces from the air
film prevents tilting of the test bearing. A spline-hub joint connected to the aerostatic
top part and a torque limiter ensures the test bearing will not rotate unless bearing
failure occurs. In such case the torque transferred from the high-speed spindle through
the journal and test bearing will surpass the loading level allowed by the torque limiter
and the test bearing will therefore be able to rotate along with the journal.

Module 2: Motor drive, amplifiers and data acquisition system

The high-speed spindle is connected to a combined motor drive and frequency
transformer (SIEB & MEYER, Drive System SD2S, type 0362146LF) via a high-frequency
impedance and an EMC filer, all of which are placed in the power cabinet, see figure 2.7.
The motor drive monitors and maintains the rotational speed of the high-speed spindle.
When running at high speeds the spindle requires cooling just as the ceramic ball
bearings are oil mist lubricated. This enables the ball bearings to perform as specified
by the manufacturer thereby preventing them from being worn down quickly. The oil
mist is supplied by the oil lubrication unit GMN Prelub GB 2, while the cooling unit
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Figure 2.6: Two of the key components in module 1, the top part of the aerostatic thrust bearing
and the tabletop. Magnetic actuators and eddy current displacement sensors are located on top
of the tabletop. These parts are key components of module 3.
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Figure 2.7: The power cabinet for the high-speed spindle.

(GMN Chillers K 3.9-T/2) keeps the spindle from overheating.
The sensors and actuators used in the test facility, including the piezoelectric patches

used in the PAFB, are all connected to a computer via a data acquisition and control
system (dSpace DS 1103 R&D Controller Board). Amplification of the sensor and
actuator signals are done by MEGGiTT IQS 450 (displacement sensors), HBM type
AE101 (force transducers), B&K Power Amplifier, Type 2718 (shakers) and Smart
Material High Voltage Amplifier HVA 1500/50-3 (MFC patches). All of the amplifiers
are located in the sensor cabinet, see figure 2.8.

Module 3: Actuators and sensors

The main test facility is fitted with displacement sensors, force transducers, perman-
ent magnets and shakers for measuring and actuating. Figure 2.6(b) shows the location
of the magnetic actuators and the brackets for the displacement sensors. The four
sensor brackets and four magnetic actuators are placed alternately next to each other
around the aerostatic thrust bearing with an 45◦ angle between them. The magnetic
actuators are mounted on top of linear rails, while the sensor brackets are placed in
guide slots. This ensures precise alignment of the components with the centre of the
aerostatic thrust bearing, i.e., the test bearing and journal.

The sensor brackets shown in figure 2.9(a) can hold three eddy current displacement
sensors (MEGGiTT TQ 412). The safety pins protect the sensors from unintended
impacting with the test bearing as it is floating on the aerostatic thrust bearing. The
magnetic actuator, seen in figure 2.9(b), consists of a permanent neodym magnet placed
in front of a strain gauge based force transducer (HBM type U2B). The advantage of using
a strain gauge based force transducer, as opposed to a piezoelectric based transducer, is
the ability of the former to measure both static and dynamic loads. The back side of
the force transducer can be fixed in order to apply a static force to the test bearing, or
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Figure 2.8: The amplifier cabinet. The design and layout was carried out by specialists.

it can be connected to an electromagnetic shaker (B & K Vibration Exciter - Type 4809)
thereby providing a dynamic excitation.

In figure 2.10 the sensor and actuator locations are shown. The magnetic field from
the magnet, pulls the curved actuator plate with a force dependent on the intensity of
the magnetic field and the distance between the magnet and the actuator plate. The
distance between a given magnet and plate can be adjusted by sliding the actuator
along the linear rail, thereby changing the applied static force. The centre of each
curved actuator plate are aligned with the centre of the aerostatic thrust bearing. This
ensures the distance between the magnets and the surface of the plates are unaffected
by an axial rotation of the aerostatic thrust bearing. The distance measured by the
displacement sensors will, however, be affected by a rotation of the aerostatic thrust
bearing. Such a rotation also rotates the test bearing and since the sensor plates are
flat the linear distance between the outer placed displacement sensors and the sensor
plate will differ, i.e., at one edge of the sensor plate will approach the sensor bracket,
while at the other edge the sensor plate will move away. The sensor layout in the sensor
bracket, shown in figure 2.9(a), is also capable of detecting a tilt of the test bearing by
utilizing the same strategy.
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Figure 2.10: Placement of displacement sensors and magnetic actuators relative to the flat sensor
and curved actuator plates. Both types of plates are mounted onto the top part of the aerostatic
thrust bearing.
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Figure 2.11: The design domain for the test bearing. The blue area marks the maximum size of
the journal, while the yellow area is intended for the structural components of the test bearing.
The overall geometric limit is Ø125 mm × 112 mm. The red area is the aerostatic thrust bearing
and the green area is the spline-hub joint. These components are a part of module 1 and can be
seen in figure 2.5.

Module 4a: Free-floating test bearing and rigid journal

The free-floating test bearing is mounted on top of the aerostatic thrust bearing,
while the journal is rigidly connected to the high-speed spindle. It is important that the
excitation and bearing forces, e.g., aerodynamic forces, are aligned with the combined
centre of mass, including both test bearing and top part of the aerostatic bearing, in
order to avoid the introduction of moments. This will keep the tilting of test bearing to
a minimum, i.e., ensuring the bearing motions are isolated to the radial direction only.
The location of the magnetic actuators are located at a distance of 56 mm above the
top part of the aerostatic bearing, hence the centre of mass must also be located at this
distance as indicated by figure 2.11. This may require an elevation of the test bearing
from the aerostatic thrust bearing in order to align the aerodynamic forces with the
magnetic actuators, just as additional masses may be required to change the location of
the mass centre.

The design of the test facility imposes geometric restrictions on the test bearing,
which are highlighted in figure 2.11. The size of the test bearing is limited by the
physical space between the thrust bearing and the high-speed spindle as well as the
radial size of the thrust bearing. These limitations result in an upper limit of Ø125 mm×
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112 mm for the outer dimensions of the test bearing. The upper nominal bearing size is
Ø105 mm × 100 mm, since the outer boundaries of the test bearing must accommodate
for bearing housing and bolt connection for fastening the test bearing to the top part of
the aerostatic thrust bearing.

A sketch of the aerostatic test bearing mounted on top of the aerostatic thrust
bearing is presented in figure 2.12. The test bearing measures Ø40 mm × 40 mm and
it has six injection points located at the axial centre, evenly distributed around the
circumference. The test bearing is elevated by the distance piece in order to aligned
axial centre of the test bearing with the magnetic actuators (not shown in the figure)
in line with the description above. Magnet and sensor plates are located on each side
of the aerostatic thrust bearing top part, while additional masses are placed between
the plates at the top. These masses are added in order to elevate the centre of mass to
align it with the magnetic actuators and the centre of the test bearing as description
above. Figure 2.13 shows the aerostatic test bearing mounted in the test facility.

Placing a floating test bearing in the test facility enables experimental investigations
of the static and dynamic performance of the bearing. When only static forces is applied
to the test bearing it is possible to measure, for instance, the locus curve as a function of
rotational speed or static loading. By performing experiments where a specific excitation
pattern is applied to the test bearing via the shakes, the associated dynamic response of
the test bearing can be measured. The excitation pattern can simulate, among other
things, a rotor with a mass unbalance affecting the test bearing.

Module 4b: Clamped flexible test bearing segment and rigid journal

The alternative to the floating test bearing is a clamped flexible test bearing segment.
This module consists of a flexible top foil mounted in a testing bracket and placed on
the linear rail via a pivot mount, hence it replaces a magnetic actuator in the test facility.
Figure 2.14 shows the module placed in the test facility. The leading edge of the top foil
is placed in the clamping mechanism without bump foil for support. A sensor bracket is
placed behind the top foil, accommodating displacement sensors at various locations.
The pivot mount and linear rail enables a modification of the air gap by changing the
distance and inclination top foil relative to the journal.

The configuration of the test facility makes it possible to experimentally investigate
the interactions between the top foil and the air film. The aerodynamic pressure
generated due to the profile of the air film deforms the top foil which in turn changes
the profile of the air film. The top foil deformations are measured by the displacement
sensors located in the sensor bracket on the backside of the testing bracket. As an
example, when no outside forces or excitations are applied to the top foil it is possible
to find the onset speed of instability by increasing the rotational speed until self-excited
vibrations are detected in the top foil. When outside forces or excitations are applied to
the top foil, e.g. by a MFC patch, dynamic properties of the PTF can be investigated,
such as the resonance frequencies of the air film.

The testing bracket can be removed from the test facility and mounted in a vice with
the top foil remaining in the clamping mechanism (see figure 2.15). This eradicates
the influence of the aerodynamic forces on the top foil, hence the top foil deflects
freely. Furthermore, this configuration enables an experimental investigation of the
modal parameters, i.e., resonance frequencies and mode shapes, which are used in the
experimental validation of the mathematical model of the PTF.
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Figure 2.12: Sketch of a Ø40 mm × 40 mm aerostatic test bearing.
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Figure 2.13: Photo of a Ø40 mm × 40 mm aerostatic test bearing mounted in the main test
facility.

Only the testing bracket has been used for the experimental validation of the
mathematical model of the piezoelectric air foil bearing. The submodel which is
experimentally validated is the piezoelectric top foil model.

2.4 Conclusion

Although the test facility was designed and constructed with the aim of testing
controllable air bearings, i.e. controllable AFB, this a goal has not yet been fully
achieved. Nevertheless, preliminary tests were conducted using an aerostatic bearings
(seen in figure 2.13). Results from these experiments are reported in the master thesis
written by Grathwol (2015).

A second set of experiments was conducted with a PTF clamped in the testing
bracket, while the testing bracket was mounted on the linear rail on the tabletop as
seen in figure 2.14. The aim of the experimental investigation was to examined the
coupling between an unsupported PTF and the aerodynamic pressure caused by a
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Figure 2.15: The testing bracket placed in a vice. This configuration enables the experimental
investigation of the structural and dynamic properties of the top foil.
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simply supported journal rotating at constant speed. Results show that it is possible to
change the resonance frequencies of the PTF by applying a constant EPD to the IDEs,
e.g., the third resonance frequency of the PTF is found to vary within the range from
126 to 166 Hz. The changes in the resonance frequencies is attributed to a change
in the stiffness of the air film. Furthermore, it was also found that the damping was
affected by the applied EPD. The experimental results were presented in the master
thesis by Nielsen (2016).



Chapter 3

Multi-physical modelling of an
air bearing – from rigid to
controllable compliant surface

In this chapter the mathematical model for the piezoelectric air foil bearing (PAFB) is
developed, implemented numerically and partially validated. The final model is derived
in three steps as indicated by the three sketches of air bearings seen in figure 3.1. The
starting point is a rigid air bearing (RAB), i.e., it has a rigid bearing surface. In the second
step the rigid bearing surface is substituted by a flexible top foil supported by a bump foil,
i.e., the RAB is turned into an air foil bearing (AFB). Finally, a piezoelectric patch of the
macro fibre composite (MFC) type is added to the back side of the top foil creating an PAFB.
Different electric circuits can be connected to the interdigitated electrodes (IDE) on the
MFC patch depending on the operational objective for the PAFB. The final mathematical
model incorporates three physical domains - fluid, electrical and mechanical - making it a
fluid-electro-mechanical model.

The numerical implementation of the mathematical model utilizes the finite element
method (FEM) for discretising the continuous piezoelectric top foil (PTF) and air film.
The bump foil is modelled by the bilinear simple elastic foundation model (SEFM) and is
included as a support pressure acting on the top foil elements. The journal and electrical
circuit connected to the IDEs are defined as a discrete sub-system in the mathematical
model and therefore directly numerically implementable. This is followed by a description
of the numerical implementation of the mathematical model.

The validation of the developed mathematical model is twofold. The linear electro-
mechanical model of the PTF is validated by experiments performed with an PTF mounted
in the testing bracket and excited by the MFC placed on the back side of the PTF. The
non-linear fluid-mechanical model of an AFB is validated by numerical results obtained
from an experimentally-validated model known from the literature, e.g. Larsen and Santos
(2015).



32 3 Multi-physical modelling of an air bearing

(a) Rigid air bearing (RAB). (b) Air foil bearing (AFB). (c) Piezoelectric air foil bearing
(PAFB).

Figure 3.1: Cross-section view of three air bearings. The AFB has one top foil (yellow) clamped
at the leading edge with a bump foil (red) for radial support. The PAFB has two piezoelectric
top foils (PTFs), which are clamped at their leading edge. Each of the PTFs has a macro fibre
composite (MFC) patch (green) mounted on their backside in an area where the bump foil has
been removed.
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Figure 3.2: The projection of the RAB into a fluid-mechanical system. The system consists of a
continuous air film and a discrete rigid journal.

3.1 Rigid air bearing – rigid bearing surface

The RAB seen in figure 3.1(a) can be projected in a fluid-mechanical system like
the one shown in figure 3.2. The system consists of two domains, namely an air film
and a rigid body. The air film is situated in between the rigid body and a lower rigid
surface. The rigid body has a sliding velocity along the air film and is supported by the
aerodynamic pressure formed in the air film. The boundary conditions for the air film is
ambient pressure. In the projection from the physical RAB to fluid-mechanical system
the following assumptions have been made: 1) the surface of the journal is rigid; 2)
the air film is continuous along the bearing segment; and 3) the bearing segment is
rigid and cannot move or deflect.

The mathematical model for the RAB is based on the following assumptions: 1)
the journal rotates at a constant speed and acts like a lumped mass; 2) the air is an
ideal gas and independent of temperature, which is valid according to, e.g., Paulsen
et al. (2011); 3) the airflow in the air film is laminar and unaffected by body forces
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Figure 3.3: A sketch describing the notations used in the stepwise derivation of the PAFB. The
sketch is valid for both an AFB and an PAFB, but for an RAB δ̃t (θ ) = 0 since the bearing surface
is rigid, hence it follow the dashed line.

and 4) there are no pressure gradients perpendicular to the air film. The motion of the
rigid journal is governed by Newton’s second law (3.1). The air film follows Reynolds
equation for compressible fluids (3.2), which is derived by combining Navier-Stokes
equations, the equation of continuity and the ideal gas law. The equation was initially
presented by Harrison (1913), although without the transient term.
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The dimensionless, indicated by the (̃ ), forces acting on the journal are the aero-
dynamic forces from the air film
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, e.g., due to gravity. The aerodynamic forces are

calculated by integrating the aerodynamic pressure acting on the journal, as given in
equation (3.3), where w̃a is the width of the air film and θ̃a is the angular extension.
The static load are shown in figure 3.3 along various spatial variables and constants.
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The aerodynamic pressure p̃a, which depends on the axial and circumferential
position (z̃,θ ), is affected by the thickness of the air film h̃a and bearing number Λ.
The bearing number depends on the absolute viscosity of the air μ, the angular speed
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Figure 3.4: Domain interactions in an RAB. The aerodynamic pressure acts as a load on the
journal, while the movement of the journal changes the thickness of the air film.

of the journal Ω, the ambient pressure pA, the bearing radius r and the radial clearance
c, as given below.

Λ =
6μΩ
pA

 r
c

�2

The air film thickness is given by the geometry of the bearing surface and journal as
well as by the location of the journal within the air bearing {ũr}. Assuming the journal
and bearing are both cylindrical, the equation for the thickness of the air film is given
below. δr (θ ) is the journal displacement projected into radial direction at the angle θ .

h̃a (θ ) = 1−
�

cosθ
sinθ

�T

{ũr} = 1− δ̃r (θ )

The interactions between the two domains found in an RAB are highlighted in
figure 3.4. A movement of the journal changes the thickness of the air film affecting
the aerodynamic pressure. This will in turn change the aerodynamic forces acting on
the journal, resulting in a movement of the journal within the RAB.

3.2 Air foil bearing – compliant bearing surface

An air foil bearing (AFB), such as the one shown in figure 3.1(b), is an attempt to
improve the RAB according to Heshmat et al. (1983b). The engineer can modify the
flexibility of the bearing segment by adjusting the bump foil based on the operational
conditions for the AFB. The compliance of the bearing surface in an AFB results in a
thicker air film relative to one in an RAB at corresponding rotor eccentricities. This
results in a lower torque, but also a lower load-carrying capacity for the AFB. However,
for identical minimum air film thicknesses the load-carrying capacity is higher for an
AFB.

The fluid-mechanical system for an AFB is shown in figure 3.5. The additional
components used in an AFB compared to an RAB highlighted in the figure, i.e., the top
foil and bump foil, which are placed on top of each other. The change from a rigid
bearing surface to a compliant top foil supported by bump foil affects the thickness
of the air film. Depending on the aerodynamic pressure on the top foil relative to the
ambient pressure, the top foil will either be pushed into, or pulled away from the bump
foil, i.e., the two components separate. The additional assumptions for an AFB are:
1) the top foil is a thin flexible curved shell; and 2) there are no interactions between
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Figure 3.5: The fluid-mechanical projection of an AFB. The projection consists of a continuous
flexible top foil supported by a discrete bump foil in addition to the continuous air film and
discrete rigid journal seen in the air bearing with a rigid bearing surface.

bumps in the bump foil, i.e., the bump foil can be represented by a pattern of individual
bilinear springs and dampers, allowing for a partially separation of top and bump foil.
This representation is based on the SEFM presented by Heshmat et al. (1983a).

Shells are known to exhibit non-linear behaviour due to their geometry when the
vibration amplitudes exceed the thickness of the shell, e.g., Selmane and Lakis (1997).
However, the vibration magnitude in an AFB is comparable with the radial clearance
c, and since the ratio between the radial clearance and top foil thickness commonly
is bigger than three-to-one the non-linear behaviour will not come into effect. The
mathematical model of the top foil is therefore assumed to be linear, both for geometry
as well as for the material, e.g., the material does not yield. The constitutive equation
used is Hooke’s law, which is given below, with [C] describing the compliance of the
shell.

{ε} = [C] {σ}
The stiffness kb and damping db coefficients used in the SEFM are bilinear and seen

below as a function of the top foil radial deflection δt.

kb =

�
1
αb

,δt ≥ 0,

0 ,δt < 0
(3.4)

db =

�
kbβb
Ω ,δt ≥ 0,

0 ,δt < 0
(3.5)

When the top foil deflects radially outwards into the supporting bump foil the
coefficients are equivalent to classical SEFM, i.e., given by Heshmat et al. (1983b). For
radially inwards deflection the top foil separates from the bump foil, hence the bump
foil does not provide any support to the top foil and therefore the stiffness and damping
coefficients are zero. The bump foil support pressure acting on the top foil is given by
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Figure 3.6: Sketch of a single bump from the bump foil. hb is the thickness of the bump foil, lb
is the half bump length and Sb is the pitch of the bump, i.e., the distance between two adjacent
bumps.

equation (3.6) and is a function of the top foil deflection and velocity.

pb =

�
dbδ̇t + kbδt ,δt ≥ 0,

0 ,δt < 0
(3.6)

The support stiffness and damping are a result of the structural compliance of the
bump foil and the friction forces acting in each of the contact points between the bump
foil, the top foil and the bearing housing. Walowit and Anno (1975) proposed equation
(3.7) for the cross-sectional compliance αb of the bump foil based solely on the geometry
of the bump as shown in figure 3.6.

αb ≈ 2Sb

Eb

�
lb
hb

�3 �
1− ν2

b

�
(3.7)

In figure 3.7 the domain interactions are shown for an AFB. The figure shows the air
film being dependent on both the journal and the top foil deflections, i.e., the thickness
of the air film can be described by equation (3.8). The aerodynamic pressure in an AFB
affects both the journal and the top foil. However, the top foil is also affected by the
bump foil when they are in contact.

h̃a (θ , z) = 1− δ̃r (θ ) + δ̃t (θ , z) (3.8)

The fluid-mechanical model of an AFB, including inertia and flexibility of the top
foil, was presented in detail by Nielsen and Santos (2017) (publication P2).

3.3 Piezoelectric air foil bearing – controllable compliant bearing
surface

The piezoelectric air foil bearing (PAFB) is a next-step development of the AFB.
The inclusion of piezoelectric material in the top foil offers the opportunity to either
affect or monitor the performance of the PAFB during operation, since piezoelectric
material provides a coupling between the mechanical and electrical domains. With an
PAFB the engineer has the option to modify the bearing performance during the design
phase, which is associated with AFB, and in addition gains the option of additional
modification during operation, allowing for an adjustment of the bearing performance
to the specific operational conditions.
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Figure 3.7: Domain interactions for an AFB. The top foil is affected by the support pressure
from the bump foil and the aerodynamic pressure in the air film. The aerodynamic pressure also
affects the journal. The bump foil is affected by the radial deflections of the top foil, which also
affects the thickness of the air film together with the movement of the journal.

Figure 3.8 displays the projection of the PAFB into fluid-electro-mechanical system.
The additional component in the PAFB, in comparison to the AFB, is the patch of
piezoelectric material located on the backside of the top foil, as highlighted in the figure.
The assumptions used for the AFB also apply to the PAFB. In addition, it is assumed that
the piezoelectric patch is included as a layer in the top foil, and the wires connected to
the electrodes do not have any mechanical properties.

The inclusion of the piezoelectric material in the top foil requires a constitutive
equation, which describe both the mechanical and the electrical relationships as well
as the couplings between the two physical domains. A description of the constitutive
equation is given by Damjanovic (1998), including the thermal couplings, as well as
material non-linearities. However, assuming isothermal conditions and that the load
is kept within the linear range, the PTF is governed by the constitutive equation (3.9)
given by, amongst others, Tiersten (1969).

{ε} =[C] {σ} + [d]T {E} (3.9a)

{D} =[d] {σ} + [ε] {E} (3.9b)

The piezoelectric patch included in the PAFB is a macro fibre composite (MFC)
patch, one of many commercially available piezoelectric patches. The advantages of
using an MFC patch are the configuration of its electrodes and the arrangement of
the piezoelectric material, which is shown in figure 3.9(a). The MFC patch consists
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[C], ρt, [η], [e]MFC Patch

Figure 3.8: Fluid-electro-mechanical system for an PAFB with MFC patch mounted on the back
side of the top foil. The piezoelectric material and electrodes are included in the model of the
continuous top foil as an additional layer.

of several parallel piezoelectric fibres, isolated from each other, and with two pairs
of interdigitated electrodes (IDEs) placed perpendicular to the fibre direction on the
top and bottom of the patch. Each pair of IDEs are equipotential, which ensure the
electrical field {E} created is aligned with the direction of the fibres and is applied
uniformly to the MFC patch. It also implies the electrical potential difference (EPD)
Δφe measured between the IDEs is an average of the electrical field within the MFC
patch. This gives the possibility of tailoring the impact of piezoelectric material on the
performance of an PAFB by, for example, changing the direction of fibres.

The electrical field is defined as the derivative of the electrical potential as stated
in equation (3.10). In general when an EPD is applied between a pair of electrodes
placed on each side of a piezoelectric material a uniform electrical field is created with
the material, hence κe = 1. The size and direction of the electrical field depends on the
EPD and the distance between the electrodes. However, the electrical field created via
the IDEs on an MFC patch is non-uniform. A sketch of the field lines is shown in figure
3.9(b) where areas with a low field intensity, called dead zones, are marked in red.
Nasser et al. (2008) proposed the correction factor κe compensating for the dead zones,
i.e., making it possible to treat the non-uniform electrical field in the same manner as a
traditional uniform field. The correction factor is a function of the geometry of the IDEs
and is given in equation (3.11). Figure 3.10 shows the distance between the electrode
fingers Δxe and width we, while he is the thickness of the piezoelectric fibres.

{E} = −∇φe ≈ −κe
Δφe

Δxe
(3.10)

κe =
�
1− he

Δxe

�
1
2
+

2
π2

���
Δxe − we

Δxe − he

�
(3.11)

Including an MFC patch in the flexible top foil structure adds an electrical domain
to the mathematical model when compared to the AFB as indicated in figure 3.11.
The IDEs on the MFC patch can be connected to an electrical circuit, which can either
impose an EPD on the IDEs or use the electrical charge generated by a deformation of
the PTF.
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(a) A sketch of an MFC patch.
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(b) The electrical field and dead zones due to the use of IDEs.

Figure 3.9: An MFC patch consists of aligned isolated piezoelectric fibres placed in a plane with
four IDEs placed on top and bottom, perpendicular to the fibre direction. Each IDE on the top are
aligned with an IDE on the bottom, and each aligned pair of IDEs are equipotential. The electric
field in the fibre direction can be monitored or changed by the IDEs.

Δxe 2we

Piezoelectric
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Electrode
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Isolation

Figure 3.10: A photo of a MFC patch taken by an Olympus GX41 microscope with a Leica
DFC450 C camera. Δxe is the distance between two electrode fingers and we is the width of an
electrode finger.
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Figure 3.11: Domain interaction in an PAFB. The addition of a MFC patch to the top foil enables
the PTF to interact with an electrical circuit. The circuit can either imposes an EPD between the
IDEs or receives an electrical charge due to a deformation of the PTF. The remaining domain
interactions are the same as for the AFB, seen in figure 3.7.

The electro-mechanical model of an PTF was presented in detail by Nielsen et al.
(2016) (publication P1).

Electrical circuit

Generally speaking, a piezoelectric patch is connected to a structure to fulfil one
of two purposes: 1) putting energy into the system, i.e., excite the structure, or 2)
extracting energy from the system, i.e., as a sensor or for energy harvesting. However,
for a vibrating structure it is possible to combine the two, i.e., use the harvested energy
to reduce the vibrations of the structure. Figure 3.12 shows three simple electrical
circuits, each of which are designed to fulfil one of the aforementioned purposes, i.e.,
an actuator circuit for actuation in figure 3.12(a), a sensor circuit for monitoring in
figure 3.12(b) and a shunt circuit for energy dissipation in figure 3.12(c).

A common configuration for piezoelectric patches used in conjunction with electrical
circuits is the collocated actuator/sensor set-up described by, e.g., Tzou and Tseng
(1990). Two piezoelectric patches are placed, one on either side, of, e.g., a beam
structure, with one patch connected to an actuator circuit and the other to a sensor
circuit. The motion of the beam measured by the sensor circuit is, via a feedback control,
used to, e.g., dampen the beam vibration. However, this is not possible for an PAFB due
to the requirement of a smooth bearing surface in order to make the PAFB function.

Mechanical vibration energy converted to electrical energy via the indirect piezo-
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Figure 3.12: Three types of electrical circuits that can be connected to the IDEs. (a) The actuator
circuit is used to put energy into the system, (b) the sensor circuit is used for monitoring the
system, while (c) the shunt circuit is used to dissipate energy from the system, i.e., increase the
damping of the mechanical vibrations.

electric effect can be dissipated passively in a shunt circuit. This was introduced by
Hagood and Flotow (1991), who showed an increase in the damping properties for
a beam structure with piezoelectric patches connected to a shunted electric circuit.
More advanced shunt circuits have been developed over the past couple of decades
(e.g., Behrens et al. (2003), Clark (2000), Corr and Clark (2002), Edberg et al. (1992),
Hollkamp (1994) and Wu (1998)), but they all serve the purpose of dissipating the
electrical energy converted by the piezoelectric material from the mechanical vibrations.

In the numerical results presented in the next chapter, the only electrical circuit
used is the actuator circuit. The sensor circuit is only used in figure 3.21(d) in order to
show one of the optional outputs of the mathematical model.

Actuator Circuit

When using an actuator circuit, the intention is to affect the movement of the PTF,
either through a feed-forward or a feedback control loop. Figure 3.12(a) shows a
simple actuator circuit capable of putting energy into the system. A voltage supply
generates an EPD, which is directly applied to the IDEs on the MFC patch, causing the
PTF to deflect. Assuming the electrical energy generated by the voltage supply is much
larger than the energy converted from the mechanical vibrations, Kirchhoff’s voltage
law yields the governing equation for the electrical circuit as stated below.

Δφe − Uc (t) = 0 (3.12)

Sensor Circuit

In the sensor circuit the electrical charge created by a deformation of the piezoelectric
material can be recorded by a data acquisition system. Figure 3.12(b) shows a simple
sensor circuit, where the electrical charge generated by a deformation of the piezoelectric
patch is measured. Assuming that: the signal is without noise; the generated charge is
large enough to measure; and that no EPD arises between the electrodes, the equation
for the measurement point is given by Kirchhoff’s current law.

Qe =Qc (3.13)
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3.4 Finite element discretisation

An PAFB consists of five domains, as seen in figure 3.11, and two of these are
continuous, the air film and PTF. Both of these domains have been discretised using the
finite element method (FEM) before they are coupled with the other domains. First, the
discretisation of the domains is presented, followed by a description of the elements,
and closing with the coupling of the domains and the coupled governing equations in
time.

Air film

The compressible Reynolds equation (3.2) governing the air film is discretised using
a Bubnov-Galerkin finite element procedure as presented by Larsen et al. (2015b).
In the discretisation a combined state variable ψ̃a = p̃ah̃a is included. This has been
reintroduced by Pham and Bonello (2013), to enable a simultaneous solution of all
state variables in time. The FEM formulation of the compressible Reynolds equation is
given below as a system of first order differential equations. The state matrix

�
Aa,e

�
and residual vector

�
Ra,e

	
are presented on the element level.

[Aa]
� ˙̃ψa

�
= {Ra} (3.14)�

Aa,e

�
= 2Λ

∫
[Na]

T [Na] dA

�
Ra,e

	
= −

∫
[Ba]

T �p̃ah̃3
a

�∗
[Ba]

�
p̃a,e

	
dA+

∫
[Ba]

T h̃∗a {Λ} [Na]
�

p̃a,e

	
dA

In order to solve the above equation in time spatial boundary conditions for the
time derivative of the combined state variable is required. These boundary conditions
depend on the boundary conditions for the aerodynamic pressure and thickness of the
air film.

˙̃ψa = ˙̃pah̃a + p̃a
˙̃ha

At the boundaries of the air film the aerodynamic pressure is constant and is given
as the ambient pressure pA, while the thickness of the air film follows equation (3.8),
i.e., the boundary conditions for the time derivative of the combined state variable are
equal to the velocity of the air film thickness at the boundaries, as stated below.

˙̃ψa (θi , z) = ˙̃ha (z)
���
θi

˙̃ψa (θ , zi) =
˙̃ha (θ )

���
zi

Piezoelectric top foil

The derivation of the electro-mechanical finite element used for discretising of
the PTF is given in publication P1. It is obtained from: the Lagrange equation; the
constitutive equations (3.9) for piezoelectric material; a Legendre transformation; and
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a separation of the variables. After a variable transformation from the strain ε and the
electrical field E to displacement u and electrical potential φ the derivation results in
the governing equation for the piezoelectric material that is given below.

∫ �
ρ
�
Nt, u

�T �
Nt, u

� �
üt,e

	
+
�
Bt, u

�T
[C]

�
Bt, u

� �
ut,e

	
+ 2

��
Bt, φ

�T
[e]

�
Bt, u

��T {φe}
+2

�
Bt, φ

�T
[e]

�
Bt, u

� �
ut,e

	− �Bt, φ

�T
[η]

�
Bt, φ

� {φe}
�
dV = {Ft}

The electrical potential is split into an internal electrical potential, within the
piezoelectric material and an EPD between the IDEs, as described by equation (3.10).
This is followed by a Guyan reduction of the internal electrical potentials thereby
lowering the number of degrees of freedom (DoFs) in the PTF. This is possible since
the internal electrical potentials are quasi-static and it is only their effect on the system
that is important, rather than their actual values. The FEM discretisation of the PTF is
given below with displacements and EPD as independent variables. Rayleigh damping
may be included for the mechanical part of the PTF.

��
M̃t, uu

�
[0]

[0]T [0]

�� �
¨̃ut

	�
Δ ¨̃φe

��+
⎡
⎣ � ˆ̃Kt, uu

� �
ˆ̃Kt, eu

�
�

ˆ̃Kt, eu

�T −� ˆ̃Kt, ee

�
⎤
⎦ {ũt}�

Δφ̃e

	! =
"�

ˆ̃Ft

��
ˆ̃Qe

�# (3.15)

The EPD in the equation above is given as a relative value, i.e., the difference
between two absolute electrical potentials, one on each the IDEs. This corresponds to
one of the IDEs being grounded, while an electrical potential is imposted on the other,
i.e., creating the EPD. For this reason the electrical DoFs are bounded and the equations
are liner independent from EPDs of the other IDE pairs.

The mechanical displacement requires boundary conditions, since the deflection
values are absolute, thereby allowing rigid body motion. The boundary conditions for
an PTF with the bearing axis aligned with the z-direction and either the leading or
trailing edge being clamped, is given below.

�
ũt, i

	
(xi , yi , z) = {0}

���
xi ,yi

The number of DoFs in equation (3.15) can be reduced further by a modal re-
duction. This limits the deflection pattern of the PTF to a given number of selected
mode shapes. The equation of motion for the PTF must be given on state-space form�{vt} = {{ut} , {u̇t}}T

�
, which then can be reduced as stated below.

�
ˆ̃At

� �
˙̃vt

	
+
�

ˆ̃Bt

� {ṽt} =
�

ˆ̃Ft

�
(3.16)

The relationship between the reduced and non-reduced state space system for the
PTF is given below.
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(a) Element with local coordinate systems in each
node.
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Figure 3.13: 8-node double curved shell element with local coordinates given in each node. The
first local coordinate axis (red) and the second (green) are tangential to the element surface,
while the third (blue) is normal to the element.
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A detailed derivation of the FEM formulation for the PTF is found in Nielsen et al.

(2016) (publication P1). However, since the notation used in publication P1 and the
thesis differs from one another, the mathematical model presented in publication P1 is
reprinted in appendix using the notation of the thesis.

Elements for piezoelectric top foil and air film

Two types of element are used in the discretisation of the PTF and the air film,
namely an 8-node double-curved layered isoparametric serendipity element and the
flat equivalent, i.e., an 8-node flat isoparametric serendipity element. The double-
curved element shown in figure 3.13(a) was presented in a static mechanical version by
Panda and Natarajan (1981). The nodes making up the double curved element follow
the geometrical mid-plane of the physical shell; the geometry of the physical shell in
relationship to the nodes is given below.

�
xt, u

	
=

8∑
i=1

Nt,i

%�
xt,i

	
+ ζ

ht,i

2
{V3i}

&
Each node has a local coordinate system with two in-plane coordinate axes {V1i},{V2i} and one out-of-plane axis {V3i}, i.e., normal to the shell surface. Two rotational
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DoFs are aligned with the in-plane axes, as seen in figure 3.13(b), while the three
linear deflections are aligned with the global coordinate axes. The kinematic relation-
ship between the double curved element and the physical shell is given in equation
(3.17), with in-plane coordinate axes being represented by [μi] = [−{V2i} , {V1i}]. The
kinematic relationship implies the usage of first order shear deformation theory.

{ut} =
8∑

i=1

Nt,i

%�
ut,i

	
+ ζ

ht,i

2
[μi]

�
αt,i
βt,i

�&
(3.17)

In order to align the nodes in the two domains, the locations of the nodes in the flat
elements used for the air film are dictated by the elements used for the PTF. This nodal
alignment simplifies the transfer of information between the meshes. The location,
pressure and air film thickness relationships are given below, when the curvature axis
of the PTF is aligned with the z-direction.

θ =
8∑

i=1

Na,iθi

z =
8∑

i=1

Na,izi

pa =
8∑

i=1

Na,i pa,i

ha =
8∑

i=1

Na,iha,i

Coupling of the elements and fluid-mechanical domains

The couplings between the different domains in an AFB have been shown in figure
3.7. The left hand side shows the aerodynamic pressure affecting the journal and top
foil, which is also affected by the support pressure from the bump foil. Both types of
pressures must be integrated into forces before they can be applied. However, both
the aerodynamic pressure and the support pressure acts perpendicular to the bearing
surface, while the external forces acting on both the journal and top foil are given in
global coordinates. Therefore a coordinate transformation is required together with
the integration. It is assumed that the aerodynamic pressure only affects the top foil by
a radial load, i.e., traction loading is neglected. A pressure-to-force matrix relating the
radial pressure to nodal loads on the top foil is given below, and is based on Cook et al.
(2002). The aerodynamic forces acting on the journal {Fr} are equal to the resulting
aerodynamic forces acting on the nodes of the top foil.

�
Ta,e

�
=

∫ 1

−1

∫ 1

−1

�
Nt, u

�T {J3}∗ [Na] dξdη (3.18)

On the right hand side of figure 3.7, describing the domain couplings, the radial
top foil deflection affects the bump foil, and together with the journal movement, the
thickness of the air film. Both the journal motion and top foil deflection are given
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in global coordinates, hence a coordinate transformation is required in both cases
before the thickness of the air film and the support pressure from the bump foil can be
calculated by equation (3.8) and equation (3.6), respectively. The top foil deflections
and journal movement in radial coordinates are given below at nodal level.

δ̃t,i = {V3i}T
�
Nt, u

�
i

�
ũt,i

	
(3.19)

δ̃r,i = {V3i}T {ũr}
It is possible to reformulate the support forces acting on the top foil as a function of

the top foil deflection, since the bump foil is without inertia. This will eliminate the
calculation of the bump foil support pressure. Combining the pressure-to-force matrix
in equation (3.18) with the coordinate transformation vector in equation (3.19) results
in the support stiffness and damping matrices given below.
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The external forces acting on the top foil due to aerodynamic pressure from the air
film and the bump foil support are given below.

{Ft} = [Ta] {pa} + [Db] {u̇t} + [Kb] {ut} (3.20)

Coupling the fluid-mechanical and the electrical equations in the time
domain

The combined fluid-mechanical governing equation for an PAFB is presented below
in state-space form: the linear equation (3.1) of the journal; the non-linear Reynolds
equation (3.14) for the air film and the linear modal reduced equation (3.16) for the
PTF. All coupling between the fluid-mechanical domains are included on the right hand
side of the equation, i.e., the aerodynamic forces on the journal, the air film residual
vector and the aerodynamic forces and support forces on the top foil. The coupling
from the electrical domain to the PTF is included as an external force depended on the
EPD between the IDEs.

⎡
⎢⎢⎣
[I] 0 0 0
0

�
M̃r

�
0 0

0 0
�
Ãa
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Preprocess Solver-process Postprocess

Figure 3.14: The overall flow chart of the numerical implementation.

In the combined governing equation above, the explicit coupling between the
mechanical and electrical domain within the PTF has been broken into an implicit
coupling. The reasoning behind these efforts is threefold: 1) the electrical DoF depends
on the chosen electrical circuit, i.e., it is not consistent; 2) the couplings within the
combined governing equation are already implicit due to the non-linearities from the air
film and bump foil; and 3) the combined governing equation for the fluid-mechanical
domains is independent of the electrical circuit, since the coupling is on the right hand
side. The procedure for solving the fluid-mechanical part of the PAFB remains the same
and is independent of the electrical circuit.

The coupling from the PTF to the electrical domain is given in equation (3.15). The
specific governing equation for the electrical domain depends on the electric circuit
connected to the IDEs. The actuator and sensor circuits described by equations (3.12)
and (3.13) are only coupled one-way either into, or out of, the PAFB, and is given below.
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3.5 Numerical implementation

The numerical implementation follows the classical layout of commercial finite
element programs as highlighted in figure 3.14: the preprocess initialises the system;
the solver-process simulates the response of the system; and the postprocess displays
the simulated results in a convenient way. Each of the three steps are described in the
following sections.

Preprocess

The preprocess is divided into two main steps: 1) generate a bearing segment with
an air film; and 2) set up a bearing using the previously generated bearing segments and
include a journal. The flow chart for generating a bearing segment is shown in figure
3.15. To begin with the geometry of the top foil is defined, including the number and
types of layers it consists of and which areas the bump foil will support. Based on the
geometry, a mesh is created and the matrices for the mathematical model are calculated.
It is possible to generate a rigid with an air film or a flexible bearing segment with or
without an air film. These different set-ups correspond to the different subsystems that
the PAFB can be divided into experimentally, as highlighted in figure 2.3 explaining the
stepwise validation.

The geometry of the PTF defined in cylindrical coordinates (θ , r, z) is transformed
into Cartesian coordinates (x , y, z), as required by the FEM formulation (see figure 3.16).
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Figure 3.15: The preprocess flow chart of the bearing segment generation. Three set-ups are
possible: 1) a rigid bearing segment with an air film; 2) a flexible (piezoelectric) top foil with an
air film; or 3) a flexible (piezoelectric) top foil without an air film. The preprocess generates a
datafile that may be used for setting up an air bearing with a journal.

The defined geometry of the PTF is the bearing surface and therefore the innermost
layer. Additional layers such as an MFC patch are added to the outside. Based on the
bearing surface geometry the mesh is created with the required number of elements
and nodes evenly distributed. One exception is the alignment of element boundaries
with additional layers or bump foil, which only partly covers the bearing surface. The
flat elements used for the air film follows the geometry of the PTF elements, i.e., the
z coordinates remains the same, while the x and y coordinates are transformed into
angular coordinates (θ ).

Figure 3.17 shows the preprocess of setting up the air bearing with the generated
bearing segment(s). The matrices from each of the bearing segments are joined into
a mathematical model of the air bearing, and if one or more of the bearing segments
include a piezoelectric layer, an electrical circuit may be connected to each layer, i.e., a
mathematical model of the circuit.

To illustrate the graphical output from the preprocess an PAFB has been generated,
consisting of one bearing segment with an MFC patch in the middle of an larger
unsupported area. The result is shown in figure 3.18. Figure 3.18(a) shows the nodes
in the top foil and their local coordinate systems. The outer edges of the top foil are
marked with a yellow line. The straight yellow line at the top of the bearing, aligned
with the z-direction, indicates the location of the leading and trailing edges. In this case
they are located next to each other, hence only one yellow line is visible. The green lines
located to the right of the yellow straight line marks the edges of the MFC patch. Figure
3.18(b) shows the unfolded top foil. The blue dots are the nodes, while the yellow,
red and green dots mark the areas within the elements (appearing as coloured areas).
Yellow elements are top foil supported by bump foil, red elements are unsupported top
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Figure 3.16: Schematics of an PAFB with one partially supported PTF, i.e., the bump foil does
not support the entire PTF.
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Figure 3.17: The preprocess flow chart for setting up an air bearing. The bearing segment(s)
required for the specific air bearing is(are) loaded, and if any MFC patches are placed on the top
foil(s), the electrical circuit(s) connected to the patch(es) is(are) included.
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(b) An unfolded PTF. The yellow aera represents top foil supported by bump
foil, red marks the unsupported top foil and the green shows the unsupported
top foil with a MFC patch.

Figure 3.18: Examples of graphical output from the preprocess. The mesh consists of 20 × 8
elements corresponding to 537 nodes, and the PTF model utilizes the first 20 mode shapes in the
modal reduction.

foil and green elements are unsupported top foil with an MFC patch mounted on the
outside of the top foil.

Solver-process

Figure 3.19 shows the solver-process. The process is divided into three parts: 1)
loading the file from the preprocess and preparing the simulation; 2) running the
simulation; and 3) saving the simulated data. Parts two and three are interconnected,
since the solver-process can divide the simulation into smaller portions which are saved
during the simulation. This enables a preliminary postprocessing while the simulation
is running.

A bearing set-up generated in the preprocess is loaded into the solver-process and
the initial conditions (ICs) are set for all the state variables

�{z̃r} ,
�
ψ̃a

	
, {z̃t}

�
. The ICs
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Figure 3.19: The flow chart of the solver-process. An air bearing set-up is loaded and the initial
conditions (ICs) are set for all solver variables. The iterative solver simulates the response and the
results are saved. It is possible to sub-divide the simulation enabling a preliminary postprocessing
of the simulation.

are either entered or loaded from a previous simulation. The main loop subdivides the
simulation and saves the partial results as they are simulated by the iterative solver. The
iterative solver, marked by the dotted box in figure 3.19, solves the combined governing
equation (3.21). An electrical circuit is only included in the simulations if the circuit
imposes an EPD between the IDEs in the PTF, hence the dashed box. The performance
of an electrical circuit, only affected by the deformations of the PTF, is calculated in
the postprocess. By the time the simulation is completed the solver-process has created
two files: 1) a file for each subdivision of the simulation, containing the time and state
space variables at each time step and; 2) a file containing metadata regarding the solver
process, e.g., wall-clock time for solving each sub-simulation.

Postprocess

The result of the postprocess can be divided into three groups: 1) three dimensional
plots at a given time step; 2) transient and steady state responses of a few chosen
DoFs; and 3) video files of transient and steady state responses for all nodes, i.e., three
dimensional plots in time. In order to illustrate the first two groups, the system response
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of the PAFB, shown in figure 3.18, has been simulated with a large rotor unbalance and
a sensor circuit connected to the MFC patch.

In figure 3.20 the pressure profile, air film thickness and top foil deflection are seen
as functions of the axial position z and circumferential location θ in a three dimensional
representation, i.e., the first group of plots. The color coding is the same as for the
preprocess graphical output, i.e., blue dots are the nodal values, yellow dots indicate
the values in the area where top foil is supported by bump foil. Red marked elements
shows the values where the top foil is unsupported, and the green dots indicates the
values in area corresponding to unsupported top foil with an MFC patch mounted on
the backside. The values of the yellow, red and green dots are interpolated using the
shape functions of the elements.

Examples of the second plot group, i.e., system response in time, are shown in
figure 3.21. The figure only contains the steady state part of the simulated response.
Figure 3.21(a) shows the rotor orbit (blue line) and the top foil along the centre of
the bearing: the initial non-deformed geometry (red); and the deflection at the final
time step (yellow). The starting point of the orbit is marked with a star, the end point
with a big dot and two decreasingly smaller dots close to the end point. These smaller
dots indicate the previous rotor positions, thereby showing the direction of the rotor
along the orbit. Four of the top foil nodes are marked with coloured squares indicating
the points where the radial steady state responses of the top foil are obtained. These
responses are shown in figure 3.21(c).

The transient responses of the rotor, top foil nodes, electrical charge and EPD
between the IDEs are shown in figure 3.21(b), (c) and (d), respectively. In each figure
the two plots in the top are given in time domain and show either: the movement and
velocity; or the electrical charge and EPD. The two lower plots in each figure show
the steady state responses in the frequency domain, i.e., FFTs of the movements and
electrical charge.

3.6 Validation

The validation of the mathematical model is divided into two parts: 1) an experi-
mental validation of the PTF model and 2) a numerical validation of the AFB model.
The experimental validation of the PTF was presented in publication P1, while the
numerical validation of the AFB was presented in publication P2. For this reason, only
the highlights from the validation will be presented, while further details are found in
the papers.

Piezoelectric top foil - experimental validation

An PTF with the dimensions and properties given in table 3.1 has been mounted in
the testing bracket, see figure 2.15 and has been meshed with 12×10 elements. The
layout of the PTF is shown in figure 3.22(a) while the orientation of the PTF in the
testing bracket is as shown in figure 3.22(b). In the following experiments, the MFC
patch has been used as an actuator, i.e., a random EPD has been applied to the IDEs
causing the PTF to vibrate. The average amplitude of the EPD was 300 volts.

The experimental and numerical frequency response functions (FRFs) are shown
in figure 3.23. A close resemblance is seen between the obtained numerical and
experimental amplitudes up to 450 Hz, i.e., the first five resonance frequencies. The
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Figure 3.20: Three dimensional output: pressure profile, air film thickness and top foil deflection
as functions of axial position z and circumferential location θ . The blue dots are the nodal values,
while the yellow, red and green are interpolated using the shape functions. The yellow marks the
area where top foil is supported by bump foil, the red marks unsupported top foil and the green
marks unsupported top foil with a MFC layer.
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Figure 3.21: Transient responses from the simulated PAFB after steady state has been reached.
The sizes of the plots are for illustrative purposes only.
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Table 3.1: The adopted dimensions and material properties of the PTF.

Metal Shell
Top foil radius (with MFC patch) 43.0 [mm]
Angular length (θt) 119 [◦]
Width (wt) 68 [mm]
Thickness (ht) 0.254 [mm]
Young’s modulus 207 [GPa]
Poisson’s ratio 0.30 [-]
Density (ρt) 8.100

� g
cm3

�
MFC Patch

Leading edge
�
θMFC,s

�
25.6 [◦]

Angular length (θMFC) 76.8 [◦]
Width (wMFC) 28 [mm]
Thickness (hMFC) 0.15 [mm]
Electrode centreline distance (Δxe) 0.5 [mm]
Electrode width (we) 50 [μm]
Young’s modulus (E1) 30.336 [GPa]
Young’s modulus (E2) 15.857 [GPa]
Shear modulus (G12) 5.512 [GPa]
Shear modulus (G23) 0 [GPa]
Shear modulus (G31) 0 [GPa]
Poisson’s ratio (ν12) 0.31 [-]
Poisson’s ratio (ν21) 0.16 [-]
Density 5.440

� g
cm3

�
Direct piezoelectric constant (d33) 800

� pC
N

�
Direct piezoelectric constant (d31), (d32) -340

� pC
N

�
Direct piezoelectric constant

�
d24

�
, (d15) 0

� pC
N

�
Permittivity (ε33) 0.42

�
nF

cm2

�
Permittivity (ε11), (ε22) 0

�
nF

cm2

�
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(b) The orientation of the PTF in the testing bracket.

Figure 3.22: The PTF used in the experimental validation of the mathematical model.
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Figure 3.23: Experimental FRF obtained by applying a random EPD with an average amplitude
of 300 volt to the IDEs on the MFC patch. The displacement sensor is located 90◦ from the
clamped edge, and along the outer edge, i.e., at y = 0 and z = 30 and the sensor is aligned with
the x-direction (see figure 3.22(b)).

models ability to predict the experimentally obtained phase is overall acceptable and
better close to the resonance frequencies. However, discrepancies are detected between
the third and fifth resonance frequencies. This has contributed to the use of Rayleigh
structural damping, incapable of describing the energy dissipation behaviour in the
entire frequency range.

The first six experimental and numerical mode shapes are shown in figure 3.24.
Close resemblance is seen between the first and the third to sixth experimental and
numerical mode shapes. The nodal line in the second mode is straight in the numerical
calculation, though it bends in the experimental one. The detected discrepancy is due
to a poor excitation of the second mode during the experiment. This is a result of the
placement of the MFC patch, i.e., a pure twisting mode is difficult to excite with the
symmetrically placed MFC patch.

Air foil bearing - numerical validation

The AFB used in the validation is well known from the literature, and is sometimes
referred to as the NASA air/gas foil bearing. The AFB used in the numerical validation
is shown in figure 3.25(a) while the data used in the simulation of the journal-bearing
system is listed in table 3.2. The mesh of the top foil contains 20×6 elements and
utilizes the first 20 model shapes in the modal reduction. These choices are based on a
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(a) 1st experimental mode shape (b) 2nd experimental mode shape (c) 3rd experimental mode shape

(d) 1st numerical mode shape (e) 2nd numerical mode shape (f) 3rd numerical mode shape

(g) 4th experimental mode shape (h) 5th experimental mode shape (i) 6th experimental mode shape

(j) 4th numerical mode shape (k) 5th numerical mode shape (l) 6th numerical mode shape

Figure 3.24: The first six experimental and numerical mode shapes projected onto a vertical
plane parallel to the clamped edge, i.e, the y-z plane in figure 3.22(b). The green color in the
experimental mode shapes corresponds to no movement, hence nodal lines are green. The red
color corresponds to maximum movement amplitude, which can either point inward or outward.

convergence study presented in publication P2.
The mathematical model of an AFB has been validated with the transient response

obtained from an experimentally validated AFB model known from the literature, e.g.,
Larsen and Santos (2015). Both models are FEM-based, i.e., the presented model uses
eight-node second order elements, while the validation model uses four-node first order
elements. The validation model utilizes; classical SEFM; includes no structural model
of the top foil; and uses the Gümbel condition to eliminate sub-ambient pressure in
the force integration. The validation model does not take into account whether the
edges are clamped or free, since the classical SEFM implies no deflection of the bearing
surface at the air film boundaries. The presented model does, however, distinguish
between clamped and free edges. For this reason the leading edge has been clamped,
since pressure profiles obtained with this configuration resembles the profile obtained
with the validation model when the Gümbel condition is applied.

The rotor orbits from the two simulations are shown in figure 3.26. Only a small
discrepancy is seen between the orbits, which is largest just before the lowest turning
point. The discrepancy is contributed to the differences between the two models, e.g.,
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(b) The mesh of the AFB used in the numerical valida-
tion. The top foil is clamped at the leading edge, i.e.,
θt = 0.

Figure 3.25: The AFB used in the numerical validation.

Table 3.2: Bearing system data used in the numerical validation of the mathematical model. The
bearing data are similar to that of the well-known NASA bump foil bearing frequently studied in
the literature.

Journal Data
Mass mr 3.055 [kg]
Unbalance mub 0 [kg ·m]
Load W {30, 0}T [N]
Rotational speed Ω 12,000 [rpm]

Gas Film Data
Absolute viscosity μa 19.5 ·10−6 [Pa · s]
Ambient pressure pA 1.01325 ·105 [Pa]
Radial clearance c 31.8 [μm]

Top Foil Data
Number of top foils 1 [-]
Diameter 2rt 38.1 [mm]
Width wt 38.1 [mm]
Thickness ht 0.2032 [mm]
Leading (clamped) edge θt,s 0 [◦]
Arc length θt 360 [◦]
Young’s modulus Et 207 [GPa]
Poisson’s ratio ρt 0.3 [-]
Damping factor dt 0.005 [-]

Bump Foil Data
Bump pitch Sb 4.572 [mm]
Half bump length lb 1.778 [mm]
Thickness hb 0.1016 [mm]
Young’s modulus Eb 207 [GPa]
Poisson’s ratio ρb 0.3 [-]
Loss Factor βb 0.25 [-]
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Figure 3.26: Plot of the transient response for the same AFB simulated using two different AFB
models. The presented model utilizing the first 20 mode shapes in the modal reduction and a
mesh of 20×6 elements.

the structure model for the top foil, which the validation model does not include.

3.7 Conclusion

The mathematical multi-physical model of the PAFB has been developed and valid-
ated in two steps. It shows good compliance with experimental results and numerical
simulations produced with a model presented in literature.

In the numerical implementation, a great effort has been dedicated to optimise
the computational execution in order to reduce wall-clock time for each simulation.
This is one of the primary reasons for dividing the numerical implementation into
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two preprocess, one solver and multiple postprocess scripts. This allows for multiple
simulations being solved in parallel with the same solver script, but with different input
files, while at the same time additional input files can be generated with the preprocess
scripts and the simulated data can be evaluated with the postprocess scripts. This
enables an efficient work process when multiple simulations are required, e.g., for the
waterfall diagrams seen in publication P2.



Chapter 4

Numerical results

This chapter presents the numerical simulations performed with the mathematical
model of the PAFB. The presented results can be divided into two categories: 1) investigations
of a passive PAFB, i.e., an AFB; and 2) simulation of an active PAFB. The chapter begins
with an investigation of the top foil clamping in an AFB, i.e., clamping the leading and/or
trailing edge. A comparison is made with results from the literature. This is followed by a
parameter study looking into the effects on the bearing performance caused by a partly
supported top foil when the AFB supports a journal with a large unbalance. In the study,
the size of the unsupported area is varied and the transient response is simulated until
the steady state response is achieved. The final study of the first type is two investigations
of the onset speed of instability for an AFB: 1) with a single top foil and; 2) with three
preloaded top foils. In both investigations the journal supported by the AFBs is balanced.
Results are discussed and compared with results in literature.

The chapter ends with a parameter study of the aerodynamic forces arising between a
PTF and a fixed rotor, i.e., the simulation focus on the coupling between the EPD applied
to the IDEs and aerodynamic pressure. The size and location of the MFC patch placed on
the backside of the top foil is varied, as well as the EPD applied to the IDEs. The study is
followed by a convergence analysis of both the number of elements and mode shapes.

4.1 Air foil bearing performance due to clamping of top foil edge

In the previously presented numerical validation of the AFB model, the leading
edge of the top foil was clamped. The clamping of the leading edge ensured conditions
similar to those found in simulations using the classical SEFM and the Gümbel condition.
However, most AFBs found in the literature and in used in the industry are designed
with a clamped trailing edge. A single-pad AFB with a clamped leading edge will not
function in an application, since the top foil will be torn off due to capstan/Eytelwein
forces according to Larsen (2015). For this reason an investigation of the top foil
clamping location is performed.

Three cases of top foil clamping are investigated: 1) clamped leading edge; 2)
clamped trailing edge; and 3) clamped leading and trailing edges. In all cases the
parameters for the simulated journal-bearing system are given in table 3.2, i.e., case 1
is identical to the simulation from the numerical validation. Besides the difference in
the clamping of the top foil, case 2 deviates from cases 1 and 3 by including the first 50
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Figure 4.1: Equilibrium points and top foil deflections at steady state for the three different
cases of top foil clamping.

mode shapes in the modal reduction instead of the first 20 mode shapes. The increased
number of mode shapes included in case 2 is to ensure numerical convergence of the
simulation.

The equilibrium points shown in figure 4.1 reveal that cases 1 and 2 have steady
state points located close to each other, while case 3 differs somewhat. This difference
is also observed in the top foil deflections displayed in the same figure. The deflected
top foil for cases 1 and 2 are very similar when compared from the leading edge until
the point where the top foil deflects inwards. For the remaining part of the top foil the
difference is clearly visible. The top foil for case 1 follows the curvature of the journal,
i.e., bending inward in the bearing, while for case 2 the initial inward deflection is
restricted and bent outward towards the clamped trailing edge. The top foil deflection
for case 3 differs from cases 1 and 2. This is due to the clamping of both ends of the
top foil, which restricts the circumferential movement of the top foil.

The pressure profiles at the steady state points are shown in figure 4.2. In case 1 the
pressure close to the trailing edge, i.e., from 270◦ to 360◦, equals ambient pressure, since
any sub-ambient pressure sucks the top foil inward. This results in the contribution from
this region to the aerodynamic forces being approximately zero, i.e., the same result as
when using classical SEFM combined with the Gümbel condition and in accordance with
the assumption of Heshmat et al. (1983b). In case 2 the effect of the clamped trailing
edge is seen on the pressure profile by a small pressure peak followed by a drop below
ambient pressure, i.e. a pressure valley, after the main pressure peak. The pressure
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Figure 4.2: The pressure profiles for cases 1 to 3. The pressure in the region from 270◦ to 360◦
corresponds to the area of the top foil, which deflects inwards. The classical SEFM is commonly
combined with the Gümbel condition to eliminate the sub-ambient pressure from the calculation
of the aerodynamic forces acting on the journal. However, this is only valid for case 1, where the
pressure in the aforementioned region equals ambient pressure.

peak is smaller than the pressure valley, resulting in a small non-zero contribution to the
aerodynamic forces pointing in the upward direction. This results in a slightly different
equilibrium position when compared with case 1. A similar pattern for the pressure
profile next to the trailing edge is seen for case 3. However, the overall pressure in
the trailing edge region is lower, meaning that instead of the minor pressure peak
seen for case 2 an additional pressure valley is seen in case 3. This results in a larger
upward contribution to the aerodynamic forces, partially explaining the location of the
equilibrium point for case 3 being located higher than in cases 1 and 2.

The location of the top foil fixation also has an effect on the main pressure peak
covering the region from 0◦ to 270◦. The peak seen for case 1 is the highest, but also the
most narrow. Case 2 is a bit lower but wider, followed by case 3. Despite the differences,
all three pressure peaks have a similar magnitude.

The journal orbits, from the centre of the bearing to the three equilibrium points,
are seen in figure 4.3. They differ for all three cases. The effects of the top foil clamping
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Figure 4.3: The transient responses of the three cases of top foil clamping in an AFB.

on the pressure profile changes the orbit of the journal on its way to equilibrium. For
case 1 the ambient pressure zone located in the vicinity of the trailing edge expands and
contracts as the journal moves around within the bearing, i.e., a larger or smaller part of
the top foil is sucked towards the journal in order to eliminate the subambient pressure
seen for the other cases in the divergent zone of the top foil. In the two remaining cases
the subambient pressure provides extra aerodynamic forces of a magnitude depending
on the location of the journal within the AFB.

The difference in the journal orbits for cases 1 and 2 shows the influences of the
top foil mounting on the system response. Mathematical models of an AFB utilizing
classical SEFM and the Gümbel condition will not be able to simulate the orbits for case
2, due to the Gümbel condition. In fact, the classical SEFM presented by Heshmat et al.
(1983b) was introduced to an AFB with a clamped leading edge, i.e., case 1 and not
case 2.

Figure 4.4 shows equilibrium points; top foil deflections; and journal orbits presented
in the literature (see Larsen et al. 2015b; Pham and Bonello 2013) and calculated for
case 3. The models from the literature do not utilize the Gümbel condition in the
sub-ambient pressure zones, hence allowing an inward deflection of the top foil in the
sub-ambient pressure zones. Case 3 is the case resembles the the most, since neither
the leading nor the trailing edge is allow to move, just as the sub-ambient pressure is
allow to affect the top foil and journal.

The equilibrium points from the literature are located further up in the AFB when
compared to case 3. This is due to the inward deflection of the top foil being larger for
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Figure 4.4: Comparison of rotor orbits for an AFB with a top foil clamped at both leading and
trailing edges.
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case 3, which results in the sub-ambient pressure for case 3 being closer to ambient
pressure. The smaller inward deflections in the simulations from Larsen et al. (2015b)
and Pham and Bonello (2013) also affect the journal orbits seen by, e.g., the journal
being lifted further up in the AFB after the initial drop. The difference between the
simulations from the literature and case 3 are expected. The models from the literature
use the same bump foil stiffness for both radial outward and inward deflections, i.e., not
taking into account the much lower bending stiffness of the top foil, thereby limiting the
inward deflection after the separation of the top foil and bump foil too much. This is
the main reason for using the Gümbel condition in connection with the classical SEFM.
A remedy for this discrepancy may be to change the linear stiffness used in the classical
SEFM to a bilinear stiffness, where the stiffness for inward radial deflection is based on
the top foil stiffness, as shown below. This remedy is not investigated in this thesis.

δ̃t =

�
(p̃− 1) α̃b p̃ ≥ 1

(p̃− 1) k̃−1
t p̃ < 1

4.2 Improved dynamic performance of an air foil bearing by only
partly supporting top foil thereby introducing a shallow
pocket

The MFC patch used in the proposed PAFB is placed on the backside of the top foil.
This limits the area where the bump foil can support the top foil, since the localised
support forces from the bump foil will damage the MFC, i.e., IDEs and piezoelectric
material. In order to examine the effects of a partly supported top foil on the bearing
performance, a numerical study was performed on an AFB. The dimensions of the AFB is
the same as used in the numerical validation (see table 3.2). The results were presented
in publication P2. In the study four cases were investigated: 1) an ordinary AFB, i.e.,
no bump foil removed; 2) bump foil removed close to the leading edge; 3) bump foil
removed at the high pressure zone and 4) bump foil removed at the trailing edge. The
area of bumps removed in cases 2, 3 and 4 measured 90◦×16 mm , which corresponds
to the size of a commercially available MFC patch. The steady state responses were
obtained for all cases at two different journal unbalances (5 g·mm and 20 g·mm) and a
rotational speed range from 6,000 to 20,000 rpm. The steady state responses for case 1
supporting a journal with the small unbalance are trivial in the entire speed range, i.e.,
only a harmonic vibration is seen. A similar performance was seen for cases 2, 3 and 4.
For the large unbalance, the steady state response for case 1 contained subharmonic
vibrations in parts of the speed range. Similar subharmonic vibrations were seen for
cases 2 and 4, while no subharmonic vibrations were found for case 3. In case 3 only
the harmonic vibration was present.

A Parameter study

The parameter study is centred around case 3, and investigates the relationship
between the size of the unsupported area and the elimination of the subharmonic
vibrations, hence the journal unbalance is 20 g·mm. The rotational speed used in the
parameter study is 13,000 rpm. The speed is chosen as the midpoint in the speed
range containing multiple subharmonic vibrations for a fully supported AFB, i.e., case 1
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Figure 4.5: Sketch of the design variables used in the parameter study of the partly supported
top foil. The unsupported area is symmetrically placed along the axial center line and along a
line placed 202.5◦ from the clamped leading edge. This is similar to case 3.

presented in publication P2. A sketch of the top foil with the unsupported area is shown
in figure 4.5. The variables in the parameter study are: the circumferential length lrb;
and the axial width wrb. The location of the midpoint in the unsupported area remains
the same as for case 3, i.e., the angular position of the centre is located θrb,m = 202.5◦
from the clamped leading edge, just as the area is placed symmetrically in an axial
direction.

Table 4.1 presents the results from all the simulations performed in the parameter
study. For each design the simulation is run until the steady state response is reached.
A � indicates that the subharmonic vibrations are eliminated, while an � shows that
the subharmonic vibration is still present, although the frequencies may have shifted
and the magnitudes changed. The (�) indicates that only one subharmonic vibration is
present in the steady state response, i.e., the whirl frequency. Finally, a journal-bearing
failure is marked with ��.

The parameter study reveals that the subharmonic vibrations will be eliminated if
the softening of the support is large enough, i.e., enough bumps have been removed.
The most important design variable is the arc length θrb of the unsupported area. For
lengths above 108◦ the subharmonic vibrations will be removed independently of the
axial width wrb of the unsupported area. There are two exceptions: 1) a too narrow
area does not lower the stiffness enough, and 2) an unsupported top foil, axially, causes
a journal-bearing failure, i.e., the rigidity of the top foil is too weak to support the
journal by itself. At a arc length of 90◦ the more narrow unsupported area becomes
inadequate to eliminate the subharmonic vibrations, and when the length goes below
72◦ it is not possible to eliminate the subharmonic vibrations.

Figure 4.6 shows the journal orbits and FEM meshes for an AFB supported by four
different cases of bump foil support. Results are presented as follows: figure 4.6(a)
shows design (a), a fully supported AFB; figure 4.6(b) is design (b) where a long, thin
strip of bump foil is removed (180◦×8 mm); figure 4.6(c) is design (c) which has a
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Table 4.1: The results from the parameter study of the partly supported top foil. The table shows
the effect of removing a given area of bump foil on the steady state response of a rotor-bearing
system affected by an unbalance of 20 g·mm. �: subharmonic vibrations have been eliminated;
�: multiple subharmonic vibrations are present; (�): only one subharmonic vibration is present,
which is the whirl frequency; and ��: journal-bearing failure, i.e., negative thickness of the air
film. The three letters refer to the journal orbits shown in figure 4.6

Arc length θrb [◦]
36 54 72 90 108 126 144 162 180

A
xi

al
w

id
th

w
rb
[m

m
]

4.0 � � � � � �

8.0 � � � � � � �(b)
12.0 � � � � � � �

16.0 �(c) �

20.0 � �

24.0 � � �

28.0 � � � �

32.0 � (�) (�) � � � �

36.0 � (�) (d) � � �� � �� � �

38.1 (�) n/a � �� �� �� �� �� ��

shorter but wider section of bump foil removed (72◦×12 mm) and figure 4.6(d) is
design (d) and has a short but much wider area of unsupported top foil (56◦×36 mm).
For cases (b), (c) and (d), i.e., partly supported AFB, the magnitude of the journal orbits
are reduced compared to the fully supported AFB. This can also be seen in the FFTs of
the steady state responses shown in figure 4.7. The fully supported AFB and design
(c) have the same dominating subharmonic frequencies in the steady state response,
although of different magnitudes. The two main subharmonic peaks are symmetrically
placed around the whirl frequency. This was also reported in publication P2. Design (d)
only has one subharmonic frequency, i.e., the whirl frequency, while no subharmonic
frequencies are present in the steady state response for design (b).

Of the four journal orbits shown in figure 4.6 design (d) reaches the largest eccent-
ricity (δ̃r = 2.1). This remains within the geometrically linear deflection range of the
top foil, and it is assumed that this is within the linear range of the bump foil. Larsen
et al. (2014) showed by experiment that the linear range of the bump foil stiffness is
more than 200 μm for a bump foil with a 7 mm pitch, hence the linear range of the
bump foil used in these particular AFBs is assumed to be 130 μm since the bump foil
pitch is 4.572 mm, see table 3.2.

The top foil deflection for design (a) and (b) are similar. They have the largest top
foil deflection located at the minimum air film thickness, their pressure profiles has
one peak and the region next to the trailing edge deflects inwards. This is in line with
expectations. For design (c) a slight modification of the pressure peak is caused by the
additional deformation of the unsupported top foil when compared to design (a). This
feature is mostly pronounced for design (d). Figure 4.8 shows the top foil deflection,
thickness of the air film and the pressure profile at the last time step of the simulation,
i.e., the point marked with the largest blue dot in figure 4.6(d). The minimum thickness
of the air film is located around 160◦ from the clamped leading edge as seen in figure
4.8(b). However, the largest deflection of the top foil in radial direction is located at
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Figure 4.6: The FEM meshes employed in the simulations and steady state journal orbits for the
selected AFBs from the parameter study.
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Figure 4.7: FFTs of the steady state response for the fully supported AFB and the three selected
designs, i.e., the three configurations of AFBs with partly supported top foils. The blue lines are
the FFTs of the x-direction and the red are the FFTs of the y-direction. The rotational speed is
13,000 rpm and the journal unbalance is 20 g·mm. The selected configurations are marked in
table 4.1 by letters corresponding to the figures shown.

approximately 200◦, as seen in figure 4.8(c), i.e., at the center of the unsupported area.
This affects the thickness of the air film seen by the plateauing just after the minimum
thickness of the air film. This results in double pressure peaks, as seen in figure 4.8(a).
The large peak is associated with the minimum thickness of the air film and the smaller
peak is due to the unsupported area of the top foil.

4.3 Increasing the rotational speed limit of an air foil bearing

One of the reasons for using PAFBs in a rotor-bearing system is to increase the
rotational speed of the rotor. Hence to create a baseline, the upper limit of the rotational
speed is found for two types of AFBs. In figure 4.9 journal orbits are shown for four
different rotational speeds. The initial condition for the orbits in the left hand column
is the centre of the bearing

�
ũr,1 = 0 , ũr,2 = 0

�
, while the initial condition for the right

hand column is the equilibrium point for the journal-bearing system running at 19,000
rpm

�
ũr,1 = 0.68 , ũr,2 = 0.37

�
. The orbits reveal that the attraction of the equilibrium

point decreases as the rotational speed increases. A journal rotating with 19,000 rpm
dropped from the center of the bearing is attracted to the stable equilibrium point,
while equilibrium position is not reached for a rotational speed of 19,500 rpm. The
onset speed of instability has not, however, been passed, since the journal will reach
the equilibrium position if the initial condition is closer to this point. In the right hand
column the initial condition is a drop from the equilibrium position at a rotation speed
of 19,000 rpm. The onset speed of instability is passed between 21,500 and 22,000
rpm, as seen by the journal orbit being attracted to a point of equilibrium at 21,500
rpm

�
ũr,1 = 0.65 , ũr,2 = 0.37

�
, while being repelled at 22,000 rpm.

A common strategy employed in the effort to increase the onset speed of instability is
to use an AFB with multiple preloaded top foil segments. An AFB with three preloaded
top foils is used in the simulations. The bearing parameters remain the same as for the
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Figure 4.8: Pressure profile, air film thickness and top foil deflection for the AFB with an
unsupported top foil area measuring 54◦×36 mm. The profiles correspond to the position of the
journal marked with the largest dot in figure 4.6(d).

AFB with one top foil (data given in table 3.2), with the exception of the parameters
given in table 4.2. The AFB is shown in figure 4.10. The results of the simulations are
seen in figure 4.11. When a journal running at 39,500 rpm is dropped from the bearing
centre, it is attracted to the stable equilibrium point, while at 40,000 rpm the attraction
of the equilibrium point is too low, i.e., the journal escapes, resulting in a bearing
failure. Similar to the previous AFB, the journal will reach the point of equilibrium,
while running at 40,000 rpm, if its initial condition is closer to the equilibrium point,
i.e., if it is dropped from the equilibrium point associated with the rotational speed of
39,500 rpm. The onset speed of instability for this AFB is between 44,500 and 45,000
rpm, i.e., 44,500 rpm is the highest rotational speed where the journal will reach a
stable equilibrium point. From 45,000 rpm the journal orbit follows a limit cycle, i.e., a
Hopf bifurcation has occurred. Between 46,000 and 46,500 rpm the limit cycle becomes
unstable and the journal orbit spins outward until bearing failure.
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Figure 4.9: Orbits from a journal supported by an AFB with a single top foil at various rotational
speeds. The stability limit of the equilibrium point is between 21,500 and 22,000 rpm. However,
since the journal-bearing system is non-linear, the transient response depends on the initial
conditions, i.e., the equilibrium point is only stable for a small disturbance.

Table 4.2: Additional or altered bearing data for the AFB with three preloaded top foils.

Gas Film Data
Radial clearance c 64 [μm]
Preload 0.5c [-]

Top Foil Data
Number of top foils 3 [-]
Leading (clamped) edge θt,s 0, 120, 240 [◦]
Arc length θt 120 [◦]
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(b) Mesh of the AFB used in the numerical validation.
The top foils are clamped at the leading edges, i.e.,
θt = {0,120, 240}.

Figure 4.10: The AFB used in the numerical simulations of the onset speeds of instability.

Stability limits for two similar AFBs have been presented in the literature. Kim
(2007) performed orbits simulations and found the onset speed of instability for the AFB
with a single top foil being clamped at the trailing edge to be 24,000 rpm, while the AFB
with three preloaded top foils also being clamped at their trailing edges had an onset
speed of instability at 47,000 rpm. In both cases these onset speeds are slightly higher
than the ones found above, i.e., 2,000 rpm (9.1%) and 2,500 rpm (5.6%), respectively.
As illustrated in the numerical validation of the AFB model, calculations performed with
classical SEFM and the Gümbel condition bear a closer resemblance to the simulation
performed with a clamped leading edge than simulations with a clamped trailing edge,
i.e., the discrepancies is not caused by the variation in mounting of the top foils.

An explanation for the discrepancy can be deduced from the onset speed of instability
presented by Larsen et al. (2016). The results show a decrease in onset speed with an
increase in SEFM stiffness, and since the contribution from the top foil to the SEFM
stiffness is neglected in the simulations presented by Kim (2007), slightly higher onset
speeds of instability are to be expected. This is also confirmed by Hoffmann et al.
(2015a), who find the onset speed for the AFB with a single top foil to be 22,400
rpm when using the same parameters for the bump foil, but also including a top foil
of 0.1016 mm, which is around half the thickness of the top foils employed in the
simulations presented.

Whip frequency at the onset speeds are identified by performing an FFT on the
transient response of the journal. The FFT for both AFBs are shown in figure 4.12.
The whip frequency for the AFB with a single top foil is 101.2 Hz, which corresponds
well with the results from the literature, i.e., 100 Hz is found by Kim (2007), while
Hoffmann et al. (2015a) obtained 100.8 Hz. The whip frequency for the AFB with three
preloaded top foils is 80.0 Hz, thereby also corresponding to the frequency (78.3 Hz)
obtained by Kim (2007).

In classical terms, the onset speed of instability equals the stability limit of the
equilibrium point, but for non-linear systems the stability limit only states the stability
of the equilibrium point for a sufficiently small disturbance, i.e., the system may not
be stable for larger disturbances. This is the case for the AFB as seen in figure 4.9 and
4.11, due to the AFB being governed by the compressible Reynolds equation (3.2) and
the bilinear SEFM presented in equation (3.6). It is possible to reach the onset speed of



74 4 Numerical results

Ω Initial conditions
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Figure 4.11: Orbits from a journal supported by an AFB with three preloaded top foils (the
clearance is 64 μm and the preload is 0.5c) at various rotational speeds. The stability limit of the
equilibrium point is between 44,500 and 45,000 rpm. At 46,000 rpm the journal orbit is bound
by a stable limit cycle.
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(b) AFB with three top foils and a journal rotation at 45,000 rpm, i.e., the steady state response of
the limit cycle.

Figure 4.12: FFT of the transient response for rotational speeds just after the onset speed of
instability has been passed.

instability since the journal reaches the point of equilibrium at a lower speed, i.e., below
39,500 rpm, which means the journal centre is very close to the point of equilibrium as
the rotational speed approaches 44,500 rpm. However, in reality the journal will never
be perfectly unbalanced; the drive will most likely affect the journal with a force besides
the driving torque; and an external excitation will most likely affect the system at some
point during its operational lifespan, etc. All of these may induce a large disturbance
and therefore the onset speed of instability will "in practice" be lower than the stability
limit.

4.4 Piezoelectric air foil bearing

The mounting of a MFC patch on the backside of a top foil segment enables a con-
trollable deformation of the top foil. The deformation and its effect on the aerodynamic
pressure depends on the size and the placement of the MFC patch, the direction of the
piezoelectric fibers within the MFC patch and the EPD applied to the IDEs.

Figure 4.13 shows a sketch of the piezoelectric top foil. Within the top foil area three
regions are seen: MFC patch, bump foil support and adjusted bump foil support. In the
area where the MFC patch is mounted the bump foil structure is removed and therefore
the remaining bump foil in axial direction has been adjusted in order to maintain the
overall axial line support stiffness. The correction factor κb is given in equation (4.1),
and it is multiplied with the stiffness calculated with equation (3.4), i.e., the bump foil
stiffness in the regions located before and after the MFC patch in the circumferential
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Figure 4.13: Sketch of the design variables for a piezoelectric top foil. The© marks the node
for which a selected transient response is shown in figure 4.15(a).

direction.

κb =
wt

wMFC
(4.1)

A Parameter study

A numerical parameter study has been performed to clarify the effects on the
aerodynamic forces {Fa} affecting the journal due to the layout of the PTF, hence
the placement of the MFC patch. The investigation is conducted with a flexible top
foil segment, with a single MFC patch, supported by bump foil, and with a journal
simply supported in its centre and rotating at 20,000 rpm. The piezoelectric fibres
in the MFC patch were aligned with the circumferential direction. The PAFB system
is seen in figure 4.14 and the constant parameters are given in table 3.2, with the
exception of the parameters given in table 4.3. The eccentricity of the journal centre
is fixed at 0.75

�{ũr} = {0,0.75}T� corresponding to a 0.75 preloaded bearing. The
design variables investigated in the parameter study are width, foil arc length and
circumferential position of the MFC patch, which are shown in figure 4.13. Table 4.4
lists the combinations of design variables used in the study. Not all combinations of
length and position are possible due to the fixed overall length of the top foil.

In order to obtain the steady state condition for the non-linear bearing system the
transient response is simulated as indicated in figure 4.15. The initial condition for the
air film is ambient pressure, while the top foil is undeformed and no EPD Δφe = 0 is
applied to the IDEs, i.e, the bearing system is passive. Once the steady state has been
achieved for the passive system, an EPD is gradually imposed on the IDEs. The response
is simulated beyond the point in time where the full EPD has been applied in order to
obtain the steady state for the active system. Figure 4.15(a) shows the transient radial
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Figure 4.14: A sketch of the PAFB design used in the parameter study. The journal is simply
supported with an eccentricity of 0.75 {ũr} = {0,0.75}T.

Journal Data
Rotational speed Ω 20,000 [rpm]

Top foil
Number 1 [-]
Clamped (leading) edges θt,s 30 [◦]
Arc length θt 120 [◦]

MFC patch
Fibre direction 0 [◦]
Thickness hMFC 0.3 [mm]

Table 4.3: The parameters used for the PAFB are given in table 3.2, with the exception of
parameters given in this table and in conjunction with a specific simulation.
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θMFC
30◦ 60◦ 90◦ 120◦

w
M

FC

8 mm x x x x
16 mm x x x x
24 mm x x x x

θ
M

FC
,s

0◦
30◦
60◦
90◦

Table 4.4: Design variables used in the parameter study of the MFC patch. The effect of the
added MFC patch is quantified by the change in the aerodynamic forces on the fixed journal
as a result of varying EPD applied to the IDEs. Three variables are varied: 1) the arc length of
the MFC patch θMFC in circumferential direction; 2) the width of the MFC patch wMFC in axial
direction; and 3) the angular placement of the MFC patch in circumferential direction measured
from the clamped leading edge θMFC, Start.

0 0.0055 0.0165 0.022

-0.5

0

0.5

time [s]

δ̃
t

(a) Transient response in radial direction of top foil corner node marked with
© in figure 4.13. The red line marks the steady state where there is no EPD
between the IDEs.

Δ
φ̃

time [s]
0 0.0055 0.0165 0.022

-0.4

-0.2

0

(b) EPD applied to the IDEs on the MFC patch.

Figure 4.15: The simulated transient response from a top foil with a 16 mm × 90◦ MFC patch
placed 30◦ from the clamped edge. In the simulation a mesh of 12 × 11 elements was used with
a modal reduction including the first 40 mode shapes.

deflection of a corner node at the free trailing edge of the top foil marked in figure 4.13.
Figure 4.15(b) shows the corresponding EPD applied to the IDEs during the simulation.
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Results of the parameter study

The aerodynamic forces acting on the journal are shown in figure 4.16 as a function
of the EPD applied to the IDEs. The graphs are divided into six coordinate systems
corresponding to the two forces direction and the three widths. The aerodynamic forces
for an AFB are included in all six coordinate systems in order to highlight the impact of
including a MFC patch in the top foil design.

The computational effort used to obtain the results should be noted. For each design
layout at least seven, and up to 12, simulations have been performed in order to obtain
either the steady state aerodynamic forces, or to find a negative air film thickness,
thereby setting the limit for that particular design. A grand total of 193 simulations
have been performed, with time spend simulating the response ranging from minutes
to several days. The very long solver times occurred for simulations where very small
air film thickness was encountered in certain areas, i.e., where the non-linear effects of
the air film were pronounced, while in other areas the top foil and bump foil barely
touched each other, i.e., the bilinear effect of the SEFM was pronounced.

The first thing to notice is that the size and placement of the MFC patch have little
impact on the aerodynamic forces when no EPD is imposed between the IDEs. The
limited effect is seen in figure 4.16 by all lines almost passing through the same point
at zero EPD and on top of the reference lines for the AFB. In all 30 design layouts the
aerodynamic forces vary within the range Fa,x = 2.24+0.15−0.17 and Fa,y = 14.49+0.0−0.6. These
differences are less than ±7.6% and ±4.2%, respectively. The design with the largest
deviation is the 24 mm × 120◦ MFC patch covering the entire circumferential length of
the top foil. Figure 4.17 shows the top foil deformations and pressure profiles for the
aforementioned design and the AFB at steady state. As seen in the figure, the maximum
pressure is higher for the AFB (p̃ = 1.263 vs. p̃ = 1.237) while the pressure profile is
somewhat wider for the top foil with a MFC patch.

The second thing to notice is the range of EPD applied to IDEs for each design
layout. For all design layouts the positive amplitude of EPD is limited by the occurrence
of negative air film thickness. This is observable in the graphs in that none of the design
layouts have aerodynamic forces at the highest EPD. The design allowing for the highest
EPD

�
Δφ̃e = 0.8

�
has an 8 mm × 30◦ MFC patch located 60◦ from the leading edge,

i.e., one of the smallest patches in the parameter study. A commercial supplier states
the linear operation range for the EPD to be from -500 V to +1500 V

�
Δφ̃e =

�− 1
3 , 1

��
.

For most design layouts no negative air film thickness is encountered within the liner
operation range. The larger EPD range for the smaller patches is due to the relatively
smaller piezoelectric forces {FMFC} they generate, when compared to the larger patches,
i.e., a larger patch creates a larger deformations of the PTF than a smaller patch affected
by the same EPD. This is indirectly seen by the larger EPD range for the smaller patches,
e.g., by comparing the dotted purple line for all three widths, the largest EPD ranges
are found for the narrowest patch.

The third thing to notice is the correlation between the size of the MFC patch and
the aerodynamic forces. A larger patch increases the change in the y-component of the
aerodynamic forces

�
Fa,y

�
, i.e., perpendicular to the top foil center (see figure 4.14).

This is exemplified by the three dashed lines in figure 4.16(e) for the length lMFC, where
the orange line (90◦) is steeper than the yellow line (60◦), which is steeper than the
purple line (30◦). For the width wMFC the effect is visible by comparing, for instance,
the orange dashed lines for 8 mm and 16 mm. However, only a minor additional gain
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(e) 16 mm wide MFC
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(f) 24 mm wide MFC
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Figure 4.16: The resulting aerodynamic forces {Fa} on the journal at different levels of EPD.
The values used for the design variables investigated are listed in table 4.4. The mesh used in the
parameter study is 12 × 11 with the first 40 mode shapes included in the modal reduction. The
x-axis shows the entire EPD range for a commercial available MFC patch according to the data
sheet.
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(c) Pressure profile - 24 mm × 120◦ MFC patch
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(d) Pressure profile - No MCF patch, i.e., AFB.

Figure 4.17: Top foil deflection and pressure profile simulated with a 12 × 11 mesh and with the
first 40 modes in the modal reduction. The blue dots are the nodal values from the simulation,
while the interpolated green area shows where the MFC patch is mounted, i.e., the yellow area is
passive top foil, which is supported by the bump foil.
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is obtained by increasing the width from 16 mm and 24 mm. The relationship between
EPD and the aerodynamic force in the x-direction

��
Fa, x

	�
, i.e., tangential to the top foil

center (see figure 4.14), is not as clear as for the y-direction. However, the magnitude
of the aerodynamic forces in the x-direction is small when compared to those of the
y-direction, and for most design layouts, the forces do not change significantly with
neither length nor width when compared to the amplitude of the aerodynamic force in
the y-direction.

The fourth thing to notice is the effect on the aerodynamic forces originating from
the placement of the MFC patch, i.e., the leading edge of the MFC θMFC,s. The closer
towards the free trailing edge the MFC patch is placed the larger the aerodynamic force
in the y-direction. This is seen, for example, in the three yellow lines in figure 4.16(e).
The dotted line (60◦) is steeper than the dashed line (30◦), which is steeper than the full
line (0◦). A different trend is seen for the aerodynamic force in the x-direction: looking
at the same three design layouts in figure 4.16(b). First and foremost, the magnitude
is smaller. Secondly, the dotted line remains the steepest, however, its inclination is
opposite of the dash and full lines. The dashed line is the flattest. This suggests an
intermediate position for the MFC patch where change in EPD has a minimal effect on
the aerodynamic force in the x-direction.

The final thing to notice is the linear relationship between the EPD and the resulting
aerodynamic force in the y-direction, especially for the longer MFC patch.

Based on the parameter study the best design layout has the 16 mm × 90◦ MFC
patch located 30◦ from the leading edge. The resulting aerodynamic force on the journal
in the x-direction is close to zero

�
Fa,x = [−1.3, 2.2]N

�
. In the y-direction the force

is in the vicinity of the largest one obtained
�
Fa,y = [34,7]N

�
, and it displays a linear

relation with respect to the EPD in the entire range used
�
Δφ̃e = [−0.3,0.1]

�
. The

additional force obtained with the larger MFC patches does not justify the removal of
extra bumps, which a larger patch requires. A reduction of the bump foil area reduces
the contact surfaces and thereby the friction forces, which provides hysteresis damping
to the bearing system.

In figure 4.18 top foil deflections and pressure profiles at steady state are shown
for the PTF with the best design layout. The three different EPD shown are the most
positive EPD case Δφ̃e = 0.1, the passive case Δφ̃e = 0.0 and the most negative EPD
case Δφ̃e = −0.3. These cases correspond to the aerodynamic forces marked with
orange circles in figure 4.16(b) and (e).

The top foil deflection pattern for the passive case, figure 4.18(b), has an outward
deflection into the supporting bump foil for the first 90◦ from the fixed leading edge.
The last 30◦ deflects inward towards the journal, hence this section has no contact with
the bump foil. In the area with the largest outward deflection located 30◦ to 90◦ from
the leading edge, the top foil has an additional outward deflection at the axial center
when compared to the edges, essentially creating a shallow pocket in the top foil. This
is due to the unsupported area where the MFC patch is located. The area of the MFC
patch is marked in green in the figures. The forming of a shallow pocket affects the
entire top foil deflection, e.g., at the free trailing edge the center has an additional
inward deflection when compared to the corners of the top foil. The corresponding
pressure profile seen in figure 4.18(e) has a single pressure peak located a 60◦ and two
sub-ambient pressure zones close to the corners of the free trailing edge.

In figures 4.18(a) and (d) the pressure profile and top foil deformation are shown
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Figure 4.18: Pressure profile and top foil deflection at steady state for a PTF with a 16 mm ×
90◦ MFC patch placed 30◦ from the clamped edge at three different cases of EPD. The cases
correspond to the aerodynamic forces marked with orange circles in figure 4.16(b) and (e). A
mesh of 12 × 11 elements including the first 40 mode shapes in the modal reduction was used in
the simulations. The blue dots are the nodal values from the simulation, while the interpolated
green area shows where the MFC patch is mounted, i.e., the yellow area indicates where the PTF
is supported by bump foil.
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for the case with the most positive EPD
�
Δφ̃e = 0.1

�
. The top foil deflection in the area

of the MFC patch forms a large valley in circumferential direction, which at the ends is
changed to a peak in axial direction. This is consistent with expectations, since a positive
EPD applied to the IDEs will elongate the MFC patch in the fibre direction but contract
it in the perpendicular direction. This effect increases the outside circumference and
thereby the effective curvature while also reducing the outside axial length, introducing
an outward arcing curvature. The remaining top foil area, i.e., outside the MFC patch
area, deflects with many peaks and valleys. The most noticeable feature is the peak in
front of the MFC patch θ = [0◦, 30◦]. The peak is created by the increased curvature in
circumferential direction due to the MFC patch and the leading edge, which is fixed.
The top foil deformation is clearly visible on the pressure profile. The pressure in the
initial two thirds of the area where the MFC patch is located (θ = [30◦, 90◦]) is close
to ambient pressure and therefore not contributing to aerodynamic forces on the fixed
journal. This leaves the area next to the top foil edges to form the pressure zone, and
due to the effectively reduced pressure area the aerodynamic forces are reduced.

The top foil deflection and pressure profile in figures 4.18(c) and (f) show the
most negative EPD case

�
Δφ̃e = −0.3

�
. The top foil deflection in the area of the MFC

patch is similar to the previous case, although with opposite direction of deflection. A
peak is formed in the circumferential direction with a top at 90◦ and an initial bump
located in front at 60◦. The deflection in the axial direction flattens out towards the
circumferential ends of the MFC patch, changing the peak to a valley. The deflection in
the remaining area consists of many peaks and valleys with the most significant feature
located between the fixed leading edge and the MFC patch, i.e., from 0◦ to 30◦. This
also resembles the deflection pattern from the most positive EPD case, but with an
opposite direction of deflection. The pressure profile for the most negative EPD case
differs from the most positive EPD case. The location of the two high pressure peaks
corresponds to the location of the initial bump and peak top in the plot of the top foil
deflection. The pressure peaks are approximately 9 times higher for the most negative
EPD case in comparison to the two other case. This results in a 139 % increase in the
aerodynamic force (34.0 N) as compared to the passive case (14.2 N).

Convergence analysis of the result

Figure 4.19 shows the convergence of the aerodynamic forces as a result of mesh
refinement and the number of the lowest mode shapes included in the modal reduction.
The graphs representing the same number of mode shapes clump together, indicating
that the number of mode shapes included in the modal reduction is of greater importance
than the number of elements in the mesh. The clusters of graphs for 35 and more mode
shapes are located close to each other, with a trend of increasing aerodynamic forces
for higher numbers of mode shapes. The effect of including more elements in the mesh
reduces the aerodynamic forces, hence the lack of including more mode shapes will
compensate by a coarser mesh.

The effect on the top foil deflection and aerodynamic pressure of including more
elements in the mesh is seen by comparing figure 4.18(c) with 4.20(a) and figure
4.18(f) with 4.20(c), i.e., 12 × 11 mesh and 17 × 17 mesh. The only clear difference,
as the number of elements is increased, is seen in the pressure profiles, where the
highest pressure peak shifts from the second peak (at 90◦) to the first (at 60◦), just as
the magnitude of the peak falls from 4.3 to 3.6.
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Figure 4.19: Convergence analysis for the PAFB with a 16 mm × 90◦ wide MFC patch place 30◦
from the fixed leading edge. In the convergence analysis both mesh size and number of modes
included in the modal reduction are varied. The results are shown as resulting aerodynamic
forces on the fixed journal.
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Figure 4.20: The pressure profile and top foil deflection simulated with either the first 40 mode
shape in the modal reduction and a mesh of 17 × 17 elements or the first 20 mode shapes
and a mesh of 12 × 10 elements. The top foil has a 16 mm × 90◦ MFC patch placed 30◦ from
the clamped leading edge. The blue dots are the nodal values from the simulation, while the
interpolated green area shows where the MFC patch is mounted, i.e., the yellow area is passive
top foil, which is supported by the bump foil.
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The effects of the number of mode shapes included in the simulations are visible
by comparing the top foil deflections (figures 4.18(c) with 4.20(b)) and the pressure
profiles (4.18(f) with 4.20(d)). The first clear difference is the magnitude of the top
foil deflection, which increases from [−0.1, 0.3] to [−0.4, 0.6] when the number of
mode shapes is increased. A second difference is the number of peaks and valleys in
the deflection figures, which indicates the influence of the higher order modes on the
deflection pattern. When too few mode shapes are included in the modal reduction an
artificial stiffening of the top foil is introduced. This is due to the deflection pattern
being limited to the lower order modes, which are insufficient for describing the top
foil deflection.

The results simulated with a 12 × 11 mesh and with the 40 first mode shapes in the
modal reduction are valid based on the convergence analysis.

4.5 Conclusion

Results presented for a fully supported AFB shows the influence of top foil clamping
on the: i) equilibrium point of the journal; ii) journal orbit; and iii) deflection of the
top foil. Although the equilibrium point of the journal for a clamped leading edge and
clamped trailing edge are close, the journal orbits differ just as the top foil deflections
(see figure 4.1 and 4.3). This is important, since most AFBs found in literature have
a clamped trailing edge. The traditional simulations of AFB, utilizing classical SEFM
automatic implies clamped leading and trailing edges. However, due to the Gümbel
condition applied in the subambient pressure zone at the clamping of the trailing edge
has no effect, i.e., the traditional simulations mostly resembles an AFB with a clamped
leading edge, c.f., figure 3.26.

Additional investigations into the elimination of subharmonic vibrations reported
in publication P2 was conducted. The parameter study focused on the successful case,
removal of bump foil in the high pressure area. Results show the arc length (θbr) being
the most important parameter of the variables varied. Essentially the removal of bump
foil creates a shallow pocket, when the journal approaches the softer supported area.
This allows the top foil to deflect further than for the fully supported case, thereby
achieving a thicker air film, hence the non-linearities are less predominant.

A parameter study was conducted to investigate the effects of the PTF on the
aerodynamic forces. In order to isolated the effect the journal was simply supported
and the EPD was applied slowly to limit dynamic effects, i.e., a slow feed forward
control strategy was applied. The study showed that the aerodynamic forces was
not affect when a passive MFC patch was added to the top foil, no matter size or
location of the patch. However, when a EPD was applied the aerodynamic forces was
affected. Depending on the size and location it was possible to obtain an increase in
the aerodynamic forces upto 139 %.





Chapter 5

Conclusion and future aspects

Important steps towards the development of a PAFB have been done in the PhD
project. The objectives of the project have been to: 1) develop a multi-physic mathem-
atical model of an AFB combined with a model of smart material; 2) design a versatile
test facility; 3) validation the mathematical model and evaluate the performance of
the PAFB. The research has resulted in two publications, which together with the thesis
document the achievements of these objectives. In overall terms all of the objectives
been achieved.

The development and validation of the mathematical model of the PAFB was done
stepwise, i.e., PTF (publication P1) and AFB (publication P2). In publication P1 the
resonance frequencies and mode shapes of a PTF measured experimentally where
captured by the mathematical model in a frequency range upto 500 Hz. The experiments
revealed non-linear geometric effects, i.e., a shift in the location of the resonance peaks in
the experimental FRF. These effects were visible for vibration amplitudes of a magnitude
similar to the thickness of the PTF. This a well known non-linear phenomenon for curved
shells, which been reported in literature. But, since the vibration amplitudes in an AFB
are much smaller, the non-linear effects have been neglected from the mathematical
model.

The structural model of the top foil used in the AFB model is a passive version of the
PTF, i.e., without a MFC patch. It incorporates a bi-linear modelling of the bump foil,
thus allowing the top foil and bump foil to separate. An investigation into the clamping
of the top foil revealed that AFB models known from literature produces journal orbits
similar to the presented model, when the leading edge of the top foil is clamping. This
is in contrast to AFBs found in industry, which in almost all cases have clamped trailing
edges.

Similarly results are seen for the onset speed of instability. Two different AFBs
have been simulated, both with clamped leading edges: 1) one top foil and; 2) three
preloaded top foils. The calculated onset speeds of instability are similar, although the
presented model found slightly lower speeds, than results reported in literature for
AFBs with clamped trailing edges. These lower speeds are contributed to the modelling
of the non-linear transient response, which have been reported in literature.

Another option when including a structural model of the top foil is to simulated
an AFB with a partially support top foil. Such a bearing has been investigated in both
publication P2 and in the thesis. It has been found than the removal of bump foil in
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the high pressure area can eliminate the subharmonic vibrations affecting the fully
supported equivalent, when supporting at highly unbalanced journal. The investigation
revealed the most important design parameter to be the circumferential length of the
unsupported area. A sharp transition zone is found between areas spans 90◦ and 72◦,
i.e., to eliminate the subharmonic vibration the unsupported area must span 90◦ or
more.

The result of functioning AFBs with partially supported top foils is a stepping stone
towards the PAFB. The removal of bump foil creates an area for the MFC patch, where
it will not be damaged due to radial loading. Results from such a set-up have been
reported in the thesis. An PTF, spanning 120◦× 38.1 mm, clamped at the leading edge
and partially supported by a bump foil, has been loaded by the aerodynamic forces
arising between PTF and a simply supported journal running a constant speed. The
EPD applied to the MFC patch affect the deflection of the PTF, thereby changing the
aerodynamic forces, which directly relates to the load carrying capacity of the PAFB. A
parameter study shows that a very significant impact is achieved with a 90◦× 16 mm
MFC patch, placed at the trailing edge of the PTF. This can increased the load carrying
capacity by 139 %.

5.1 Future aspects

In light of the numerical findings presented in this PhD thesis the possibilities of
successfully creating an PAFB with better performance than the AFB is still very likely,
but further investigations, both numerically and experimentally, are required. First
and foremost an experimental validation of the presented PAFB model, i.e., beyond
the validations of the individual submodels. This is achievable with the presented test
facility.

Objectives for future investigations can be divided into two main categories: 1) used
the mathematical model to investigate the structural effects of the top foil in an AFB
and; 2) investigate the static and dynamic behaviour of the PAFB. Of the first type the
focus may be, e.g., mechanical stresses at the clamping point; the influence of the top
foil structural stiffness on the static and dynamic properties of the AFB or; the influence
of top foil inlet inclinations. For the other type objectives may be, e.g., active control of
the rotor-bearing response based on rotational speed or rotor vibrations; connecting
the MFC patches to shunt circuits thereby increasing the energy dissipation from the
system or; use a small MFC patch to monitor the structural integrity of the system.

The current mathematical model can address the suggested objectives of the first
category, i.e., for the AFB. Although minor work is required in order to calculate the
mechanical stresses in the top foil. However, for the second category some additional
physical phenomena have to been included. The electrical circuit use, i.e., the actuator
circuit, is very simple, and further computational code has to be written before numerical
simulations of, e.g., shunt circuits connected to the PAFB, are possible.

Furthermore, piezoelectric material will creep when a constant EPD is applied to
the electrodes for a long time. Hence, if a rotational speed based control strategy is
implemented, and the goal is to study the static and dynamic behaviour of the PAFB at
a constant rotational speed, the current version of the mathematical model will produce
incorrect results.

For both cases the mathematical model requires further refinement. The wall-clock
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time spend to complete a simulation of the transient response are in some cases more
than six hours and some times days. This is within an acceptable time frame if only a
limited number of simulation are required. But for larger parameter studies examining
the influence of several design variables the wall-clock time for the simulation is too
long. A further optimisation of the computational code is required.

The numerical results produced with the mathematical model can be validated via
experiments preformed with the versatile test facility presented in the thesis. However,
modifications may be required before an experiment can be performed. The design
of the test facility allows for this without irreversibly changing the test facility. Hence,
any future modifications should be viewed as add ons, which can be mounted and
dismounted depending on the experimental requirements.
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Appendix A

Theory from publication P1 with
the nomenclature used in the
thesis

The nomenclature used in the thesis and in publication P1 is the same. The change
was done in order to streamline nomenclature used for the different domains of the
PAFB. This makes comparison between the thesis and publication P1 difficault, hence
the mathematical model presented in publication P1 have been reprinted below utilizing
the nomenclature used in the thesis.

The appendices referred to in the reprinted text, is those of publication P1

A.1 Mathematical Model

A layered shell containing one or more layers of piezoelectric fiber patches must
be regarded as a electro-mechanical system in order to take the piezoelectric coupling
effects into account. In the derivation of a mathematical model, Lagrange equation
(A.1) is used.

∂

∂ t

�
∂ L
∂ q̇i

�
− ∂ L
∂ qi
= Fi (A.1)

This requires the Lagrangian to be discrestized, which is done by shape functions
and the nodal degrees of freedom used in the FEM formulation. The Lagrangian for a
electro-mechanical system is given by the kinetic energy minus the potential energy.

L = T − H

The Continuous System

The potential energy is calculated based on the constitutive equation. The poten-
tial energy used in the Lagrangian depends on which variables are dependent and
independent. In the constitutive equation (3.9) for the electro-mechanical system,
mechanical strain {ε} and electric displacement {D} are the extensive properties, while
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the mechanical stress {σ} and the electrical field {E} are the intensive properties. The
infinitesimal change of the internal energy of a system is given by a infinitesimal change
in the extensive properties, hence mechanical strain and electrical displacement as seen
in equation (A.2a), but since the independent variables required for the FEM model is
mechanical strain and electrical field a Legendre transformation of the internal energy
is done leading to infinitesimal change of the enthalpy, which depends on the required
variables as shown in equation (A.2b).

δU = {σ}T δ {ε} + {E}T δ {D} (A.2a)

δH = {σ}T δ {ε} − {D}T δ {E} (A.2b)

The Legendre transformation from the internal energy to the enthalpy is

H = U − {E}T {D} (A.3)

The constitutive equation required by the enthalpy is given in equation (A.4), in
which the mechanical stress and electrical displacement are the dependent variables
and the mechanical strain and electrical field are the independent variables.

{σ} =[C] {ε} − [e]T {E} (A.4a)

{D} =[e] {ε} + [η] {E} (A.4b)

The structural stiffness [C], inverse piezoelectric constant [e] and electric permit-
tivity [η] matrices are given in the appendix.

The energies required to calculate the Lagrangian are

T =
1
2

∫
ρ {u̇t}T {u̇t} dV (A.5a)

H =
1
2

∫ � {ε}T [C] {ε} − 4 {E}T [e] {ε} − {E}T [η] {E} �dV (A.5b)

The electromechanical system is assumed to be electrostatic. For details in the
derivation of the enthalpy see appendix. In FEM models it is custom to use displacement
u and electrical potential φ as the independent variables rather than mechanical strain
and electrical field. Equation (A.6) shows the relationship between mechanical strain
and displacement as well as the relationship between electric field and electric potential.

{ε} = [∂] {ut} (A.6a)

{E} = −{∇}φt (A.6b)

The differential operators are given in appendix.
The Lagrangian for the continuous system given in equation (A.7) is a function of

the displacement, time derivative of the deflection (velocity) and electrical potential.

L =
1
2

∫ �
ρ {u̇t}T {u̇t} − ([∂] {ut})T [C] [∂] {ut}

−4 ({∇}φt)
T [e] [∂] {ut}+({∇}φt)

T [η] {∇}φt

�
dV

(A.7)
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The Discretized System

The Lagrangian for the continuous system (A.7) must be given by generalised
coordinates before it can be used in the Lagrange Equation (A.1). The continuous
degrees of freedom are discretized by separation of variables and given in equation
(A.8). The separated variables are the nodal variables

�
ut, e

	
and {φe} and known

shape functions
�
Nt, u

�
and

�
Nt, φ

�
.

�
ut (t, x , y, z)

	
=
�
Nt, u (x , y, z)

� �
ut,e (t)

	
(A.8a)

φ (t, x , y) =
�

Nt, φ (x , y)
	 �
φt, e (t)

	
(A.8b)

The differential operators used in the calculation of the mechanical strain and
electrical field in equation (A.6) are spacial derivatives, hence only the shape functions
are affected. Derivative matrices are set up for differentiated shape functions as given
by

�
Bt, u

�
= [∂]

�
Nt, u

�
(A.9a)�

Bt, φ

�
= {∇} �Nt, φ

�
(A.9b)

When the nodal degrees of freedom equation (A.8) and derivative matrices equation
(A.9) are introduced in the continuous Lagrangian (A.7) ones obtains

L =
1
2

∫ � Term: I︷ ︸︸ ︷
ρ
��

Nt, u

� �
u̇t, e

	�T �
Nt, u

� �
u̇t, e

	

−
Term: II︷ ︸︸ ︷��

Bt, u

� �
ut, e

	�T
[C]

�
Bt, u

� �
ut, e

	
−4

��
Bt, φ

� �
φt, e

	�T
[e]

�
Bt, u

� �
ut, e

	︸ ︷︷ ︸
Term: III

+
��

Bt, φ

� �
φt, e

	�T
[η]

�
Bt, φ

� �
φt, e

	︸ ︷︷ ︸
Term: IV

�
dV

(A.10)

the discrete version of the Lagrangian given in generalized coordinates.

The Governing Equation for the Electro-Mechanical System

Calculating the weak form of the governing equation (A.11) via Lagrange equation
(A.1) and the descretized Lagrangian (A.10) requires differentiation with respect to
the two generalized coordinate types, i.e. the deflection and electrical potential, and
the time derivatives of these. These calculation is given in appendix. The governing
equation is
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-
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+

+

Figure A.1: Sketch of the IDE (yellow bars) electric field (black lines with arrows) and the dead
zone in between to equipotential electrode fingers (red areas). A set of electrode fingers above
and below each other are equipotential, and a dead zone exists along these fingers.

∫
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Bt, φ
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[e]

�
Bt, u

�︸ ︷︷ ︸
Part: IV
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ut, e

	 − �Bt, φ

�T
[η]
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Bt, φ
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Part: V

�
φt, e

	 �
dV = {F}

(A.11)

The Electrical Field Created by the Interdigitated Electrodes

So far, the derivation has been kept general, hence no restrictions have been intro-
duced for the shape or geometry of the electro-mechanical system. In order to include
the external electric field in the piezoelectric fiber due to the electrodes (see figure 2a
in publication P1) the electric field variable {E} must be expanded and rewritten. The
electrical field created by an electrical potential difference between the electrodes is
added via superposition to the existing electrical field within the fibers, hence the total
electrical field is given by

{E} = − ({∇}φt + {Ee}) (A.12)

IDEs have dead zones between two equipotential electrode fingers in the thickness
direction marked with red in figure A.1. These dead zones introduce a challenge for
selecting the correct distance between two electrode pairs in the in-plane direction
needed for calculating the electric field due to the direction of the electrical field as
seen in the same figure (figure A.1). Nasser et al. (2008) gives an analytical expression
for the effective electrical field produced by the electric potential difference between
the interdigitated electrodes taking the dead zones into account. The correction factor
is

κe =
�
1− he

Δxe

�
1
2
+

2
π2

���
Δxe − we

Δxe − he

�
(A.13)
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Δxe 2we

2

1

3

Figure A.2: A photo of the interior of a MFC patch. 1 - isolation (white lines), 2 - piezoelectric
fibers (gray areas), 3 - interdigitated electrodes (black lines). The picture is taken with a Olympus
GX41 microscope and a Leica DFC450 C camera.

The figure distance between the centreline of two adjacent electrode fingers Δxe
and half the width of an electrode finger we are shown in figure A.2.

Each of the two electrodes in a IDE pair has the same electrical potential in the entire
electrode and the electrical field created by an IDE is only non-zeros perpendicular to
the electrode fingers in accordance with Nasser et al. (2008). In equation (A.14) the
electrical field is given via separation of the variables into the derivative matrix

�
Bt, φ

	
depending on spatial coordinates and the electrical potential difference Δφe depending
on time.

{Ee} =
�

Bt, φ

	
Δφe = [Te]

⎧⎨
⎩

0
0
κe
Δxe

⎫⎬
⎭Δφe (A.14)

There are two important things to note regarding the electrical field of the IDEs.
First note; the electrical field created by the IDEs has different direction on each side
of an electrode finger as illustrated by the arrows on the electrical field lines seen in
figure A.1, but since the manufacture uses the IDEs for polarisation of the piezoelectric
fibers the polarisation also has different direction on each side of an electrode finger,
hence the electrical field is always aligned with the polarisation. Second note; the third
spatial direction of a piezoelectric material is conventionally aligned with the direction
of polarisation, which for piezoelectric fibers differs from the convention for plates
and shells, where the third spacial direction is the surface normal, hence a coordinate
transformation [Te] is needed to make them compatible as seen in equation (A.14).

The governing equation for the electric-mechanical system (A.11) must include the
DoF related to the IDE. Of the equation’s five parts, part I and II are kept unchanged,
while part III, IV and V are expanded to accommodate the effect IDE. The governing
equation, which includes the IDE is
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(A.15)

The matrix form of equation (A.15), where the volume integrals are included in the
matrix elements, is
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⎣
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{Qe}
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(A.16)

The Eight Node Double Curved Isoparametric Element

As base for the new dynamic electro-mechanical element the static eight node double
curved layered isoparametric serendipity element presented by Panda and Natarajan
(1981) is chosen. A schematic can be seen in the centre of figure A.3(a). The physical
double curved layered shell is prescribed by a 2D four sided shell with nodes in each
corner and on each side. This eight node shell element follows the geometrical mid
plane of the physical shell, with the spacial location of the physical shell given by

�
xt, u

	
=

8∑
i=1

Nt,i

%�
xt,i

	
+ ζ

ht,i

2
{V3i}

&
(A.17)

The nodal placement is given in global coordinate system, while the thickness is
given by the third coordinate direction of the local nodal coordinate system (see figure
A.3(a)). The transformation matrices from global to local coordinates are given in
appendix.

In the derivation of the governing equation via Lagrange equation the discretization
via separation of variables is done with unspecified shape functions and nodal degrees
of freedom, see equation (A.8). For the eight node element the shape functions are
given in isoparametric coordinates and listed in appendix along with the derivative
matrices in appendix. The nodal displacement

�
ut, e

	
has a kinematic relation based on

first order shear deformation and is

�
ut, e

	
=
�
ut, i

	
+ ζ

ht, i

2
[μi]

�
αi
βi

�
(A.18)



A.1 Mathematical Model 109

(a) Element with local coordinate systems in each
node

x3

x1

x2

{V3i}
{V2i}

{V1i}

βi

αi

ui

vi

wi

(b) Local and global coordinate system and nodal
kinematic variables

Figure A.3: 8-node double curved shell element with local coordinates given in each node and
the relationship between the local and global coordinates and the kinematic nodal variables.

h1

...

...
hk

hnn

1

k

Figure A.4: Layers in the shell with numbering and thicknesses.

The nodal electrical potential, which is the new addition, is divided into an in-
ternal nodal electric potential

�
φt, i

	
for each layer, and an external electrical potential

difference {Δφe} for each of the IDE pairs.

For Multi-Layers

For a shell structure with multiple layers the volume integration in the thickness
direction must be done individually for each layer as proposed by Panda and Natarajan
(1981). This procedure utilizes that the material properties are well known at layer level,
hence making the procedure straight forward. The infinitesimal relationship between the
isoparametric thickness coordinate ζ of the shell and the layer isoparametric thickness
coordinate ζk is

dζ=
hk

ht
dζk (A.19)

where hk is the thickness of the layer and ht is the thickness of the shell as shown in
figure A.4).
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Using this infinitesimal relationship for the Gaussian integration, the mass and
stiffness matrices in equation (A.16) are given in equation (A.20) on element level. The
matrices for the piezoelectric coupling and electrical relation are given on layer level, i.e.
they are not added together. This is due to the assumption of each piezoelectric layer
being electrically isolated from the others and having their own electrodes. Therefore
their also have own degree of freedom with respect to electrical potential difference.
The assumption is valid for MFC due to the isolation on top and bottom (see figure
1.3(b)).
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Guyan Reduction of Internal Electrical Potential Degrees of Freedom

The internal electrical field can be generated by a deflection of the shell or an
electrical potential difference over the IDE, and since the actual magnitude of this
field is of no interest the degrees of freedom associated with this can be eliminated
via a Guyan reduction presented by Guyan (1965) and originally in a piezoelectric
context by Allik and Hughes (1970). This will result in a lowering of the total number
of variables leading to a reduction of the computational effort needed, but still maintain
the effects of the internal electrical field due to the modification of the remaining
stiffness matrices and their corresponding external force vectors. From equation (A.16)
electrical potential related to the internal electrical field can be isolated. For simplicity
equation (A.21) shows the reduction for one element in a layer
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�−1

k
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When the expression for the internal electrical potential is inserted into equation
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(A.16) it yields
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The DoFs are reduced to deflection and electric potential difference from the elec-
trode pairs.

The modified stiffness matrices and force vectors are given in equation (A.23).
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Boundary Conditions

The developed element has two types of degrees of freedom i.e. displacement
�
ut, e

	
and electrical potential difference {Δφe}. The variable related to the electrical system is
taken as the difference between the two electrodes. This is a relative degree of freedom
corresponding to one of the electrodes is grounded, hence no boundary condition is
needed.

The mechanical displacement requires boundary conditions, since rigid body motion
is possible. Fixation of a mechanical degree of freedom can be done by setting the
corresponding diagonal value in the mass

�
M̂t, uu

�
and stiffness matrices

�
K̂t, uu

�
to one

and the associated column and row values as well as the force vector
�

F̂t

	
row to zero.

For additional explanation see e.g. Cook et al. (2002).





Publication P1

A layered shell containing
patches of piezoelectric fibers
and interdigitated electrodes:
Finite elementmodeling and
experimental validation

This paper was published on-line in Journal of Intelligent Material Systems and
Structures in May 2016. The paper presents the finite element used for modelling the
piezoelectric top foil (PTF).



Original Article

Journal of Intelligent Material Systems
and Structures
1–19
� The Author(s) 2016
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1045389X16642537
jim.sagepub.com
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Abstract
The work gives a theoretical and experimental contribution to the problem of smart materials connected to double
curved flexible shells. In the theoretical part the finite element modeling of a double curved flexible shell with a piezo-
electric fiber patch with interdigitated electrodes (IDEs) is presented. The developed element is based on a purely
mechanical eight-node isoparametric layered element for a double curved shell, utilizing first-order shear deformation
theory. The electromechanical coupling of piezoelectric material is added to all elements, but can also be excluded by
setting the piezoelectric material properties to zero. The electrical field applied via the IDEs is aligned with the piezo-
electric fibers, and hence the direct d33 piezoelectric constant is utilized for the electromechanical coupling. The dynamic
performance of a shell with a microfiber composite (MFC) patch is investigated using frequency response functions
(FRFs) obtained via external impact test as well as internal random signal excitation using the MCF patch as an actuator.
The experiments are used to validate the numerical results. Good agreement between theory and experiments is
obtained in a large frequency range. Discrepancies and insights into optimal modeling frequency range and non-linear
behavior are discussed.

Keywords
Double curved shell, experimental validation, finite element method, interdigitated electrodes, microfiber composite,
active fiber composite, piezoelectric fiber composite, electromechanical system

Introduction

The past few decades have seen an intense develop-
ment and integration of smart materials into a variety
of flexible structures, with the goal of sensing, moni-
toring and controlling the static and dynamic beha-
vior of such flexible structures. Piezoelectric material
adds a new dimension into the design of smart struc-
tures, since it allows for adaptation and optimization
of their static and dynamic properties via electronics
and software, and with the development of piezoelec-
tric patches these properties are easily added to a flex-
ible structure.

Sensing and actuating via piezoelectric structures
have been a topic of research for many years, dating
back to at least the 1950s; see for example Thurston
(1953). Over the years different types of sensors and
actuators have been developed, but the focus of this
article is on piezoelectric patches. Many of these
patches have been developed by NASA, and Bryant
(2007) gives a timeline for the development of different

types of piezoelectric patches, from the thin layer unim-
orph driver (THUNDER) in the beginning of the 1990s
to the microfiber composite (MFC) in 1996, and so on.
These two types of piezoelectric patches are shown in
Figure 1. As seen in the figure the THUNDER patch
consists of a thin piezoelectric sheet covered by electro-
des on top and bottom, while the MFC consists of rec-
tangular piezoelectric fibers isolated from each other
and covered by interdigitated electrodes (IDEs). The
idea for the piezoelectric fiber and IDEs originates from
the active fiber composite (AFC) presented by Hagood
et al. (1993) and Hagood and Bent (1993). An overview
of the MFC technology and applications has been given
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by Williams et al. (2002) and Schönecker et al. (2006).
MFC patches with the top and bottom electrode con-
figuration exist, although this version cannot match the
THUNDER patch for actuation as shown by Bent
et al. (1995). For this reason all subsequent references
to MFC or piezoelectric fiber patches assumes IDEs
are used.

The literature within the topic of modeling piezo-
electric patches can be divided into three categories: (1)
analytical and finite element method (FEM) models of
beams, plates and shells of or with the THUNDER
patch, (2) analytical material models validated by full
three-dimensional (3D) FEM models of a so-called unit
cell or representative volume, and (3) analytical and
FEM models of beam-like structures utilizing MFC
patches in the design.

Among the first models of piezoelectric patches are
the dynamic equations presented by Tzou and Gadre
(1989) and the solid FEM model by Tzou and Tseng
(1991), which include the piezoelectric material in the
layers of a shell. These models utilize the extension
mode or d31 piezoelectric constant, where the electrical
field is applied to the shell normal direction, the same
direction as the polarization, but with the mechanical
reaction acting in the plane of the shell. The subsequent
FEM models presented in the literature are layered-
beam-, plate- or shell-based, utilizing different shear

deformation theory. Suleman and Venkayya (1995)
presented a four-node Mindlin element for plates with
the possibility of including multiple piezoelectric
patches in the same layer, while Samanta et al. (1996)
presented a FEM model based on high-order deforma-
tion theory. Tzou and Ye (1996) utilized zigzag theory
with individual shear and electrical potential in each
layer for a FEM model with six-by-two-node triangular
elements. A mixed formulation FEM model was pre-
sented by Saravanos (1997) combining first-order shear
deformation theory through the entire shell thickness
with a piecewise linear electrical potential in the layers.
Piefort and Henrioulle (2000) present a FEM model
based on Kirchhoff plate theory. A nine-node shell ele-
ment was presented by Balamurugan and Narayanan
(2001) based on first-order shear deformation theory.
Gabbert et al. (2002) described three different ways of
including the piezoelectric effect in an eight-node semi-
loof shell element ranging from an external force to the
inclusion of the electrical potential at each node.
Varelis and Saravanos (2006) introduced a double
curved layered shell finite element, which can handle
large deformations and is capable of modeling large
curved shells. A five-layer shallow shell finite element
was presented by Boudaoud et al. (2008), based on a
classical three-node flat triangular element, while
Balamurugan and Narayanan (2009) utilize respectively
higher-order shear deformation theory on an eight-
node shell element. Vidal et al. (2011) presented an
eight-node shell element based on the Reissner–Mindlin
plate model with an additional quadratic thickness
stretching displacement term. The four-node shallow
element presented by Yasin and Kapuria (2013) utilizes
zigzag theory to describe the shear deformation.

In the same period FEM models have been pub-
lished for the THUNDER patch taking into account
the thermal effects on the piezoelectric material.
Chattopadhyay et al. (1998) presented an analytical
plate model including the thermal coupling to the elec-
tromechanical system. A FEM model of this was pre-
sented by Bansal and Ramaswamy (2002) in a four-
node plate element and in a nine-node shell element
version by Narayanan and Balamurugan (2003).

The piezoelectric layers in all the models presented
above are of the THUNDER type and utilize the exten-
sion mode, as opposed to the shear mode or d15 piezo-
electric constant, where the electrical field is applied in
the shell normal direction, but the polarization is in-
plane with the shell. The mechanical reaction acting on
the electrical field is in-plane shear. Benjeddou et al.
(1997, 1999) and Trindade et al. (2001) presented a
FEM model capable of including both extension and
shear mode for a sandwich beam. This was later
expanded by Kapuria and Hagedorn (2007) to include
multiple layers, and the internal electric mechanical
effects.

Figure 1. Two types of piezoelectric patches. The THUNDER
and the MFC P1. (1) Isolation layer, (2) piezoelectric sheet and
(3) electrodes.
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In the second category of topics the main focus is
homogenization of the material properties of an exten-
sion mode piezoelectric fiber patch with IDEs due to
the complex structure and electrical field from the elec-
trodes. The first model presented by Bent and Hagood
(1997) is known as the uniform field method. The
method is developed for the AFC with IDEs, but due
to the close resemblance between the MFC and the
AFC, the method may also be used for homogenization
of the MFC material properties. Park and Kim (2005)
presented an alternative method to calculate the homo-
genized material properties. Results were presented for
single crystal MFC, standard MFC and AFC, showing
a better performance for the MFC. This can be attrib-
uted to the better contact between the MFC and IDEs
due to the squared fiber as opposed to the round fiber
used in AFC. Deraemaeker et al. (2009) used the mix-
ing rule for calculating the average material properties,
and validated the results via a 3D finite element model
of the unit cell. Biscani et al. (2011) presented the
asymptotic expansion homogenization for calculating
the material properties of the MFC with top and bot-
tom surface electrodes. The characterization of the
material properties in a shear mode MFC with top and
bottom electrodes has been presented by Trindade and
Benjeddou (2011), which shows the packaging lowers
the effective stiffness and inverse piezoelectric coupling
effect of the shear mode MFC.

The temperature dependency for the homogenized
material properties of the extension mode MFC is pre-
sented by Prasath and Arockiarajan (2015) as a func-
tion of the bonding layer thickness between the
piezoelectric fiber and the IDEs, since the bonding
layer obstructs the electrical field produced by the
IDEs. Nasser et al. (2008, 2011) focus on the electrical
field between two electrodes, making it possible to cre-
ate a correction for the dead zones in the electrical
field. This gives an insight into the distribution of the
electrical field associated with the IDEs used for piezo-
electric fiber patches.

Within the third topic Nguyen and Kornmann
(2006) used a 3D FEM model of a beam to investigate
the dynamic performance of the three collocated pairs
of piezoelectric patches, that is, THUNDER, AFC and
MFC, and compared results with experimental data.
An analytical investigation of a MFC patch mounted
on a beam was performed by Bilgen et al. (2010), which
agrees with experimentally obtained results.
Brockmann and Lammering (2006) developed a hollow
beam FEM model for modeling a helicopter rotor
blade. An air foil with 18 MFC patches has been mod-
eled by Guennam and Luccioni (2006, 2009) using two
different approaches. In the first one, the box beam of
the air foil is modeled by FEM in a piece of commercial
software, while in the second approach the box beam is
modeled by a four-node piezoelectric shell element. The
two models show very similar results. The latter model,

which is the model most comparable to the one pre-
sented in this article, has been expanded by Guennam
and Luccioni (2015) to take the non-linearity of the
piezoelectric coupling into account.

In this framework the main original contribution of
this work relies on the development and experimental
validation of a linear electromechanical finite element
for double curved layered shells with the capability of
including one or more piezoelectric fiber patches by
adding one single additional degree of freedom (DoF)
per electrode pair, that is, the electrical potential differ-
ence over the IDEs while taking the dead zones due to
the IDEs into account. The dynamic shell element
model is based on a static eight-node serendipity iso-
parametric layered double curved finite element devel-
oped by Panda and Natarajan (1981). Capabilities and
limitations of the new electromechanical finite element
are shown by comparison to experiment results per-
formed with a single curved shell with one MFC patch.
The neutral bending axis in the electromechanical shell
is not located at the mid-plane of the shell due to the
asymmetric layup. It is important to highlight that, in
most of the contributions found in the literature,
patches are symmetrically distributed on both sides of
the shell, leading to no extension–bending coupling. In
this work such a symmetric stacking of layers is not
imposed due the practical application in mind.

Electromechanical model

A piezoelectric MFC patch consists of aligned rectangu-
lar piezoelectric fibers isolated from each other and with
IDEs on the top and bottom surfaces. The IDEs creates
an electrical field due to the electrical potential difference
between the electrode fingers in the plane of the patch
and perpendicular to the electrodes, that is, in the same
direction as the fibers and the wanted action. This results
in an extension mode and utilizes the direct piezoelectric
constant d33, which has a larger magnitude than the d31
utilized in the THUNDER piezoelectric patches, and
hence a bigger effect is gained in the fiber direction (Bent
et al., 1995). In Figure 2(a) a sketch of the MFC is seen,
while in Figure 2(b) a single piezoelectric fiber 2ð Þ is
shown with its isolation on its sides 1ð Þ and one pair of
IDEs 3ð Þ on its top and bottom. The enclosed square
marked with black lines is the unit cell in a MFC patch.

The unit cell is assumed to be governed by two phys-
ical domains, one mechanical and one electrical, which
are coupled by the piezoelectric effect. Figure 3 shows
the MFC unit cell (a) and the two domains (b): on the
left-hand side the mechanical domain is described by
three direct and three shear strain variables, and on the
right-hand side the electrical domain is represented by
three direct electrical field directions.

The piezoelectric constitutive equation (1) is given in
for example Tiersten (1969), where S½ � is the structural
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compliance, d½ � is direct piezoelectric constant and e½ � is
the electric permittivity. The specific configuration of the
piezoelectric fiber patch, for example fiber fraction ratio
and so on, affects the material properties in the constitu-
tive equations, which may be calculated by for example
the uniform field model mentioned in the introduction.
The constitutive equation may also be used for non-
piezoelectric materials, since a non-piezoelectric material
will have zero piezoelectric constant and dielectric permit-
tivity, and hence equation (1a) reduces to Hook’s law.

ef g= S½ � sf g+ d½ �T Ef g ð1aÞ
Df g= d½ � sf g+ e½ � Ef g ð1bÞ

The physics behind the constitutive equations can be
explained by the crystal structure of a piezoelectric

material. The crystal lattice of a typical piezoelectric
material like lead zirconate titanate (LZT) is tetragonal
(non-cubic), which below the Curie temperature results
in a spontaneous polarization of the ions within the
material due to their internal position in the lattice.
The non-symmetric lattice in a dipole moment; see
Figure 4. The dipole moments within the material
structure, or even within a material crystal, are not
necessarily aligned upon initial manufacturing. An
alignment of the dipoles is ensured by poling the mate-
rial with a strong electric field, which ensures alignment
of the piezoelectric properties. A thorough explanation
is given by Damjanovic (1998).

Mathematical model

A layered shell containing one or more layers of
piezoelectric fiber patches must be regarded as an
electromechanical system in order to take the piezoelec-
tric coupling effects into account. In the derivation of
a mathematical model, the Lagrange equation (2) is
used.

∂

∂t

∂L

∂ _qi

� �
� ∂L

∂qi
=Fi ð2Þ

This requires the Lagrangian to be discretized, which
is done by shape functions and the nodal DoFs used in
the FEM formulation. The Lagrangian for an electro-
mechanical system is given by the kinetic energy minus
the potential energy.

L= T � H

The continuous system

The potential energy is calculated based on the consti-
tutive equation. The potential energy used in the
Lagrangian depends on which variables are dependent
and independent. In the constitutive equation (1) for
the electromechanical system, mechanical strain ef g
and electric displacement Df g are the extensive

Figure 2. The origin of the MFC unit cell consists of a
piezoelectric fiber with isolation and one pair of the electrode
fingers. (a) MFC patch. (b) Unit cell marked with bold black lines.

Figure 3. The unit cell of the MFC and the two physical
domains with their variables. The mechanical domain is on the
left-hand side and the electrical domain is on the right-hand side.
In the mechanical domain only the strains on the outward
pointing surfaces are displayed. (a) MFC unit cell. (b) Strains and
electric field.

Figure 4. The crystal lattice of LZT PbTiO3ð Þ. The non-
symmetric placement of the ions in the lattice results in a dipole
moment. The direction of the dipole moment may point in any
of the three spatial directions depending on the displacement of
the ions.
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properties, while the mechanical stress sf g and the
electrical field Ef g are the intensive properties. The
infinitesimal change in the internal energy of a system
is given by an infinitesimal change in the extensive
properties, hence mechanical strain and electrical dis-
placement as seen in equation (3a), but since the inde-
pendent variables required for the FEM model are
mechanical strain and electrical field a Legendre trans-
formation of the internal energy is performed, leading
to infinitesimal change in the enthalpy, which depends
on the required variables as shown in equation (3b).

dU = sf gTd ef g+ Ef gTd Df g ð3aÞ
dH = sf gTd ef g � Df gTd Ef g ð3bÞ

The Legendre transformation from the internal
energy to the enthalpy is

H =U � Ef gT Df g ð4Þ
The constitutive equation required by the enthalpy

is given in equation (5), in which the mechanical stress
and electrical displacement are the dependent variables,
and the mechanical strain and electrical field are the
independent variables.

sf g= C½ � ef g � e½ �T Ef g ð5aÞ
Df g= e½ � ef g+ h½ � Ef g ð5bÞ

The structural stiffness C½ �, inverse piezoelectric con-
stant e½ � and electric permittivity h½ � matrices are given
in the appendix.

The energies required to calculate the Lagrangian
are

T =
1

2

Z
r _uf gT _uf gdV ð6aÞ

H =
1

2

Z
ef gT C½ � ef g

�4 Ef gT e½ � ef g
� Ef gT h½ � Ef g�dV

ð6bÞ

The electromechanical system is assumed to be elec-
trostatic. For details on the derivation of the enthalpy
see the appendix. In FEM models it is customary to
use displacement u and electrical potential f as the
independent variables rather than the mechanical strain
and electrical field. Equation (7) shows the relationship
between mechanical strain and displacement as well as
the relationship between electric field and electric
potential.

ef g= ∂½ � uf g ð7aÞ
Ef g= � rf gf ð7bÞ

The differential operators are given in the appendix.

The Lagrangian for the continuous system given in
equation (8) is a function of the displacement, time
derivative of the deflection (velocity) and electrical
potential.

L=
1

2

Z
r _uf gT _uf g

� ∂½ � uf gð ÞT C½ � ∂½ � uf g
�4 rf gfð ÞT e½ � ∂½ � uf g
+ rf gfð ÞT h½ � rf gf�dV

ð8Þ

The discretized system

The Lagrangian for the continuous system (8) must be
given by generalized coordinates before it can be used
in Lagrange equation (2). The continuous DoFs are dis-
cretized by separation of variables and given in equa-
tion (9). The separated variables are the nodal variables
uf g and ff g and known shape functions N½ �:

u t, x, y, zð Þf g= uN x, y, zð Þ½ � ue tð Þf g ð9aÞ
f t, x, yð Þ= fN x, yð Þ� �

fe tð Þf g ð9bÞ
The differential operators used in the calculation of

the mechanical strain and electrical field in equation (7)
are spatial derivatives, and hence only the shape func-
tions are affected. Derivative matrices are set up for dif-
ferentiated shape functions as given by

uB½ �= ∂½ � uN½ � ð10aÞ
fB
� �

= rf g fN
� � ð10bÞ

When the nodal DoFs equation (9) and derivative
matrices equation (10) are introduced in the continuous
Lagrangian (8) one obtains

L=
1

2

Z
½r uN½ � _uef gð ÞT uN½ � _uef g
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Term:I

� uB½ � uef gð ÞT C½ � uB½ � uef g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Term:II

�4 fB
� �

fef g	 
T
e½ � uB½ � uef g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Term:III

+ fB
� �

fef g	 
T
h½ � fB

� �
fef g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Term:IV

�dV

ð11Þ

the discrete version of the Lagrangian given in gener-
alized coordinates.

The governing equation for the electromechanical
system

Calculating the weak form of the governing equation
(12) via Lagrange equation (2) and the discretized
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Lagrangian (11) requires differentiation with respect to
the two generalized coordinate types, that is, the deflec-
tion and the electrical potential, and the time deriva-
tives of these. These calculations are given in the
appendix. The governing equation is

R
V
½r eN½ �T eN½ �
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{Part:I

e€uf g
+ uB½ �T C½ � uB½ �|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Part:II

euf g

+ 2 fB
� �T

e½ � uB½ �
� �T

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Part:III

eff g

+ 2 fB
� �T

e½ � uB½ �|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Part:IV

euf g

� fB
� �T

h½ � fB
� �|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Part:V

eff g�dV = Ff g

ð12Þ

The electrical field created by the interdigitated
electrodes

So far, the derivation has been kept general, and hence
no restrictions have been introduced for the shape or
geometry of the electromechanical system. In order to
include the external electric field in the piezoelectric
fiber due to the electrodes (see Figure 2(a)) the electric
field variable Ef g must be expanded and rewritten. The
electrical field created by an electrical potential differ-
ence between the electrodes is added via superposition
to the existing electrical field within the fibers; hence
the total electrical field is given by

Ef g= � rf gf+ eEf gð Þ ð13Þ
IDEs have dead zones between two equipotential

electrode fingers in the thickness direction marked with
red in Figure 5. These dead zones introduce a challenge
for selecting the correct distance between two electrode
pairs in the in-plane direction needed for calculating
the electric field due to the direction of the electrical
field as seen in the same figure (Figure 5). Nasser et al.
(2008) give an analytical expression for the effective
electrical field produced by the electric potential differ-
ence between the IDEs taking the dead zones into
account. The correction factor is

acorr = 1� hf

pf

1

2
+

2

p2

� � �
pf � wf

pf � hf

 �
ð14Þ

The figure distance between the centerline of two
adjacent electrode fingers pf and half the width of an
electrode finger wf is shown in Figure 6.

Each of the two electrodes in an IDE pair has the
same electrical potential in the entire electrode and the
electrical field created by IDEs is only non-zero perpen-
dicular to the electrode fingers in accordance with
Nasser et al. (2008). In equation (15) the electrical field

is given via separation of the variables into the deriva-
tive matrix eBf g depending on spatial coordinates and
the electrical potential difference Def depending on
time.

eEf g= eBf gDef= Te½ �
0

0
acorr

p

8<
:

9=
;Def ð15Þ

There are two important things to note regarding the
electrical field of the IDEs. First note: the electrical
field created by the IDEs has a different direction on
each side of an electrode finger as illustrated by the
arrows on the electrical field lines seen in Figure 5, but
since the manufacturer uses the IDEs for polarization
of the piezoelectric fibers the polarization also has a
different direction on each side of an electrode finger,
and hence the electrical field is always aligned with the
polarization. Second note: the third spatial direction of
a piezoelectric material is conventionally aligned with
the direction of polarization, which for piezoelectric
fibers differs from the convention for plates and shells,
where the third spatial direction is the surface normal,
and hence a coordinate transformation Te½ � is needed to
make them compatible as seen in equation (15).

The governing equation for the electromechanical
system (12) must include the DoFs related to the IDEs.

Figure 5. Sketch of the IDEs (yellow bars), electric field (black
lines with arrows) and the dead zones in-between equipotential
electrode fingers (red areas). A set of electrode fingers above
and below each other is equipotential, and dead zones exist
along these fingers.

Figure 6. A photo of the interior of a MFC patch. (1) Isolation
(white lines), (2) piezoelectric fibers (gray areas), (3) IDEs (black
lines). The picture is taken with an Olympus GX41 microscope
and a Leica DFC450 C camera.
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Of the equation’s five parts, parts I and II are kept
unchanged, while parts III, IV and V are expanded to
accommodate the effect IDEs. The governing equation,
which includes the IDEs, isZ

V

½r eN½ �T eN½ � €uef g

+( uB½ �T C½ � uB½ �+ 2 fB
� �T

e½ � uB½ �
+ 2 eB½ �T e½ � uB½ �) uef g
+ 2( fB

� �T
e½ � uB½ �

� �T

� fB
� �T

h½ � fB
� �� eB½ �T h½ � fB

� �
) fef g

+(2 eB½ �T e½ � uB½ �
� �T

� eB½ �T h½ � fB
� �� �T

� eB½ �T h½ � eB½ �) Deff g�dV = Ff g

ð16Þ

The matrix form of equation (16), where the volume
integrals are included in the matrix elements, is

u�uM½ � 0½ � 0½ �
0½ �T 0½ � 0½ �
0½ �T 0½ �T 0½ �

2
64

3
75

€uef g
€fe

� �
€Def

n o
8>><
>>:

9>>=
>>;

+

u�uK½ � f�uK
� �

e�uK½ �
f�uK
� �T

f�fK
� �

e�fK
� �

e�uK½ �T e�fK
� �T

e�eK½ �

2
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fef g
Deff g

8><
>:

9>=
>;

=

uFef g
fQe

� �
eQf g

8><
>:
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>; ð7Þ

The eight-node double curved isoparametric element

As the base for the new dynamic electromechanical ele-
ment the static eight-node double curved layered iso-
parametric serendipity element presented by Panda and
Natarajan (1981) is chosen. A schematic can be seen in
the center of Figure 7(a). The physical double curved
layered shell is prescribed by a 2D four-sided shell with
nodes in each corner and on each side. This eight-node
shell element follows the geometrical mid-plane of the
physical shell, with the spatial location of the physical
shell given by

xf g=
X

Ni xif g+ z
ti

2
V3if g

� �
ð18Þ

The nodal placement is given in the global coordi-
nate system, while the thickness is given using the third
coordinate direction of the local nodal coordinate sys-
tem (see Figure 7(a)). The transformation matrices from
global to local coordinates are given in the appendix.

In the derivation of the governing equation via the
Lagrange equation the discretization via separation of
variables is done with unspecified shape functions and

nodal DoFs; see equation (9). For the eight-node ele-
ment the shape functions are given in isoparametric
coordinates and listed in the appendix along with the
derivative matrices in the appendix. The nodal displace-
ment uef g has a kinematic relation based on first-order
shear deformation and is

uef g= uif g+ z
ti

2
mi½ �aibi ð19Þ

The nodal electrical potential, which is the new addi-
tion, is divided into an internal nodal electric potential
fif g for each layer, and an external electrical potential
difference Deff g for each of the IDE pairs.

For multi-layers

For a shell structure with multiple layers the volume
integration in the thickness direction must be done
individually for each layer as proposed by Panda and
Natarajan (1981). This procedure utilizes that the mate-
rial properties are well known at layer level, making the
procedure straightforward. The infinitesimal

Figure 7. Eight-node double curved shell element with local
coordinates given at each node and the relationship between
the local and global coordinates and the kinematic nodal
variables. (a) Element with local coordinate systems at each
node. (b) Local and global coordinate systems and nodal
kinematic variables.
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relationship between the isoparametric thickness coor-
dinate z of the shell and the layer isoparametric thick-
ness coordinate zk is

dz=
hk

t
dzk ð20Þ

where hk is the thickness of the layer and t is the
thickness of the shell as shown in Figure 8.

Using this infinitesimal relationship for the Gaussian
integration, the mass and stiffness matrices in equation
(17) are given in equation (21) at element level. The
matrices for the piezoelectric coupling and electrical
relation are given at layer level, in other words, they are
not added together. This is due to the assumption that
each piezoelectric layer is electrically isolated from the
others and that they have their own electrodes.
Therefore they also have their own DoF with respect to
the electrical potential difference. The assumption is
valid for a MFC patch due to the isolation on the top
and bottom (see Figure 1(b)).

u�uMe½ �=
Z 1

�1

Z 1

�1

Xn
k= 1

Z 1

�1

rk uN½ �T uN½ �

det J½ � hk
t
dzkdjdh

ð21aÞ
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Z 1
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Z 1
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t
dzkdjdh

ð21bÞ
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�1

Z 1
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�1
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det J½ � hk
t
dzkdjdh

ð21gÞ

Guyan reduction of internal electrical potential
degrees of freedom

The internal electrical field can be generated by a deflec-
tion of the shell or an electrical potential difference over
the IDEs, and since the actual magnitude of this field is
of no interest the DoFs associated with this can be elim-
inated via a Guyan reduction presented by Guyan
(1965) and originally in a piezoelectric context by Allik
and Hughes (1970). This will result in a lowering of the
total number of variables leading to a reduction of the
computational effort needed, but still maintain the
effects of the internal electrical field due to the modifi-
cation of the remaining stiffness matrices and their cor-
responding external force vectors. From equation (17)
electrical potential related to the internal electrical field
can be isolated. For simplicity the following equation
shows the reduction for one element in a layer

fef gk =� f�fKe

� ��1

k
( f�uKe

� �T
k

uef g
+ e�fKe

� �
k
Deff gk � fQe

� �
k
)

ð22Þ

When the expression for the internal electrical poten-
tial is inserted into equation (17) it yields

u�uM½ � 0½ �
0½ �T 0½ �

" #
€uef g
€Def

n o( )

+
u�uK̂
� �

e�uK̂
� �

e�uK̂
� �T

e�eK̂
� �

" #
uef g
Deff g

� �

=
uF̂

� �
eQ̂

� �
( )

ð23Þ

The DoFs are reduced to deflection and electric
potential difference from the electrode pairs.

The modified stiffness matrices and force vectors are
given in equation (24).

u�uK̂
� �

= u�uK½ �

�
Xn
k= 1

f�uK
� �

k f�fK
� ��1

k f�uK
� �T

k

ð24aÞ

e�uK̂
� �

k
= e�uK½ �k

� f�uK
� �

k f�fK
� ��1

k e�fK
� �

k

ð24bÞ

Figure 8. Layers in the shell with numbering and thicknesses.
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� e�fK
� �T
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ð24cÞ
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k fQ
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Boundary conditions

The developed element has two types of DoFs, that is,
displacement uef g and electrical potential difference
Deff g. The variable related to the electrical system is
taken as the difference between the two electrodes. This
is a relative DoF corresponding to one of the electrodes
being grounded, and hence no boundary condition is
needed.

The mechanical displacement requires boundary
conditions, since rigid body motion is possible.
Fixation of a mechanical DoF can be done by setting
the corresponding diagonal value in the mass u�uM̂

� �
and stiffness matrices u�uK̂

� �
to one and the associated

column and row values as well as the force vector

u�uFf g row to zero. For additional explanation see for
example Cook et al. (2002).

Experimental facility

The test facility shown in Figure 9(a) consists of the sin-
gle curved shell mounted in a clamping mechanism. A
sensor bracket gives the possibility of positioning an eddy
current displacement sensor at different locations in the
axial and circumferential directions to measure the nor-
mal deflections of the shell. The smart material MFC
M5628-P1 patch is glued onto the outer curvature of the
shell to avoid any relative movement between the two
layers at the adjacent surfaces. The piezoelectric fibers in
the MFC patch are aligned in the circumferential direc-
tion and the patch is placed symmetrically along the cen-
terline in the axial direction and 25.68 from the clamped
end, as illustrated in Figure 9(b). The remaining geome-
trical constants and material properties adopted for the
electromechanical model are given in Table 1. Two radial
dimensions are given for the shell, with and without the
MFC patch. The originally flat MFC patch is bent to
follow the shell curvature during montage. The residual
forces from the MFC patch deformation affect the shell
by straightening it, and hence the shell curvature after
montage is 43.0 mm compared to the original 42.5 mm,
as listed in Table 1. It is assumed the residual stress in
the piezoelectric fibers will not affect the performance of
the MFC patch, in other words, the MFC patch will still
perform linearly. For all the following experiments a
dSpace 1103 controller board has been used as the data
acquisition unit, while Matlab has been used for the sig-
nal processing.

Numerical and experimental results

Impact test

Experimental modal analysis is initially performed for
three different cases via a hammer impact with a B & K
8200 force transducer and Pulsotronic KJ4-M12MN50-
ANU eddy current displacement sensor. The sampling
frequency is 2 kHz and the three cases are (1) the shell
without the MFC patch; (2) the shell with the MFC
patch and IDEs open circuit configuration; and (3) the
shell with the MFC patch and IDEs short-circuited.
Figure 10 illustrates a selected frequency response func-
tion (FRF) for the second case with amplitude unit
mm/N. The impact force is applied close to the clamped
extremity near the shell centerline to avoid loading

Shell

Sensorbracket

Vice

Clampmechanism

Wires

Displacement
sensor

(a)

86

76
,8

25,6

119

28
68

19

(b)

Figure 9. The piezoelectric layered shell used in the
experiments and the test facility. (a) Piezoelectric layered shell
mounted in the test facility. The clamping mechanism ensures
equal possibility of the shell bending up or down. The sensor
bracket provides the option for displacement measurements
perpendicular to the shell surface at different locations
circumferentially and axially. (b) The electromechanical model of
the shell with selected dimensions. The remaining geometrical
constants and material properties are given in Table 1.
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problems such as overloading and double hit. The dis-
placement sensor records the normal deflection of the
shell and is placed as seen in Figure 9(a) at the edge of
the shell in the axial direction. Similar FRFs have been
obtained for cases 1 and 3 as well but are not shown
here.

The large flexibility of the shell imposes a limitation
on the magnitude of the impact force. This is to ensure
the assumption of small vibration amplitudes is not
violated and to keep the displacements within the range
of the eddy current displacement sensor. The limitation
for the impact force magnitude is reflected in a coher-
ence around 0.9, as shown in Figure 10. This is the
highest obtainable coherence under the given experi-
mental conditions.

The three first resonance frequencies for the three
cases are obtained experimentally as well as theoreti-
cally and given in Table 2. The agreement between the
experimental and theoretical natural frequencies is good
with discrepancies of less than 2%.

For all theoretical calculations with damping,
Rayleigh damping u�uD½ �=a u�uM½ �+b u�uK½ � has
been used as structural damping.

The parameters a and b given in Table 3 are calcu-
lated aided by the least squares method, using the
experimental damping factors presented in Tables 4
and 5 with the corresponding experimental natural fre-
quencies shown in Tables 2 and 6.

The natural frequencies depend more on geometry
changes, that is, the curvature radius of the shell, due
to the montage of the MFC patch than on the circuit
configuration of the IDEs. The curvature radius signifi-
cantly affects all natural frequencies, while the shell
thickness has a more pronounced effect on the higher
frequencies.

Excitation via MFC patch

In case 4 the MFC patch is used as an actuator and the
shell is excited using either random signals (case 4a) or
periodic signals (case 4b). The test setup remains the
same as in the previous cases. Figure 11 shows the
experimental and theoretical FRFs obtained for case
4a. The unit of the amplitude is mm/V. The theoretical

Table 1. The adopted dimensions and material properties of
the physical shell.

Metal shell
Curvature radius
(without MFC patch) 42.5 mm½ �
Curvature radius
(with MFC patch) 43.0 mm½ �
Angular extension 119 8

� �
Width 68 mm½ �
Thickness 0.254 mm½ �
Young’s modulus 207 GPa½ �
Poisson’s ratio 0.30 �½ �
Density 8.100 g

cm3

h i
MFC patch

Angular extension 76.8 8
� �

Width 28 mm½ �
Thickness 0.15 mm½ �
Electrode centerline distance 0.5 mm½ �
Electrode width 50 mm½ �
Young’s modulus E1ð Þ 30.336 GPa½ �
Young’s modulus E2ð Þ 15.857 GPa½ �
Share modulus G12ð Þ 5.512 GPa½ �
Share modulus G23ð Þ 0 GPa½ �
Share modulus G31ð Þ 0 GPa½ �
Poisson’s ratio n12ð Þ 0.31 �½ �
Poisson’s ratio n21ð Þ 0.16 �½ �
Density 5.440 g

cm3

h i
Direct piezoelectric
constant d33ð Þ

800 pC

N

 �
Direct piezoelectric
constant d31ð Þ, d32ð Þ

2340 pC

N

 �
Direct piezoelectric
constant d24ð Þ, d15ð Þ

0 pC

N

 �
Permittivity e33ð Þ 0.42 nF

cm2

 �
Permittivity e11ð Þ, e22ð Þ 0 nF

cm2

 �

Table 2. Theoretical and experimental natural frequencies for
cases 1, 2 and 3. Deviations are calculated based on the
experimental results.

f Hz½ �
First Second Third

Case 1: Shell without
MFC

Theory 27.71 60.95 116.4
Experiment 27.93 61.29 115.6
Deviation 20.8 % 20.6 % 0.7 %

Case 2: Shell with short-
circuited MFC

Theory 28.22 69.05 135.9
Experiment 27.76 68.25 136.5
Deviation 1.7 % 1.2 % 20.4 %

Case 3: Shell with open-
circuited MFC

Theory 28.22 69.05 136.0
Experiment 27.95 68.55 136.3
Deviation 1.0 % 0.7 % 20.2 %

Table 3. The Rayleigh damping coefficients obtained from the
experimental modal analysis for all cases.

a 1
s

� �� 1 b s½ �

Case 1 0.918 4.29310�6

Case 2 0.946 3.69310�5

Case 3 1.62 1.20310�5

Case 4 19.9 1.79310�6
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FRF is calculated using the same excitation amplitude
applied to the IDEs as that in the experiments.

Good agreement between theoretical and experimen-
tal FRF amplitudes is shown for the first five natural
frequencies as seen in Table 6. Discrepancies are smaller
than 4% for these natural frequencies and the ampli-
tudes of the theoretical FRF results closely resemble the
experimentally obtained ones up to approximately 450
Hz as seen in Figure 11. The phase of the theoretical
FRF follows the behavior of the experimental one well,
but some deviations are seen, especially between the
third (69 Hz) and the sixth (471 Hz) natural frequencies.
This is likely due to the simplifying assumption of
Rayleigh structural damping and the a and b para-
meters used, which combined are not able to describe
the more complex behavior of energy dissipation in the

Figure 10. Experimental FRF, that is, amplitude, phase and coherence function, for the second case obtained via impact test with a
B & K 8200 force transducer and Pulsotronic KJ4-M12MN50-ANU eddy current displacement sensor. The impact is close to the
clamped edge near the centerline and the displacement sensor is located as seen in Figure 9(a) near the edge of the shell.

Table 4. Experimental damping factors for cases 1, 2 and 3.

j �½ �
First Second Third

Case 1: Shell without MFC 0.0030 0.0020 0.0022
Case 2: Shell with

short-circuited MFC
0.0072 0.0050 0.0181

Case 3: Shell with
open-circuited MFC

0.0048 0.0072 0.0049

Table 5. Damping factors corresponding to the six first natural frequencies obtained by actuation via the MFC patch. Case 4a shows
the results obtained by the random signal FRF shown in Figure 11. Case 4b is a chip excitation via the MFC patch.

j �½ �310�2

First Second Third Fourth Fifth Sixth

Case 4a
Experiment 0.0101 0.00515 0.0126 0.00437 0.01430 0.00493

Case 4b: Chip signal
Experiment 0.0552 0.0223 0.0208 0.00954 0.00332 0.00648
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whole frequency range. The coherence function very
close to 1 clearly shows the good quality of the mea-
surement data.

The first six experimental and theoretical mode
shapes are shown in Figure 12. The experimental modes
are measured with a Polytec PSV-500 laser scanner. A
laser beam is aimed in the horizontal direction at the
shell measuring the vibration of the shell at the location.
When the vibration is measured at several locations, the
software ME’scope is used to calculate the mode shapes.
The measured mode shapes are a projection of deflec-
tions onto a vertical plane parallel to the clamping sur-
face; see Figure 9(b). The red color represents a large
deflection, which can be either inward or outward. The
green color represents no deflections, hence green lines
seen in the mode shapes are nodal lines.

Comparing Figure 12(a) and (c), the reader can eas-
ily note the similarities between the theoretical and
experimental first bending mode shapes. Theoretical as
well as experimental mode shapes are symmetrical in
relation to the middle plane in the axial direction.

Likewise, the same conclusion can be drawn for the
third, fourth, fifth and sixth mode shapes, shown in
Figure 12(e) to (l). The second bending mode shape can
be clearly identified based on the first nodal line in the
axial direction in Figure 12(e) and (g), while the third
bending mode shape seen in Figure 12(i) and (k) has two
nodal lines in the axial direction. The first and the second
bending–twisting mode shapes are depicted in Figure
12(f) and (h) and Figure 12(j) and (l), respectively. One
nodal line in the circumferential direction is seen in both
cases. For the first bending–twisting mode shape only
one single nodal line is detected in the axial direction
while in the second two nodal lines are observed.

Poor results in terms of mode shapes can only be
observed for the second one. A relatively large differ-
ence is detected when the theoretical (straight) and the
experimental (bent) nodal lines in the circumferential
direction are compared in Figure 12(b) and (d). The
second mode is pure twisting, and since the MFC patch
is mounted symmetrically on the shell with the piezo-
electric fibers following the circumferential direction,

Table 6. The six first natural frequencies obtained by actuation via the MFC patch. Case 4a is the results obtained by the random
signal FRF shown in Figure 11. Case 4b is a chip excitation via the MFC.

f Hz½ �
First Second Third Fourth Fifth Sixth

Theory 28.17 69.03 135.9 184.7 447.1 470.8
Case 4a: Random signal

Experiment 29.3 67.1 135 183 450 484
Deviation from theory 23.8 % 2.9 % 0.7 % 0.9 % 20.6 % 22.7 %

Case 4b: Chip signal
Experiment 28.14 69.51 134.7 183.2 443.4 468.3
Deviation from theory 0.1 % 20.7 % 0.9 % 0.8 % 0.8 % 0.5 %

Figure 11. Experimental FRF obtained with a random 300 V amplitude excitation signal sent to the MFC patch and the
displacement sensor located as seen in Figure 9(a) close to the edge (the same location as for cases 1, 2 and 3).
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an excitation of the second mode is hard to achieve.
The vibration amplitude at the second resonance fre-
quency is low due to this reason. This leads to insignifi-
cant participation of the second mode shape in the

total response of the shell, quantified by means of a
low coherence value (around 0.5, seen in Figure 11, at
the second resonance frequency at 69 Hz).

Limitations of the electromechanical model

The FEM model developed does not take into account
any non-linearity, and despite the good agreement
between the numerical and experimental results shown,
the model has to be used with caution. An experimental
example is given in Figure 13, where the amplitude of
the input signal sent to the MCF actuator influences
the maximum amplitudes of the resonances as well as
the frequencies at which they occur. Generally speak-
ing, the higher the MCF input voltage is, the higher the
resonance peaks and the lower the resonance frequen-
cies are. In Figure 13 the eight different FRFs are dis-
played based on voltage values ranging from 60 to 300
V, that is, from low voltage amplitudes in dark blue to
high voltage amplitudes in light blue.

Piezoelectric materials are well known for their non-
linear properties (see for example Peng and Chen,
2013, or Damjanovic, 1998), but with a voltage level of
300, well below the 1500 voltage specified by the sup-
plier, the piezoelectric material is still in the linear
range. In Figure 14 zoom views are seen of the first and
third resonance peaks. This is a well-known geometric
non-linearity for shells associated with large vibration
amplitudes. Much literature exists on the subject, for
example Selmane and Lakis (1997), who show a change
in the resonance frequencies for a thin shell, at vibra-
tion amplitude levels equivalent to the thickness of the
shell. The vibration amplitude at the first resonance fre-
quency for the highest voltage level is approximately
five times the thickness, in other words, the force gener-
ated by the MFC patch is large enough to excite the
geometric non-linearities of the shell structure.

Conclusions

The electromechanical finite element model developed
based on an eight-node double curved layered shell ele-
ment takes the effects of piezoelectric fibers and IDEs
mounted on the shell into account. The new electrome-
chanical finite element only requires one extra DoF for
each IDE pair when compared to the purely mechani-
cal equivalent element, since the internal effects of the
piezoelectric patch are included via Guyan reduction.
Good agreement between experimental and theoretical
FRFs are shown in a large frequency range from 0.5 to
450 Hz, that is, up to the fifth natural frequency.
Natural frequencies are predicted with high accuracy
and the deviations are smaller than 2% when using
impact testing and 4% when using the MCF as an
actuator. The six first mode shapes obtained experi-
mentally agree very well with the theoretical ones, with
the exception of the second mode shape, a pure twisting

Figure 12. The six first experimental and numerical mode
shapes projected onto a vertical plane parallel to the clamped
edge. The green color in the experimental mode shapes
corresponds to no movement, hence nodal lines are green. The
red color corresponds to maximum movement, which can
either be inward or outward. The vertical direction in the
experimental mode shapes corresponds to the circumferential
direction, and the horizontal direction corresponds to the axial
direction. (a) First experimental mode shape. (b) Second
experimental mode shape. (c) First numerical mode shape. (d)
Second numerical mode shape. (e) Third experimental mode
shape. (f) Fourth experimental mode shape. (g) Third numerical
mode shape. (h) Fourth numerical mode shape. (i) Fifth
experimental mode shape. (j) Sixth experimental mode shape.
(k) Fifth numerical mode shape. (l) Sixth numerical mode shape.
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mode, which hardly can be excited by the symmetrically
mounted MFC patch on the shell. The electromechanical
finite element model developed is able to resemble the
linear dynamic behavior of the system very accurately.
Further experimental evidence shown in the article leads
to the conclusion that the behavior of the electromecha-
nical system depends non-linearly on the amplitude of
the input signal sent to the MCF actuator and the linear
model must be used with caution. The higher the MCF
input voltage is, the higher the resonance peaks and the
lower the resonance frequencies are.
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Figure 13. FRF with different excitation amplitudes. A non-linear effect dependent on the excitation amplitude is seen especially
around the third resonance frequency.

Figure 14. Zoom of the FRF at the first (a) and third (b)
resonance frequencies.
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Appendix

Constants and matrices in the constitutive equations

The constants in the constitutive equations are given by

e½ �= d½ � C½ � h½ �= e½ � � d½ � e½ �T

based on material parameters given by the
manufacturer.

The material matrices are

C½ �=

c11 n21c11 0 0 0 0

n12c22 c22 0 0 0 0

0 0 0 0 0 0

0 0 0 G12 0 0

0 0 0 0 G23 0

0 0 0 0 0 G31

2
6666664

3
7777775

d½ �=
0 0 0 0 d15 0

0 0 0 d24 0 0

d31 d32 d33 0 0 0

2
4

3
5

e½ �=
e11 0 0

0 e22 0

0 0 e33

2
4

3
5

The elastic stiffness matrix C½ � is given for a plane
stress, which is a valid assumption for the plates and
shells. Both the direct piezoelectric constant d½ � and
the dielectric permittivity e½ � have the direction of
polarization in the third axis direction, while the elas-
tic stiffness matrix has a surface normal in the third
direction.

The constants for the elastic stiffness matrix are

c11 =
E1

1� n12n21
c22=

E2

1� n12n21

Electric enthalpy

Combining the change in the enthalpy (3b) and the con-
stitutive equations (1) we get

H =

Z
½
Z

C½ � ef g � e½ �T Ef g
� �T

def g

�
Z

e½ � ef g+ h½ � Ef gð ÞT dEf g�dV

Calculating the internal integrals and utilizing the
diagonal symmetry of the elastic stiffness matrix C½ �
and the electric permittivity matrix h½ � yields

H =

Z
½1
2

ef gT C½ � ef g � Ef gT e½ � ef g

� ef gT e½ �T Ef g � 1

2
Ef gT h½ � Ef g�dV

The cross-coupling terms are the transposes of each
other
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ef gT e½ �T Ef g= Ef gT e½ � ef g
� �T

When the transpose is ignored the equation for the
total enthalpy given in equation (6b) is found. This is
possible since the transposed result is a scalar.

Differential operators

The differential operators for the strain to displacement
and for the electric field to electric potential are

∂½ �=

∂

∂x
0 0

0
∂

∂y
0

0 0
∂

∂z
∂

∂y

∂

∂x
0

0
∂

∂z

∂

∂y
∂

∂z
0

∂

∂x

2
66666666666666664

3
77777777777777775

rf g=

∂

∂x
∂

∂y

∂

∂z

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

Lagrangian differentiated

The discretized Lagrangian is divided into four terms as
shown in equation (11), where only the non-zero differ-
entiated results are shown in the equations below. The
‘‘prime’’ terms in the five equations, for example _uef g0,
are the DoFs differentiated with respect to one specific
general coordinate.

Term I only depends on the velocities

∂

∂t

∂

∂ _uif g r _uef gT uN½ �T uN½ � _uef g
h i� �

= 2r
∂

∂t
_uef g0	 
T

uN½ �T uN½ � _uef g
� �

= 2r uN½ �T uN½ � €uef g

Term II only depends on the deflections

∂

∂ui
uB½ � uef gð ÞT C½ � uB½ � uef g

h i
= 2 uef g0	 
T

uB½ �T C½ � uB½ � uef g
= 2 uB½ �T C½ � uB½ � uef g

Term III depends both on the deflections and the
electric potential

∂

∂ui
fB
� �

fef g	 
T
e½ � uB½ � uef g

h i

= uef g0	 
T
fB
� �T

e½ � uB½ �
� �T

fef g

= fB
� �T

e½ � uB½ �
� �T

fef g

∂

∂fi
fB
� �

fef g	 
T
e½ � uB½ � uef g

h i
= fef g0	 
T

fB
� �T

e½ � uB½ � uef g

= fB
� �T

e½ � uB½ � uef g

Term IV depends only on the electric potential

∂

∂fi
fB
� �

fef g	 
T
h½ � fB

� �
fef g

h i
= 2 fef g0	 
T

fB
� �T

h½ � fB
� �

fef g

= 2 fB
� �T

h½ � fB
� �

fef g

Local coordinates

The local coordinate vectors are given as the cosine
direction of the global coordinate system

V1if g=
l1i

m1i

n1i

8>><
>>:

9>>=
>>;, V2if g=

l2i

m2i

n2i

8>><
>>:

9>>=
>>;, V3if g=

l3i

m3i

n3i

8>><
>>:

9>>=
>>;

In order to relate the global coordinate system to the
local coordinates the transformation matrix needed is
restated from Cook et al. (2002) (transformation from
global to local)

T½ �=
l1 m1 n1

l2 m2 n2

l3 m3 n3

2
664

3
775

For the case of relating the strain or stress from the
global to the local coordinate system the extended
transformation matrix is
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Te½ �=

l21 m2
1 n21 l1m1 . . .

l22 m2
2 n22 l2m2 . . .

l23 m2
3 n23 l3m3 . . .

2l1l2 2m1m2 2n1n2 l1m2 + l2m1 . . .

2l2l3 2m2m3 2n2n3 l2m3 + l3m2 . . .

2l3l1 2m3m1 2n3n1 l3m1 + l1m3 . . .

2
666666666664

. . . m1n1 n1l1

. . . m2n2 n2l2

. . . m3n2 n3l3

. . . m1n2 +m3n1 n1l2 + n2l1

. . . m2n3 +m2n2 n2l3 + n3l2

. . . m3n1 +m1n3 n3l1 + n1l3

3
777777775

Shape functions

The shape function for an eight-node element given in
isoparametric coordinates is

N1 =
1

4
1� jð Þ 1� hð Þ � 1

2
N5 � 1

2
N8

N2 =
1

4
1+ jð Þ 1� hð Þ � 1

2
N5 � 1

2
N6

N3 =
1

4
1+ jð Þ 1+hð Þ � 1

2
N6 � 1

2
N7

N4 =
1

4
1� jð Þ 1+hð Þ � 1

2
N7 � 1

2
N8

N5 =
1

2
1� j2
	 


1� hð Þ

N6 =
1

2
1+ jð Þ 1� h2

	 

N7 =

1

2
1� j2
	 


1+hð Þ

N8 =
1

2
1� jð Þ 1� h2

	 

The shape function matrices used at the element level

are

uNi½ �=Ni

1 0 0 �z t
2
l2i z t

2
l1i

0 1 0 �z t
2
m2i z t

2
m1i

0 0 1 �z t
2
n2i z t

2
n1i

2
64

3
75

fNi

� �
=Ni

Jacobian matrix

The volume integration of the double curved element
required in governing equation (16) must be performed
numerically in isoparametric coordinates due to the
shape function. The transformation between the two

types of coordinate systems is done via a Jacobian
matrix, which is

J½ �=
x, j y, j z, j
x,h y,h z,h
x, z y, z z, z

2
4

3
5

The in-plane derivatives for the Jacobian matrix are

x, j =
X

Ni, j xi + z
til3i

2

� �

y, j =
X

Ni, j yi + z
tim3i

2

� �
z, j =

X
Ni, j zi + z

tin3i

2

� �
x,h =

X
Ni,h xi + z

til3i

2

� �

y,h =
X

Ni,h yi + z
tim3i

2

� �
z,h =

X
Ni,h zi + z

tin3i

2

� �
The out-of-plane derivatives for the Jacobian matrix

are

x, z =
X

Ni

til3i

2

y, z =
X

Ni

tim3i

2

z, z =
X

Ni

tin3i

2

Derivative matrices

The derivative matrices needed for calculating the mass
and stiffness matrices are

Bu½ �= uH½ � uJ½ � uN
0½ � ð25aÞ

Bf

� �
= J½ ��1

fN
0� � ð25bÞ

The derivative matrix for strain to displacement
requires a relationship matrix uH½ � to relate the displa-
cement coordinates to strain coordinates. This is

uH½ �=

1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1

0 1 0 1 0 0 0 0 0

0 0 0 0 0 1 0 1 0

0 0 1 0 0 0 1 0 0

2
6666664

3
7777775

Jacobian matrix uJ½ � used in the derivative matrix
for strain to displacement is expanded to accommodate
shear terms in the transformation from isoparametric
to physical coordinates
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uJ½ �=
J½ ��1

0½ � 0½ �
0½ � J½ ��1

0½ �
0½ � 0½ � J½ ��1

2
4

3
5

The matrix containing the derivatives of the shape
functions uN

0½ � used for the strain-to-displacement deri-
vative matrix is

uNi½ �0 =

Ni, j 0 0 �ztiNi, jl2i=2 . . .

Ni,h 0 0 �ztiNi,hl2i=2 . . .

0 0 0 �tiNil2i=2 . . .

0 Ni, j 0 �ztiNi, jm2i=2 . . .

..

. ..
. ..

. ..
.

0 0 0 �tiNin2i=2 . . .

2
6666666664

. . . ztiNi;jl1i=2

. . . ztiNi,hl1i=2

. . . ztiNi,hl1i=2

. . . ztiNi, jm1i=2

..

.

. . . ztiNi,hn1i=2

3
7777777775

This matrix results in strain from the nodal displace-
ments in isoparametric coordinates.

The matrix containing the derivatives of the shape
functions fN

0� �
used for the electrical potential to elec-

tric field derivative matrix is

fNi

� �0
=

Ni, j

Ni,h

0

2
4

3
5

This matrix results in strain from the nodal displace-
ments in isoparametric coordinates.
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Original Article

Transient and steady state behaviour
of elasto–aerodynamic air foil bearings,
considering bump foil compliance
and top foil inertia and flexibility:
A numerical investigation

Bo B. Nielsen1 and Ilmar F. Santos1

Abstract

This work gives a theoretical contribution to the problem of modelling air foil bearings considering large sagging effects in

the calculation of the non-linear transient and steady state response of a rigid rotor. This paper consists of two parts: the

development of a miltiphysics model of the air foil bearing, and a numerical parameter study of a rigid journal supported

in an air foil bearing with a partially supported top foil. The mathematical model of the air foil bearing is centred around

the finite element models of both the air film and the top foil structure. These finite element models utilise two types of

eight-node isoparametric elements. The rotor is modelled as a rigid body without rotational inertia, i.e. as a journal. The

bump foil is included via a bilinear version of the simple elastic foundation model. This paper introduces the bilinear

simple elastic foundation model, which combined with the top foil structure model, enables a separation of the top foil

and the bump foil. A phenomenon associated within areas of the top foil is where the aerodynamic pressure is sub-

ambient. The parameter study investigates the performance of three air foil bearings with partially supported top foils

and one air foil bearing with a fully supported top foil. The steady state responses of a journal supported by these air foil

bearings are investigated for varied rotational speeds and journal unbalances as well as the top foil sagging in the

unsupported area. The study reveals that sub-harmonic vibrations associated with a large journal unbalance can be

eliminated by a proper design layout of the bump foil, i.e. placement of the unsupported area. The positive effect is

attributed to ‘equivalent shallow pockets’ formed by the sagging top foil.

Keywords

Air foil bearing, bilinear simple elastic foundation model, finite element, non-linear analysis, Reynolds equation, shell

structure, transient response, top foil flexibility
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Introduction

In many industrial sectors, air foil bearings (AFBs)
are frequently used in the development of high
speed rotor machinery, e.g. air cycle machines and
auxiliary power units for aeroplanes, in cryogenic tur-
bopumps and turbo compressors.1–3 The advantages
of AFBs are their mechanical simplicity, the possibil-
ity of using the process media as the lubricant, elim-
inating seals, their passive stability at high rotational
speeds, i.e. without using a controller to stabilise them
in contrast to active magnetic bearings, and their low
energy losses due to the low viscosity of the gases.
However, this last advantage does also restrict the
load carrying capacity, especially at low rotational
speeds. The AFB is an advanced machine element
which requires high precision in the manufacturing

and assembly phases to work properly. Due to their
non-linear nature, unwanted sub-harmonic vibrations
may appear, imposing a limitation on the applicability
of the AFB. Large sub-harmonic vibrations have in
some cases been reported as the reason for a bearing
failure due to the rotor bearing contact.4

Some of the first experimental and numerical
results for AFBs known from the literature were
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presented in the late 1970s and early 1980s.5–7 In the
numerical model, a top foil without structural stiffness
or mass was supported by individual linear springs
and dampers representing the flexible bump foil.
This way of modelling the bump foil is commonly
called the simple elastic foundation model (SEFM).
The bump foil only provides support to the top foil
when the air film pressure is higher than the ambient
pressure. Regions of the air film with sub-ambient
pressures were neglected by the use of the Gümbel
condition,8 since sub-ambient pressures can cause
the top foil and the bump foil to separate.

There are two main sources of non-linearities in
AFBs: Aerodynamic forces from the air film and dry
friction forces existing in the contact surfaces between
bump foil, top foil and bearing housing. The dry friction
was the first non-linear feature to be addressed, since a
proper use of the SEFM requires knowledge about
equivalent viscous damping factors due to the hysteresis
and varying stiffness of each individual bump.
Numerical and experimental investigations of the
bump foil characteristics under stick–slip conditions
were performed on flat bump foils,9,10 and by using an
AFB mounted on a non–rotating journal.11 More
recently, the non-linear characteristics of the bump foil
have been experimentally examined.12–15 More accurate
bump foil models have also been developed that are
better at predicting non-linear bump foil behaviour.16

Traditional dynamic analyses of rotors supported
by AFBs are based on linearised aerodynamic and
friction forces, i.e. linear stiffness and damping and
SEFM. These analyses have shown good agreement
with experimental results at low unbalance or with
small perturbations from the equilibrium position.3,17

However, predictions by a linear model are not suffi-
cient for larger perturbations of the equilibrium pos-
ition, since the non-linearities of the AFB will be more
pronounced.18 An efficient computational technique
for solving the non-linear compressible Reynolds
equation has therefore been introduced.19,20 The tech-
nique was used to simulate the non-linear transient
response of a rotor supported in an AFB.21 Similar
numerical simulations have shown good agreement
with experimental results for both small and large
levels of unbalance, i.e. capturing the most significant
sub-harmonic vibrations.22

Many authors have presented AFB models with a
structural model of the top foil.23–29 These models
have been used to investigate the influence of the
top foil on the AFB performance. The most
common studies are on the effects of top foil sagging,
i.e. the equilibrium position, dynamic coefficients and
top foil deformation amongst others.

In order to improve the performance of AFBs, two
different approaches have been followed:

(a) change the support of the top foil by replacing the
bump foil with another support structure,30–33 e.g.
a metal mesh;

(b) modify the properties of the bump foil along the
circumferential and axial direction making a non–
uniform stiffness support.34,35

Neither of the two approaches have yielded any sig-
nificant improvement to the performance of the AFB,
with the exception of placing shims between the bump
foil and the bearing housing. This method introduces
a mechanical preload in the AFB due to the elevation
of the affected bumps. The sub-harmonic vibrations in
an AFB supporting a rigid journal can be reduced or
eliminated through the use of shims, at the cost of
larger synchronous vibration amplitude.36

In this context, the main original contribution of
this work relies on the development of a non-linear
fluid–mechanical finite element (FE) model for an
AFB with the capability of simulating the transient
response of the journal, the air film and the top foil.
The model consists of four parts:

(a) the journal is modelled as a particle, hence with-
out rotational inertia and gyroscopic effects;

(b) the top foil with inertia and flexibility is modelled
with dynamic eight-node double curved shell elem-
ents, which are based on the static equivalent;37

(c) the air film, which is governed by the compressible
Reynolds equation, is modelled using a similar
flat eight-node FE that follows the formulation
presented for a four-node equivalent element;38

(d) the bump foil is modelled as a bilinear SEFM,
only supporting compression caused by the out-
ward movement of the top foil.

It is important to highlight that the support forces on
the bump foil modelled by the bilinear SEFM depends
on the deflection and velocity of the top foil. This dif-
fers from the classical SEFM, where the deflection of
the bump foil defines the deflection of the top foil, and
is based on the pressure difference between the aero-
dynamic pressure and the ambient pressure. The struc-
ture model of the top foil included in the AFB model
enables the modelling of an AFB with a partially sup-
ported top foil, i.e. an area of the top foil is unsup-
ported. This differs from models not incorporating the
structure of the top foil, hence common models using a
classical SEFM. The presented model is validated using
an existing AFB model based on a classical SEFM
known from the literature.3

A parameter study is performed showing the cap-
abilities of the presented AFB model. In this study, a
journal is supported by four variants of the same
AFB, with the difference being the layouts of the
bump foil supporting the top foil, i.e. a partially sup-
ported top foil.

Fluid mechanical model

In Figure 1(a) a schematic design of a journal in an
AFB with one bearing segment is shown. The bearing
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consists of four different elements: a rigid bearing
sleeve and a bump foil supporting a flexible top foil
and an air film. In the transformation from the phys-
ical system to the fluid–mechanical model, the four
elements of the bearing and the journal have been
reduced to: Two continuous domains, a rigid
moving body and bilinear springs/viscous dampers
(see Figure 1(b)). The main assumptions are listed
below:

(a) the bearing sleeve is rigid;
(b) the journal rotates at a constant speed and moves

linearly inside the bearing, parallel to the bearing
housing;

(c) the gas is considered to be an ideal gas;
(d) the top foil is a flexible and linear elastic shell;
(e) the bump foil can be represented by a bilinear

SEFM only supporting the top foil in a radial
direction and only when the radial deflection of
the top foil has passed the initial position going
outwards.

In Figure 1(c) the interactions between the
different domains are shown. The aerodynamic
pressure affects the journal and the top foil, while
the movement of the journal and the top foil
defines the thickness of the air film. The interaction
between the top foil and the bump foil depends on the
movement of the top foil, i.e. if they are in contact or
not. When the top foil and bump foil are in contact the
bump foil provides a supporting pressure to the
top foil based on the deflections and velocities of
the top foil.

Mathematical model

The miltiphysics model describing the behaviour of an
AFB is derived in accordance with the four domains
shown in Figure 1(b) and (c). The governing equation
for each domain is individually given and subse-
quently coupled to build the global mathematical
model. The use of the FE method to discretise the
continuous domains provides a structure for the
transfer of information between different domains
and coordinate systems. The spatial location of the
nodes in each domain corresponds to the location of
the nodes in the other domains; hence, nodal values
are transferred directly from one domain to the next
without any interpolation.

Rigid journal: Modelled as a particle

The equation for the motion of the rigid jour-
nal is obtained from Newton’s second law, as
given in equation (1) in the global coordinate system
and on the state space form. Mr is the rotor mass
matrix, Wr is the combined dead load and payload
on the rotor, Fr is the bearing forces due to the aero-
dynamic pressure and Fub is the unbalance force from

(a)

(b)

(c)

Figure 1. A sketch of the physical system, the corresponding

fluid–mechanical model and the interactions between the

domains of the fluid–mechanical system. (a) Schematics of an

AFB with one bearing segment, i.e. one pair of top and bump

foil. The sketches are not drawn to scale. (b) The fluid–

mechanical model of a bearing segment consistent of four

domains, i.e. two continous (air film and top foil) and two

discrete (journal and bump foil). (c) Domain interactions. The

top foil is affected by the support forces from the bump foil and

the aerodynamic pressure, which also affects the journal. The

bump foil is affected by the radial deflections and velocities of

the top foil. The thickness of the air film is given by the

movement of the top foil and the journal.
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the rotor.

I 0

0 ~Mr

� � _~xr
€~xr

( )
þ 0 �I

0 0

� �
~xr
_~xr

� �

¼ 0

~Wr � ~Fr þ ~Fub

� � ð1Þ

Top foil: Modelled with finite elements

The top foil is assumed to be a flexible structure with
inertia. The equation of motion for the top film can be
derived, e.g. via Lagrange’s equation (2), by taking the
kinetic and internal energies of the top foil into account.

@

@t

@L

@ _qi

� �
� @L

@qi
¼ Fi ð2Þ

The potential energy of the linear elastic top foil is
governed by Hook’s law given in equation (3),
where C is the constitutive matrix.

� ¼ C" ð3Þ

The Lagrangian L is defined as the kinetic energy
minus the internal energy for an elastic continuum
with inertia and it is given by equation (4). A linear
strain displacement relation has been used, " ¼ u @u,
and via separation of the variables the deformation
of the continuum is divided into a spatial dependent
shape function uN and a time dependent discrete
deflection variable.

L ¼ 1

2

Z
� uN _ueð ÞTuN _ue

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{Kinetic energy

� u@uNueð ÞTCu@uNue|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Internal energy

2
64

3
75dV

ð4Þ

Using the Lagrangian in Lagrange’s equation (2)
yields the equation of motion stated in equation (5).Z

V

�uN
T
uN €ue þu B

TCuBue
	 


dV ¼ Ft ð5Þ

The same formulation is given in matrix form in equa-
tion (6), where the Rayleigh damping Ct¼ �Mtþ�Kt

has been included as the structural damping for the
top foil. Ft is the nodal force vector corresponding to
the nodal deflection variables.

Mt €ut þ Ct _ut þ Ktut ¼ Ft ð6Þ

The mass Mt and stiffness matrices Kt are given by
equation (7).

Me ¼
Z
V

uN
T�uNdV ð7aÞ

Ke ¼
Z
V

uB
TCuBdV ð7bÞ

Neither the shape function nor the kinematic relation-
ship for the nodal deflection variables used in the
equation of motion have been specified yet.

The eight-node shell FE developed to analyse a
layered double curved shell under static loading is
used as the base element for the top foil,37 hence,
only a brief derivation of the dynamic version is pre-
sented in order to highlight the terms that are used in
the coupling to the other domains. The shell element is
based on first order shear deformation theory. The
nodal degrees of freedom (DoFs) are linear displace-
ment given in global coordinates and in–plane rota-
tions, as seen in Figure 2(a). This results in 40 nodal
DoFs per element. The location of each node in the
double curved shell elements are given in the global

(a)

(b)

Figure 2. The eight-node double curved element used for

discretising the top foil. The local colouring of the coordinate

axis is as the following: The first axis is red; second axis is green

and the third axis is blue. The first and second axes are tangent

to the shell surface, while the third axis is the shell surface

normal. (a) Local and global coordinate systems including nodal

DoFs. (b) Eight–node double curved element with local

coordinate systems.
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coordinate system, while the cubic shape functions are
given in in–plane isoparametric coordinates.39 In equa-
tion (8), the spatial and kinematic relations of the
nodes are given, with ti being the thickness of the
shell at the node. Each node has an associated local
coordinate system, as shown in Figure 2(b). The first
and second directions of the local coordinate system
are tangential to the shell surface, i.e. in–plane, and
define the two axes of rotation included in �i, which
is used in the kinematic relationship. The third coord-
inate direction V3i is the surface normal, hence it points
away from the centre of the bearing.

x ¼
X

Ni xi þ � ti
2
V3i

� �
ð8aÞ

ut ¼
X

Ni ui þ � ti
2
�i

�i
�i

� �� �
ð8bÞ

Boundary conditions for the top foil are required
since the nodal displacements describe absolute dis-
placements, thereby allowing rigid body motion.
A fixed boundary, which is normally applied to one
of the top foil edges, is obtained by setting the diag-
onal values in the stiffness matrix Kt of the related
DoF to a constant. The off diagonal values in the
columns and rows associated with the DoF are set
to zero, along with the corresponding position in the
force vector Ft. This ensures that the deflections of the
fixed boundary are equal to zero and no modal move-
ment is possible.39

Air film: Modelled with finite elements

The air film is governed by the compressible Reynolds
equation (9) and is derived via the Navier–Stokes
equations, the equation of continuity and the equa-
tion of state for a perfect gas.40 In the derivation of
Reynolds equation (9), the pressure ~p and the absolute
viscosity � are assumed to be constant throughout the
thickness of the gas film. Furthermore, the no slip
condition is assumed at the top and bottom of the
gas film. Combining these assumptions, the integra-
tion of the flow velocities in the direction normal to
the gas film can be performed analytically, hence the
gradient and area integrals seen in Reynolds equation
are functions of the in–plane coordinates. S denotes
the bearing number.

r ~p ~h3r ~p
� �

¼ r ~p ~h
� �

Sþ 2S
@

@�
~p ~h

� �
ð9Þ

The thickness of the air film ~h in radial direction is
given by equation (10) and depends on the radial
movement of the journal ~hr 	ð Þ and the top foil deflec-
tion ~hc 	, zð Þ.

~h ¼ 1� ~hr 	ð Þ þ ~hc 	, zð Þ ð10Þ

A Bubnov–Galerkin FE procedure is used to discret-
ise the compressible Reynolds equation,38 as seen in
equation (11). A combined state variable, ~ ¼ ~p ~h, is
introduced allowing the state equations to be solved
simultaneously in time.19

�
Z

pB
T ~p ~h3
� ��

pB ~pedAþ
Z

pB
T ~h�SpN ~pedA

� 2S

Z
pN

T
pN

_~ edA ¼ 0

ð11Þ

Equation (11) can be written as a system of first order
differential equations in time domain, as shown by
equation (12).

Aa
_~ a ¼ Ra ð12Þ

The state matrix Aa and residual vector Ra are shown
by equation (13) at the element level. For calculations
with a constant rotational speed of the journal, the
state matrix is time independent, while the residual
vector is time dependent.

Ae ¼ 2S

Z
pN

T
pNdA ð13aÞ

Re ¼ �
Z

pB
T ~p ~h3
� ��

pB ~pedAþ
Z

pB
T ~h�SpN ~pedA

ð13bÞ

Discretisation of the compressible Reynolds equation
is made using a two dimensional isoparametric eight-
node element. This element has the same in–plane
shape functions as the eight-node element used for
the top foil.

In the solution of the compressible Reynolds equa-
tion, initial conditions are required for the combined
state variable. It is advisable to choose the initial con-
dition in such a way that the air film is in equilibrium,
hence the residual vector is zero. Besides the initial
conditions, spatial boundary conditions are required
for the time derivative of the combined state variable
_~ ¼ ~p

_~hþ _~p ~h. The pressure at the spatial boundaries of
the air film is equal to a constant ambient pressure
~p ¼ 1, hence the time derivative of the pressure at

these boundaries is zero, _~p ¼ 0. The boundary condi-
tions for the combined state variable are given in
equation (14).

_~ 	i, zð Þ ¼ _~h zð Þj	i ð14aÞ

_~ 	, zið Þ ¼ _~h 	ð Þjzi ð14bÞ
It is possible to impose a symmetry condition in the
axial direction by removing the above given boundary
condition on the axial symmetry boundary. A sym-
metry condition would normally require the
Neumann boundary condition at the symmetry line
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to be zero to ensure continuity. However, this is auto-
matically ensured due to the elliptic flow in the axial
direction imposed by Reynolds equation.

Bump foil: Bilinear SEFM

The bump foil acts as a flexible support when it is in
contact with the top foil. Due to the montage and
configuration of both foils, a radially outward deflec-
tion of the top foil will result in a sliding deformation
of the individual bumps. This deformation depends
on: The geometry and material properties of the
bump, the frictional conditions at the contact points
between the bump foil, the top foil and bearing hous-
ing and the movement of adjacent bumps. This com-
plex support system is commonly reduced to the so
called SEFM, i.e. classical SEFM. The model repre-
sents the bump foil as a pattern of linear springs and
viscous dampers, and the deflection of the bump foil
depends on the aerodynamic pressure. Traditionally,
a classical SEFM is not combined with a structural
model of the top foil, and the deformation of the
bump foil is therefore used directly in the calculation
of the air film thickness. However, since the presented
AFB model includes a structural model of the top foil,
the air film thickness depends on the deformation of
the top foil (see equation (10)). For this reason, the
objective of the bilinear SEFM is to describe the sup-
port pressure on the top foil as a function of the
deformation and velocity of the top foil.

The bump foil support is included as a distributed
compliance in the classical SEFM and given by equa-
tion (15).5,41 The bump foil distributed stiffness, which
is required in the bilinear SEFM, is given as
kbf ¼ 1=Qbf.

Qbf � 2Sbf

Ebf

lbf
tbf

� �3

1� 
2bf
	 
 ð15Þ

The equivalent viscous damping is a simplification of
the friction losses due to the sticking/slipping state of
the bump foil. The viscous damping, equivalent to an
enclosed hysteresis loop for one cyclic deformation, is
given by equation (16), where � is the loss factor, also
known as the hysteresis damping constant and � is
the excitation frequency.42

dbf ¼ kbf�

�
ð16Þ

The support of the bump foil acts as a bilinear spring
on the top foil, as mentioned above. The support pres-
sures pbf are given by equation (17), based on the
distributed stiffness of the bump foil (see equation
(15)) and the equivalent viscous damping (see equa-
tion (16)). The bump foil provides a support pressure,
pbf, when it is compressed, i.e. when the top foil
deflects radially outwards past the initial position of
the top foil, as indicated in Figure 1(b).

pbf ¼ kbfhc þ dbf _hc, hc50
0, hc 5 0

�
ð17Þ

Coupling of the domains

The couplings between the four domains are shown in
Figure 1(c), as previously mentioned. On the left hand
side, the aerodynamic pressure and the support pres-
sure from the bump foil are integrated and projected
into forces given in the global coordinate system,
acting on the top foil and the journal. On the right
hand side, deflections of the top foil and the journal
are transformed to the radial direction and then used
to calculate the thickness of the air film and the
deformation of the bump foil. The transformation
from the global coordinate system to a given local
radial direction is given by V3i, i:e: ~hc ¼ V3

Tu.
The integration and projection of the pressure

into forces can be performed simultaneously by utilis-
ing the Jacobian normal Jacobian vector J3 and equa-
tion (18). The direction of the vector is normal to the
initial top foil surface and its length corresponds to
the scaling between the physical and the isoparametric
area.39

~F ¼
Z 1

�1

Z 1

�1
uN

T ~p�
J�12J

�
23 � J�13J

�
22

J�13J
�
21 � J�11J

�
23

J�11J
�
22 � J�12J

�
21

8><
>:

9>=
>;|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

J3�

d�d� ð18Þ

Both the Jacobian vector and the pressure ~p� are eval-
uated at the integration point based on the values at
the nodes and the shape functions, e.g. ~p� ¼ pN ~pe.
Inserting this into the equation above yields the pres-
sure–force relationship equation (19).

~F ¼ Tp ~p ð19Þ

The pressure–force relationship matrix Tp is given by
equation (20) at element level.

Te ¼
Z 1

�1

Z 1

�1
uN

TJ3
�
pNd�d� ð20Þ

The pressure–force relationship in equation (19) is
used to calculate the aerodynamic forces on the
nodes in the top foil, while the forces on the jour-
nal are the sum of all of the nodal forces in the x–
and y– direction, respectively, i.e. Fr ¼

P
Ft. The

support pressure from the bump foil acting on
the backside of the top foil depends on the deflec-
tion and the velocity of the top foil in the radial
direction (see equation (17)). Combining the pres-
sure–force relation (equation (20)) and the trans-
formation vector V3 yields a stiffness Kbf and
damping matrix Cbf for the bump foil as given
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below. The matrices are given at element level by
equation (21).

~Ke ¼
Z 1

�1

Z 1

�1
uN

TðJ3 ~kbfV3Þ�pNd�d� ð21aÞ

~Ce ¼
Z 1

�1

Z 1

�1
uN

TðJ3 ~dbfV3Þ�pNd�d� ð21bÞ

The support forces from the bump foil on the top foil
are given as functions of the top foil deflections by
equation (22).

~Fbf ¼
~Kbf ~ut þ ~Cbf

_~ut, hc50

0, hc5 0

(
ð22Þ

Reduction of the variables in the mathematical
model

In order to keep the subsequent numerical calculation
efficient and fast, the redundant variables can be neg-
lected or reduced out. A gas foil bearing is typically
cylindrical in shape and not loaded in the axial direc-
tion. This allows for the DoFs associated with the axial
direction of the top foil to be removed when the bear-
ing is axially aligned with the global coordinate system,
i.e. aligning the AFB axis with the z–direction.

The remaining variables in the top foil equation (6)
can be reduced further via a modal reduction resulting
in the state space system given in equation (23).

~̂At
_̂
~zt þ ~̂Bt ~̂zt ¼ F̂ ð23Þ

The relationships between the state matrices and the
force vector of the full and reduced systems are given
in equation (24), together with the transformation
between the top foil DoFs on the state space form ~zt
and the modal coordinate vector form ~̂zt.

~ut
_~ut

� �
¼ ~Vr ~̂zt ð24aÞ

~̂At ¼ ~Vl

I 0

0 ~Mt

� �
~Vr ð24bÞ

~̂Bt ¼ ~Vl

0 �I

~Kt
~Ct

� �
~Vr ð24cÞ

~̂Ft ¼ ~Vl

0

~Ft

� �
ð24dÞ

The mathematical miltiphysics model

The mathematical miltiphysics model of a journal
supported in an AFB is presented in equation (25).

The two upper rows are the state space equation for
the journal, i.e. equation (1). The third row is the
Reynolds equation for the air film, i.e. equation (12),
and the bottom row is the governing equation of the
top foil after modal reduction, i.e. equation (23).
The coupling of the four domains in the math-
ematical model is implicit, i.e. all coupling
between the domains are included in the external
loading terms.

I 0 0 0

0 ~Mr 0 0

0 0 ~Aa 0

0 0 0 ~̂At

2
6666664

3
7777775

_~xr

€~xr

_~ a

_̂
~zt

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

¼ �

0 �I 0 0

0 0 0 0

0 0 0 0

0 0 0 ~̂Bt

2
6666664

3
7777775

~xr

_~xr

~ a

~̂zt

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

þ

0

~Wr � ~Fr
~ a, ~̂zt, ~xr, _~xr

� �
þ ~Fub ~t

	 

~Ra

~ a, ~̂zt, ~xr, _~xr

� �
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9>>>>>>=
>>>>>>;
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Numerical validation

The numerical validation of the developed non-linear
AFB model is divided into three different parts:

(a) the convergence study of the required number of
mode shapes used in the modal reduction;

(b) the mesh refinement analysis;
(c) the comparison with results obtained from

another non-linear AFB model known from the
literature.29

Parts (a) and (b) are presented in Appendix 1 and 2,
while a comparison of the journal orbits is treated
below, i.e. part (c). In the following numerical simu-
lation, a rigid journal is supported by an AFB with
one bearing segment. The dimensions and material
properties used in the validation and subsequent
simulations are given in Table 1 and the rotational
speed and journal unbalance used are 12,000 r/min
and 0 g�mm, respectively.

Comparison with results from a validation air foil
bearing model

The third part of the validation is a comparison of the
journal orbits and the top foil deflections simulated
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with the presented AFB model and a similar model is
presented in the literature.29 The differences between
the two models are:

(a) the element type used for the air film, i.e. the
eight-node element in the presented model and
the four–node element in the validation model;

(b) the presented model includes a model of the top
foil structure, which the validation model does
not;

(c) the presented AFB model uses a bilinear SEFM,
while the validation model uses a classic SEFM in
combination with the Gümbel condition.

The results from the two simulations are shown in
Figures 3 and 4, with the yellow colour being used
for the presented model and the blue colour for the
validation model. The nodes of the top foil located on
the axial symmetry plane along the circumferential
direction are shown in Figure 3. The red dots mark
the initial location of the top foil, while the circles and
crosses mark the radial deformation of the top foil at
steady state for the two simulations.

The overall resemblance observed for the results
are very good. The journal orbits follow each other
closely, hence the difference between the two models
does not affect the orbits. The top foil deflects out-
ward in the region with pressures above the ambient

pressure for both simulations, while an inwards
deflection is observed in the region where the sub-
ambient pressures are seen for the validation model.
The inward deflection for the validation model is lim-
ited by the classical SEFM. The limitation imposed by
the classical SEFM results in a sub-ambient pressure
close to the trailing edge (see Figure 4(b)). This phe-
nomenon is well known and is the reason for the use
of the Gümbel condition in combination with the clas-
sical SEFM.7 For the presented model the top foil
folds inwards towards the journal, and thereby
reaches an equilibrium position where the air film
pressure is very close to the ambient pressure (see
Figure 4(a)). This results in the same effect achieved
by the Gümbel condition, as can be observed from a
good match existing between the two journal orbits.

Numerical investigation: Indirect design
of shallow pockets

The numerical investigation examines the dynamic
performance of a rotor bearing system where a rigid
journal affected by three different levels of unbalance
is supported by four different AFBs. The difference
between the four AFBs are the support of the top
foil as indicated by the four cases shown in Figure 5.
Case I is a classical AFB, while for cases II, III
and IV the bump foil is removed in a given region
spanning 90� circumferentially and with a width of
16mm symmetrically, placed in an axial direction.
This results in a partially supported top foil for
cases II, III and IV, hence the structural properties
of the top foil carries the load from the aerodynamic
pressure in the unsupported area. The rest of the AFB
system remains unchanged compared to the system
simulated in the validation, where the geometries

Table 1. Bearing data used in the numerical validation and

investigation. The bearing data are those of the well known

NASA bump foil bearing frequently studied in the literature.

Journal data

Mass(m) 3.055 kg

Load(W) {30, 0}TN

Gas film data

Absolute viscosity �ð Þ 19.5� 10�6 Pa�s
Ambient pressure pAð Þ 1.01325� 105 Pa

Radial clearance Cð Þ 31.8 mm

Top Foil Data

Diameter 38.1mm

Length(l) 38.1mm

Thickness(t) 0.2032mm

Fixed edge 0�

Free edge 360�

Young’s modulus 207GPa

Poisson’s ratio 0.3

Damping factor 0.005

Bump foil data

Bump Pitch(Sbf) 4.572mm

Half bump length(lbf) 1.778mm

Bump Foil Thickness(tbf) 0.1016mm

Young’s modulus(Ebf) 207GPa

Poisson’s ratio(
bf) 0.3

Loss Factor(�bf) 0.25

Figure 3. Plot of the transient response of the journal for the

two FE models and the steady state deflection of the top foil.

The blue colour is the presented model utilising the 20 first

mode shapes in the modal reduction and a mesh of 20� 6

elements. The red colour is the validation model known from

the literature.
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and properties are found in Table 1. It is important to
highlight that by removing some bumps, a shallow
pocket might be created via the sagging effect.

Steady state pressure profile: No unbalance

The initial transient responses of a journal supported
by the four cases are shown in Figure 6, with case I in
blue, case II in red, case III in yellow and case IV in
purple (see Figure 7). The journal without an

unbalance is spinning at 12,000 r/min and is dropped
from the centre of the AFB. The four orbits are
plotted in the same figure, but since cases I, II and
IV are very similar it is only possible to distinguish
two orbits. Case III differs from the other orbits by
having a bigger maximum deflection during the tran-
sient response and a lower equilibrium point, i.e. cases
I, II and IV are located at x& 0.81 and y& 0.37,
while case III is located at x& 0.94 and y& 0.38.
This is as a result of the reduced support stiffness
due to the removed bumps in the high pressure region.

In Figure 8 the pressure profile at equilibrium is
shown for all cases. The blue dots are the nodal
values, the yellow area corresponds to the supported

Figure 4. Plot of the pressure profiles calculated with the

two AFBs. The presented model uses the 20 first mode shapes

in the modal reduction and a mesh of 20� 6 elements. The

pressure profile from the validation model includes sub-ambi-

ent pressure. However, this pressure region is neglected in the

calculation of the aerodynamic forces by enforcing the gümbel

condition. (a) Pressure profile calculated with the presented

model. The blue dots in the figure are the nodal values calcu-

lated with the presented model, i.e. not the values from the

validation model. (b) Pressure profile calculated with the val-

idation model. The validation model utilises axial symetry,

hence the half pressure profile.

(a) (b)

(c) (d)

Figure 5. The four cases, which are numerically investigated,

are shown with a schematic of the bump foil on the left hand

side and a section view of the AFB taken along the axial centre

line. The yellow line and area indicates the part where the

bump foil supports the top foil, while the red marks the

removed bumps. For all cases, the fixed leading edge is located

at the top end on the schematics of the bump foil, while the

free trailing edge is located at the bottom end. (a) Case I.

(b) Case II. (c) Case III. (d) Case IV.

Figure 6. The initial 0.22 s of the orbit for a journal support

by the four cases of AFBs. The rotation speed is 12,000 r/min,

and the journal is dropped from the centre of the bearing. The

orbit colour for each of the cases are: I is blue, II is red, III is

yellow and IV is purple (see Figure 7).
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part of the top foil, while the red area is the unsup-
ported part. All the pressure profiles have a similar
shape, although a slightly wider peak is observed for
case III in both circumferential and axial directions.

This pressure peak is also lower in magnitude when
compared with cases I, II and IV.

The thickness of the air film for all four cases is
shown in Figure 9, while the top foil deflections are
shown in Figure 10. The colour coding corresponds
to that of the pressure profile, i.e. blue dots are nodal
values, the yellow area is the supported part of the top
foil and the red area is the unsupported part. The black
line in the plots of the top foil deflections is the surface
of the journal, i.e. the vertical distance between the
black line and the deflected top foil is the thickness
of the air film. The z–axis in the plots of the top foil
deflection has been inverted, i.e. a deflection into the
bump foil corresponds to a positive downward move-
ment, while a deflection in towards the journal corres-
ponds to a negative upward movement.

Figure 7. The colours used in the plot of the journal orbits,

i.e. Figures 6, 11 and 15.

Figure 8. The pressure profile at equilibrium for the journal without an unbalance and where it is rotating at 12,000 r/min. The blue

dots are the nodal values, the yellow area is the supported part of the top foil, while the red area is the unsupported part. (a) Case I

(similar to Figure 4(a)). (b) Case II. (c) Case III. (d) Case IV.
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For cases I, II and IV the air film thicknesses are
similar. The air film thickness changes along the cir-
cumferential direction, while remaining unchanged in
the axial direction. The thickness decreases from the
leading edge at 0� until approximately 220�, where it
then increases slightly until 270�, remaining constant
until the trailing edge at 360�. For case III the air film
thickness differs slightly in the circumferential direc-
tion in its unsupported region. The thickness of the air
film changes less in the circumferential direction in the
unsupported region, hence it remains almost constant.
The most visible difference between cases I, II, IV and
case III is, besides the aforementioned shape, the max-
imum thickness of the air film, which is located close
to the fixed leading edge in all cases. The larger thick-
ness of case III is a result of the equilibrium point
being located further down in the AFB in comparison
to the three other cases.

Looking at the deflection of the top foils, similar
trends are seen as in the thickness of the air film, i.e.
cases I, II and IV resemble each other, while case III
differs. One difference is, however, detected for case II
in its unsupported part of the top foil in comparison
to cases I and IV. The top foil deflects further out-
ward. This does, however, not affect the air film

thickness, since the additional deflection of the top
foil in case II is much smaller than the overall air
film thickness in the unsupported area. For case III,
the sagging of the top foil is clearly visible by in the
unsupported area. The additional deflection of the top
foil forms a shallow pocket allowing the journal sur-
face to settle further away from the bearing centre.
For all cases, the inward deflection of the top foil
towards the journal is easily seen in the region close
to the free trailing edge, i.e. the top foil deflections
follow the surface of the journal.

Rotor response: 5 g�mm unbalance

Transient responses of a rigid journal with a 5 g�mm
unbalance, supported by an AFB, have been simu-
lated for the four cases described above and for the
rotational speed ranging from 6000 until the rota-
tional speed where large sub-harmonic vibrations
hinder the computation of the response. The steady
state responses for the nine selected rotation speeds
are shown in Figure 11. At each rotational speed the
journal orbits for the four cases are plotted together,
i.e. case I is depicted in blue, case II in red, case III in
yellow and case IV in purple (see Figure 7). For a

Figure 9. The thickness of the air film at equilibrium for a journal with no unbalance running at 12,000 r/min. The blue dots are the

nodal values, the yellow area is the supported part of the top foil, while the red area is the unsupported part. (a) Case I. (b) Case II.

(c) Case III. (d) Case IV.
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small journal unbalance the trend for the four cases is
the same as for the previous simulations with no
unbalance. In figure 11, only two journal orbits are
clearly visible, since the response for cases I, II and IV
are very similar. Only case III differs, with the journal
orbit being located further down in the AFB. For all
cases, the journal orbit starts towards the bottom of
the AFB, and moves upwards as the rotational speed
is increased. The shape of the journal orbit starts out
as an ellipse with the direction, resulting from the foci
alignment, being turned 30� relative to the y-direction.
As the rotational speed increases, the resultant direc-
tion of the ellipse foci first turns counter clockwise
until aligned with the x-direction, and then the
shape of the journal orbit changes from an ellipse
into a circle.

The steady state part of the transient response has
been transformed into a frequency domain by per-
forming a fast Fourier transformation (FFT) on
1.5 s of the steady state response with a sampling fre-
quency of 5,000 Hz. A modulus of the FFT in the

x- and y-directions for each individual rotational
speed has been calculated and normalised with respect
to the modulus of the synchronous vibration. All nor-
malised FFTs are summarised in a waterfall diagram
for each case, as shown in Figure 12. It is important to
highlight that only the synchronous frequency is
observed in the waterfall diagrams.

In Figure 13, a waterfall diagram is shown for the
initial 0.22 s of the transient response, i.e. the drop
from the centre position and onwards. The waterfall
diagram is calculated in the same way as the previous
waterfall diagrams, hence the magnitudes are normal-
ised with respect to the synchronous frequency. In
Figure 13, a sub-harmonic frequency can be observed.
This frequency increases slightly from approximately
80 Hz at 8,000 r/min to around 100Hz at 20,000 r/min.

Rotor response: 20 g�mm unbalance

Figure 14 shows four different waterfall diagrams for
a rigid journal with a 20 g�mm unbalanced load

Figure 10. The deflection of the top foil at equilibrium for a journal with no unbalance running at 12,000 r/min. The blue dots are the

nodal values, the yellow area is the supported part of the top foil, while the red area is the unsupported part. The black line is the

surface of the journal. The thickness of the air film is given as the vertical distance between the deflected top foil and the journal.

(a) Case I. (b) Case II. (c) Case III. (d) Case IV.
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supported by the cases of AFBs described in Table 2
and Figure 5. The waterfall diagrams are calculated in
the same manner as for the 5 g�mm unbalance dia-
grams, and the simulated rotation speeds range from
6000 r/min until the rotational speed where the appear-
ing sub-harmonic vibrations hinder the computation.

In Figure 14, sub-harmonic vibrations are clearly
visible in the waterfall diagrams for cases I, II and IV.
The sub-harmonic vibrations are caused by non-linear
phenomena related to the air film. For all three cases,
two types of sub-harmonic vibrations can be distin-
guished. The first type appears at half of the syn-
chronous frequency, with an onset speed of
approximately 8500 r/min and a maximum amplitude
close to 10,000 r/min. It fades away at around
11,500 r/min. This half whirl frequency is well

known in the literature.43 The second type of sub-
harmonic vibrations covers a broader range in the
frequency spectrum, although there are two dominat-
ing frequencies located symmetrically above and
below the half synchronous frequency. The onset
speed belonging to the second type is approximately
12,000 r/min, i.e. just after the first type has faded out.
For cases I and II the vibration continues to grow in
magnitude until the rotational speed reaches around
14,000 r/min. Case IV has a maximum amplitude at
13,500 r/min. For cases I, II and IV the second type of
sub-harmonic frequency disappears at 14,500 r/min. It
can be observed how the span between the two dom-
inating sub-harmonic frequencies increases with rota-
tional speed. The upper frequency follows the increase
in rotational speed, while the lower frequency only

Figure 11. Selected journal orbits for all cases plotted on top of each other at varies of rotational speeds. The journal unbalance is

5 g�mm. The orbit colour for each of the cases are: I is blue, II is red, III is yellow and IV is purple (see Figure 7). (a) 6000 r/min.

(b) 8000 r/min. (c) 8500 r/min. (d) 11,000 r/min. (e) 11,500 r/min. (f) 12,000 r/min. (g) 14,000 r/min. (h) 14,500 r/min. (i) 19,500 r/min.
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increases slightly. The location of the lower sub-har-
monic frequency is slightly higher than the frequency
peak found for the AFB system during the initial part
of the transient response, shown in Figure 13. For
case III it is important to highlight that only the syn-
chronous frequencies are seen.

Figure 15 shows the steady state journal orbits at
nine selected rotational speeds for all cases, i.e. the

journal orbits of the same rotational speed are plotted
together with case I coloured in blue, case II in red,
case III in yellow and case IV in purple (see Figure 7).
The nine speeds are selected based on the waterfall
diagrams and the appearance of the sub-harmonic
vibrations observed for cases I, II and IV. The first
rotational speed is the slowest one used, i.e. 6000 r/
min. The second is the rotational speed just before the
sub-harmonic vibration is observed, i.e. 8000 r/min,
while the third is just after the initialisation of the
sub-harmonic vibration, known as the half whirl fre-
quency, i.e. 8500 r/min. The fourth takes place just
before the half whirl frequency disappears, i.e.
11,000 r/min. The fifth is the intermediate speed
where no sub-harmonic vibration is present, i.e.
11,500 r/min. The sixth rotational speed is the one
after the second type of sub-harmonic vibrations are
initialised, i.e. 12,000 r/min. At the seventh speed, sub-
harmonic vibrations are the biggest for cases I and II,
just before all the sub-harmonic frequencies dis-
appear, i.e. 14,000 r/min. The eighth rotational speed
marks the end of the sub-harmonic vibration speed
range, i.e. 14,500 r/min. Finally, the last rotational
speed is the one that appears just before the return
of sub-harmonic vibrations, which prevent the rotor
orbits to reach steady state, i.e. 19,500 r/min.

The general trend, observed for the journal orbits
when they are compared at a given rotational speed, is
that cases I, II and IV are similar, while case III differs
by being located further down in the AFB. This is the
same trend as seen previously. Looking at the journal
orbits, in terms of shape and size, case III stands out
since it is elliptic or circular in shape for all rotational
speeds. The journal orbit at the lowest rotation speed
is elliptic with the direction, resulting from the foci
alignment, placed at a 30� angle to the y-axis,
as seen in Figure 15. This direction turns towards
the x-axis as the rotational speed increases, while the

Figure 12. The modulus of FFTs in the x- and y-direction

at steady state with a 5 g�mm unbalance. The sampling period

is 1.5 seconds and the sampling frequency is 5000 Hz. The

colours distinguish the different rotation speeds. (a) Case I.

(b) Case II. (c) Case III. (d) Case IV.

Figure 13. The modulus of the FFTs in the x- and y-direction

for the first 0.22 s after the drop from the centre with a 5 g�mm

unbalance. The increase in magnitude of the sub-harmonic

frequency for an increasing rotational speed originates partly

from a larger orbit amplitude and partly from a prolonged run–

in time before the steady state is reached. The sampling fre-

quency is 5000 Hz. The colours distinguish the different rota-

tion speeds.
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size of the ellipses also increases. When the alignment
of the foci is overlapped with the x-axis, the rotation
stops and the shapes of the journal orbit become more
circular. For the three other cases the initial orienta-
tion, shape and development with rotational speed is
similar to case III, with the exception of the ellipse
collapse as the rotation speed approaches the initialisa-
tion of the half whirl frequency, i.e. 8000 r/min (Figure
15(b)). In the speed range with the half whirl frequency,
the journal orbits consist of a double loop, while more

complex orbits are observed within the speed range
that belongs to the second type of sub-harmonic vibra-
tions. In the last speed range, the largest journal orbit is
found at 13,500 r/min for case IV and 14,000 r/min for
cases I and II as seen in Figure 15(g). For case III,
the largest orbit takes place at 8000 r/min as seen in
Figure 15(b), i.e., the rotational speed below the onset
speed of the sub-harmonic vibrations found in cases I,
II and VI.

Conclusions and future work

The AFB with the bump foil removed from the region
where the minimum air film thickness is located, i.e.
case III, shows superior steady state behaviour when
supporting a journal with a large unbalance (20 g�mm).
The sub-harmonic vibrations of the journal supported
by an AFB, caused by a large journal unbalance, are
eliminated in the entire speed range. This advantage is
gained without a loss in performance when supporting
a journal with a small unbalance load in comparison to
an ordinary AFB. The elimination of the sub-harmonic
vibrations is attributed to the shallow pocket, devel-
oped in the unsupported region, where the high pres-
sure zone is located in an AFB. When the pressure
builds up as the journal approaches the top foil, the
lower support stiffness allows for a wider region with a
small air film thickness. This widens and lowers the
pressure peak and enables a larger minimum air film
thickness in comparison to the other cases. This has a
positive effect on the performance of the AFB, since
the non-linear component of the aerodynamic force
gets more pronounced at smaller air film thicknesses
resulting in sub-harmonic vibrations.

The possible advantage of removing the bump foil
in the aforementioned region is having a more robust
AFB with respect to high journal unbalances. The
sub-harmonic vibrations found in the steady state
response of a journal with a large unbalance sup-
ported by an AFB and a fully supported top foil,
are effectively eliminated by using an AFB with the
partially supported top foil. The journal orbit in the
modified AFB is modest in size. One of the drawbacks
of removing the bump foil in the region of minimum

Table 2. Description of the bump foil support for the four

cases.

Case

number Description

I Top foil fully supported

II Top foil supported from 0� to 45� as well as from

135� to 360�.
The unsupported region has a width of 16mm.

III Top foil supported from 0� to 157.5� as well as from
247.5� to 360�.

The unsupported region has a width of 16mm.

IV Top foil supported from 0� to 270�.
Then supported region has a width of 16mm.

Figure 14. The modulus of the FFTs in the x- and y-direction

at steady state with 20 g�mm unbalance. The sampling period is

1.5 s and the sampling frequency is 5000 Hz. The colours dis-

tinguish the different rotation speeds. (a) Case I. (b) Case II.

(c) Case III. (d) Case IV.
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film thickness is a lowering of the equilibrium position
of the journal in the AFB, while the stability threshold
is reduced by 500 r/min to 19,500 r/min.

An issue not addressed in the numerical investiga-
tion is the mechanical stress in the partially supported
top foil. This may be an issue, since a part of the top
foil is unsupported and therefore relies on its struc-
tural properties to support the load. An investigation
of the mechanical stresses in the top foil can whether
or not the yield strength will be exceeded.

The shallow pocket found for the AFB is governed
by the size and location of the removed bump foil.
A parameter study of these design variables can
reveal the minimum requirements for the unsupported

area in order to avoid the occurrence of sub-harmonic
vibrations.

The equivalent viscous damping used in the SEFM
for the bump foil is valid when one vibration frequency
is present. This is the case at a low unbalance level;
however, at high unbalance levels, multiple vibration
frequencies may be present simultaneously. The inclu-
sion of a more advanced bump foil model capable of
simulating the dry friction forces in the bump foil con-
tact points will improve the simulations at rotation
speeds where multiple frequencies are present. Results
from the literature show an optimum point for the sta-
bility with respect to the friction coefficient.16 An AFB
model capable of including the dry friction as well as an

Figure 15. Selected journal orbits for all cases plotted on top of each other at various rotational speeds. The journal unbalance is

20 g�mm. The orbit colour for each of the cases are: I is blue, II is red, III is yellow and IV is purple (see Figure 7). (a) 6000 r/min.

(b) 8000 r/min. (c) 8500 r/min. (d) 11,000 r/min. (e) 11,500 r/min. (f) 12,000 r/min. (g) 14,000 r/min. (h) 14,500 r/min. (i) 19,500 r/min.
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unsupported area of top foil will likely be a valuable
design tool for the manufacturing of AFBs, supporting
their effort to produce faster rotating machinery.
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Appendix 1

Convergence study of the required number of mode
shapes used in the modal reduction

In an effort to reduce the number of top foil variables,
thereby increasing the computational efficiency,

(a)

(b)

(c)

(d)

Figure 16. Plot of the journal orbit, with 10 different number

of mode shapes used in the mode shape reduction. In all

simulations a 40� 13 mesh has been used. The number of

mode shapes used in the modal reduction ranges from the first

five to the first 70, i.e. 5, 10, 15, 20, 25, 30, 35, 40, 45 and 70

with an interval of five. The thick blue line is the baseline

simulation in which the first 70 mode shapes have been used in

the mode shape reduction. (a) The journal orbit inside the air

foil bearing. (b) Zoom of the top left hand loop of the journal

orbit. (c) Deviations of the movements in the x-direction.

(d) Deviations of the movements in the y-direction.
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a modal reduction has been proposed. The modal
reduction restricts the movement of the top foil to
the selected mode shapes, hence an investigation has
been performed in order to find the number of mode
shapes required to ensure the correct deformation of
the top foil. In Figure 16(a) 10 simulations of the tran-
sient responses for a journal supported by an AFB are
shown. All 10 simulations are computed considering a
fine mesh of 40� 13 elements, while the number of
mode shapes used in the modal reduction vary in the
ranges of the first five to the first 70, i.e. 5, 10, 15, 20,
25, 30, 35, 40, 45 and 70. The transient response
marked with a thick blue line is calculated utilising
the first 70 mode shapes, and serves as a baseline. In
Figure 16(b) a zoom of the top right hand curve of the
journal orbits is shown, while in Figure 16(c) and (d)
deviations between the baseline simulation and the
remaining nine simulations are shown. The high fre-
quency deviations seen in Figure 16(c) and (d) are
impact vibrations when the top foil and the bump
foil re–establish contact after separation due to sub-
ambient pressures. In figure 16 the journal orbit from
the simulations with five and 10 mode shapes stick out,
while the simulation with the first 15 mode shapes is
close to the baseline. The difference between the simu-
lation utilising the first 20 mode shapes and the base-
line is less than 0.5% when the impact vibrations are
neglected. In the following simulations the first 20
mode shapes will be used in the reduced model.

Appendix 2

Convergence study of the required refinement of
the mesh

Ten simulations of the transient responses of a journal
supported by an air foil bearing are shown in Figure 17
with an increasing refinement of the mesh. The differ-
ent meshes used in the simulations range from a coarse
mesh: 8� 3 to a fine mesh: 70� 22, i.e. 8� 3, 8� 5,
10� 3, 16� 6, 16� 10, 20� 6, 32� 12, 32� 20,
40� 13 and 70� 22. In all of the simulations the first
20 mode shapes have been used in the modal reduction.
The finest mesh with 70� 22 elements is used as the
baseline, and it is marked with a thick blue line. In
Figure 17(b) a zoom of the top right hand curve of
the journal orbits is shown, while in Figure 17(c) and
(d) the derivations between the baseline simulation and
the nine others are shown. For many of the coarse
meshes the deviations are pronounced, but for a
20� 6 mesh the deviation between the simulated
orbit and the baseline is deemed acceptably small, with-
out resulting in too high a computational cost.

(a)

(b)

(c)

(d)

Figure 17. Plot of the journal orbit with ten different

refinements of meshes all using 20 mode shapes in the modal

reduction. The finest mesh, 70� 22, is used as the baseline in

the calculation of the derivations. The meshes used are as

listed: 8� 3, 8� 5, 10� 3, 16� 6, 16� 10, 20� 6, 32� 12,

32� 20 and 40� 13. (a) The journal orbit inside the air foil

bearing. (b) Zoom of the top left hand loop of the journal orbit.

(c) Deviations of the movements in the x-direction.

(d) Deviations of the movements in the y-direction.
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