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Abstract

Background: An increasing number of studies are addressing the evolutionary genomics of dog domestication,
principally through resequencing dog, wolf and related canid genomes. There is, however, only one de novo assembled
canid genome currently available against which to map such data - that of a boxer dog (Canis lupus familiaris). We
generated the first de novo wolf genome (Canis lupus lupus) as an additional choice of reference, and explored what
implications may arise when previously published dog and wolf resequencing data are remapped to this reference.

Results: Reassuringly, we find that regardless of the reference genome choice, most evolutionary genomic analyses yield
qualitatively similar results, including those exploring the structure between the wolves and dogs using admixture and
principal component analysis. However, we do observe differences in the genomic coverage of re-mapped samples, the
number of variants discovered, and heterozygosity estimates of the samples.

Conclusion: In conclusion, the choice of reference is dictated by the aims of the study being undertaken; if the study
focuses on the differences between the different dog breeds or the fine structure among dogs, then using the boxer
reference genome is appropriate, but if the aim of the study is to look at the variation within wolves and their
relationships to dogs, then there are clear benefits to using the de novo assembled wolf reference genome.

Keywords: Canis lupus, Evolutionary genomics, Genome, Wolf

Background
In light of the ever-decreasing cost of high-throughput
DNA sequencing, it is now possible to undertake large-
scale genomic studies at not only the population level,
e.g. [1, 2], but also the population paleogenomic level,
e.g. [3-8]. While these datasets are being exploited
across a growing range of applied questions, a number
of research groups are beginning to also focus on how to
interpret and treat this data in a way that minimizes
biases, and thus yields robust inferences from the data.
Several human population genomic datasets have
noted the existence of biases that arise when mapping
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the resequenced genomes of diverse individuals to a ref-
erence genome based on a single individual. Alignment
against a single reference genome can lead to different
samples appearing more similar to the reference
genome, and underestimating the variation present in
samples that come from a different population or species
than the reference genome [9-11]. New mapping
techniques are being developed to overcome these biases
by allowing mapping to multiple genomes [12]. These
methods rely on a high number of sequenced and de
novo assembled samples, or a catalogue of polymor-
phisms for all the populations in the study. For species
other than humans, such resources are scarce. Ultim-
ately, these biases imply that thorough annotation of all
variation in a genomics data set requires every individual
to be represented by a de novo assembly [13-15].
Though this ideal is not feasible for a variety of
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economic reasons, there is a need to broaden the pool of
reference genomes to ensure that we can minimize the
effects of these biases on downstream analyses.

A research discipline where population genomics is
rapidly making significant contributions is the study of
domestication — a topic that has long held academic
interest due to both its applied relevance and its broad
general public appeal. Genomic and paleogenomic re-
sources have previously been used to address major
questions in domestication, including deciphering the
population structure and admixture patterns in modern
and wild lineages [16—-18], discovering strcuture among
ancient pre-domestic lineages [6, 19-22], and estimating
levels of introgression from wild lineages into domesticated
stocks [17, 23], applied to a multitude of species, such as
maize [6, 16, 22], silkworms [24], chickens [25-27], and
pig [28, 29].

Although these analyses can offer powerful insights
into the domestication process, they come with their
own sets of challenges. While the major challenge is the
need to account for genetic diversity that has been lost
as a result of full or partial extinctions of original wild
lineages, mapping biases arising from experimental de-
sign, such as choice of reference genome, also pose a
hurdle to robust analyses. At least one domestication re-
lated study has demonstrated that these effects can be
considerable. In Orlando and colleagues’ [19] study of
the genomic sequences of six horses (one from a pre-
domestication Pleistocene sample), they showed how a
variety of analyses such as D statistics, population
divergence and heterozygosity estimation, led to differ-
ent results when their resequenced genomes were
mapped to the EquCab2.0 [30] reference genome, and a
de novo assembly of the donkey genome. They attribute
many of these biases to differences in how closely related
the samples are to the horse reference genome. This
problem is exacerbated in studies that include ancient,
pre-domestication samples since the reference genomes
are predominantly constructed using modern samples.
Another difference in the reference genomes that might
lead to different results in downstream analyses, is the
technology used to generate the reference genome.
Many older reference genomes were generated using
Sanger sequencing while the newer reference genomes
and resequenced genomes in studies have been gener-
ated using Illumina short read sequencing technology.
Although the underlying causes for the biases remain
unresolved, one powerful approach is to perform the
analyses using several different closely related reference
genomes, thus accounting for biases introduced by the
mapping procedures and ensuring that the results are
consistent across the choice of reference genomes.

With regards to the need for multiple reference
genomes, while a number of genomics studies have
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recently been published that relate to the relationship
between dogs and wolves, the sequence data from gen-
ome resequencing studies [21, 31-34] has either
been mapped to the only currently available reference
genome, that of the Boxer dog (CanFam3.1) [35], or
compared to data drawn from SNP (Single Nucleotide
Polymorphism) chip arrays developed to target variation
in dog genomes [36, 37]. The results of such studies
show that dogs are monophyletic with respect to wolves,
and indicate the existence of a deep split between the
modern wolf and dog lineages, and a deep split within
the dogs as well [21].

There are still several questions regarding wolf and dog
phylogeny, population history and domestication that re-
main unanswered. Although the results of these studies
are largely consistent, there are some inconsistencies in
the findings regarding the location and the time of the do-
mestication event [21, 36, 38, 39]. It has also been sug-
gested that the population of wolves that are ancestral to
the modern dogs may be extinct [21, 32, 34].

It is possible that one explanation for discrepancies be-
tween studies is that important structural variation in
the wolf genome is missed or misplaced by mapping to a
dog reference, or targeting SNPs developed for dog vari-
ation. To test this hypothesis, we de novo generated the
first wolf reference genome, then remapped the genomic
datasets previously published by Wang et al., Freedman
et al. and Zhang et al. [31-33]. We subsequently re-
analysed the published and remapped data in the
context of divergence, admixture and systematics, in
order to explore whether any reference genome-specific
biases occur.

Results

De novo reference genome assembly

In order to construct a de novo reference genome using
a wolf, we generated a combination of 5-8 kilobases and
3 kilobases mate pair libraries, as well as 650 basepair
and 180 basepair insert libraries. These were sequenced
with 101 basepair paired end reads using 5 lanes of a Illu-
mina Hiseq 2500, where one lane was allocated to the multi-
plexed mate-pair libraries, one lane to the 650 basepair
insert library and the remaining three lanes were allocated
for the 180 basepair insert libraries. Overall, this generated
a 30x coverage of the genome. The de novo reference gen-
ome was assembled using the ALLPATHS-LG assembler
[40]. The final assembly consisted of 8747 scaffolds, of
which 8569 scaffolds were longer than 1 kilobase. The
longest scaffold was 12.88 megabases. The scaffold N50
of the assembly is 1.56 megabases and the scaffold N80
of the assembly was 512 kilobases., the contig N50 of
the assembly was 94 kilobases and the contig N80 of the
assembly was 34 kilobases. The total length of the as-
sembly was 2.34 gigabases, while the scaffolds longer



Gopalakrishnan et al. BMC Genomics (2017) 18:495

than 1 kilobase covered more than 99.99% of the

assembly.

Landscape of common repeats

To compare abundances of repetitive elements between
the wolf assembly and canFam3, we sought to detect
common interspersed repeats in both of them. We
identify 902 megabases of repetitive elements along the
wolf assembly, correspoding to 39.8% of the non-gapped
assembly. We detect a similar, albeit slightly higher
amount of repeats in canFam3 (1009 megabases, or
42.1% of the non-gapped assembly). When stratifying
repetitive elements by their respective superfamilies, we
observe simliar abundancies in the wolf and the dog
assembly (see Additional file 1: Figure S2), with the
exception of satellite sequences, a family of repetitive
elements most commonly found in the telomeric and
centromic regions of the chromosomes. To investigate
the patterns underlying the differences in repeat annota-
tions, we calculated the evolutionary distance of each
annotation to its consesus sequence. Overall, the diver-
gence landscapes are very similar, however, we observe a
depletion of young and highly identical long interspersed
nuclear elements (LINEs) and short interspersed nuclear
elements (SINEs) insertions in the wolf assembly, most
likely as an artifact of sequencing and assembly strategy
(see Additional file 1: Figure S3).

Mapping, coverage statistics

Since the choice of reference genome directly affects the
mapping process, we compared the efficiency of map-
ping previously published short reads to the reference
genome when using one of the two genomes used in this
study, viz., the dog reference genome [35] and the de
novo assembled wolf reference genome. We compared
the proportion of uniquely mapped reads for each sam-
ple and the depth of coverage across the genome. As
shown in Table S1 (Additional file 1: Table S1), we find
that the samples that come from the same sub-species as
the reference genome, i.e. dogs when using the dog refer-
ence genome and wolves when using the wolf reference
genome, have a higher proportion of reads that map
uniquely to the genome. As a result, they also have a
slightly higher coverage across the genome. Note that
we do not find a large difference in coverages or propor-
tions of reads that map uniquely, and the effect is con-
sistent across all samples.

PCA

We performed a principal components analysis (PCA) to
identify the major axes of variation in the genotype data.
Fig. 1 shows the results of the PCA using data mapped
to either the reference dog or the de novo wolf genome
assembly. For this analysis, we used only common
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variants with minor allele frequency greater than 0.05.
Irrespective of the reference genome used for the alig-
ment, the first two principal components separate dogs
from wolves. The proportions of variance explained by
the first and second principal components are also very
similar across the choice of the two reference genomes
(see Fig. 1). Changing the missingness or allele frequency
threshold leads to qualitatively similar results (Additional
file 1: Figure S4).

Heterozygosity

We compared the estimates of per-sample heterozygos-
ity using alignments to the two different reference
genomes. Table S1 (Additional file 1: Table S1) shows that
the estimated heterozygosity of the samples depends upon
the reference genomes used for mapping. The heterozygos-
ity estimates for dogs are consistently higher by upto 10%
when using the dog reference genome compared to the
de novo wolf genome assembly.

Population size

We additionally used the pairwise sequentially markov-
ian coalescent (PSMC) [41] to explore the effect of refer-
ence genome on the estimated population size history of
the populations that the resequenced individuals were
obtained from. Figure 2 shows the reconstructed popula-
tion size history for a subset of the samples in our study.
The comparison of the population sizes shows that the
estimates obtained are largely consistent. For the dogs in
this study, the population size trajectories estimated
using the two different reference genomes coincide be-
yond 10kya. However, the effective population sizes for
the wolves are a bit lower when using the wolf reference
genome, compared to the same when using the dog ref-
erence genome. We observed reference genome specific
differences in the recent histories, which can be attrib-
uted to the difference in the rare/private variants discov-
ered in the two species when using the different
reference genomes. If the primary effect of changing the
reference genome is in the number of rare variants dis-
covered, the effect on analyses such as PSMC will be
greatest in the recent population size estimates. As
PSMC does not have the power to estimate these param-
eters well, the effect of this bias is not expected to be
high in this analysis.

Phylogeny

We used RAxML and ExaML [42, 43] to estimate the
phylogenetic relationships between samples using the
variants identified by aligning to the wolf or the dog
reference genome. Since our analysis only uses variant
sites, we accounted for the ascertainment scheme of
the variants using the ascertained version of the
GTRGAMMA model of sequence evolution. As shown in
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Additional file 1: Figure S1, the overall topology of the
resulting phylogenies differ depending on the choice of
the reference genome. Specifically, when using the dog
reference genome the dogs and wolves are reciprocally
monophyletic. While using the de novo assembled wolf
reference genome, the dogs were monophyletic with re-
spect to the wolves but the wolves were not monophyletic
with respect to the dogs. Note that the support values for
these nodes that differ between the two topologies have
very low bootstrap support values. Additionally, using a
neighbour joining approach to estimate the phylogenetic
relationships led to qualitatively similar results (data
not shown).

Admixture
We estimated the ancestry proportions in the 23 samples
using ngsAdmix [44]. When using two ancestry compo-
nents for estimating admixture proportions, dogs and
wolves are split into two different clusters for both
choices of reference genome. In both cases, all the
wolves, except for the high altitude wolves from the
Zhang study [33], show up to 20% of the estimated dog
ancestral component (Fig. 3). Increasing the number of
estimated ancestral components from two to three leads
to similar results, with the dogs and the wolves being
separated into two clusters. Additionally, the wolves split
into two clusters where the high altitude wolves are sep-
arated from the rest of the wolves. Further, the contribu-
tion of the estimated dog ancestry components in the
wolves becomes negligible.

When estimating admixture with four ancestry clus-
ters, the choice of the reference genome has an impact

on the qualitative outcome of the admixture analyses.
When using the de novo wolf reference genome, the
newly added ancestry component separates the golden
jackal (Canis aureus) from the other samples, whereas
using the boxer dog reference genome reveals additional
structure in the wolves, with the golden jackal assigned
to one of the clusters containing the wolves. When
estimating a higher number of ancestry components, the
additional ancestry components explain variance in dogs
if the dog reference genome was used and conversely,
the use of the de novo wolf reference genome leads to
additional structure in the wolves.

Discussion

Previous studies have speculated that the choice of refer-
ence genome has wide ranging effects, especially on the
identification of population structure and the timing of
demographic events in studies using multiple related
species. This problem is expected to be exacerbated
when the reference genome is closer to some species in
the study than others. Given that there is currently a
considerable amount of effort being applied to the
sequencing and analysis of dog and wolf genomes, we
decided to both explore the impact of the phenomenon
in general, and specifically explore whether it holds im-
plications for the results of several relevant previously
published dog and wolf genome studies. In this regard,
because the time of divergence between dogs and wolves
is relatively recent (a conservative estimate of the diver-
gence time is around 35,000 years ago [31, 34]) and the
genetic divergence between the extant wolves and mod-
ern dogs is low, we did not, a priori, expect the choice of
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Wang dataset, when using the data mapped to both the reference genomes

the reference genome to have a big impact on the quali-
tative inferences in the standard population genetics
analyses. Overall, our findings bear this expectation out -
the analyses that are primarily driven by common
variation, such as principal components analysis and
admixture analysis with low number of clusters result in
very similar findings across the two reference genomes.
Nevertheless, since these two species are genetically
very similar, the rare and/or private variation is inform-
ative for the differences between the two species.
Regarding these variants, the choice of reference gen-
ome is clearly more important than for the common
variants. As shown in both the table of heterozygosity

(Additional file 1: Table S1) and the results from admix-
ture analyses with higher number of estimated ancestry
clusters (Fig. 3), the rare variation in the two datasets can
lead to qualitatively different results. This is especially evi-
dent in the admixture analyses with four or more clusters,
where the structure that is revealed is dependent on the
choice of the reference genome. Using the data aligned to
the dog genome results in earlier identification of struc-
ture in dogs, and vice versa.

One main concern when interpreting these results is
the differences in the quality of the two reference assem-
blies. Clearly, the dog reference genome is in a much
more mature state than our de novo assembly of the
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wolf reference genome. This difference in quality could
lead to biases in the analyses, especially analyses that re-
quire large continuous regions with variant calls, e.g,
effective population size estimation using PSMC as well
as characterization of inbreeding levels using runs of
homozygosity. Although the effective population size
estimates are consistent for the two reference genomes,
the difference in quality of assembly could result in
different estimates in the most recent time periods,
where the methods are typically underpowered.

The effect of the choice of the reference genome
seems to be limited to analyses that rely of low fre-
quency and private variants. When comparing the effect
from mapping against wolf and dog reference genomes,
we found the largest effect in the higher order structure
identified in the wolves or dogs when estimating ances-
try components. At lower number of ancestry compo-
nents, the choice of reference genome had no effect on
the identification of clusters.

In this study, neither of the two reference genomes
used were equally distant from the wolves and dogs
samples analysed. Ideally, one could use the genome of
a relatively close outgroup — the golden jackal in our
case — to ensure that there are no biases introduced
due to the choice of the reference genome. Although
this would avoid the pitfalls of choosing a reference
genome that is more close to some of the samples than
others, it may not be feasible in many cases, e.g. due to
the relatively high economic and computational costs
of generating outgroup genomes, or the absence of an
appropriate outgroup. Since the reference genomes for
most studies tend to not be equally distant from all
samples, it is important to account for the biases while
interpreting the findings from population and phyloge-
netics analyses.

Conclusions

We have generated the first de novo assembled wolf
reference genome, which will be a useful resource for
future studies exploring the genomic structure and rela-
tionship between dogs, wolves and other canids. Since
the two species that are the focus of this paper are so
closely related, the effect of the reference genome was
minimal on many of the downstream analyses such as
PCA and estimating the phylogeny of the samples. How-
ever, some analyses like admixture showed the effects of
the reference genome at higher number of clusters.
Since the use of the wolf reference genome results in
identification of population structure that is hidden
when using the dog reference genome, we recommend
the use of the de novo wolf reference genome for any
studies where the focus is on identifying the relation-
ships between wolves and dogs or teasing apart the rela-
tionship between the various wolves of the world.
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Methods

De novo reference genome assembly

We used a muscle sample from a Swedish wolf to con-
struct (Additional file 1: Figure S5) our de novo reference
genome. The sample (specimen ID: NRM201105024) was
obtained from the Environmental Specimen Bank at the
Swedish Museum of Natural History, and originated from
a male yearling shot during a licensed hunt in Vérmland,
Sweden in January 2011. The individual (Grimsé6 ID:
D-11-21) was born in the Jangen 5 territory [45]. The
pedigree-based inbreeding level (F) for the offspring born
in this territory has been estimated to be F = 0.30 [46].

In order to generate a de novo wolf reference genome
assembly, we created libraries with different insert sizes,
viz., one 5-8 kb mate pair library, one 3 kb mate pair
library, and 650 bp and 180 bp insert libraries. In all, these
libraries were sequenced using 5 lanes of Hiseq 2500.
Using the short reads generated from these libraries, the
de novo reference genome was assembled at NGI
Stockholm using the ALLPATHS-LG [40] assembler.
Different assemblers were tested before choosing the
genome assembled using the ALLPATHS-LG assembler,
based on statistics of the assembly, such as the number of
scaffolds, the N50, N80 and total assembly length.

Repeat identification

To identify common genomic interspersed repeats in the
wolf assembly, we ran RepeatMasker [47] (version 4.0.6)
with RMBLAST (version 2.2.27+) as engine. We used
the dog-specific repeat libraries derived from the latest
available Repbase database (version 20,160,829, available
at www.girinst.org). To put our results into context, we
also identified interspersed repeats with the exact same
approach in the latest dog reference genome assembly
canFam3 [35], as published annotations might differ
slightly in parameter settings or engine.

Resequencing data used in comparisons

To quantify the effects of the choice of the reference
genome on the downstream analyses, we used publicly
available datasets that contained whole genome se-
quences for canids. We used the raw short reads from
the sequenced wolves and dogs from Freedman et al,
Wang er al. and Zhang et al. [31-33]. From Freedman
et al., we obtained the short reads for the 6 canids that
were whole-genome sequenced as part of their study, viz.,
a dingo, an Israeli wolf, a Croatian wolf, a Chinese wolf, a
basenji and a golden jackal. Of these samples, we did not
use the basenji due to data corruption issues. From the
Wang et al. study, we downloaded the short reads for four
gray wolves, three Chinese indigenous dogs, two European
dog breeds — the German shepherd and the Belgian
Malinois — and a Tibetan mastiff. We also obtained the
shotgun short reads from the whole genomes of 8 Chinese
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wolves that were sequenced as part of the Zhang
et al. study.

The details of the samples included in our study,
including the sequencing depth of coverage, and the
source from which the data were obtained are given in
Table S1 (Additional file 1: Table S1).

Data processing

Since the different datasets that were used in this study were
obtained from various different sources, we built a custom
processing pipeline to ensure that all the data were proc-
essed using the same tools and were subject to the same
quality control and filtering. We built our pipeline on the
Paleomix pipeline developed by Schubert et al. [48]. The
various parts of our processing pipeline are detailed below.

Mapping
Each sample used in this study was mapped against both
the dog reference genome (canFam3.1) [35] and the de-
novo assembled wolf reference genome. We used the
Paleomix pipeline to map the short reads from the sam-
ples to both the genomes. Specifically, we used bwa-
0.7.10 (the aln algorithm) [49] to map the reads to the
genome. After the initial alignment step, we discarded
any reads that did not map uniquely to the reference
genome. Using only the uniquely mapped reads, we used
GATK [50] to perform an indel realignment step to
account for increased error rates in reads whose ends
span an indel. As there are no available curated sets of
indels for the dog or the wolf populations, we did not
use an external database of indels for indel realignment.
Since the aim of this paper is to compare the choice of
reference genome, mapping to the reference genome is a
critical step in the bioinformatics processing. Any biases
or errors introduces as part of the mapping process will
propagate to the downstream analysis resulting in incor-
rect inferences. In order to ensure that we did not intro-
duce any such biases, we used exactly the same settings
while mapping to the wolf or the dog reference genomes.

Genotyping

After mapping the reads to the reference genome, we
called genotypes for all sites in the genome. Since the sam-
ples in this study consist of different populations and spe-
cies, each sample was processed independently. For each
sample, the positions in the genome that were covered by
at least 5 reads were genotyped. At each such site, the
genotype was called using samtools-0.1.19 [49, 51]. We
used a minimum genotype quality threshold of 30 to filter
out low quality gentotypes from each sample.

Variant identification and quality filtering
Using the initial set of genotypes for all samples at all
sequenced sites, we identified variant sites in the study
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sample. We did not use a multi-sample variant called
since we have a heterogenous set of samples. Since we
did not use a multi-sample variant caller, the variants
identified will consist of a lot of false positives. We used
multiple different filters to exclude false positives and get
a final set of analysis ready variants. Similar to the
Freedman et al. study, we used different sets of filters for
different analyses. The filtering criteria are detailed below.

Genotype and variant quality

We marked all genotypes that had a phred scaled geno-
type quality of less than 30 as missing genotypes. Fur-
ther, we also excluded variants that had a variant quality
of less than 20.

Depth of coverage

For each sample, we excluded sites that had an abnor-
mally low or high coverage compared to the rest of the
genome. We removed any sites that did not have at least
5 reads covering that site, since the uncertainty in the
genotype call is high when it is based on a low number
of reads. In addition, we also excluded any sites that had
more than twice the average genome-wide coverage. The
rationale behind discarding sites with high coverage is that
these sites have a high coverage either due to mapping
artifacts or the presence of homologs in the genome.

Distance to neighboring variants

The presence of indels can cause the identification of
false positive variants due to mapping artefacts around
the indel. Similarly, a cluster of SNPs close to each other
is an indicator of mapping artifacts. To filter out these
false variants arising from mapping artifacts, we filter
out variants that within 5 base pairs of another SNP or
indel. Further, we used a lower quality score threshold
for identification of neighboring variants, ie., variants
with a quality score between 10 and 20 were included in
the pool of variants when filtering for distance to other
variants. This ensures that we filter out any SNPs that
are close to other variants, even if the neighboring vari-
ants do not pass our quality filters.

Triallelic single nucleotide polymorphisms (SNPs)

We identified triallelic SNPs across the 23 samples. We
used a genotype quality threshold of 30 and a variant
quality threshold of 20 to identify such variants. We
excluded all tri-allelic sites from downstream analyses.

Minor allele frequency

We used multiple different minor allele frequency (maf)
thresholds to prune our data depending on the analysis.
For all the analyses performed in this study, we excluded
singletons i.e. variants with only one copy of the rare
allele in the sample. For PCA and admixture analyses,
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we used two different maf thresholds (0.05-0.2) to
obtain different datasets on which we repeated the
analysis to explore the effect of low frequency variants
on the analysis.

Missingness

We excluded variant sites that had a high proportion of
samples with missing genotype calls. These sites were
excluded for analysis that required called genotypes.
Missingness threshold dependent upon the analysis that
are performed. For each of these analysis, the missing-
ness threshold is indicated in the relevant section.

Principal components analysis

As a first step to assessing the effect of reference ge-
nomes on the outcome of the data, we performed a prin-
cipal components analysis (PCA) on the 23 samples.
From the genotypes obtained for the samples after align-
ing to the dog reference genome, we identified variants
in the combined set of samples. We excluded any vari-
ants which had a minor allele frequency less than 0.05.
We also discarded variant sites with greater than 5%
missingness. We used three additional filters to prune
our dataset: triallelic SNPs, distance to nearest variant
and depth of coverage. Using this filtered dataset, we
performed PCA using the ngsCovar program available as
part of the ngsTools suite of tools [52]. We repeated the
analysis with different levels of missingness (10%, 20%)
and minor allele frequency thresholds (0.05, 0.1 and 0.2)
to check the robustness of our findings. We performed
an identical analysis using the alignments obtained from
mapping to the de novo wolf genome.

Heterozygosity

To compute the heterozygosity per sample, we used the
per sample genotype calls and excluded sites with a
genotype quality less than 20 and a variant quality less
than 30. We also discarded sites that were within 5 base-
pairs of another variant (indel or SNP) with a variant
quality greater than 10. Using this filtered set of variants,
we used plink [53] to compute the heterozygosity for
each sample.

Population size (PSMC)

We used pairwise sequentially markovian coalescent
(PSMC) [41] approach to compute the population size
history of the samples in our dataset. For each sample,
we used the genotypes obtained from the alignments to
the dog or the de novo wolf reference genome, to obtain
a consensus fasta sequence across the entire genome.
We filtered out sites with genotype quality lower than
20 or site quality lower than 30. Further, we used the
depth filter to exclude sites with abnormally low or high
number of reads covering it. Finally, we excluded variant
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sites that were less than 5 basepairs away from another
variant site with quality score greater than 10. We gener-
ated the PSMC input file using a window size of 100
base pairs. During this process, we marked all windows
with more than 80 unknown/missing bases as missing.
Using this input file, we ran psmc by dividing time into
64 bins, and used the pattern of “1*6 + 58*1” to estimate
59 independent population size parameters.

Phylogenetic analysis

We constructed the phylogeny of all the samples using
the variants identified by mapping the reads either to
the de novo wolf reference assembly or the publicly
available dog reference genome. For this analysis, we
filtered out variants that were closer than 5 bp from
another variant. In addition, we also excluded variants
with quality scores lower than 30 and genotypes with
quality scores less than 20.

We used the paleomix pipeline to obtain the phyl-
ogeny from these variants. As part of the paleomix pipe-
line, we used RAxML and ExaML [42, 43] to estimate
the phylogeny of these samples. Since we do not have
the annotations of genes for the de novo wolf reference
wolf genome, we used 5 megabases of sequences - 100
randomly selected regions, each 5 kb long — to estimate
the phylogeny. We generated the consensus sequences
for each of the samples using samtools-0.1.19 [49, 51].
Since all the samples are mapped against the same gen-
ome and the indels are discarded, the multiple alignment
of these regions were readily obtained by matching the
genomic positions of the regions across samples. Using
RAxML and ExaML, we generated the phylogeny of all
the samples. We used 5 random starting points to gener-
ate 5 replicates from the data. We used 100 bootstrap
runs to obtain the support for the nodes in the tree.

Admixture

We performed an admixture analysis to identify struc-
ture and admixture in the samples. From the variants
identified by combining the genotypes from all the
samples, we excluded sites with qualities lower than 30,
missingness greater than 25% and minor allele frequen-
cies less than 5%. In addition, we also marked all geno-
types with qualities lower than 20 as missing.

We used ngsAdmix [44] on this filtered dataset to
obtain the admixture proportions in the samples. We
ran ngsAdmix for different numbers of clusters, ranging
from 2 to 6. For each value of the number of clusters,
we ran the analysis 10 times and chose the run that gave
us the best likelihood at convergence. Similar to our
other analyses, we performed the same analysis for data
obtained from mapping to the dog reference genome
and the data from mapping to the de novo wolf refer-
ence genome.
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Additional file

Additional file 1: Figure S1. Phylogenies. The left panel shows the
phylogenetic tree of all the samples, estimated from reads that are mapped to
the boxer dog reference genome, while the right panel shows the
phylogenetic tree estimated from the data after mapping reads to the denovo
assembled wolf reference genome. Figure S2. Distribution of repeat elements.
Total amount of bases in different repeat classes across the two reference
genomes. Figure S3. Comparison of the divergence of the different repeat
elements from their consensus sequence. The top panel shows the total
number of bases against the divergence from the consensus sequence in
each repeat family when using the de novo wolf reference genome for
alignment. The bottom panel shows the same figures when using the boxer
reference genome. Figure S4. Principal Components Analysis (PCA). Panels A
and B show the first four principal components of the genotypes when using
the de novo wolf reference assembly. For making these PCA plots, we used a
missingness cutoff of 0.9 and a minor allele frequency cutoff of 0.2. Panels C
and D show the first four principal components of the genotypes when using
the boxer reference genome while using the same filtering thresholds. Figure
S5. Picture of the skull of the Swedish wolf sample used for reference genome
assembly. Table S1. Coverage and heterozygosity estimates. The coverage
and heterozygosity are shown for each sample included in the study. For each
animal, the higher estimate of coverage are bolded. (PDF 1652 kb)
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