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Highlights

• We present a solution method for the liner shipping network design problem.

• The algorithm explicitly handles transshipment time limits for all demands.

• Individual sailing speeds at each service leg are used to balance sailing speed against opera-
tional costs.

• Computational results are showing very promising results for realistic global liner shipping
networks.

• A sensitivity analysis on fluctuations in bunker price confirms the applicability of the algo-
rithm.
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Competitive Liner Shipping Network Design

Christian Vad Karstena, Berit Dangaard Brouera, David Pisingera

aDTU Management Engineering, Technical University of Denmark, Produktionstorvet, Building 426, DK-2800
Kgs. Lyngby, Denmark

Abstract

We present a solution method for the liner shipping network design problem which is a core
strategic planning problem faced by container carriers. We propose the first practical algorithm
which explicitly handles transshipment time limits for all demands. Individual sailing speeds
at each service leg are used to balance sailing speed against operational costs, hence ensuring
that the found network is competitive on both transit time and cost. We present a matheuristic
for the problem where a MIP is used to select which ports should be inserted or removed on a
route. Computational results are presented showing very promising results for realistic global liner
shipping networks. Due to a number of algorithmic enhancements, the obtained solutions can be
found within the same time frame as used by previous algorithms not handling time constraints.
Furthermore, we present a sensitivity analysis on fluctuations in bunker price which confirms the
applicability of the algorithm.

Keywords: container shipping, network design, level of service

1. Introduction

Given a fleet of container vessels and a selection of ports, the classical Liner Shipping Network
Design Problem (LSNDP) constructs a set of scheduled routes (services) with a fixed frequency
for container vessels to provide transport for containers worldwide (Brouer et al. [4]). This paper
presents the Competitive Liner Shipping Network Design Problem (CLSNDP) extending the clas-
sical LSNDP to consider level of service, i.e. the transit time provided for a given cargo as well as
the transportation cost charged. These two parameters are the main concern for customers, and
hence they are crucial parameters for designing competitive networks.

The classical LSNDP is offset in the main objective of the carrier; to maximize profit through the
revenues gained from container transport taking into account the fixed cost of deploying vessels and
the variable cost related to the operation of the services. The opposing objectives of the customer
and the carrier represents an inherent trade-off in the design of a liner shipping network. Minimizing
the cost of the network will provide low freight rates, but are likely to result in prolonged transit
times as shown by Karsten et al. [15]. On the other hand, designing a network to minimize transit
times is likely to result in a very costly network favoring direct connections at high sailing speeds.

The models for the classical LSNDP differ on two traits. First, the ability to model and charge
transshipments between services. Containers are often not transported directly from their port of
origin to their port of destination, and hence it is important to be able to handle the time and
cost of transshipments. Second, models differ on requiring a fixed frequency of service or providing
flexibility in the frequency. A service is cyclic but may be non-simple, that is, ports can be visited

Email addresses: chrkr@dtu.dk (Christian Vad Karsten), berit@brouer.com (Berit Dangaard Brouer),
dapi@dtu.dk (David Pisinger)
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1 INTRODUCTION 3

more than once. In this model we allow a single port to be visited twice, yielding a so-called
butterfly route.

The paper by Agarwal and Ergun [1] imposes a weekly frequency of service and allows for
transshipment, but the model cannot cater for the handling cost associated with transshipments.
The paper by Alvarez [2] can cater for transshipment and transshipment costs (except within
butterfly services) and allows for flexible frequencies of service. In Reinhardt and Pisinger [24] each
vessel is treated separately allowing flexible frequencies, and the model allows for transshipment
costs also on butterfly routes. Brouer et al. [4] provides an analysis of the real life requirements and
present a reference model for the classical LSNDP. The model is offset in Alvarez [2] accounting
correctly for transshipments on all services and allowing both flexible and fixed frequencies. The
above models are all variants of specialized capacitated network design problems.

Meng et al. [19], Christiansen and Fagerholt [8], Christiansen et al. [9] provide broader reviews
of recent research on routing and scheduling problems within liner shipping. In the literature
several papers extend the classical LSNDP e.g. by incorporating intermodal considerations (Liu
et al. [17]) or aiming to narrow the definition of service (Plum et al. [21]). However, it is generally
acknowledged that considering level of service is the most important extension to the classical
LSNDP because it is the decisive factor in designing a competitive network (Alvarez [3], Brouer
et al. [4]). Two approaches for considering level of service has been suggested in the literature.
The first method is to include inventory cost in a multi-criteria objective function as seen in
Alvarez [3]. Inventory cost is primarily a concern to the shipper and the idea of introducing it for
the carrier is to ensure that longer transit times will result in lower freight rates. However, the
bilinear expression proposed by Alvarez [3] is not computationally tractable. Another approach is
to impose restrictions on the allowed transit times for each container. The idea here is that the
carrier needs to provide competitive transit times in a market of several players. Wang and Meng
[30] introduce deadlines on cargo in a non-linear, non-convex mixed-integer programming (MIP)
formulation of a LSNDP. A drawback of this formulation is that it cannot cater for transshipments
of cargo which is the backbone of global liner shipping networks. Recently Karsten et al. [14]
presented a capacitated multi-commodity network design formulation that imposes transit time
restrictions while still allowing transshipments between services and Karsten et al. [15] showed that
time restricted multi-commodity flow problem arising as a sub-problem can be efficiently solved
for a large global shipping network. The CLSNDP in this paper builds upon these contributions.

Introducing transit time restrictions is essential in the LSNDP from a customer perspective, but
to maintain low fuel (bunker) cost this must be accompanied by modelling the services with variable
speed. Traditionally, models of the LSNDP operate with a constant speed on services although
variable speed on each leg is used in practice. In a network with constant speed the most transit
time restricted commodity will force the entire service to speed up, and hence increase the bunker
consumption of the service unnecessarily with a resulting increase in both cost and CO2 emissions.
Figure 1 illustrates the problem of maintaining constant speed during the design process. The
container entering at A and leaving at B, kAB , has the tightest transit time requirement among
the containers currently transported on service s with a transit time restriction of 3 days, which
requires a speed of 14 knots. This results in a deployment of 2 vessels at a speed of nearly 21
knots, because of only two possible deployments with constant speed and the weekly frequency
requirement imposed. If speed can be determined individually on each sailing leg, 3 vessels can
be deployed with a speed of 14 knots between A and B and a speed of 12 knots on the remaining
sailing legs maintaining the weekly frequency but resulting in a significant decrease in the bunker
consumption (since the bunker usage per unit of distance is a quadratic function of speed (Brouer
et al. [4])). The decrease in bunker cost must be evaluated against the cost of deploying an
additional vessel on the service. The computational results presented in Karsten et al. [14] support
a higher average speed and low fleet deployment in networks optimized with transit time restrictions
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Figure 1: A service s illustrated with constant speed and weekly frequency. The nodes are ports and the solid lines
correspond to sailing arcs. Two deployments are possible to complete the round trip of 5,000 nm (nautical miles)
within the speed bounds: Three vessels deployed (De(s) = 3) results in a constant speed of 12.3 knots, while two
vessels deployed (De(s) = 2) results in a constant speed of 20.8 knots. The most transit time critical commodity, k,
on the service is for the commodity illustrated by the dashed line from A to B, where the transit time restriction is
3 days requiring a speed of 14 knots.

and constant speed.
Therefore, the CLSNDP is extending the reference model for LSNDP (Brouer et al. [4]) to

consider transit time restrictions coupled with variable speed on each sailing leg in order to properly
address the trade-off between providing competitive transit times, while reducing cost as well as
CO2 emissions. In this paper we propose the first algorithm to solve CLSNDP by an adaptation
of the matheuristic of Brouer et al. [6] that considers transshipment times and optimize speed on
each sailing leg. The underlying basis for the model is a capacitated multi-commodity network
design formulation where we can accurately model transshipment operations, cost structures, and
restrictions on container transit time of individual containers. The formulation adheres to the
objective and constraints of Brouer et al. [4] with a fixed weekly frequency. As we are not solving
the mathematical formulation using an exact algorithm we have chosen to place the mathematical
model in Appendix A.

Speed optimization in maritime transportation has received quite a lot of interest in the lit-
erature across economics and operations research over the past decade. Psaraftis and Kontovas
[23] survey models and taxonomy on speed optimization and in Psaraftis [22] “slow steaming” as
a phenomenon is discussed. Notteboom and Vernimmen [20] and Ronen [26] provide insights on
speed optimization in liner shipping and show the importance of optimizing speed in liner ship-
ping networks by studying a single service. There are numerous examples of speed optimization
within liner shipping e.g. the non-linear MIP formulation presented in Wang and Meng [29], or
speed optimization coupled with fleet deployment in e.g. Gelareh and Meng [11], Meng and Wang
[18], Zacharioudakis et al. [31]. A number of contributions are concerned with the coupling be-
tween transit time and speed in optimizing the network (Cheaitou and Cariou [7], Wang and Meng
[27, 28]). Reinhardt et al. [25] present a MIP model for adjusting the port berth times such that
the bunker consumption is minimized while retaining the customer transit times. A penalty is
assigned to each change of berth time in order to limit the number of changes. Karsten et al. [16]
use Benders decomposition to simultaneously optimize sailing speed and container routing. All
containers have an associated limit on the transit times that needs to be met.

Deciding an optimal speed configuration in a liner shipping network requires consideration of the
network in its entirety as transit times of commodities may be decided by several interoperating
services. Likewise commodity paths are likely to change with the speed optimization if cargo
routings are flexible. However, computational results from the above mentioned papers indicate
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that this is not computationally tractable for revaluation in a large-scale heuristic search. The
matheuristic for the CLSNDP proposed in this paper is considering speed as one of the dimensions
in the solution space and therefore a fast method for optimizing speed is needed. In tramp shipping
speed optimization of an isolated route in the network is optimal. Variable speed for a single
ship route in tramp shipping has been explored in Fagerholt et al. [10], I. Norstad and Laporte
[13], Hvattum et al. [12], where the introduction of speed optimization allowing variable speed on a
sail route results in significant fuel savings. In Fagerholt et al. [10] a MIP with a non-linear objective
function depicting the vessels bunker consumption as a function of speed is presented. The speed
optimization problem can be transformed into a directed acyclic graph if speeds are discretized
and the resulting speed profile is simply a shortest path, which can be efficiently calculated for
a directed acyclic graph. The approach by Fagerholt et al. [10] cannot be adopted directly, since
a liner shipping service will be carrying multiple commodities and hence the time windows are
defined per pickup node. Transforming the problem into a graph would result in node specific
time windows accounting for times between every OD pair assigned to the service, which would
require a resource constrained shortest path with a specific resource for every port in the service.
This is unlikely to be efficiently solved. However, we can adapt the non-linear MIP formulation
of Fagerholt et al. [10] to optimize speed on a single service given constraints on the slack time
of each commodity currently transported on the service. We also consider opportunity cargo not
currently transported, as speed optimization may lead to new attractive transport opportunities.
The non-linear bunker consumption function is approximated by a piecewise linear function of the
time to sail a given leg and the speed optimization MIP can be efficiently solved using a standard
MIP solver making it suitable to incorporate into a heuristic. Our computational results show
that it is tractable to incorporate level of service in the network design process by considering
container transit time restrictions and variable speed in a heuristic context, and we are able to
design profitable networks for scenarios resembling global liner shipping networks.

The rest of the article is organized as follows. Section 2 discusses the extensions from the
LSNDP to the CLSNDP. Section 3 gives an overview of our solution method and describe the level
of service implications in detail. Section 4 presents computational results on realistic instances
from the benchmark suite LINER-LIB before we conclude and discuss future work in Section 5.

2. Problem description

Given a fleet of container vessels and a selection of ports, the CLSNDP constructs a set of
services to provide transport for containers worldwide. It extends the classical LSNDP to consider
level of service as this is the main concern for the shipper. The CLSNDP we present here is based
on the reference model for the LSNDP presented in Brouer et al. [4] which has been extended in
Karsten et al. [14] to consider transit time restrictions for all commodities.

An instance of the CLSNDP consists of the set of ports, P , with an associated port call cost cep
for vessels of class e ∈ E, (un)load cost cUp , c

L
p , transshipment cost cTp and berthing time Bp spent

in port p. Furthermore, we have a set of demands, K, available for transport each week where
each demand has an origin ok ∈ P , a destination dk ∈ P , a quantity, qk, a revenue per unit, zk, a
reject penalty per unit z̃k and a maximal transit time, tk. To service the routes, there is a set of
vessel classes, E, with specifications for the weekly charter rate, Ce, capacity Ue, minimum (vemin)
and maximum (vemax) speed limits in knots per hour, and bunker consumption per hour, when
the vessel is idle at ports he. The bunker consumption is a function ge(t, d) of the sailing time
t, distance d and vessel class e. There are Ψe vessels available of class e ∈ E. The price for one
metric ton of bunker is denoted β. Finally we have a matrix of the direct distances deij between all
pairs of ports i, j ∈ P and for all vessel classes e ∈ E. The distance may depend on the vessel class
draft as the Panama Canal is draft restricted. Along with deij follows an indication of the cost leij
associated with a possible traversal of a canal.
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A solution to the CLSNDP is a (small) subset S of the set of all feasible services S. A feasible
service s consists of a route, a number of vessels, and a vector of sailing speeds corresponding to
each sailing leg such that the total round trip time is a multiple of a week. A route is an ordered
set of ports P ′ ⊆ P . Several services may in principle use the same route, although it generally is
cheaper to aggregate the two services into one service operated by a larger vessel class.

A weekly frequency of port calls is obtained by deploying multiple vessels to a service. Let
e(s) ∈ E be the vessel class assigned to a service s and De(s) the number of vessels of class e(s)
required to maintain a weekly frequency. A round trip may last several weeks but due to the
weekly frequency exactly one round trip is performed every week. The service time Ts is the time
needed to complete the cyclic route.

A full model of the problem is found in Appendix A. The primary change in order to ac-
commodate transit time restrictions into the model of Brouer et al. [4] is to decompose the multi
commodity flow problem into a path flow formulation. In the path flow formulation only paths re-
specting the maximal transit time for a given commodity are feasible. This extension of the LSNDP
with transit time restrictions is a non-compact formulation with integer service variables defining a
port call sequence, a vessel type, number of ships and a constant speed, and real path variables for
routing the commodities. As transit times are closely linked to speed, the constant speed needed
to accommodate transit time restrictions will generally be determined by the commodity with the
most restrictive transit time. However, it is unnecessary to maintain a high speed throughout the
service if this commodity is only carried on part of the service. Therefore we use service variables
that include variable speed by allowing each sailing to take on any speed within the feasible speed
interval, while maintaining a weekly frequency of service. The overall objective of CLSNDP is to
maximize profit, however, the extensions potentially results in fuel savings and/or a larger cargo
uptake in the network along with ensuring a competitive level of service in the network.

The next section provides a broad overview of the algorithm and its components. The overview
includes the extensions necessary to enable consideration of level of service, namely transit time
restrictions for each individual commodity and optimizing speed on each sailing in the network.
Following the overview the extensions will be described in further detail.

3. Algorithm

The proposed matheuristic is based on the algorithm from Brouer et al. [6]. In every iteration
the solution x consists of a set S of services, each service s ∈ S having an associated vessel class
e(s) and sailing time tj,j+1 between ports j and j + 1. The sailing time implicitly gives the speed
between a pair of ports depending on the distance and for each pair of ports on a service the speed
is allowed to be different.

Since the evaluation of the objective function makes it necessary to flow all containers through
the network, only a limited number of iterations can be evaluated throughout the search, and
therefore it is important to use a large neighborhood search, combined with a shrewd way of
choosing the direction of the search.

Algorithm 1 presents high level pseudocode for the overall matheuristic. Initially a solution is
constructed by dividing the available fleet onto services. Subsequently the services are populated
with port calls following a greedy parallel insertion procedure according to the distance and the
trade volume between ports in the service in line 1. The subsequent search for improved solutions
is guided by a simulated annealing scheme in the while loop of lines 5–25. The cooling scheme
consists of the initial temperature defined as the average of the sum of the absolute difference
between the first ten solutions found. The temperature is cooled by a constant ratio α = 0.98 and
the stopping citerion is the MINtemp = 0.01. The simuated annealing will accept a new solution x′

if exp((z(x)−z(x′))/temp) > random[0, 1) in line 12. The primary component of the matheuristic
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Algorithm 1 High Level algorithm for CLSNDP

Require: An instance of the CLSNDP
1: Construct an initial solution x using a greedy algorithm
2: Set the best known solution x∗ = x
3: Set the iteration counter iter = 0
4: Set the initial temperature temp = temp0

5: while temp > MINtemp and time < MAXtime do
6: for each service s ∈ x do
7: x′ ← x \ {s}
8: s′ ← IP (s): improve solution by insertion/removal of port calls on service s
9: Resolve cargo flow

10: Optimize speed of each sailing on s′

11: x′ ← x′
⋃{s′}

12: if accept solution then
13: Set x← x′

14: Possibly update best known solution: x∗ ← x
15: iter ← iter + 1
16: temp← temp · α
17: if iter mod 4 = 0 then
18: Apply reinsertion heuristic to obtain new solution x′ with promising butterfly routes
19: if solution improves then
20: Set x← x′

21: Possibly update best known solution: x∗ ← x
22: if iter mod 10 = 0 then
23: Apply perturbation to obtain a solution x′ with a different service composition
24: Set x← x′

25: Possibly update best known solution: x∗ ← x
26: return x∗

is a neighbourhood for inserting and removing port calls on a single service which is formulated as
an integer program in line 8. The integer program is described in detail in Section 3.1. In order
to optimize speed in the network a heuristic method based on a non-linear MIP is applied. The
heuristic optimizes the speed of all legs on a single service given the time limits of cargo currently
transported on this service and the time limit of opportunity demands, that are currently rejected
due to transit time restrictions. This MIP is called in line 10 after resolving the multicommodity
flow problem in line 9 given the changes to service s. As changes are only made to a single service,
the column generation algorithm used is warm started using the technique described in Brouer
et al. [6]. The simulated annealing scheme decides whether the new solution is accepted. The
reinsertion heuristic in line 18 introduces butterfly ports on promising candidate services. The
perturbation heuristic in line 23 diversifies the service composition. The two latter heuristics are
unchanged from the versions in Brouer et al. [6].

3.1. The improvement heuristic with level of service considerations

The integer program described in line 8 of Algorithm 1 is a move operator in a large-scale
neighborhood search based on altering a single service at a time. The objective of the integer
program are estimation functions for changes in the flow of the network and the duration of the
service due to insertions and removals of port calls. The solution of the integer program provides a
set of moves in the composition of port calls and fleet deployment. Flow changes and the resulting
change in the revenue for relevant commodities to the insertion/removal of a port call are estimated
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(a) Blue nodes (dashed) are evaluated for insertion corresponding to variables
γi for the set of ports in the neighborhood Ns of service s.
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(b) Red nodes (dashed) are evaluated for removal
corresponding to variables λi for the set of current
port calls F s on service s.

Figure 2: Illustration of the estimation functions for insertion and removal of port calls.

by solving a series of resource constrained shortest path problems considering feasibility of transit
time restrictions as well as the cost of transport including transshipments.

Given a total estimated change in revenue of revi and port call cost of c
e(s)
i Figure 2(a) illustrates

estimation functions for the change in revenue (Θs
i ) and duration increase (∆s

i ) for inserting port
i into service s controlled by the binary variable γi. The duration controls the number of vessels
needed to maintain a weekly frequency. Figure 2(b) illustrates the estimation functions for the
change in revenue (Υs

i ) and decrease in duration (Γsi ) for removing port i from service s controlled
by the binary variable λi.

For considering the transit time in the IP, it is necessary to estimate how insertions and removals
of port calls will affect the duration of the existing flow on the service. If an insertion is estimated
to result in exceeding the transit time restriction of existing flow, and there is no possibility of
rerouting the flow on a different path respecting the transit time limits, a loss of revenue can
be expected. The loss is estimated to correspond to the full revenue obtained from the demand
quantity. Figure 3 illustrates a case of a path variable in the current basis of the MCF model,
which becomes infeasible due to transit time restrictions when inserting port B on its path.

In order to account for the transit time restrictions of the current flow, constraints (8) are
added to the IP and a penalty, ζx corresponding to losing the cargo, is added to the objective if
the transit time slack for an existing path variable becomes negative. This is handled through the
variable αx, where x refers to a path variable with positive flow in the current solution and sx refers
to the current slack time according to the transit time restrictions of the variable. Variable speed
is considered in the estimation function for the flow as well as for the estimation of the service
duration. The speed on the sailings to and from the port, i, evaluated for insertion is estimated
to be equal to the speed sailed between the two ports previously connected and is denoted by the
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Figure 3: Insertions/removals affect transit time of the flow. Commodity kAD has a maximum transit time tk of
48 hours and the insertion of γB will make path variable xAD infeasible.
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(a) Blue nodes (dashed) are evaluated for insertion corre-
sponding to variables γi for the set of ports in the neigh-
borhood Ns of service s. Speeds of sailings to and from the
insertion correspond to the speed of the existing link.
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(b) Red nodes (dashed) are evaluated for removal
corresponding to variables λi for the set of current
port calls F s on service s. A weighted average
speed is used Hs

C = (dACdCD)/(dAC + dCD) +
(dCDdDC)/(dAC + dCD).

Figure 4: Illustration of the speeds used by estimation functions for insertion and removal of port calls.

parameter Gsi . Upon evaluating a removal of a port the actual speed of the sailing in question
is used to reduce the duration of the service. The parameter Hs

i expresses the weighted average
speed of the current speeds for the sailings entering and leaving the port, i, estimated for removal.
The speeds used for the estimation functions are illustrated in Figure 4.

For ease of reading, Table 1 gives an overview of additional sets, constants, and variables used
in the CLSNDP model.

The objective of the move operator is to maximize the estimated profit increase obtained from
removing and inserting port calls, accounting for the estimated change of revenue, transshipment
cost, port call cost, and fleet cost.

max
∑

i∈Ns
Θiγi +

∑

i∈F s
Υiλi − Ce(s)ωs − ζxαx (1)

First, we need to estimate the number of vessels ωs needed on the service s (assuming a weekly
frequency) after insertions/removals while accounting for the change in the service time given the
current weighted average speed on the service V s:

Y s

V s
+
∑

i∈F s
Bi +

∑

i∈Ns

(
∆s
i

Gsi
+Bi

)
γi −

∑

i∈F s

(
Γsi
Hs
i

+Bi

)
λi ≤ 24 · 7 · (De(s) + ωs) (2)

Next, we must ensure that the solution does not exceed the available fleet of vessels. Note that ωs

does not need to be bounded from below by −De(s) because it is not allowed to remove all port
calls:

ωs ≤Me(s) (3)
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Then, a limit on the number of port call insertions and removals is enforced in order to minimize
the error in the computed estimates:

∑

i∈Ns
γi ≤ Is (4)

∑

i∈F s
λi ≤ Rs (5)

Furthermore, the flow estimates are based on cargo flowing to and from a set of related port calls on
the service. The affected ports are placed in a lock set, Li, for insertions and removals respectively,
i.e. ports in a lock set cannot be removed to avoid large deviations in the flow estimates:

∑

j∈Li
λj ≤ |Li|(1− γi) i ∈ Ns (6)

∑

j∈Li
λj ≤ |Li|(1− λi) i ∈ F s (7)

Sets

K Set of all commodities k, each having origin ok and destination dk
S Current set of services s, each service having vessel class e(s)
F s Set of port calls in service s
Ns Set of neighbors (potential port call insertions) of service s
Xs Set of path variables in current flow solution with positive flow associated with service s
Nx ⊆ Ns Subset of neighbors with insertion on current path of variable x ∈ Xs

F x ⊆ F s Subset of port calls on current path of variable x ∈ Xs

Li Lock set for port call insertion i ∈ Ns or port call removal i ∈ F s

Constants

Y s Distance of the route associated with service s
Bi Berthing time for port call i ∈ F s

V s Estimated weighted average speed over all sailings on the service s
Gs

i Speed on sailing to and from port i inserted on the service s
Hs

i Speed on sailing to and from the port i removed from the service s
Ce Cost of an additional vessel of class e
De Number of deployed vessels of class e to a service in the current solution
Me Number of undeployed vessels of class e in the current solution
Is Maximum number of insertions allowed in s
Rs Maximum number of removals allowed in s
∆s

i Estimated distance increase if port call i ∈ Ns is inserted in s
Γs
i Estimated distance decrease if port call i ∈ F s is removed from s

Θi Estimated profit increase of inserting port call i ∈ Ns in s
Υi Estimated profit increase of removing port call i ∈ F s from s
ζx Estimated penalty for cargo lost due to transit time
sx Slack time of path variable x
t̄k Upper bound on the transit time for commodity k

Variables

λi (binary) 1 if port call i ∈ F s is removed from s, 0 otherwise
γi (binary) 1 if port call i ∈ Ns is inserted in s, 0 otherwise
ωs (integer) number of vessels added (removed if negative) to s
αx (binary) 1 if transit time of path variable x ∈ Xs is violated, 0 otherwise

Table 1: Overview of sets, constants, and variables used in the IP model for CLSNDP. Service s and vessel class e
is written in superscript, while ports p and arcs (i, j) are written as subscript.
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Finally, we need to activate the estimated penalty for lost cargo due to an estimated violation of
the transit time for the commodity on this particular path:

∑

i∈Nx

(
∆s
i

V s
+Bi

)
γi −

∑

i∈Fx

(
Γsi
V s

+Bi

)
λi − t̄kαx ≤ sx x ∈ Xs (8)

The domains of the variables are:

λi ∈ {0, 1}, i ∈ F s γi ∈ {0, 1}, i ∈ Ns αx ∈ {0, 1}, x ∈ Xs ωs ∈ Z, s ∈ S (9)

Thus the move operator is both guided by the changes in revenue due to new or removed
connections as in Brouer et al. [6], but also by the change in revenue related to not transporting
cargo for which the path duration is estimated to exceed the transit time of the commodity. All
the sets in Table 1 are dynamic following the changes made to service s either by removal, where
all λi = 1 will be removed from the set Fs. Similarly, insertions γi = 1 are added to the set of port
calls Fs (and removed from the set of neighbors Ns) in the subsequent iteration, when a modified
MIP is solved for the modified service s. The set of neighbours Ns will be defined according to the
modified Fs and the set of current path variables Xs are updated to reflect the current commodity
flow in each iteration. Likewise, the locksets Li are depending on the estimations of changes to
the commodity flow in the current iteration when calculating Θ and Υ. We refer to Karsten et al.
[14] for a detailed explanation of these calculations.

3.2. Variable Speed on Service Legs

To include variable speed in the matheuristic (Algorithm 1 line 10) we formulate the speed
optimization problem as a mixed integer program with a non-linear objective function that can
easily be solved for each service s ∈ S during the iterative search.

The MIP problem is solved independantly for each service s with corresponding vessel class e
given by e(s). For ease of reading we therefore remove the superscript s to all variables, except
when refering to constants and variables from the original model (1)–(9) defined in Table 1.

Let m be the number of port calls in the round trip of s, and let m+ 1 correspond to the first
port in the trip. The entry time tok for a commodity on a service is smaller or larger than the exit
time tdk depending on the starting port of a service. The function g(tj,j+1, dj,j+1) represents the
bunker consumption from port j to j+1 expressed as a function of sailing time tj,j+1 and distance
dj,j+1, which indirectly models the speed vj,j+1. For each service we wish to determine the sailing
speed of each sailing leg which we do by finding the optimal sailing time tj,j+1 between ports j and
j+ 1. We arrive in port j at time tj and the sailing time must be determined such that the weekly
frequency of a service is maintained. If the sailing speed is changed significantly it is possible to
add or remove an additional vessel to the service provided that additional vessels are available. We
also consider commodities that are not currently transported but could be transported on service
s if a sufficient speed increase is profitable. To find the set of candidate commodities for a service
we solve an unconstrained shortest path problem on the residual capacity graph of the current
network for all commodities that are not currently transported. We add the ones that have a
profitable path through service s to the set but where transit time is violated to K̄ ′ and calculate
the potential profit based on the residual capacity (which may be less than the demand of a cargo),
the cost of the path and the service penalty (which we potentially can avoid). Additionally we
keep track of the time decrease needed (corresponding to a speed up) to make the path feasible.
The constants, sets and variables used in the model for a specific service s ∈ S are summarized in
Table 2.

Using this notation, the objective for each service s is to minimize the objective function
accounting for the bunker cost, the expected loss of revenue due to transit times not met and
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Sets

K′ Set of commodities currently transported on service s where tok < tdk
K′′ Set of commodities currently transported on service s where tok > tdk
K̄′ Set of commodities that potentially could be transported on s where tok < tdk
K̄′′ Set of commodities that potentially could be transported on s where tok > tdk

Constants

m Number of port calls in round trip of service s
dj,j+1 Distance between ports j and j + 1 using vessel class e
tmax Maximum time to complete service s sailing at minimum speed
tk Time commodity k currently uses on service s and the possible slack time

between the time of the current path and the overall transit time limit of k
β The price for one metric ton of bunker
zk Net revenue that will be lost if not transporting the demand k ∈ K′ ∪K′′

rk Net revenue that can be obtained by transporting all of demand k ∈ K̄′ ∪ K̄′′

τk Time commodity k ∈ K̄′ ∪ K̄′′ currently would spend on service s
τ ′k Time currently lacking for commodity k ∈ K̄′ ∪ K̄′′

vmax Maximum vessel speed for vessel class e
vmin Minimum vessel speed for vessel class e

Variables

t′j (continuous) Arrival time at port j for service s
tj,j+1 (continuous) Sailing time between ports j and j + 1 for service s
δ (integer) Change in the number of vessels of class e deployed to service s
ρk (binary) 1 if commodity k will be lost due to transit time violation
ηk (binary) 1 if commodity k will be available if transit time is reduced

Table 2: Overview of sets, constants, and variables used in the speed MIP. All definitions refer to a given service s
and corresponding vessel class e.
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the deployment cost of additional vessels less the profit from demand that become available for
transport by adjusting the speed. The objective can be written as:

min β
m∑

j=1

ge(tj,j+1, dj,j+1) +
∑

k∈K′∪K′′

zkρk + Ceδ −
∑

k∈K̄′∪K̄′′

rkηk (10)

A number of constraints need to be satisfied: First, we need to set the time for each port on a
route and the sailing time between ports for calculating the bunker consumption:

t′j+1 − t′j − tj,j+1 = Bj j = 1 . . .m (11)

Next, we decide the number of vessels needed to maintain a weekly frequency on the service
including berthing time for each port call:

t′m+1 − 24 · 7 · δ = 24 · 7 ·De −
m∑

j=1

Bj (12)

The service time is set by the constraint:

m∑

j=1

tj,j+1 = t′m+1 (13)

Moreover, we invoke a loss of revenue if the transit times of commodities on board the service s
are not met. A separate constraint is necessary for commodities where t′ok < t′dk to account for
the total round trip time:

t′dk − t′ok − ρktmax ≤ t′k k ∈ K ′ (14)

t′dk − t′ok − ρktmax + t′m+1 ≤ t′k k ∈ K ′′ (15)

Similar constraints allow a service to pick-up additional cargo if speed is increased sufficiently to
make paths for cargo that was previously rejected due to transit time limits:

t′dk − t′ok − (1− ηk)tmax ≤ τk − τ ′k k ∈ K̄ ′ (16)

t′dk − t′ok − (1− ηk)tmax + t′m+1 ≤ τk − τ ′k k ∈ K̄ ′′ (17)

Finally, we need to enforce speed bounds of the vessel class used by service s:

tj,j+1 ≥
dj,j+1

vmax
j = 1 . . .m (18)

tj,j+1 ≤
dj,j+1

vmin
j = 1 . . .m (19)

The variable δ is bounded from above by the number of available vessels if the service slows down
overall by adding an additional vessel to the service. The bounds on δ are tightened in order to
give a good solution close to the current deployment such that −1 ≤ δ ≤ min{1,Me}, i.e. it is
only possible to add or remove at most one vessel. The variable domains are:

δ ∈ {−1, 0,min{1,Me}} (20)

t′j , tj,j+1 ∈ R+ j = 1 . . .m (21)

ρk ∈ {0, 1} k ∈ K ′ ∪K ′′ (22)

ηk ∈ {0, 1} k ∈ K̄ ′ ∪ K̄ ′′ (23)
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Category Instance and description |P | |K| |E|
Single- Baltic Baltic sea, Bremerhaven as hub 12 22 2
hub WAF West Africa, Algeciras as hub 19 38 2
Multi-hub Mediterranean Algeciras, Tangier, and Gioia Tauro as hubs 39 369 3
Trade- Pacific Asia and US West Coast 45 722 4
lane AsiaEurope Europe, Middle East and Far East regions 111 4000 6
World WorldSmall 47 main ports worldwide 47 1764 6

Table 3: The instances of the benchmark suite with indication of the number of ports |P |, the number of origin-
destination pairs |K|, and the number of vessel classes |E|.

The objective function can be linearized by modeling the bunker consumption as a piecewise linear
function for each tj,j+1 and the model (10)–(23) can be solved efficiently by a standard mixed
integer programming solver. We use 100 pieces to accurately model the bunker consumption
function (the solution times for the speed optimization problem are generally less than 0.1 seconds
in the instances we have solved in Section 4 and the number of pieces used to aprroximate the
objective only has limited impact on this.)

As described earlier, when a service in the network is changed we re-solve the cargo flowing
subproblem using a warmstarting procedure where previously generated columns are used leading
to a very effective solution of the flow problem. It should be noted that solving the speed optimiza-
tion for each service separately leads to a sub-optimal configuration of the network as a significant
portion of the demands uses more than one service and hence the transit time for each demand is
determined by more than one service, but as we solve the problem many times for each service as
part of the search procedure large differences can be reduced.

4. Computational Results

The matheuristic was tested on data from the benchmark suite LINER-LIB described in Brouer
et al. [4]. The instances can be found at http://www.linerlib.org. Table 3 gives an overview of the
instances. The transit time restrictions have been updated according to the most recent published
liner shipping transit times for a small number of the origin-destination pairs as described in
Karsten et al. [14].

The matheuristic has been coded in C++ and run on a linux system with an Intel(R) Xeon(R)
X5550 CPU at 2.67GHz and 24 GB RAM. The algorithm is set to terminate after the time limits
imposed in Brouer et al. [4] if the stopping criterion of the embedded simulated annealing procedure
is not fulfilled at the time limit.

We fix the berthing time, Bp to 24 hours for all ports as in Brouer et al. [4] and the transshipment
time, ta is fixed to 48 hours for every connection as the concrete time schedule is not known at
this stage. The bunker price is set to $ 600 per ton as in Brouer et al. [4]. Prices for bunker have
nearly halved in the past five years, and to this end Section 4.2 is a case study of key performance
indicators for networks constructed with bunker prices ranging from $ 150 to $ 700 per ton.

4.1. Computational results for LINER-LIB

Table 4 shows the performance of the algorithm on the six instances described in Table 3.
For each instance the performance of the algorithm is shown when the networks are designed
with constant and variable speed. We evaluate the average performance of ten networks in the
two settings and also report the best found network. In both the constant speed and variable
speed setting the algorithm can find profitable solutions (negative objective values) for Baltic,
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WAF, WorldSmall, and AsiaEurope. The Pacific instance yields unprofitable solutions though
both fleet deployment and transported cargo volume is high. For all instances except the single-
hub instances the networks generated with variable speed are consistently better than the constant
speed network with an improvement of up to 10% for the average values and up to a more than
60 % better objective value for the best Pacific network. On average around 85% to 95% of
the available cargo volume is transported except in the Mediterranean instance. Generally the
constant speed instances transport slightly more of the cargo volume than the networks operating
at variable speed and the fleet deployment is significantly higher for networks operating at variable
speed suggesting overall slower sailing speed. This is also evident from Table 5 where the weighted
average speed for each vessel class is shown for networks with constant and variable speed. Most
of the vessel classes sail significantly slower for the larger networks and variable speed networks
generally operate around or below design speed whereas the networks with constant speed operate
at or in some cases much above design speed.

Table 6 gives statistics on the rejected cargo in the networks with variable speed. The reasons
for cargo to be rejected is that there are no cargo paths that meet transit time restrictions, that
there is no residual capacity or that the origin-destination pair is not connected in the graph.
For Baltic, WAF, and Mediterranean cargo is primarily rejected because the corresponding origin-
destination pairs are not connected. This indicates that there is a set of ports that the algorithm
asses to be unprofitable to call. For Pacific, WorldSmall, and AsiaEurope cargo is mainly not
transported because of transit times that cannot be met but also to a large degree because of
lacking capacity. For these only around 25 % is rejected because of no connections. Generally for
the cargo that is rejected because of no connection the percentage of rejected demands in terms
of number of demands (k) compared to the volume (v) not connected show that there is a lot of
low volume cargo here. Further inspection shows that these demands often are from smaller feeder
ports where the total available volume is very low which is why they are assessed to be unprofitable
by the algorithm.

4.2. Sensitivity to Bunker Price

The price of bunker is very decisive for the cost of the network and the soaring oil prices of
more than $ 600 per ton seen at the beginning of this decade along with a surplus of capacity in the
market gave rise to the “slow-steaming” era. Recently, oil prices have been plummeting to less than
$ 300 per ton, which means that the trade-off between slow steaming by deploying extra vessels
and speeding up services is shifting. This section concerns the performance of the algorithm with a
varying price of bunker. The test is performed on several WorldSmall instances, where we are using
the same initial solutions for different bunker prices. The subsequent improvement heuristic will
be highly dependent on the bunker price in evaluating a given move and the best found solutions
will potentially differ significantly. We compare solutions for bunker prices in the range from $
150 to $ 700 per ton in terms of vessel deployment, the percentage of cargo transported, and the
weighted average speed of the network.

Table 7 and Figure 5 show the correlation between bunker price and the profit margin, which is
decreasing with increasing bunker prices. Furthermore, it can be seen that the amount of available
cargo transported only decrease a few percent with more then a quadrupling of the bunker price.
Table 8 gives statistics on why cargo is rejected, and as expected more cargo is rejected due to
transit times at higher bunker cost, because it is more favourable to slow down than meeting tight
connections.

In Table 9 and Figure 6 the expected trend of a decreasing speed with an increasing bunker price
is clearly seen for all vessel classes except the SuperP class. The weighted average speed confirms
this trend when vessel time charter cost is kept constant. When bunker price is low, average
speed increase, meaning that the overall deployment also can decrease as fewer vessels are needed.
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Instance Obj. Val. Deployment Transp. Vol. CPU Time

Z(7) D(v) D(|E|) T(v) (S)
(%) (%) (%)

Baltic

Best (constant speed) −1.41 · 104 100 100 87.4 101
Average (constant speed) 7.45 · 104 100 100 86.7 108
Best (variable speed) −0.46 · 104 100 100 87.9 144
Average (variable speed) 17.4 · 104 100 100 85.1 115

WAF

Best (constant speed) −5.59 · 106 83.3 85.7 97.0 255
Average (constant speed) −4.87 · 106 83.3 85.2 94.3 354
Best (variable speed) −5.48 · 106 97.2 97.6 97.6 362
Average (variable speed) −4.89 · 106 86.2 87.6 91.7 396

Mediterranean

Best (constant speed) 2.42 · 106 91.9 95.0 86.9 710
Average (constant speed) 2.70 · 106 90.5 94.0 78.9 737
Best (variable speed) 2.19 · 106 91.9 95.0 83.8 1200
Average (variable speed) 2.65 · 106 92.5 95.0 79.8 1200

Pacific

Best (constant speed) 3.05 · 106 95.0 91.0 93.3 3600
Average (constant speed) 3.65 · 106 94.0 91.9 94.0 3600
Best (variable speed) 1.13 · 106 98.2 97.0 90.3 3600
Average (variable speed) 3.44 · 106 97.0 96.0 89.5 3600

WorldSmall

Best (constant speed) −3.54 · 107 82.0 85.2 91.1 10800
Average (constant speed) −3.15 · 107 82.3 85.4 90.9 10800
Best (variable speed) −4.05 · 107 90.5 96.6 89.1 10800
Average (variable speed) −3.48 · 107 90.3 95.8 88.0 10800

AsiaEurope

Best (constant speed) −1.67 · 107 84.6 90.9 88.8 14400
Average (constant speed) −1.45 · 107 83.9 91.9 88.5 14400
Best (variable speed) −1.88 · 107 94.4 96.0 85.6 14400
Average (variable speed) −1.52 · 107 94.0 96.8 84.9 14400

Table 4: Best and average of 10 runs on an Intel(R) Xeon(R) X5550 CPU at 2.67GHz with 24 GB RAM. Results
with constant and variable speed. Weekly objective value (Z(7)); percentage of fleet deployed as a percentage of
the total volume D(v) and as a percentage of the number of ships D(|E|). T(v) is the percentage of total cargo
volume transported and (S) is the execution time in CPU seconds.

This is also seen in Figure 6. The algorithm performs as expected under varying conditions and
confirms that even under very different economics conditions we can design profitable networks.
The characteristics in terms of deployment and sailing speed of these networks is rather different,
but in all cases the algorithm is able to design networks with a high transportation percentage. It
should be noted that in these tests only the bunker price is varied while in a real setting the freight
rates also depend on the bunker price leading to different network characteristics. However, the
sensitivity analysis illustrates how the algorithm also can be used as a managerial tool to conduct
“what if” analyses at a strategic level.
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Instance Vessel Class

F450 F800 P1200 P2400 PostP SuperP

Baltic

Constant Speed 10.8 13.7
Variable Speed 11.1 13.9

WAF

Constant Speed 11.5 13.2
Variable Speed 10.8 11.7

Mediterranean

Constant Speed 11.9 13.7 13.9
Variable Speed 11.7 13.0 15.5

Pacific

Constant Speed 12.0 14.2 15.9 18.2
Variable Speed 11.2 12.4 14.9 15.6

WorldSmall

Constant Speed 12.7 15.5 17.5 19.4 19.4 18.2
Variable Speed 12.0 13.2 16.4 16.4 15.8 15.6

AsiaEurope

Constant Speed 11.7 13.7 16.5 18.0 19.7 17.6
Variable Speed 11.5 12.8 16.1 14.8 16.6 15.8

Class Characteristics

Design Speed 12.0 14.0 18.0 16.0 16.5 17.0
Max speed 14.0 17.0 19.0 22.0 23.0 22.0

Table 5: Weighted average speed per vessel class over ten runs. The last two rows indicate the design speed and
max speed of the corresponding vessel class. F is Feeder, P is Panamax.
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Figure 5: (left) Development in objective value Z, and (right) cargo transported in percentage of total available
trnsp, as function of bunker cost. The results are average of five runs (error bars represent the standard deviation).
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Instance Total Transit Capacity Transit time Not
rejected time and capacity connected

|R| FFE tt(k) tt(v) C(k) C(v) ttC(k) ttC(v) L(k) L(v)
(%) (%) (%) (%) (%) (%) (%) (%)

Baltic µ 8 732 1.1 0.2 22.6 77.1 0.0 0.0 76.3 22.7
σ 1 164 3.5 0.6 11.5 10.4 0.0 0.0 14.1 10.6

WAF µ 8 712 7.0 1.2 14.0 26.1 1.7 0.1 77.3 72.6
σ 2 314 12.1 2.2 9.7 25.3 5.3 0.3 13.5 24.9

Mediterranean µ 107 1527 35.3 50.0 0.2 0.4 4.3 4.0 60.1 45.7
σ 8 250 7.2 9.6 0.7 1.0 4.6 3.9 5.9 8.6

Pacific µ 240 4657 51.5 34.4 7.8 27.4 13.3 29.9 27.3 8.3
σ 23 641 6.7 7.4 3.3 12.6 4.1 11.8 5.9 3.4

WorldSmall µ 325 15334 35.8 40.2 19.9 16.7 21.1 23.9 23.2 19.2
σ 45 1872 6.5 8.3 9.4 8.3 11.1 11.7 20.4 43.5

EuropeAsia µ 1029 11597 41.9 44.9 8.4 14.3 21.3 26.4 28.4 14.4
σ 97 1008 7.5 8.3 2.9 3.5 5.8 7.3 8.5 6.3

Table 6: Statistics on the rejected demand reporting average (µ) and standard deviation (σ) over ten runs. |R| is
the number of rejected OD pairs and FFE is the corresponding rejected volume; tt(k) is the percentage of OD
pairs rejected due only to transit time and tt(v) is the corresponding percentage of the total volume; C(k) is the
percentage of OD pairs rejected due only to lack of capacity and C(v) is corresponding percentage of the total
volume; ttC(k) is the percentage of OD pairs rejected due to both transit time and lack of capacity and ttC(v)
is the corresponding percentage of the total volume; L(k) is the percentage of OD pairs not connected and L(v) is
the corresponding percentage of the total volume.

Bunker Obj. Val. Deployment Transp. Vol.

Price Z(7) D(v) D(|E|) T(v)
($/ton) ($) (%) (%) (%)

150 7.67 · 107 91.8 95.6 90.3
200 7.24 · 107 90.2 95.1 90.1
250 6.85 · 107 91.0 95.3 89.8
300 6.45 · 107 93.5 96.3 91.1
350 5.81 · 107 94.4 95.9 89.9
400 5.20 · 107 91.3 96.3 88.9
450 4.86 · 107 95.0 97.3 89.3
500 4.39 · 107 95.0 97.4 88.7
550 4.15 · 107 94.8 96.9 89.3
600 3.54 · 107 93.0 96.0 88.4
650 2.90 · 107 91.5 96.2 86.2
700 2.26 · 107 93.7 96.7 85.7

Table 7: Bunker price and the development in the objective value Z(7), deployment percentage of volume D(v)
and number of vessels D(|E|) and the percentage of cargo transported T(v). Average of five different runs.

The red trend lines in Figure 6 show linear fits of the speed (f(x) = −0.002x+16.8), deployment
(f(x) = 0.002x + 95.2), and amount of transported cargo (f(x) = −0.008x + 92.2). These linear
approximations confirm the expectation that speed decrease with increased bunker price (0.2 nm/h
per 100 $/ton increase), the amount transported decrease with increased bunker price (0.8 % per
100 $/ton increase), and deployment increase with increased bunker price (0.2 % per 100 $/ton
increase). This is expected as the bunker consumption per unit of distance is a quadratic function
of speed. When the bunker price increases, we need more vessels as the network tend to operate
at lower speeds. This also implies that some demands cannot meet their transit times even with
different service layouts.
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Bunker Total Transit Capacity Transit time Not
price rejected time and capacity connected

|R| FFE tt(k) tt(v) C(k) C(v) ttC(k) ttC(v) L(k) L(v)
(%) (%) (%) (%) (%) (%) (%) (%)

150 280 12443 33,0 37,4 21,9 21,1 16,5 19,3 28,6 22,2
200 264 12638 41,2 48,3 31,3 24,3 17,7 21,1 9,8 6,4
250 281 13025 38,6 45,0 22,9 17,9 18,3 22,3 20,3 14,8
300 254 11408 43,5 49,4 25,4 21,2 21,9 23,3 9,2 6,1
350 277 12963 47,1 48,1 27,7 21,1 20,7 27,7 4,5 2,9
400 305 14228 49,4 55,6 15,4 11,6 13,5 17,6 21,8 15,3
450 295 13776 38,6 41,2 22,5 17,0 21,7 30,0 17,2 11,8
500 303 14523 50,0 52,4 21,7 18,2 17,3 21,9 10,9 7,3
550 299 13720 43,5 44,0 24,7 20,9 27,8 31,8 3,9 3,1
600 319 14902 40,2 42,0 15,5 15,5 21,3 26,6 23,0 15,9
650 374 17709 53,3 61,0 18,7 13,3 16,3 17,9 11,7 7,9
700 382 18310 46,0 50,3 18,2 18,3 18,6 20,7 17,3 10,7

Table 8: Rejected demand given the difference in bunker price. |R| is the number of rejected OD pairs and FFE is
the corresponding rejected volume; tt(k) is the percentage of OD pairs rejected due only to transit time and tt(v)
is the corresponding percentage of the total volume; C(k) is the percentage of OD pairs rejected due only to lack of
capacity and C(v) is corresponding percentage of the total volume; ttC(k) is the percentage of OD pairs rejected
due to both transit time and lack of capacity and ttC(v) is the corresponding percentage of the total volume; L(k)
is the percentage of OD pairs not connected and L(v) is the corresponding percentage of the total volume. The
results are an average of five runs.

$/ton F450 #v F800 #v P1200 #v P2400 #v PostP #v SuperP #v Total V W. Av. S.

150 11,8 24 14,0 29 17,2 66 17,8 74 17,3 53 16,8 7 251 16,5
200 11,9 24 13,5 29 17,1 67 17,8 74 17,5 50 14,0 7 250 16,5
250 11,8 24 13,3 29 16,7 67 17,2 72 16,9 53 13,0 6 251 16,0
300 11,9 24 13,2 28 16,6 65 17,6 74 16,8 55 18,6 7 253 16,2
350 12,2 24 13,3 29 16,4 64 16,6 73 16,6 53 16,2 9 252 15,7
400 11,5 24 13,7 29 16,4 68 16,7 73 16,4 55 12,4 5 253 15,7
450 11,5 24 13,1 29 16,4 67 16,7 74 15,8 54 16,1 9 256 15,5
500 11,7 24 13,4 29 16,2 67 16,3 74 16,1 54 15,9 8 256 15,5
550 11,6 23 12,8 29 16,5 67 16,3 73 15,9 55 17,0 8 255 15,5
600 11,4 24 13,4 29 16,3 67 16,5 73 15,8 52 15,3 8 252 15,4
650 12,0 24 13,2 29 16,1 68 15,8 73 15,7 54 15,6 6 253 15,2
700 11,7 24 13,8 29 16,1 66 15,9 74 15,3 55 15,5 7 254 15,2

Table 9: Relation between bunker price, weighted average speed per vessel class and vessel deployment for each
class. Weighted Average speed (W. Av. S.) is a weighted by the number of vessels deployed in the class (#v). The
results are an average of five runs.

The sensitivity analysis illustrates how the incentives towards slow steaming for liner shipping
companies change with varying bunker prices. It will be a more active choice to maintain a greener
profile in periods with low oil prices as attaining “an acceptable environmental performance in the
transportation supply chain, while at the same time respecting traditional economic performance
criteria” (Psaraftis [22]) is only a win-win solution when oil prices are high.

5. Conclusion

We have presented the competitive liner shipping network design problem where we include
level of service requirements in the form of tight transit time restrictions on all demands while
maintaining the ability to transship between services. To improve the networks, getting more
realistic transit times and a better fleet utilization, we propose a method that can handle variable
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Figure 6: The weighted average speed (W.Av.S.), of an instance, the cargo transported in percentage of total
available (Trnsp.), and the fleet capacity deployed in percentage of total volume, (Depl.) as a function of bunker
price. The red dashed trend lines are based on a linear regression fit. The results are an average of five runs.

speed on all sailing legs in the network.
The proposed matheuristic can handle tight transit time restrictions on all demands and adjust

speed on all sailing legs. The core components of the matheuristic is an integer program considering
a set of removals and insertions to a service and an integer program that adjust the speed of
each service iteratively. We extend the integer program to consider how removals and insertions
influence the transit time of the existing cargo flow on the service. Each iteration of the matheuristic
provides a set of moves for the current set of services and fleet deployment along with a proposed
sailing speed on each service leg, which lead to a potential improvement in the overall profit. The
evaluation of the cargo flow for a set of moves requires solving a time constrained multi-commodity
flow problem using column generation.

Extensive computational tests, including a sensitivity analysis on bunker price, show that the
algorithm is applicable in practice and that it is possible to generate profitable networks for the
majority of the instances in LINER-LIB while considering level of service requirements. Especially
for the larger instances the approach generates networks of good quality where the fleet is well
utilized and the majority of demands are transported while satisfying transit time restrictions.
Still, some smaller demands are not served and the fleet is not utilized completely, suggesting that
further algorithmic improvements may lead to even better solutions. We expect that especially
more flexibility in terms of possible vessel class swaps could improve the algorithmic performance
and the quality of the generated networks.
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Appendix A. Mathematical model

In the following we introduce a mathematical formulation of the CLSNDP. This is partly
based on Brouer et al. [5], Karsten et al. [14] and extends the problem description of the LSNDP
presented in Brouer et al. [4] to handle transit times and variable speed. The model enforces a
weekly frequency resulting in a weekly planning horizon.

The mathematical model of the CLSNPD relies on a set of service variables and a path flow
formulation of the underlying time constrained multi-commodity flow problem as described in
Karsten et al. [15].

We define a directed graph, G(V,A), with vertices V corresponding to ports and arcs A. The
set of arcs in the graph can be divided into (un)load arcs, transshipment arcs, sailing arcs, and
forfeited arcs to reject demand. We associate with each arc (i, j) ∈ A a cost cij , traversal time tij ,
and capacity Cij . The arcs used by service s is denoted As.

Let Ωk be the set of all feasible paths for commodity k ∈ K including forfeiting the cargo. Let
Ω(i, j) be the set of all paths using arc (i, j) ∈ A. The cost of a path ρ is denoted as cρ and it
includes the revenue obtained by transporting one unit of commodity k sent along path ρ ∈ Ωk.
The real variable xρ denotes the amount of commodity k sent along the path and the demand of
commodity k ∈ K is qk. The weekly cost of a service is

cs = De(s)Ce(s) +
∑

(i,j)∈As

(
β · (he(s)Bj + ge(s)(tij , dij)) + c

e(s)
j + l

e(s)
ij

)

accounting for fixed cost of deploying the vessels and the variable cost in terms of the bunker
and port call cost of one round trip. Define binary service variables ys indicating the inclusion of
service s ∈ S in the solution.

Then the mathematical model of the CLSNDP can be formulated as follows.

min
∑

s∈S
csys +

∑

k∈K

∑

ρ∈Ωk

cρxρ (A.1)

s.t.
∑

ρ∈Ωk

xρ = qk k ∈ K (A.2)

∑

ρ∈Ω(i,j)

xρ ≤ Ue(s)ys s ∈ S, (i, j) ∈ As (A.3)

∑

s∈S:e(s)=e

De(s)ys ≤ Ψe e ∈ E (A.4)

xρ ∈ R+ ρ ∈ Ωk, k ∈ K (A.5)

ys ∈ {0, 1} s ∈ S (A.6)

The objective (A.1) minimizes cumulative service and cargo transportation cost. As the cargo
transportation cost includes the revenue of transporting the cargo, this is equivalent to maximizing
profit. The cargo flow constraints (A.2) along with non-negativity constraints (A.5) ensure that
all cargo is either transported or forfeited. The capacity constraints (A.3) link the cargo paths
with the service capacity installed in the transportation network. The fleet availability constraints
(A.4) ensure that the selected services can be operated by the available fleet. Finally, constraints
(A.5) and (A.6) define the variable domains.
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