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Abstract: With increased penetration of distributed energy resources and electric vehicles (EVs),

different EV management strategies can be used for mitigating adverse effects and supporting the

distribution grid. This paper proposes a robust multi-objective methodology for determining the

optimal day-ahead EV charging schedule while complying with unbalanced distribution grid con-

straints. The proposed methodology considers partially competing objectives of an EV aggregator

and the respective distribution system operator, and applies a fuzzy-based mechanism for obtain-

ing the best compromise solution. The robust formulation effectively considers the errors in the

electricity price forecast and its influence on the EV schedule. Moreover, the impact of EV reac-

tive power support on objective values and technical parameters is analysed both when EVs are

the only flexible resources and when linked with other demand response programs. The method is

tested on a real Danish unbalanced distribution grid with 35% EV penetration to demonstrate the

effectiveness of the proposed approach. It is shown that the proposed formulation guarantees an

optimal EV cost as long as the price uncertainties are lower than the aggregator’s conservativeness

degree, and that EV reactive power improves local conditions without significantly affecting the

EV cost.
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Nomenclature

Sets and Indices

φ Set of phases {a,b,c}.

i, j Index for bus i,j.

l Set of distribution lines.

t Set of time intervals.

Parameters

(P/Q)φD0,i Nominal active/reactive power of demand connected to bus i on phase φ.

∆
−/+
t Negative/positive electricity price deviation at time t.

ηφ,EVch,i Charging efficiency of an EV connected to bus i on phase φ.

Γ Conservativeness degree of the decision maker with respect to price uncertainty.

λ
f/a
t Forecasted/actual electricity price at time t.

λ
min/max
t Minimum/maximum electricity price bound at time t.

| V φ
i,t,min/max | Minimum/maximum acceptable voltage magnitude of phase φ at bus i at time t.

| Y φ1φ2−n
ij | Admittance magnitude between phase φ1 at bus i and phase φ2 at bus j of branch ij.

λt Uncertain electricity price at time t.

θφ1φ2ij Admittance angle between phase φ1 at bus i and phase φ2 at bus j of branch ij.

ϕφDi,t Power factor of demand connected to bus i on phase φ at time t.

ξi Demand flexibility parameter for bus i.

kφEVi Converter parameter for reactive power control of an EV connected to bus i on phase φ.

P φ
i,max Maximum active power of an EV connected to bus i on phase φ.
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Qφ
i,min/max Minimum/maximum reactive power of an EV connected to bus i on phase φ.

Sφij,max Maximum apparent power on phase φ of branch ij.

SOCφEV
0/max,i,t Initial/maximum state of charge of an EV connected to bus i on phase φ at time t.

tφEVstart/end,i Arrival/departure time of an EV connected to bus i on phase φ at time t.

Variables

(P/Q)φDnewi,t Active/reactive power of demand connected to bus i on phase φ at time t.

(P/Q)φEVi,t Active/reactive power of an EV connected to bus i on phase φ at time t.

(P/Q)φGi,t Active/reactive power of a generating unit connected to bus i on phase φ at time t.

β, ωt,Θ Auxiliary variables.

δφi Voltage angle of phase φ at bus i.

| V φ
i,t | Voltage magnitude of phase φ at bus i at time t.

P φEV
0,i,t Active power of an EV connected to bus i on phase φ at time t at nominal voltage conditions.

SOCφEV
i,t State of charge of an EV connected to bus i on phase φ at time t.

1. Introduction1

Fundamental changes occurring in the electric power system promoted by the global sustainability2

efforts are reshaping the electrical grid operation. With increased penetration of distributed energy3

resources, there is an additional need for control strategies which allow them to provide various4

flexibility services and avoid over-investments for maintaining the grid security [1]. Additionally,5

since the market share of electric vehicles (EVs) is expected to grow significantly in the following6

years, even greater system complexity is imposed [2]. Uncontrolled EV charging may result in7

voltage violations and cable overloading followed by the need for grid reinforcement, but also in8

increased operational cost due to increased energy losses. As an economic alternative, different9

EV charging strategies can be used for mitigating the adverse effects and supporting the grid.10
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An extensive amount of research has been made on coordinated EV charging proving that such11

concept can be used for lowering the undesired impacts on the power system and providing ancil-12

lary services [3–5]. A new business entity, namely EV aggregator, has been widely proposed to13

coordinate large EV amounts and offer their services to system operators via centralised control14

which is proven to reduce losses, improve voltage stability and decrease peak loading compared15

to the uncontrolled case. Various studies use optimal power flow formulation for EV scheduling16

in order to minimise the charging cost or maximise the EV aggregator revenue [6, 7], but they17

usually deal with large EV numbers at the transmission level and completely omit distribution grid18

constraints. In a smart grid context, obtaining an optimal EV charging schedule requires an ade-19

quate grid representation since results must be feasible in the respective grid with corresponding20

constraints [8–10]. In addition to EV active power scheduling, EV reactive power can also be used21

to support the distribution grid. Compared to traditional voltage regulation means in distribution22

grids such as capacitor banks and on-load tap changers [11], EV reactive power capability can23

provide dynamic, continuous and distributed support as well as inductive reactive power support if24

and where needed. For instance, autonomous reactive power support based on droop control has25

been investigated in [12,13], but the approaches do not provide any optimal scheduling. Moreover,26

even though they are cost-effective, active and reactive power droop controllers may cause unde-27

sirable avalanche effects of simultaneous reactions [14]. So, more advanced methods with direct28

communication to service providers are needed to unleash the full demand response potential, in-29

cluding EVs [15]. Ref. [16] presents a PQ optimisation method for EV (dis)charging, but focuses30

only on the total charging cost, whereas distribution grid constraints have been completely disre-31

garded. These constraints have been taken into account in [17, 18], but only for balanced systems.32

Similarly, [19, 20] deal with robust EV scheduling, but they either disregard the distribution grid33

constraints or only consider balanced conditions.34

As pointed out in [3], combining several objective functions in EV scheduling has scarcely35

been touched upon, even though combining both DSO’s and EV aggregator’s concern is of ut-36

ter importance. In [21], the proposed multi-objective framework combines minimisation of EV37

charging cost and minimisation of reactive power insufficiency, but specific power system results38
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are not presented, and it remains unclear if the framework is applicable to unbalanced systems.39

Ref. [22] proposes a multi-objective formulation at the distribution level for minimising operation40

cost and voltage deviations, but it is applicable only to balanced grids. Since distribution systems41

are usually unbalanced and EVs are single-phase connected, the individual EV charging schedules42

do not have to coincide for all vehicles, especially in heavily unbalanced networks. Hence, using43

unbalanced optimal power flow is essential in order to accurately represent the distribution system44

and the unbalance effect on the operation schedules. In [23], unbalanced constraints are taken into45

account, but the impact of electricity price uncertainty is disregarded.46

Even though EV smart charging problem is well studied and numerous approaches are proposed47

for achieving this behaviour, many existing methods suffer from one or more of the following draw-48

backs: (1) lack of distribution grid constraints, (2) optimal power flow formulation for balanced49

grids, (3) no EV reactive power flexibility, (4) no multi-objective formulation for collaborative EV50

scheduling between the DSO and the EV aggregator, and (5) disregarding the uncertainties asso-51

ciated to the electricity price. To the authors’ knowledge, the existing research has not looked into52

combining all of the mentioned aspects together. The contributions of this paper are as follows:53

• To propose a novel model for obtaining a combined EV active and reactive power day-ahead54

schedule considering unbalanced distribution grid constraints. Using the unbalanced optimal55

power flow allows to schedule the individual EVs with respect to the constraints of the phase56

they are connected to.57

• To propose a novel model with a multi-objective formulation which combines two partially58

competing objectives: minimisation of the DSO’s losses which represent the local grid effi-59

ciency, and minimisation of EV aggregator’s charging cost which represent the system-wide60

aspect as the EV aggregator participates in the wholesale electricity market. The methodol-61

ogy provides not only one solution, but a set of solutions from which an optimal schedule can62

be chosen with a proper balance between the DSO’s and EV aggregator’s concerns.63

• To consider the uncertainty in electricity price which influences EV charging costs. By using64

the robust optimisation technique, it is guaranteed that EV schedules remain acceptable if the65
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actual electricity price deviates from the forecasted value to a certain conservativeness degree66

defined by the EV aggregator.67

• To analyse the impact of EV reactive power support both on technical parameters and on EV68

charging cost in case when EVs are the only flexible resource and when interconnected with69

other demand response.70

2. Problem formulation and modelling71

2.1. Assumptions72

The assumptions of this paper are described as follows:73

• All EVs are under the jurisdiction of a single EV aggregator who entered into a contract74

with individual EV owners, knows their connection points and uses estimation techniques for75

predicting EV arrival and departure times to manage the scheduling. EVs are equipped with76

smart metering technology and can be remotely controlled by receiving the active/reactive77

power charging set point. It is also assumed that EV users are not interested in how and when78

the vehicles are charged as long as they are fully available by the estimated departure time79

which remains true as long as the aggregator remunerates all users in the same manner. The80

specific way the aggregator chooses to remunerate the users is beyond the scope of this paper.81

• Grid operator has access to the following information: network size, network topology, line82

specifications and transformer specifications. Smart metering technology with load control83

capability is assumed to be present in each household and can be used for rescheduling part84

of the consumption through demand response program [1, 24].85

• DSO and EV aggregator utilise techniques for forecasting the day-ahead electricity price with86

the respective uncertainty bounds, as well as the consumption which can be forecasted with87

reasonable accuracy. Therefore, the error associated with the load forecast and user behaviour88

has been disregarded.89

• Similarly to available PV inverters, the 4-quadrant EV converter can be enabled to exchange90
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reactive power with the grid without affecting the state-of-charge and consequently user com-91

fort. It is assumed that EV converters are sized to provide reactive power additionally to the92

active power charging rate with no need for curtailing the active power [12, 13]. Similar PV93

inverters are already commercially available due to grid codes in several European countries.94

2.2. Constraints95

In this work, a three-phase grounded four-wire system optimal power flow is formulated based96

on [25] and implemented as a single non-linear program which can be solved by commercial97

non-linear solvers such as CONOPT or IPOPT. Within this formulation, the calculated active and98

reactive power for phase a of branch ij at time t are given as follows:99

P a
ij,t =

∑
φ=a,b,c

(
|V a
i,t||Y

aφ−n
ij ||V φ

i,t| cos(θaφij + δφi,t − δai,t)− |V a
i,t||Y

aφ−n
ij ||V φ

j,t| cos(θaφij + δφj,t − δai,t)
)
(1)

Qa
ij,t =

∑
φ=a,b,c

(
|V a
i,t||Y

aφ−n
ij ||V φ

j,t| sin(θaφij + δφj,t − δai,t)− |V a
i,t||Y

aφ−n
ij ||V φ

i,t| sin(θaφij + δφi,t − δai,t)
)
(2)

Similar equations can be extracted for active and reactive power of the remaining two phases b and100

c. The power mismatch equations for each bus are given as follows:101

Nj∑
j=1
j 6=i

P φ
ij,t =

NG∑
G=1

P φG
i,t −

ND∑
D=1

P φDnew
i,t −

NEV∑
EV=1

P φEV
i,t (3)

Nj∑
j=1
j 6=i

Qφ
ij,t =

NG∑
G=1

QφG
i,t −

ND∑
D=1

QφDnew
i,t −

NEV∑
EV=1

QφEV
i,t (4)

The voltage dependency of residential demand is given by equation (5) where P φD
0,i and QφD

0,i rep-102

resent the load’s nominal active and reactive power, respectively, whereas κ equals to zero for103

constant power loads, one for constant current loads or two for constant impedance loads. Further-104

more, residential consumption is assumed to be somewhat flexible, so the load may vary within the105
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observed period as described by equation (6) and equation (7). The load’s reactive power is then106

given by equation (8).107

P φD
i,t = P φD

0,i · |V
φ
i,t|κ (5)∑

t

P φDnew
i,t · |V φ

i,t|κ =
∑
t

P φD
0,i · |V

φ
i,t|κ (6)

(1− ξi)P φD
0,i ≤ P φDnew

i,t ≤ (1 + ξi)P
φD
0,i (7)

QφDnew
i,t = tan(arccos(ϕφDi,t )) · P φDnew

i,t · |V φ
i,t|κ (8)

The distribution grid voltage and power flow constraints are formulated as follows:108

V φ
i,t,min ≤ |V

φ
i,t| ≤ V φ

i,t,max (9)

(P φ
ij,t)

2 + (Qφ
ij,t)

2 ≤ (Sφij,max)
2 (10)

where Sφij,max is the maximum apparent power capacity of branch ij. In addition, the MV side of109

the transformer is assumed to be the slack bus with fixed voltage magnitudes and angles.110

EV characteristics are expressed using the following constraints:111

SOCφEV
i,t = SOCφEV

i,t−1 + P φEV
i,t ·∆t · ηφEVch,i (11)

SOCφEV
0,i ≤ SOCφEV

i,t ≤ SOCφ,EV
i,max (12)

SOCφEV
i,t|t=tend

= SOCφ,EV
i,max (13)

P φEV
i,t = P φEV

0,i,t · |V
φ
i,t| (14)

0 ≤ P φEV
0,i,t ≤ P φ,EV

i,max (15)

− kφEVi,t · P φEV
i,t ≤ QφEV

i,t ≤ kφEVi,t · P φEV
i,t (16)

Qφ,EV
i,min ≤ QφEV

i,t ≤ Qφ,EV
i,max (17)

Equation (11) describes EV state of charge (SOC) dependent on the SOC in the previous time112

step, EV charging power and EV charging efficiency, whereas the battery size constraint is given113

8



by equation (12). Equation (13) imposes the restriction where EVs must be fully charged before114

the estimated departure time to ensure they are fully available for primary transportation purposes.115

As represented in equation (14), EVs are modelled as a constant current load with κ = 1 [26, 27]116

where P φEV
0,i,t represents the EV active power value at nominal voltage conditions. In addition to117

EV active power constraints described in equation (15), it is assumed that EVs have the possi-118

bility to dynamically modulate the power factor under constraints described in equation (16) and119

equation (17). kφEVi,t is fixed for each EV converter, e.g., kφEVi,t = 1/3 for a converter capable of120

modulating the power factor up to 0.95 (ind./cap.).121

2.3. Nominal optimisation problem122

The proposed methodology obtains an optimal EV active and reactive schedule considering two123

partially competing objective functions which combine both the DSO’s and the EV aggregator’s124

concerns in one multi-objective model. The first objective is minimising the operating cost in terms125

of energy losses [28] which represents one of the main DSO concerns. The minimisation of energy126

losses f1 can be formulated as:127

min f1 =
∑
t

Nl∑
l=1

∑
φ=a,b,c

P φloss
l,t =

∑
t

Ni∑
i

Nj∑
j

∑
φ=a,b,c

(P φ
ij,t + P φ

ji,t) (18)

where P φloss
l,t are the total losses on phase φ of line l.128

The second objective function is minimising the total EV charging cost since it is assumed that129

the aggregator enters into a contract with individual EV owners. Then, this function represents the130

aggregator’s main concern as by minimising the total charging cost, it maximises the revenue. The131

minimisation of EV charging cost f2 can be formulated as:132

min f2 =
∑
t

NEV∑
EV=1

∑
φ=a,b,c

P φEV
i,t λt (19)

Assuming that F (DV,Π) is the vector of objective functions where DV represents decision vari-133

ables and Π represents input parameters, whereas H(DV,Π) and G(DV,Π) represent equality134

9



and inequality constraints, respectively, the proposed multi-objective minimisation problem can135

generally be formulated as follows:136

minimise
DV

F (DV,Π) = [f1(DV,Π), f2(DV,Π)]

subject to: {G(DV,Π) = 0, H(DV,Π) ≤ 0}
(20)

For solving the multi-objective problem and obtaining the Pareto optimal front, ε-constraint method137

is used due to several advantages [29], e.g., it can be used for both convex and non-convex Pareto138

optimal sets, it does not require scaling of the objective functions which can influence the results,139

and it needs less iterations for the front discovery compared to the weighted-sum method where140

several weight combinations can result in the same solution. The ε-constraint method involves min-141

imising the primary objective function while expressing the other objective in a form of inequality142

constraint. Equation (20) can then be reformulated as follows:143

minimise
DV

f2(DV,Π)

subject to: {G(DV,Π) = 0, H(DV,Π) ≤ 0}

f1(DV,Π) ≤ ε

(21)

where ε varies from the maximum to the minimum value of f1.144

After obtaining all Pareto points and in case the front is non-convex, it is necessary to compare145

individual solutions and exclude the dominated ones (local Pareto points) from the frontier.146

2.4. Uncertainty modelling147

There are several techniques for modelling the price uncertainty including stochastic scenario mod-148

elling, fuzzy modelling , Info-gap decision theory and robust optimisation [30]. In this work, ro-149

bust optimisation is used to handle the uncertainties which are defined as an interval around the150

forecasted value. The idea of robust optimisation is to minimise the objective function without151

knowing the exact electricity price value, but only its minimum and maximum bounds. Such in-152

tervals are usually obtained using time-series models (ARIMA), neural networks and historic data153
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[31]. Hence, the uncertain electricity price is formulated as follows:154

λt ∈ U(λt) =
{
λt : λmint ≤ λt ≤ λmaxt

}
(22)

where λmint and λmaxt are the lower and upper bounds of λt, respectively.155

Optimal decision making is done so that the obtained solution remains good if the actual electricity156

price λat deviates from the forecasted value λft to some degree Γ. Ref. [32] proves that the robust157

solution will be feasible with high probability even when more than Γ forecasting errors occur.158

In case the actual electricity price is higher than the forecasted value, constraints for uncertainty159

modelling can be expressed as equation (23). Similarly, in case the electricity price is lower than160

the forecasted value, constraints in equation (24) apply. As the decision maker seeks the robust-161

ness against undesired events, equation (24) is not considered as an issues, so the main concern162

remains the case when the electricity price is higher than the forecasted values, as formulated in163

equation (23).164

λat = λft + ∆+
t ωt

∆+
t = λmaxt − λft

0 ≤ ωt ≤ 1

(23)

165

λat = λft + ∆−t ωt

∆−t = λmint − λft

0 ≤ ωt ≤ 1

(24)
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2.5. Robust optimisation formulation166

Taking price uncertainty into consideration, the objective function formulated in (19) becomes:167

minimise
DV

f2(DV,Π, λt) =
∑
t

NEV∑
EV=1

∑
φ=a,b,c

(
P φEV
i,t λft + P φEV

i,t ∆+
t ωt

)
(25a)

0 ≤ ω ≤ 1 (25b)∑
t

ωt ≤ Γ (25c)

subject to: (1) to (17) (25d)

f1(DV,Π) ≤ ε (25e)

Here, Γ is a parameter specified by the decision maker which is introduced to prevent too conser-168

vative solutions [32]. More precisely, it denotes the maximum total deviation that can be tolerated.169

Γ can vary from 0 (meaning no uncertainty may happen) to 24 (all uncertain parameters may take170

their worst value). The higher the Γ, the more conservative the decision maker is. One should note171

how for Γ = 0, the robust problem converts into the nominal one. In order to find the worst case172

condition of price uncertainty that would cause the maximum increase in EV cost, it is necessary173

to formulate the robust counter part of equation (25) as follows [33]:174

minimise
DV

f2(DV,Π, λt) =
∑
t

NEV∑
EV=1

∑
φ=a,b,c

(
P φEV
i,t λft + max

ωt

{
P φEV
i,t ∆+

t ωt

s.t: (25b), (25c)

})
(26a)

subject to: (1) to (17) (26b)

f1(DV,Π) ≤ ε (26c)

12



This formulation requires to solve a bi-level optimisation problem which can, according to the175

duality gap theory [33], be transformed into:176

minimise
DV

f2(DV,Π, λt) =
∑
t

NEV∑
EV=1

∑
φ=a,b,c

P φEV
i,t λft +

∑
t

βt + ΓΘ (27a)

Θ + βt ≥ (λmaxt − λft ) ·
NEV∑
EV=1

∑
φ=a,b,c

P φEV
i,t (27b)

Θ, βt ≥ 0 (27c)

subject to: (1) to (17) (27d)

f1(DV,Π) ≤ ε (27e)

We remark that the obtained single level optimisation in equation (27) can also be applied to other177

scenarios with different sources of uncertainty. For instance, price deviations can be formulated to178

represent the error associated to load uncertainty or EV availability [34].179

2.6. Best compromise solution180

Once the Pareto optimal front is determined, a range of solutions is available between which the181

final operating schedule should be chosen. Here, a fuzzy satisfying set theory is used to choose182

the best candidate solution. The concept can be described as follows: for each solution Xn in the183

Pareto optimal front with Ns solutions, a membership function µk(Xn) is defined to show the level184

of which Xn belongs to the set that minimises the objective function fk. A linear membership185

function is used for both objective functions as follows:186

∀k ∈ {1, 2} µk(Xn) =


0, fk(Xn) > fkmax

fkmax−fk(Xn)
fkmax−fkmin

, fkmin ≤ fk(Xn) ≤ fkmax

1, fk(Xn) < fkmin

(28)

where fkmin is the minimum, and fkmax is the maximum value of objective fk.187

The best compromise solution is then determined by the decision maker. A conservative deci-188
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sion maker tries to minimise the maximum dissatisfaction for all objectives [35], i.e., to maximise189

the satisfaction of both the DSO and the EV aggregator. Hence, the final best compromise solution190

can be found as:191

max
NS

( 2

min
k=1

(µk(Xn)
)

(29)

By using this criteria, it could be interesting for the decision maker to arrange the Pareto solutions192

in a descending order, and obtain a priority list of possible schedules. In case the DSO is not193

interested in the best possible solution, but only requires EV schedules for which the losses are194

below a certain threshold, the robust multi-objective problem (27) is solved for a fixed value of ε.195

3. Test Case196

3.1. Distribution grid197

The proposed methodology is tested on a real semi-urban low-voltage distribution grid located in198

Zealand, Denmark, which is modelled based on the information and measurement data provided199

by a Danish DSO [13]. The described optimisation model is applied to a feeder which is radially200

run and connected to the 10 kV MV network through a typical 400 kVA distribution transformer201

with the assumption that the voltages of the MV slack bus are kept at 1 p.u., so ±10% Un is202

completely available for LV regulation (V φ
i,t,min = 0.9 Un, V

φ
i,t,max = 1.1 Un). As seen in Fig. 1, the203

observed feeder has 43 residential houses which are three-phase connected with the nominal phase-204

to-neutral voltage Un = 230 V. The feeder is composed of 13 line segments between 25 m and 112205

m in length, all of the same cable type with X/R = 0.37. This corresponds to typical LV grid206

parameters, e.g., similar to the ones of the CIGRE European LV benchmark network [36]. There207

are three additional feeders under the same transformer station which have been modelled as an208

aggregated load due to the lack of data for individual households. All houses in the observed feeder209

are equipped with smart meters, so individual consumption profiles are based on real metering data210

with an hourly sampling rate. Consumption values are based on three-phase measurements with211

no insight into individual phase fractions, so, based on the DSO’s experience, it is assumed that212

the phase unbalance is distributed in 40%:30%:30% ratio. Additionally, the measured data does213
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not contain the reactive power component, so a fixed power factor of cosϕ = 0.95 (ind.) has214

been considered for all households based on the DSO’s recommendation. The residential demand215

response flexibility parameter ξi is assumed to be 10% for all nodes.

301
601A

602 603 604

605A

606 607 608

609 610 611 612 613

district heating and PVdistrict heating heat pump and PV

10.5/0.42 kV
400 kVA

A

B

Fig. 1: Schematic overview of the network topology.
216

A characteristic 24-h period has been chosen based on the available historic data to represent the217

extreme case: a winter day with high residential consumption and almost no PV production. One218

should note that the chosen period is from 15/01/2013 12:00 until 16/01/2013 11:00 in order to219

include the night time when EVs are generally available. However, other time windows can be220

chosen as well. The forecasted electricity price and respective uncertainty range are shown in221

Fig. 2. These values can be found using time series models such as ARIMA [31] based on historic222

data.
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3.2. Electric vehicle224

It is assumed that Mode 2 charging infrastructure [37] is used for EV charging with a single-phase225

16 A connection plug, i.e., 3.7 kW under nominal voltage conditions. For the sake of simplicity, all226

EVs are assumed to be a Nissan Leaf with a 24 kWh battery and a constant EV charging efficiency227

of 80% [38]. Nevertheless, this assumption does not influence the model’s generality as various228

vehicle types can easily be included. 15 EVs in total are randomly distributed across the observed229

feeder resulting in an overall 35% penetration rate. There are 2 vehicles on phase a and 4 on phase230

b in area A, whereas the distribution in area B is 2 EVs on phase a, 3 on phase b, and 4 on phase231

c. The probability of an EV being plugged-in is taken from the data derived in [39], whereas the232

initial SOC is taken from the Test-en-EV program where 184 vehicles were distributed to 1600233

different Danish families over a three year period [40]. Each vehicle is assigned a random initial234

SOC, plug-in time and plug-out time as follows:235

tφEVstart,i ∼ GEV (17.3, 0.85,−0.06) (30)

tφEVend,i ∼ Weibull(7.67, 21.83) (31)

SOCφEV
0,i ∼ N (49%, (4%)2) (32)

Then, tφEVstart,i and tφEVend,i are rounded to the closest integer value as the simulation time step is chosen236

to be 1-h due to the available consumption data. One should note how the initial SOC, the arrival237

and the departure time are input parameters which are estimated by the EV aggregator. Here,238

the generalised extreme value distribution is used for the EV arrival time, whereas the Weibull239

distribution is utilised for the departure time. However, the model generality is not influenced by240

this choice as other probability distributions can be included as well.241

Morevoer, EV reactive power limits are assumed to be ±1.23 kVAr which corresponds to242

cosφ = 0.95 (ind./cap.) [12]. For comparison, commercially available PV inverters from SMA243

Solar Technology have the possibility to modulate the reactive power up to cosφ = 0.8 (ind./cap.).244

It is also assumed that EVs can provide reactive power support only if they are charging, so they245

cannot act as constant capacitor banks whenever plugged-in. To avoid optimization infeasibility246
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due to EVs with short connection time and low initial SOC, a pre-screening is conducted. More247

precisely, if the estimated connection time is lower than the time necessary for dumb charging, it248

is assumed there is no active power flexibility from the vehicle. Hence, the charging rate is set249

to the nominal value and the corresponding active power variable is excluded from the decision250

variables. Yet, EV reactive power remains a decision variable if available.251

3.3. Scenario overview252

Five scenarios are defined in order to analyse EV potential for charging cost minimisation and253

concurrent grid support.254

1. Scenario I: This case is conducted to provide a basis for comparison between various scenar-255

ios. It is assumed that there is no flexibility in the grid (ξi = 0, (P/Q)φDnewi,t = (P/Q)φD0,t ),256

no optimisation is performed and EVs charge as soon as they are plugged-in until the bat-257

tery is completely full (P φEV
0,i,t = P φ,EV

i,max , Q
φEV
i,t = 0). The constraint to be satisfied are258

(1) to (17), whereas the decision variables are limited to load flow variables, i.e., DVI =259

{V φ
i , δ

φ
i , (P/Q)φGi,t }. Since there is no independent decision variable, the objective function260

can be chosen as (21) or (27).261

2. Scenario II: The nominal optimisation problem (21) is considered without any price uncer-262

tainty and using the optimal scheduling as follows:263

• IIa: Multi-objective optimisation is performed by optimising only EV active power under264

constraints (1) to (5) and (9) to (15). This implies that DVIIa = DVI ∪ {P φEV
i,t }.265

• IIb: Multi-objective optimisation is performed by optimising both EV active and reactive266

power under constraints (1) to (5) and (9) to (17). This implies that DVIIb = DVIIa ∪267

{QφEV
i,t }.268

• IIc: Multi-objective optimisation is performed by optimising both EV active and reactive269

power combined with other demand response resources under constraints (1) to (17).270

This implies that DVIIc = DVIIb ∪ {P φDnew
i,t }.271

3. Scenario III: The multi-objective optimisation problem (27) is considered with price uncer-272
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tainty and using the optimal scheduling as follows:273

• IIIa: The decision variables are the same as in case IIb, i.e., DVIIIa = DVIIb under274

constraints (1) to (5) and (9) to (17).275

• IIIb: The decision variables are the same as in case IIc, i.e., DVIIIb = DVIIc under276

constraints (1) to (17).277

The simulations are done using GAMS software with the commercial CONOPT solver (which is278

well suited for models with very nonlinear constraints) on a notebook with a 2.6-GHz Intel(R)279

Core(TM) i7-5600U CPU and 8 GB of RAM, taking in average 6-20 seconds for solving one280

optimisation problem depending on the conducted scenario. In large scale networks, it would be281

beneficial to use Benders decomposition techniques [41] or task parallelism. The stop criteria for282

the optimisation is given as the CONOPT’s default tolerance value of 10−7. It is worth noting that283

the formulated problem is highly non-convex and for such the solver converges to a local optimum284

which is not necessarily the global one. For Scenarios IIIa and IIIb, the value of Γ represents the285

conservativeness degree which is set by the decision maker. Simulations have been done for all286

values of Γ = 0→ 24.287

4. Simulation Results288

1. Scenario I: In case of uncontrolled charging, total EV cost equals to 13.58 e (Γ = 0) and289

total daily active losses are 160.66 kWh. The values of possible EV cost for different degrees290

of uncertainty are given in Table 1. It can be noted how the possible cost would increase291

from 13.58 e to 20.96 e. The total losses remain the same for all Γ as EV schedules are not292

controlled.293

2. Scenario II: Pareto fronts obtained for the nominal optimisation problem of Scenarios IIa-294

IIc are given in Fig. 3 with the best compromise solutions emphasised with filled red shape.295

Foremost, it is obvious that introducing EV reactive power flexibility has beneficial impact296

on the grid as the Pareto optimal front moves towards the utopia point, which is even more297

improved in scenario IIc where demand response is added. It is interesting to notice how the298
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Table 1: Total EV cost (e) versus conservativeness degree (Γ) for the base scenario I and robust
scenarios IIIa and IIIb.

Γ Scenario I Scenario III (best compromise) Scenario III (f1 = εmax)
IIIa IIIb IIIb

0 13.58 8.97 9.07 8.83
2 14.19 9.35 9.25 9.18
4 14.81 9.55 9.47 9.46
6 15.42 9.75 9.68 9.67
8 16.03 9.81 9.84 9.70

10 16.65 9.86 9.84 9.70
12 17.26 9.87 9.92 9.70
14 17.88 9.87 9.92 9.70
16 18.49 9.87 9.92 9.70
18 19.11 9.87 9.92 9.70
20 19.72 9.87 9.92 9.70
22 20.34 9.87 9.92 9.70
24 20.96 9.87 9.92 9.70
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Fig. 3: Obtained Pareto optimal fronts for the nominal optimisation problem in scenarios IIa to IIc
(Γ = 0).

maximum EV cost value is increased by adding more flexibility to the system. One of the299

reasons is EV reactive power dependency on active power. As EV reactive power influences300

the losses, but it is only available when EVs are charging, the minimum losses are obtained301

if part of the charging is shifted to more expensive hours when there is a greater need for302

reactive power support. The objective functions’ values for the best compromise solutions of303

each scenario and the relative values compared to the uncontrolled charging Scenario I are304

given in Table 2. It can be seen that modulating EV active and reactive power benefits both305

the DSO and the EV aggregator compared to the uncontrolled case. The influence of EV306

reactive power flexibility does not have a significant impact on the EV charging cost, whereas307

it has positive influence on the losses when comparing the best compromise solutions. There-308

fore, if EV reactive power capability would be obligatory and implemented in grid codes309
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Table 2: Objective functions’ values for Scenario I and the best compromise solutions of scenarios
IIa to IIc (Γ = 0).

Scenario EV
flexibility

Demand
response

EV charging
cost (e)

Losses
(kWh)

∆ EV charging
cost (%)

∆ loss
(%)

I - - 13.58 160.66 - -
IIa P - 8.96 149.63 -34.0 -6.9
IIb PQ - 8.97 148.03 -33.9 -7.9
IIc PQ ±10% 9.07 145.32 -33.2 -8.9
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Fig. 4: Active power losses for Scenario I and the best compromise solutions of scenarios IIa to
IIc (Γ = 0).

similarly to the ones for PVs, the DSO would have a greater benefit while the EV aggregator,310

and consequently EV users, would not be substantially affected. Fig. 4 depicts the active311

power losses for Scenarios IIa-IIc compared to Scenario I where it is easily noticeable that312

the highest losses are if EVs remain uncontrolled since EV charging coincides with the peak313

period. For scenarios IIa-IIc, none of the EVs will charge in the peak period as the electricity314

price is too high. As depicted in Fig. 6a for several individual EVs, active power schedules315

depend on the EV connection point. Regardless, all EVs charge during the night resulting316

in a lower peak load and a reduced need for grid reinforcement. Revisiting Fig. 4, it can be317

seen that losses in the off-peak period diverge for different scenarios since EVs provide local318

reactive power support. One should bear in mind that higher EV penetrations would impose a319

higher total consumption, so introducing the local EV reactive power support could be more320

beneficial. Moreover, as shown in Fig. 5, even though minimising voltage deviations is not321

formulated as an objective function, the overall voltages increase with introduction of EV322

reactive power flexibility since their capacitive behaviour locally supports the grid. Interest-323

ingly, even though one would expect only capacitive EV behaviour, inductive behaviour is324
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Fig. 5: Minimum phase a voltage values for Scenario I and the best compromise solutions of
scenarios IIa to IIc (Γ = 0).
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Fig. 6: (a) Active power, and (b) reactive power profiles for selected EVs in scenario IIc.

observed for some vehicles connected in area A as depicted in Fig. 6b. The reason behind are325

high unbalances in area A due to which several EVs behave inductively to bring the voltages326

closer together and consequently reduce overall unbalances which influence the losses.327

Sensitivity analysis has been conducted for several parameters in Scenario IIc as shown in328

Fig. 7. First of all, the impact of EV charging efficiency is analysed by changing the value329

from 80% to 95% in 5% steps. As expected, EV charging efficiency has an impact both on the330

EV charging cost and the DSO losses. The higher is the efficiency, the greater are the benefits331

for both entities. Secondly, the impact of maximum EV charging rate has been analysed for332

three specific rates, i.e. 16 A, 32 A and 63 A, which equal to 3.7 kW, 7.4 kW and 14.5 kW333

under the nominal voltage. It can be observed that the EV charging power has an influence334

only on the maximum losses, whereas the maximum EV cost remains the same since the335

minimum losses are obtained for a more spread-out EV schedules which are not impacted336

by the maximum charging rate. However, the higher is the charging rate, the larger are the337
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losses in the best compromise solution since the DSO will be willing to pay more compared338

to the alternative. Finally, the impact of DR is analysed by changing the demand flexibility339

parameter from 0% to 15% in 5% steps. It is seen that demand response flexibility has a340

positive impact on the losses, but could potentially increase the maximum EV aggregator’s341

cost. Nevertheless, for a fixed EV cost, losses are reduced as more demand flexibility is342

introduced.
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Fig. 7: Impact of (a) maximum EV charging rate, (b) EV charging efficiency, and (c) demand
flexibility on Pareto optimal front in Scenario IIc (PQ+DR, Γ = 0).

343

3. Scenario III: In Scenario III, the algorithm tries to find a robust solution which minimises344

the total EV cost for different conservativeness degree Γ. The numerical values of possible345

EV costs for the best-compromise solution under different degrees of uncertainty are given in346

Table 1, whereas Fig. 8 depicts the impact of uncertainty level Γ on the Pareto front.347

From Table 1, it is clear that the total EV cost is reduced when optimal scheduling is intro-348

duced compared to the base Scenario I, but as the uncertainty degree increases, possible EV349

cost increases as well. The more conservative the decision maker is, the further away will350

the robust solution be from the nominal case. Regardless, even in the worst case scenario351

with the most conservative degree (Γ = 24), the total cost is less than half compared to the352

base Scenario I. Above a certain degree Γ, the robust solution stays the same since EVs are353

scheduled only for several hours in the day, so uncertain prices in the remaining hours will354

not influence the final EV schedule and cost. One should also note how with the increase355

of the conservativeness degree, the value of EV flexibility, i.e., the difference between the356

robust case and the base case, also increases. Comparing Scenarios IIIa and IIIb, it is clear357
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that minimum losses are lower in Scenario IIIb due to the additional demand response flexi-358

bility. Hence, similar to the nominal case, maximum EV cost increases and best-compromise359

solutions are somewhat higher than in Scenario IIIa, which can also be seen from values in360

Table 1.361

The importance of utilising EV reactive power capability can also be appreciated from Fig. 9362

which depicts the cumulative EV reactive power profile in dependence of losses for three363

values of the conservativeness degree Γ. It can be observed that reactive power profiles differ364

since the flexibility is used to satisfy DSO’s requirements with respect to losses differently.365
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In such way, modulating EV active power can potentially be avoided and, consequently, so366

can the increase in EV charging cost for various loss values.367

In order to check the robustness of the proposed algorithm, a Monte Carlo simulation has368

been conducted. First, the robust EV schedule is obtained for Scenario IIIb with a set conser-369

vativeness degree Γ = 12 and f1 = εmax for which the total EV cost equals to 9.70 e (also370

seen from Table 1). Next, 10000 samples of price values λt1→24 are generated so that (25b)371

and (25c) are satisfied. The total EV cost based on the previously obtained decision variables372

is calculated for each price profile. Fig. 10 clearly shows that all obtained EV cost values are373

below the value specified by the robust optimisation model marked with a red line (9.70 e).374

This proves that applying the obtained decision variables ensures the aggregator that the total375

EV cost will not exceed the obtained robust solution as long as the total price uncertainties376

remain less than the conservativeness degree Γ.
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Fig. 10: Results of the Monte Carlo simulation for robustness check in scenario IIIb (Γ = 12,
f1 = εmax).

377

5. Conclusion378

This paper presents a robust multi-objective model for optimal active and reactive EV scheduling379

in unbalanced distribution networks. Two objective functions have been used in resource schedul-380

ing, namely minimisation of losses which represents the DSO’s concern, and minimisation of EV381

charging cost which represents the EV aggregator’s main concern. After obtaining a Pareto front,382

a fuzzy set approach is used to select the best compromise solution, i.e., to minimise the maximum383

dissatisfaction of both parties. In addition, the impact of EV reactive power capability is investi-384
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gated, both on the objective functions’ values and on the grid technical constraints.385

The method was tested on a real Danish distribution network with a 35% EV penetration rate. The386

multi-objective approach was able to obtain the Pareto front with a range of possible solutions,387

whereas the fuzzy set approach gives a good compromise between the both considered objectives.388

The robust problem formulation guarantees that the obtained EV cost is optimal as long as the total389

price uncertainties are lower than the EV aggregator’s conservativeness degree. Due to grid unbal-390

ances, individual EV schedules differ depending on their connection point and available demand391

response as well as the set conservativeness degree. It was observed that EV reactive power sup-392

port can provide benefits for the DSO while not significantly affecting the EV aggregator’s cost.393

By introducing such a capability in grid codes, EVs would be able to provide local grid support394

resulting in overall improved voltages, decreased losses and less need for reactive power from the395

external grid.396

The question remains what would be the cost of implementing EV reactive power control for volt-397

age support since, without the existence of a voltage market or direct remuneration for voltage398

regulation, it is difficult to assess the value of such service. The comparison with traditional DSO399

means, e.g., implementation of capacitor banks, is highly dependent on the analysed grid making400

it difficult to generalize the economic value, which remains an interesting topic for future work.401

Additionally, the authors would like to incorporate other sources of uncertainty in the presented402

model, i.e., demand and PV generation forecast errors and EV user behaviour uncertainty [42], as403

well as to extend it with EV control in discrete current steps according to contemporary standard404

IEC 61851 with harmonic analysis. Moreover, future work includes extending the model with405

application to network planning purposes [43] and to real-time operation [44].406
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