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ABSTRACT  

The human cytomegalovirus-encoded G protein-coupled receptor US28 is a constitutively active 

receptor, which can recognize various chemokines. Despite the recent determination of its 2.9 Å 

crystal structure, potent and US28-specific tool compounds are still scarce. Here, we used structural 

information from a refined US28:VUF2274 complex for virtual screening of > 12 million 

commercially available small molecule compounds. Using a combined receptor- and ligand-based 

approach, we tested 98 of the top 0.1% ranked compounds, revealing novel chemotypes as compared 

to the ~1.45 million known ligands in the ChEMBL database. Two compounds were confirmed as 

agonist and inverse agonist, respectively, in both IP accumulation and Ca2+ mobilization assays. The 

screening setup presented in this work is computationally inexpensive and therefore particularly 

useful in an academic setting as it enables simultaneous testing in binding as well as in different 

functional assays and/or species without actual chemical synthesis. 

 

 

 

 
 
 

 



INTRODUCTION 

G protein-coupled receptors (GPCRs) regulate a vast range of physiological processes and continue 

to be at the center of attention of the pharmaceutical industry (1). In the past decade, multiple X-ray 

crystal structures of distinct GPCRs have been solved in complex with small molecule agonists, 

antagonists, allosteric modulators and a G protein (2,3), including two human chemokine receptors 

in complex with small molecule, peptide and chemokine ligands (4–6). Chemokines (chemotactic 

cytokines) are protein ligands that are involved in immune response, wound healing and host-

pathogen interactions (7). As an example of the latter, human cytomegalovirus (HCMV) encodes 

US28, a viral class A GPCR sharing 38% sequence identity with human fractalkine receptor CX3CR1, 

suggesting that this virus hijacks chemokine signaling pathways as a mechanism to interfere with the 

host immune system (8). US28 is considered to be involved in viral dissemination, tumorigenesis and 

cardiovascular disease, such as transplant vascular sclerosis (9–11). Being a highly promiscuous 

receptor, US28 binds a number of different CC-chemokines (e.g. CCL5 (RANTES)), as well as 

CX3CL1 (fractalkine) that activate ligand and cell-type-specific signaling pathways (9,12,13). This 

behavior has important consequences for rational drug design to target specific US28 functions in the 

context of HCMV pathogenesis. At present, the most important role of US28 in this context seems to 

be chemokine scavenging, a principle that was recently utilized for the development of the first 

immunotoxin which specifically kills HCMV-infected cells via targeting of US28 (14).  

As the first small molecule compound reported to display activity on US28, Casarosa et al. 

identified VUF2274 as an inhibitor of constitutive activation of PLC signaling pathways in US28 

(15). This compound had previously been discovered as an antagonist of the closely related CCR1 

receptor (16). Although VUF2274 was described as an inverse agonist for US28, the high constitutive 

signaling and internalization of US28 might camouflage its actual agonist properties (17). Other small 

molecule compounds known to modulate US28 function or chemokine binding include piperidine-

containing VUF2274 analogues (18), Methiothepin, as well as structurally related dibenzodiazepines 



and dibenzazepines containing piperazine moieties (19, 20), flavonoids, chalcones (21) and 

tetrahydroisoquinoline derivatives (22), as well as a set of biphenyl amides with inverse agonist 

properties but low potency (23,24). Thus, the current set of small molecule compounds cannot fully 

elucidate the relevance of US28 constitutive activity in viral pathogenesis.  

As a complement to high-throughput screens (HTS) and medicinal chemistry optimization of 

known compounds (e.g. VUF2274), we used a combination of ligand and structure-based virtual 

screening to design a US28-focused mini library (98 compounds) that we then experimentally tested 

to identify novel small molecule ligands with different modes of action (agonist and inverse agonist).  

 

RESULTS 

Modeling US28 and virtual screening 

Due to its similarity to the CCR5 inhibitor Maraviroc (PDB 4MBS) and its favorable drug-like size, 

we chose VUF2274 as a seed structure for the virtual ligand screening. Both CCR5 and US28 share 

a conserved glutamic acid at position 7.39VII:06 that serves as an anchor point for the positively 

charged tropane nitrogen bridge in Maraviroc in the case of CCR5 and for multiple other small 

molecules targeting CC-chemokine receptors (44). Residues are numbered using the Ballesteros (25) 

and Schwartz (26) numbering system. Regarding the fact that VUF2274 likewise has a positively 

charged moiety centrally placed in the molecule, we assumed a similar arrangement in US28 in which 

the piperidine nitrogen of VUF2274 forms a salt bridge with the carboxylic acid side chain of 

E7.39VII:06. This has also been proposed in previous VUF2274/US28 docking studies (15). The 

developed US28 receptor model in complex with VUF2274 shows high structural similarity to the 

recently published US28 X-ray crystal structure, which was published after the majority of our 

experiments had been completed (27).  



Our virtual screening workflow (Figure 1) included both receptor-based steps (Figure 1A-C) and a 

ligand-based approach (Figure 1D-F). In the former, we generated a homology model of US28 based 

on the closely related CCR5 receptor in complex with the small molecule HIV entry inhibitor 

Maraviroc (PDB 4MBS) (Figure 1A). The model was subsequently energy minimized and used to 

create a refined US28:VUF2274 complex, guided by the position of Maraviroc in CCR5 (Figure 1B). 

After several cycles of side-chain and receptor-ligand minimization, the optimized binding 

conformation was used in the screening protocol (Figure 1C).  

In the ligand-based approach (Figure 1D-F), the combined repertoire of > 12 million biologically 

relevant screening molecules that were extracted from the ZINC database and stripped for 

counterions, assigned tautomers, protonation states and pre-computed 3D conformations (Figure 1D) 

(28). Initially, the binding conformation of VUF2274 was used as a seed structure for ligand-based 

similarity searches using Pharmacophore Multiplets that have been demonstrated to be effective for 

lead and scaffold-hopping (29,30). 

 
PharmacophoreMultiplets, generated form steric features, hydrophobic centroids, aromatic rings, 

hydrogen acceptors, hydrogen donors, cations and anions features, were decomposed into all possible 

pharmacophore feature triangulations (so-called Triplets) and converted into binary fingerprints, to 

search the pre-computed chemical vendor libraries (Figure 1E). 

The resulting top 5% (639,130 compounds) ranked molecules, were used for Atomic Property Field 

(APF) superposition, and globally optimized in the Atomic Property Field (APF) grid potential of 

VUF2274 in US28, using ICM v.3.8 (Molsoft L.L.C., San Diego, CA, USA) (Figure 1F). The APF 

concept relies on a continuous property distribution where chemical moieties are represented as 

vectors of atomic properties (31). For molecular template superposition, molecules were placed in 

the APF grid potential of VUF2274 in US28 and globally optimized based on APF and internal force 

field energy. This resulted in 25,797 compounds from prioritized vendors with an APF score below -

170. 



In a recent benchmark study of docking with high throughput screening, approximately 50% of the 

false positive compounds had high internal energies (32). Thus, compounds with internal energy 

strain > 10 were rejected. To obey basic drug-like criteria, we removed compounds with long alkyl 

chains and many rotatable bonds (> 12), as well as compounds with MW > 500 and clogP > 5. 

Subsequent clustering revealed 1,454 cluster representatives using a Tc threshold = 0.3, and selected 

compounds per cluster defined by the square-root of the cluster size. Finally, a US28-focused mini 

library containing 98 compounds were selected based on manual inspection of complementary 

interactions with the US28 receptor pocket (Figure 1G).  

 

 

IP accumulation and Ca2+ mobilization assays reveal novel US28 ligands 

We then performed an experimental screening of the US28-focused mini library both in functional 

and binding assays (Figure 2). All compounds were initially screened at a single concentration (10 

µM) in inositol phosphate (IP) accumulation assays and in competition binding assays using 

radiolabeled CX3CL1. We followed up on hits with dose-response analysis. The functional screen 

based on IP accumulation (Figure 2A) identified two compounds (ZINC36408696, ZINC25946902) 

with agonist and one (ZINC38535746) with inverse agonist properties and the ability to increase or, 

respectively, decrease US28 activity by about 50%. During follow-up experiments, ZINC25946902 

showed ~30% unspecific activity in a screen on mock-transfected cells (Figure S2) and was therefore 

not selected for further experiments. Dose-response curves of ZINC36408696 (Figure 2B) and 

ZINC38535746 (Figure 2C) indicated moderate potency (lower µM-range) and efficacy, with the 

inverse agonist ZINC38535746 showing a 2-fold improved potency (EC50 = 1.76 µM) compared to 

VUF2274 (EC50 = 3.50 µM) (15). Notably, the efficacy of ZINC38535746 is improved compared to 

CX3CL1 (43% and 27% decrease in basal constitutive activity levels for the small molecule and 

chemokine ligands, respectively (Figure 2A and 2C)). 



In the binding screen, (Figure S3), one compound (ZINC32509119) was able to displace 

radiolabeled CX3CL1 by about 50%. However, LC-MS analysis indicated instability of this 

compound probably due to fragmentation under the respective conditions. Neither VUF2274 nor the 

small molecule compounds identified in this study (ZINC36408696 and ZINC38535746) were not 

able to displace [125I]-CX3CL1. 

Both compounds are predicted to bind to US28 in a similar fashion in which E7.39VII:06 forms a salt 

bridge with the positively charged nitrogen in the central part of ZINC36408696 and ZINC38535746 

(Figure 2D and 2E). Small difference can be observed in e.g. the orientation of W2.60II:20 and the 

additional hydrogen bonding possibility between the carbonyl oxygen of ZINC38535746 and the 

hydroxyl moiety of Y3.33III:09. Future mutagenesis studies could confirm the implication of the 

aforementioned residues in stabilizing the ligands in the receptor-binding pocket. 

 
To confirm functional activity further downstream the G protein signaling cascade, we performed 

assays to measure intracellular Ca2+ mobilization upon stimulation with a 10 µM concentration of 

ZINC36408696 and ZINC38535746 (Figure 3). The agonistic activation by ZINC36408696 appears 

to be constant over the length of the experiment. For VUF2274 and ZINC38535746 we observed an 

initial increase in fluorescence followed by a decrease below zero.  

Notably, ZINC36408696 and ZINC38535746 share a similar substructure and topology in which 

the right-hand side (Figure 2B and 2C) consists of a bicyclic system linked by a one-atom linker to a 

central piperazine and piperidine ring, respectively. Both compounds have rather bulky substituents 

on the right-hand side that make favorable aromatic interactions with W2.60II:20 in the models located 

in a pocket that overlaps with the CX3CL1 binding site in the US28 crystal structure.  

To explore potential cross-reactivity on other chemokine receptors, we performed similarity 

searches (using Open Babel FP2 fingerprints) of ZINC36408696 and ZINC38535746 against 1.45 

million annotated chemicals (including all annotated chemokine ligands) in the ChEMBL_20 

database representing all major target classes (Figure S5) (33,34). Only ZINC36408696 had three 



analogues with Tc > 0.8, and none of these were associated with significant activities or otherwise 

related to any GPCR targets. Therefore, from current ligand knowledge, limited cross reactivity to 

other chemokine receptors could be expected. 

 

DISCUSSION 

In this work we present the discovery of a novel small molecule agonist and an inverse agonist. The 

structure-based discovery process to select and experimentally test a focused chemical mini library, 

cherry-picked from the collective repertoire of chemicals available from commercial chemical 

vendors is particular useful in an academic setting as a complement to the systematic but costly high-

throughput screenings and “random” experimental testing of large compound collections. It enables 

simultaneous testing in binding as well as in different functional assays and/or species, e.g. both 

human and rodent receptors without actual chemical synthesis.  

The discovery of a diverse set of novel active compounds on the US28 receptor was achieved by 

computational screening that made use of structural ligand and receptor information by incorporating 

the refined VUF2274 binding conformation into the screening workflow. Since our US28:VUF2274 

model was based on homology modeling using CCR5:Maraviroc as a template, we compared the 

quality of our model upon release of the US28 X-ray crystal structure. Burg et al., describe several 

features in the active-like structure of US28 that differ from the inactive CCR5 structure (27). 

However, all of these active-state hallmarks are located in the intracellular part of the receptor. For 

the site that interacts with the N-terminal “hook” of CX3CL1 in US28 and Maraviroc in CCR5, we 

find the two structures to be highly similar. Consequently, our CCR5-based US28 model showed high 

structural resemblance to the US28 crystal structure regarding the position of binding site residues, 

as defined by 28 residues located within 5 Å of the binding pose of VUF2274 (Cα-RMSD = 0.84 Å). 

For comparison: the Cα-RMSD of 24 residues in 5 Å distance to Maraviroc in CCR5 (PDB 4MBS) 



to the US28 crystal structure is 3.09 Å (PDB 4XT1). Furthermore, our assumption that VUF2274 

shares a similar binding mode with Maraviroc in CCR5 was supported by the observation that both 

small molecules conceivably mimic the bonding chemistry of the N-terminal hook of CX3CL1 (27).  

With respect to the potentially overlapping binding modes of CX3CL1 and VUF2274, it was 

surprising to identify a set of compounds with diverse pharmacological properties as ZINC36408696 

and ZINC38535746. In our refined model of the US28:ZINC36408696 and the US28:ZINC38535746  

complex we observe a partial overlap with the N-terminal hook of CX3CL1 in the US28-crystal 

structure (see Figure S4). 30 out of 59 atoms (ZINC36408696) and 29 out of 56 atoms 

(ZINC38535746), respectively, violate Van-der-Waals radii of CX3CL1, pointing to a significant 

sterical overlap of these ligands. The observed lack of CX3CL1-displacement by ZINC36408696, 

ZINC38535746 and VUF2274 (Figure S3) is therefore unexpected. However, non-competitive 

behavior of ligands with similar binding modes has been observed previously (35) A possible 

explanation might be a multi-step binding model of CX3CL1 to US28. In this model, usually, the first 

interaction step is facilitated by tyrosine-sulfation of D/Y-rich motifs in the N-terminus of the receptor 

that consequently contribute to charge-charge interactions with the positively charged residues of the 

chemokine (36). It is conceivable that the initial binding step taking place at the extracellular receptor 

surface can still occur in the presence of a more deeply buried small molecule ligand. Further, it has 

previously been shown that CC chemokines do not completely displace CX3CL1 from US28, while 

CX3CL1 can displace all CC chemokines with a greater affinity than the homologous unlabeled CC-

chemokines (13). While this could be caused by a partial overlap of chemokine binding sites, it could 

also indicate a differential conformational stabilization by CC chemokines, on one hand, and CX3CL1 

on the other hand. At the same time, complete CC chemokine displacement by CX3CL1 could suggest 

a more stable conformation for US28 when this chemokine in bound, with reduced recognition of CC 

chemokines. Therefore, the lack of CX3CL1-displacement for ZINC36408696, ZINC38535746 and 

VUF2274 might be due to the higher conformational stability of the CX3CL1:US28 receptor complex. 



Both ZINC36408696 and ZINC38535746 exhibit functional activity in IP accumulation as well as 

calcium signaling assays with micromolar potency but opposing signaling effects. Structural 

interpretation of these results is challenging due to the high level of ligand-independent internalization 

and constitutive activity of US28 that has been reported in discrepancies between signaling assays 

showing CX3CL1 and VUF2274 to exhibit both agonist and inverse agonist properties (“camouflaged 

agonism”) (17,39). This behavior might also complicate the comparison between different assays, 

such as the “fast“ calcium release assay, in which immediate response to the ligand is measured, and 

the “slow” IP accumulation assay, in which a certain time is given for the signaling molecules to 

accumulate. While ZINC36408696 consistently appears as an agonist in both assays, the picture for 

ZINC38535746 is less clear. This points to an important roles of the time scale, in which constitutive 

internalization is occurring, and the level of constitutive signaling, as determining factors for receptor 

activity to be addressed by future studies. 

 

 

CONCLUSION 

The discovered ligands reported here represent valuable starting points for structure-based 

discovery to select and experimentally test iterative series of focused chemical mini libraries. In this 

process, positive as well as negative results could be used to refine/improve receptor/ligand-based 

search models for the optimization of potent and efficacious lead series and novel pharmacological 

tool compounds to characterize the role of US28 in the context of HCMV pathogenesis. Further, the 

computational tools and knowledge from this project can directly be translated to other receptors to 

accelerate the discovery of novel ligands e.g. for understudied chemokine receptors or receptors that 

have been particularly challenging to work with from a drug development point of view. 

 



METHODS AND MATERIALS 

Homology Modeling and Generation of the US28:VUF2274 Model 

The sequence of the US28 (strain Towne) was obtained from UniProt (P69333) and used for 

homology modeling using the ICM Interactive Modeling tool (Molsoft L.L.C., San Diego, CA, 

USA). The CCR5 X-ray crystal structure in complex with Maraviroc (PDB 4MBS) was used as a 

template (27% sequence identity to US28, alignment shown in Figure  S1). After a subsequent 300 

steps of Cartesian minimization, a global side-chain minimization (300 moves) was performed to 

relax local strains in the protein structure. The minimized US28 model was superimposed to the 

crystal structure of CCR5 and used for ICM template docking of VUF2274 onto the position of 

Maraviroc in CCR5. The ICM Ligand Editor was used for several cycles of side-chain refinement 

and ligand minimization and the best-scored binding pose was selected as a seed structure for the 

virtual screening. Binding modes of hit compounds (ZINC36408696, ZINC38535746) were refined 

in the same manner. 

Virtual Screening 

The In Stock subset of the ZINC database (http://zinc.docking.org) containing 12,782,590 

biologically relevant screening molecules that are stripped for counterions and assigned tautomers, 

protonation states and charges were stored in UNITY databases and assigned Triplet 

pharmacophore descriptors (28,37). Initially, the binding conformation of VUF2274 was used in a 

Triplet similarity search of the In Stock subset of the ZINC database. Secondly, the top 5% (639,130 

compounds) ranked molecules, were used for Atomic Property Field (APF) superposition, and 

globally optimized in the APF grid potential of the refined binding conformation of VUF2274 in 

US28 (31). Chemical filtering (MW< 500, drug-likeness score > 0.2, logP < 5, nrotb < 12, strain < 

10) and subsequent clustering of 25,797 compounds revealed 1,454 cluster representatives using a 

Tc threshold = 0.3 and selected compounds per cluster defined by the square-root of the cluster size. 

A total of 98 compounds (Table S1) were purchased for testing based on manual assessment to 



recapitulate chemical complementary and key interactions of the US28:VUF2274 model. Virtual 

screening was performed on a 40-core Intel® Xeon® CPU E5-2690 (3.0 GHz) Linux server. 

 

Compound Preparation 

All purchased compounds were centrifuged and subsequently dissolved in 100% dimethyl sulfoxide 

(DMSO) to achieve an initial concentration of 10 mM and left to shake overnight. Dilution rows of 

the 10 mM stock solutions were subsequently prepared to obtain concentrations suitable for cell-

based assays. 

 

Cell culture and transfection 

COS-7 cells were grown in Dulbecco’s modified Eagle’s Medium 1885 supplemented with 10% 

fetal bovine serum (v/v), 180 units/mL penicillin, 45 μg/mL streptomycin and 2mM L-glutamine at 

37°C in a 10% CO2/90% humidified atmosphere. Transfection of cells was carried out using the 

calcium phosphate precipitation method, two days prior to functional and binding experiments 

(40,41). 

 

 

Binding experiments 

COS-7 cells were transferred to poly-D-lysine-coated 24-well plates (Nunc) one day after 

transfection with US28 pcDNA3.1+ (up to 150,000 cells/well). The amount of cells seeded per well 

was chosen based on the receptor expression efficiency, aiming for a 5-10 % specific binding of 

added radioactive ligand. Competition binding experiments were performed as described 

previously, in two steps: an initial single point evaluation of all compounds in fixed concentration 

(10 µM), and a dose-response competition evaluation using increasing concentrations of 

compounds (ranging from 1 nM to 10 μM) (14, 42,43). The compounds for this second step were 



selected based on the level of radioactive chemokine displacement exhibited in the initial evaluation 

step. Briefly, two days after transfection, cells were incubated for 3h at 4°C with 10-15 pM [125I]-

CX3CL1 and an appropriate amount of unlabeled ligand in 0.2 mL binding buffer (50 mM HEPES 

buffer, pH 7.2, containing 5mM MgCl2 and 1mM CaCl2, supplemented with 0.5% (w/v) BSA). 

Cells were subsequently washed twice with binding buffer containing 0.5M NaCl before being 

lysed with 0.5 mL NaOH 0.2 M solution containing 1% SDS (w/v). Radioactivity was measured 

using a WALLAC 1470 Wizard Gamma Counter (Perkin Elmer). Nonspecific binding was 

determined using 0.1 μM unlabeled CX3CL1. All determinations were made in duplicate. 

 

Inositolphosphate accumulation assay 

COS-7 cells were transferred to poly-D-lysine-coated 96-well plates (Nunc) one day after 

transfection (35,000 cells/well) and incubated for 24h with 0.5 μCi/mL [3H]-myo-inositol (Perkin 

Elmer). Inositolphosphate levels were determined using a scintillation proximity assay as previously 

described, in two steps: an initial single point evaluation of all compounds in a fixed concentration 

(10 μM), from which compounds identified as significant attenuators or amplifiers of US28-induced 

constitutive activity levels were selected to test in a dose-response functional evaluation step using 

increasing concentrations of compounds (ranging from 1 nM to 10 μM) (45,46). Briefly, two days 

after transfection, cells were incubated for 90 min at 37°C with the appropriate amount of ligands in 

0.1 mL HBSS (Gibco) containing 10 mM LiCl and then lysed by adding 40 μL of ice-cold 10 mM 

formic acid, followed by incubation for at least 45 minutes on ice. Subsequently, 35 μL of the lysis 

solution were transferred to white 96-well plates and mixed with 80 μL poly-D-lysine-coated YSi 

bead solution (Perkin Elmer). The plates were sealed and shaken at full speed for at least 30 min, 

followed by centrifugation for 5 min at 1500 rpm. The beads were allowed to settle for 8h before 

quantifying the generated [3H]inositolphosphates with a Packard TopCount NXT™ scintillation and 



luminescence counter (Perkin Elmer). Basal constitutive activity levels were determined in the 

presence of a 1% DMSO solution. All determinations were made in duplicate. 

Ca2+ mobilization assay 

Stable inducible clones of US28-HEK293 cells were grown in a humidified incubator at 37 C, 

10% CO2 in DMEM with 10% fetal bovine serum, 1% Penstrep, 0.1% blasticidin, and 0.2% 

hygromycin. The cells were seeded at 2x104 cells/well in poly-D-lysine coated 96-well black wall 

clear flat bottom plates (costar). US28 expression was induced one day after seeding by addition of 

0.25 g/mL tetracycline. After 24 hours induction, cells were loaded for 1 hour at 37C, 5% CO2 

in the dark with 0.2% Flou-4 and 0.2% Pluronic acid F-127 in loading buffer (HBSS++ Hepes buffer 

supplemented with 19.6 mM Hepes, pH 7.4, 1.25 mM probenicid, 1 mM CaCl2 and 1 mM MgCl2). 

After 1 hour incubation cells were washed twice in pre-warmed loading buffer and finally 100 L 

of the pre-warmed loading buffer was added to each well. Intracellular Ca2+ mobilization upon 

stimulation with the individual small molecules at 10 µM concentration was monitored at 37 C as 

fluorescence at excitation and emission wavelengths of 485 and 520 nm, respectively. The 

measurements were performed using a Novostar microplate reader.  

Data analysis 

All statistical analyses were performed in GraphPad Prism v6.07 for Windows (GraphPad Software, 

San Diego, CA, USA). Single point evaluations represent the mean of at least three independent 

experiments. Results were normalized between (i) maximum [125I]-CX3CL1 binding to US28-

expressing cells in the absence of cold CX3CL1 (100%) and unspecific [125I]-CX3CL1 binding to 

US28-expressing cells in the presence of 0.1 μM cold CX3CL1 (0%), in the case of binding 

experiments, and (ii) between the level of constitutive activity in US28-expressing cells (100%) and 

background activity of mock-transfected cells (0%, in the case of functional IP accumulation 

experiments. Data from dose-response experiments were analyzed by nonlinear regression. EC50 

and IC50 values represent the mean of at least three independent experiments performed in 



duplicate. Data from ligand induced calcium release experiments were normalized by scaling the 

fluorescence level to 0 at time 8.8 seconds, the time when the ligand or reference buffer was added 

to their respective measurement wells. The reference buffer response was subtracted from the ligand 

response in order to show the specific ligand induced changes in fluorescence. 

 

LC-MS analysis 

LC-MS analysis was performed using a Dionex UltiMate 3000 HPLC with a Gemini C18 column 

(5 μm, 4.6x150 mm); flow: 1 mL/min; 10% MeCN in water (0-1 min), 10-100% MeCN in water (1-

10 min), 100% MeCN (11-15 min), with both solvents containing 0.1% HCOOH as modifier, UV 

detection at 254 nm; connected with Advion Expression CMS (ESI). High-resolution mass spectra 

(HRMS) were obtained on a Bruker micrOTOF-Q II (ESI). Purity and identity was determined by 

HPLC and confirmed by inspection of 1H NMR spectra (see Figure S6, S7) 

 

 

 

 

 

 

FIGURE LEGENDS 

Figure 1: Virtual screening workflow. (A) Sequence alignment of US28 to CCR5 (for details see 

Figure S1) and the initial US28 homology model. (B) The US28 model was superimposed to the X-

ray crystal structure of CCR5 in complex with the small molecule inhibitor Maraviroc (PDB 4MBS) 

to generate a template for (C) ICM docking of the small molecule VUF2274 into the US28 binding 

cavity. (D) The binding pose of VUF2274 was used as a seed structure to search the combined 



catalogues of commercially available screening compounds. (E) First, compounds were screened 

based on pharmacophore multiplets similarity search. (F) The top 5% of compounds were then 

selected by Tanimoto similarity and scored based on the Atomic Property Field (APF) method. (G) 

The final ranking, clustering, filtering and manual selection yielded a US28-focused mini library of 

98 compounds that were experimentally tested. 

 
Figure 2: Results of experimental screening based on IP-accumulation. (A) Scatterplot of the single 

concentration (10 µM) screen of the US28-focused mini library containing 98 compounds. The 

agonist (ZINC36408696) and the inverse agonist (ZINC38535746) are indicated with colored dots 

(green, red, respectively). The nonspecific compound (ZINC25946902) is indicated as a grey dot. 

The maximum inhibition by CX3CL1 at a concentration of 100 nM is indicated as a dotted line. (B, 

C) 2D chemical structure and dose-response curves for ZINC36408696, ZINC38535746 and 

VUF2274 (dotted line) (D, E) Refined conformation of the two compounds in the US28 model. 

Polar receptor-ligand interactions are indicated with light blue spheres in the binding conformation. 

Selected residues in direct ligand contact are labeled according to the Ballesteros and Schwartz (in 

superscript) numbering system (25,26).  

 

 

Figure 3 Ligand induced calcium release measured as fluorescence (485-520 nm) at a fixed 

concentration of 10 µM. Fluorescence curves of the agonist (ZINC36408696) and the inverse 

agonist (ZINC38535746) are indicated in green and red, respectively. SEM is shown in the 

corresponding light colors. Ligand or reference buffer was added to their respective measurement 

wells after 8.8 seconds. Fluorescence level was scaled to 0 at time 8.8 seconds in the post 

processing of the data. The reference buffer response was subtracted from the ligand response in 

order to show the specific ligand induced changes in fluorescence. 
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Field Code Changed



 
ABBREVIATIONS 

APF, atomic property field; CCL5, chemokine (C-C motif) ligand 5 (RANTES); CCR5, CC 

chemokine receptor 5; CX3C chemokine receptor 1 (fractalkine receptor); CX3CL1, chemokine (C-

X3-C motif) ligand 1 (fractalkine); CX3CR1, DMEM, Dulbecco’s Modified Eagle Medium; DMSO, 

dimethyl sulfoxide; GPCR, G protein coupled receptor; HBA, hydrogen bond donor; HBD, 

hydrogen bond acceptor; HBSS, Hank’s balanced salt solution; HCMV, human cytomegalovirus; 

HTS, high-throughput screen; ICM, internal coordinate mechanics; IP, inositol phosphate; LC-MS, 

liquid chromatography-mass spectrometry; MW, molecular weight; nrotb, number of rotatable 

bonds; PLC, phospholipase C; RMSD, root-mean-square deviation; SAR, structure-activity 

relationship 
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