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Abstract 

ScN-rich (Sc,Nb)N solid solution thin films have been studied motivated by the 

promising thermoelectric properties of ScN-based materials. Cubic Sc1-xNbxN films for 0 ≤ x ≤ 

0.25 were epitaxially grown by DC reactive magnetron sputtering on c-plane sapphire substrate 

and oriented along the (111) orientation. The crystal structure, morphology, thermal conductivity, 

thermoelectric and electrical properties were investigated. The ScN reference film exhibited a 

Seebeck coefficient of -45V/K, and a power factor of 6x10-4 W/mK2 at 750 K. Estimated from 

room temperature Hall measurements, all samples exhibit a high carrier density of the order of 

1021 cm-3. Inclusion of heavy transition metals in ScN enables the reduction the thermal 

conductivity by an increase of the phonon scattering. The Nb inserted ScN thin films exhibited a 

thermal conductivity lower than the value of ScN reference (10.5 Wm-1K-1) down to a minimum 

value of 2.2 Wm-1K-1. Insertion of Nb into ScN thus yielded to a reduction in thermal 

conductivity by a factor 5 due to the mass contrast in ScN which increase the phonon scattering 

ion the material.   
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1. Introduction 

Transition metal nitrides have recently attracted attention for possible 

thermoelectric applications, since they possesses outstanding mechanical properties and a broad 

range of electrical properties.1-8 Scandium nitride (ScN) is one of them and is an n-type 

semiconductor with a reported indirect band gap of around 0.9 eV 9,10. It possesses both a high 

carrier concentration (1018–1022 cm-3), carrier mobility (10-180 cm2 V-1 s-1)9,11 and has a low 

electrical resistivity of around 300 µΩcm.1,11 Reported power factors for ScN are relatively high 

(2.5–3.3 Wm-1K-2)1,2 compared to the common thermoelectric material PbTe.12 Thus, ScN can be 

a promising candidate for thermoelectric applications. Numerous techniques have been reported 

for growth of ScN;13 a few of them are reactive DC magnetron sputtering 2,9,14, chemical vapor 

deposition (CVD)15 and molecular beam epitaxy (MBE).16 Using DC magnetron sputtering 

instead of CVD gives the advantages of not using toxic gases and in comparison with MBE; 

sputtering growth rate is much faster.17 

The thermoelectric figure of merit (ZT), related to the efficiency of thermoelectric 

devices is given by ZT=S2σT/κ, where S is the Seebeck coefficient, σ is the electrical conductivity 

and κ is the thermal conductivity. These parameters (S, σ and κ) are all interrelated and there is a 

need to compromise between these in order to be able to maximize ZT.18,19 A disadvantage of 

ScN for thermoelectrics is its relatively high thermal conductivity  

(8-10 Wm-1K-1).2,20 Several approaches to reduce the thermal conductivity in transition metal 

nitrides have been suggested like nanoinclusions, doping and superlattices.21-25 Another proposed 

approach to reduce the thermal conductivity in ScN thin films is to increase the lattice phonon 

scattering by alloying ScN with different transition metals. Kerdsongpanya et al.22 performed first 

principles calculations of phase stability on a series of possible alloying elements with ScN. One 

of the suggested alloying elements was niobium for two reasons: (1) the small lattice mismatch 
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between NbN and ScN and (2) the fact that Nb provides extra electrons to be delocalized in Sc1-

xNbxN. Furthermore, phase stability calculations show negative values of the Gibbs free energy 

for disordered solid solutions and the presence of Nb is likely to increase the phonon scattering 

by introducing disturbances in the lattice.22  

In this work, DC reactive magnetron sputtering have been used to grow Sc-rich Sc1-

xNbxN films and the effect of Nb insertion on the electronic and thermoelectric properties have 

been evaluated.   

 

2. Experimental Details 

Sc1-xNbxN thin films were deposited using DC reactive magnetron sputtering in an 

ultra-high vacuum chamber (10-7 Pa) with Sc and Nb targets (2 inch diameter, MaTek: Sc 99.5%, 

Nb 99.99%) in an Ar/N2 (flow ratio 75% Ar / 25% N2) sputtering-gas mixture.  The pressure 

during depositions was kept at 0.27 Pa (2 mTorr).The chamber is described elsewhere.26 A 

maximum total power (PSc+PNb) of 120W was applied on the sputter and the power of the Nb 

sputter was gradually increased from 0 to 20 W for each composition. 10 mm x 10 mm one side-

polished substrates of Al2O3 (c-cut) (Alineason Materials & Technology) were used. The 

substrates were kept at a temperature of 950⁰C and under constant rotation during the deposition. 

Prior to deposition the substrates was cleaned first in 10 min acetone in ultrasonic bath and then 

repeated with ethanol and blown dry with a N2-gun. 

X-ray diffraction (XRD) was performed on X’Pert PRO from PANalytical using a 

Cu Kα radiation with a nickel filter with a Bragg-Brentano configuration (-2θ scan) and a 4 

circles diffractometer Philips X'Pert-MRD with monochromatic Cu Kα radiation  (rocking curves 

and φ scans). The morphology and the cross sections of the films were observed by a scanning 
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electron microscope (SEM, LEO Gemini 1550, Zeiss). The composition of the Sc1-xNbxN films 

was determined by X-ray photoelectron spectroscopy (XPS) in an Axis Ultra DLD (Kratos 

Analytical) instrument with a monochromatic AlKα source.  

Thermal conductivity properties of the films was determined by modulated 

thermoreflectance microscopy (MTRM). In this setup, a pump beam at 532 nm delivered by a 

Cobolt MLD laser, intensity modulated by an acousto-optical modulator at a frequency f, is 

focused on the surface of the sample with an objective lens (N.A. = 0.5). In order to prevent 

effects from possible changes in the optical properties versus the Nb composition, the layers were 

covered by a 250 nm gold film, this top layer ensuring a heat source located at the surface. Then, 

thermal waves are excited in the sample and monitored by the reflectivity surface change 

recorded around the pump location by another focused laser beam. We use a 488 nm Oxius laser 

to maximize the probe sensitivity to the thermal field in the gold cap layer. A photodiode and a 

lock-in amplifier record the AC reflectivity component, in a frequency range between 1 kHz and 

1 MHz. Finally, the experimental profiles of the amplitude and the phase of the reflected probe 

beam were fitted according to a standard Fourier diffusion law to extract the thermal conductivity 

of the films.27-33  

The in-plane Seebeck coefficient and the electrical resistivity were measured 

simultaneously under a low-pressure helium atmosphere (∼ 0.09 MPa, purity 99.999% with <0.5 

ppm residual oxygen) using ULVAC-RIKO ZEM3 from room temperature up to 500 °C. The 

substrate contribution to the Seebeck coefficient and electrical resistivity is negligible, and the 

instrumental error is within 7%. The room temperature Hall effect measurements up to 5 T 

magnetic field were performed employing physical property measurement system (PPMS 

Dynacool). 
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3. Results 

The composition of the Sc1-xNbxN films, as estimated from XPS, is listed in table I. 

The overall composition for Sc1-xNbxN (x=0) is 45.6% scandium, 48.9% nitrogen, 5.0% oxygen, 

0.2% carbon and 0.3% fluorine. The sample with x = 0.04 has its Sc, Nb and N ratios varying in 

comparison with the rest of the sample. This sample contains a lower amount of N and a higher 

amount of impurities, such as oxygen and carbon. The level of impurities is reduced when 

introducing more Nb. The metal (Sc+Nb) to nitrogen ratio increases from 0.93 to 1.05 when x 

increases from 0 to 0.25   

Figure 1a shows θ-2θ XRD patterns of ScN on sapphire (0001) substrates. One 

large peak, the ScN 111 peak, is observed at 34.5 degrees. Figure 1b is a magnified view of the 

ScN 111 peak. This peak gradually shifts towards higher 2θ angles with increasing Nb content. 

The 111 peaks presents an asymmetry characteristic of using a non-monochromatic beam (K1 + 

K2). The inset in figure 1b  presents the lattice parameters estimated from the 111 peak 

considering a cubic symmetry  in comparison to the ones predicted by the Vegard’s law using the  

values of ScN and NbN taken from the ICDD data base (ICDD PDF 00-045-0978 (ScN) and 

ICDD PDF 03-065-5011 (NbN)). A difference in the slope between the PDF data and the lattice 

parameters in this work can be seen, but the trend of the decreasing lattice parameter with 

increasing x is valid.  

In figure 2a, the Full With at Half Maximum (FWHM) values from the XRD 

rocking curves of the ScN 111 peak are presented. The inset shows the ScN rocking curve. The 

FWHM value decreases when the Nb content increases. Figure 2b shows a -scan of the ScN 111 
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reflection measured at  = 70.5⁰. Six reflections are present and separated by 60instead of the 

three expected in a cubic crystal system, because of the twin domain symmetry when growing 

ScN on sapphire (0001).1 Both types of XRD results indicate epitaxial growth of good quality. 

Figure 3 shows the crystals structure in the (0001) plane of sapphire and in the (111) plane of 

ScN in both metallic and anion network of the respective crystal network (metallic and anion). 

The crystal structure of both materials were drawn using a cell parameter from the bulk material 

(ICDD data file: ICDD PDF 00-045-0978 (ScN) and ICDD PDF 01-071-1684 (Al2O3)). An [111] 

growth direction for the cubic cell of ScN is expected on a c-plane sapphire with an epitaxial-like 

relationship of [111]ScN//[0001]Al2O3 and [ 122 ]ScN//[1000]Al2O3. In both networks, the epitaxial 

like growth of ScN on c-plane sapphire would be possible with a compressive stress. The 

mismatch appeared to be positive and equal to + 14%.  

SEM images and the optical appearance of the Sc1-xNbxN films series are presented 

in figure 4. SEM images show fairly smooth films, but in the case of low Nb content, grains with 

larger grain size (50-100 nm) were observed. The ScN film exhibited a yellowish color. When the 

Nb content increased in Sc1-xNbxN, the appearance of the films changes to more brown color. The 

thicknesses measured from the film cross sections give values between 95 and 130 nm.  

Figure 5 displays the thermal conductivity values obtained from the 

thermoreflectance measurement. A decrease of the thermal conductivity is clearly observed when 

Nb is introduced into ScN. The thermal conductivity decrease from 11.0 Wm-1K-1 to a minimum 

value of 2.2 Wm-1K-1 obtained for x=0.13 which corresponds to 20 % of the ScN thermal 

conductivity value. Earlier reported thermal conductivity values for ScN are around 10 Wm-1K-1. 

2,19  
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In figure 6, the Seebeck coefficient, electrical resistivity and the corresponding 

power factor from the simultaneous measurements are presented. The ScN reference sample and 

the film with a Nb content of x=0.04 exhibited similar Seebeck coefficients with for example 

values of -42 µV/K at 750 K. However, with further increasing Nb concentration in the ScN, the 

absolute value of the Seebeck coefficient is reduced to 17 µV/K (750K). The electrical resistivity 

of the ScN reference thin film is around 300 µΩcm. The insertion of Nb in ScN lead to an 

increase of resistivity to values between 550 and 800 µΩcm. The samples with x = 0.25 exhibited 

a lower resistivity values of 550 µΩcm at 750 K. The power factors (S2/ρ) are the highest for the 

ScN reference films compared to the Nb-containing films.  

The carrier density (n) as a function of Nb content in ScN at room temperature (300 

K) is shown in figure 7. All samples exhibit a high carrier density of the order of 1021 cm-3.  

Although, among the Nb-containing films, the carrier concentration increased when x increases 

from 0.07 to 0.25. Here, n for x = 0.04 does not follow the trend and shows a higher value 

relative to other samples, in line with the higher amount of disorder and impurities such as 

oxygen and carbon present in the sample present with a higher amount than the other samples. 
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4. Discussion  

The composition of the Sc1-xNbxN thin films varied as expected with the applied 

target power ratio; the amount of Nb increased while the Sc content is decreased. The nitrogen 

level in the films (except for x=0.04) indicates that the films were nearly stoichiometric with a 

metal/nitrogen ratio between 0.93 and 1.05. Earlier reports on ScN growth shows that oxygen and 

other impurities influences the properties of ScN such as the carrier concentration. 13,34,35 From 

the XPS results, it is evident that the level of impurities is high. For x=0.04, these levels are 

particularly high for both oxygen and carbon. The oxygen content in the films was reduced with 

increasing Nb concentration, but the carbon amount does not show a clear trend. The fluorine 

present in the film originates from the Sc target and is usually observed .34 The small difference 

in metal to nitrogen ratio between the Sc1-xNbxN films could possibly be reduced if the amount of 

the impurities was reduced. The presence of impurities may also result in different amount of N 

vacancies present in the films which could give shifts in the density of states. 16,34,36 

The single phase Sc1-xNbxN thin films were grown epitaxially on c-plane sapphire 

along its [111] direction as observed on the -scan with a  of 1.6 for ScN thin film. The 

experimental data showed a decrease of the cell parameter with an increasing Nb content, 

demonstrating the solid solution of Nb on Sc sites in ScN. The data on evolution of the 

experimental cell parameter with the Nb content have a small difference in slope and a slight 

offset in comparison to Vegard’s law, which is not surprising for the case of epitaxial growth and 

the low thickness of the film which may lead to a strained films. The quality of out-of-plane 

orientation evaluated with the value of the  showed an improvement of the quality of the (111) 

orientation. This improvement of orientation quality (improvement of epitaxial growth) for the 

Sc1-xNbxN films can be explained by a reduction of the cell volume of the cubic Sc1-xNbxN when 

x increases. The volume of the unit cell decreases slightly because of the mismatch between the 
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film and the substrate and consequently leading to an improved epitaxial growth. The features 

visible in the SEM figures for the Sc1-xNbxN films (x=0.04, 0.07 & 0.13) probably arise from 

small differences in the lattice parameters rather than other orientations of the films. Since no 

other peaks except for the sapphire 0006 and ScN 111 peaks were observed, an discontinuous 

grain growth of ScN may occurs at defects located on the substrate surface, for example the 

atomic steps. 

From the thermal conductivity measurements, there is a drastic reduction of the 

thermal conductivity for the Sc1-xNbxN thin films with higher amount of Nb with a minimum 

thermal conductivity corresponding, for example  to the 1/5 of the ScN values for the samples 

with x=0.13. This confirms the prediction by Kerdsongpanya et al. 21 that the phonon scattering 

increases and reduces the thermal lattice conductivity when incorporating Nb in ScN. Already at 

low Nb content (x = 0.04), the reduction is substantial with a thermal conductivity of around 7 

Wm-1K-1. Apart from interfaces, grain boundaries, defects, the mass-contrasts in the material 

plays an important role in attenuation of phonon transport leading to a drastic decrease in the total 

thermal conductivity of the sample. The large difference in the atomic mass of Sc (44.95 u) and 

Nb (92.90 u) gives rise to large scale phonon damping. Hence, a significant reduction in thermal 

conductivity for Sc1-xNbxN samples is observed. Given that Sc is isotope-pure,37 and pure ScN 

thus lacks natural isotope scattering  means that the effect of alloying or doping on thermal 

conductivity is particularly important for this material. 

The Seebeck coefficient and the electrical resistivity for the ScN (x=0) is similar to 

earlier reported values, but have lower power factor than the top ones.1,2 The limiting factor of 

the ScN to get maximum thermoelectric performance is likely its sensitivity to impurities, which 

results in reduced Seebeck coefficients. Even though a large reduction of the thermal 

conductivity can be achieved by Nb incorporation, the absolute value of the Seebeck coefficient 



11 
 

is decreased and in the same time the electrical resistivity is increased for higher Nb contents. 

The increased electrical resistivity of the films can be described with the increased charge-carrier 

scattering, impurities and defects which may affect the mobility of the charge carriers more than 

the carrier concentration  itself.36 Thus, while there is a major reduction in thermal conductivity, 

the purity of the films may need to be improved to reach an overall improvement in 

thermoelectric properties. 

 

5. Conclusions 

Epitaxial Sc1-xNbxN thin films were grown by DC reactive magnetron sputtering. 

Incorporating Nb in ScN lead to a reduced thermal conductivity by a factor 5 because of phonon 

scattering with the heavy 4d metal. The ScN film exhibited a moderate Seebeck coefficient of -

45V/K, and a power factor of 6x10-4 W/mK2 at 750K. Insertion of Nb into the ScN deteriorates 

the Seebeck coefficient and the power factor by a factor 5. The overall thermoelectric properties 

(ZT) of the Sc1-xNbxN thin film would be expected to be similar to the ScN thin film, with power 

factor and a thermal conductivity both reduced by a factor 5. This study showed the possibility to 

reduce the thermal conductivity by mass-contrasts in this type of semiconductors.   
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Table 1 

 

x in 
Sc1-xNbxN 

Sc 
(2p) 

Nb 
(3d) 

N
(1s)

O
(1s)

C
(1s)

F
(1s)

Impurities 
(total) 

Ratio 
Me/N 

Thickness
(nm)

0 45.6 0 48.9 5.0 0.2 0.3 5.5 0.93 130
0.04 41.0 1.6 42.9 10.8 3.6 0.1 14.5 0.99 105
0.07 42.7 3.1 47.7 5.4 1.0 0.1 6.5 0.96 105
0.13 40.8 6.1 47.3 5.3 0.5 0 5.8 0.99 105
0.18 39.4 8.9 48.4 3.2 0 0.1 3.3 1.00 95
0.25 36.8 12.6 47.2 2.5 0.8 0.1 3.4 1.05 115

 

 

Table 1. Composition analysis (%) of the films measured using XPS and calculated on the core-

level peaks corresponding to each element detected. The metal/nitrogen (Me/N) ratios and 

thicknesses are also reported. 
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Figure captions  

 

Figure 1. a) X-ray diffraction patterns (θ-2θ scan) of Sc1-xNbxN grown on sapphire (0001) 
substrates. The x in Sc1-xNbxN is represented with corresponding number and color in the graph. 
b) Magnified view of the ScN (111) peak. The inset graph shows the calculated lattice parameters 
in comparison with Vegard’s law.  

 

Figure 2. a) FWHM of rocking curve measurements of ScN (111) peaks of the films. The inset 
shows the rocking curve from the ScN.  b) XRD -scan  of ScN grown on sapphire (0001) 
measured at tilt angle  of 70.5�. 

 

Figure 3. Scheme of the epitaxial relationship between c-plane Al2O3 and ScN on the metallic 
and anion network. The (0001) plane of sapphire is represented by aluminum ions (grey) and 
oxygen ions (red). The (111) plane of ScN is represented by scandium ions (blue) and nitrogen 
ions (green). 

 

Figure 4. The morphology (left)) and optical appearance (right) of the Sc1-xNbxN films. The 
numbers on the left represent the x in Sc1-xNbxN. 

 

Figure 5. The thermal conductivity values of the different films at 300 K obtained by fitting of 
the modulated thermoreflectance microscopy measurements. Model: 250 nm gold (k= 225 
W/mK; D = 0.910-4 m2/s) / Sc1-xNbxN film on Al2O3 (k = 46 W/mK; D = 1.4810-5 m2/s).          

 

Figure 6. a) Seebeck coefficient, b) Electrical resistivity, and c) The calculated corresponding 
power factors for Sc1-xNbxN films. The x in Sc1-xNbxN is shown via the numbers and their 
corresponding colors inside the Seebeck coefficient graph. The electrical resistivity and the 
Seebeck coefficient are measured simultaneously every 50 degrees. 

 

Figure 7. Carrier density ‘n’ as a function of Nb content in ScN, estimated from Hall 
measurements. 
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