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Abstract. In wind turbine towers the preferred design is circular tubes that are connected

by a bolted flange joint. The design is typically that of an L-flange resulting in an eccentrically

loaded bolted connection. The eccentricity results in a non-linear relationship between exter-

nal load on the tower and the tensile force in the bolt. In the literature and also in standards

different models are presented for this important non-linear response. In the present paper a

simplified expression for the non-linear force response is presented based on finite element cal-

culations using contact analysis. The L-flange connection is in essence a bad design because it

leads to a non-optimal ratio between external force and bolt force. Furthermore bolt bending re-

sults in an even higher bolt stress resulting in a reduction of strength. The present paper presents

simple modifications of the L-flange design that considerably improves the connection strength.
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1 Introduction

Bolted connections are one of the most important assembly methods in relation to both me-

chanical engineering and civil (structural) engineering. In civil engineering the typical use of

bolted connections is in assembly of steel structures e.g. the supporting structure of buildings

but also for wind turbine towers. In some structural cases the bolt is used as a cross pin i.e. no

connection preload is introduced to improve the fatigue strength. The different sections of wind

turbine towers are typically tubular, and the sections are bolted together with preloaded bolts,

see e.g. [1] for an overview. The preload is important for the connection strength between the

different tubular tower sections, these connections are primarily loaded by a varying bending

moment (both direction and size) and the nacelle weight.

In a traditional preloaded bolted connection the fatigue strength is controlled primarily by

the bolt load amplitude, the mean stress size is not important as long as the total stress size is

below the yield stress. The ratio Φ of the external load on the structure that is transmitted to the

bolt is controlled by the clamped members stiffness, Km, relative to the bolt stiffness, Kb.

Φ =
Kb

Kb +Km

(1)

The stiffness calculation can be found in e.g. the standard [2]. A general discussion of the

different models for calculating the stiffnesses can be found in e.g. [3] and references therein.

In relation to re-design and different points of attack for the external load see e.g. [4] and [5].

The ratio Φ is typically a small number say 0.1, i.e., only 10% of the external load is transmitted

to the bolt. This holds true as long as there is a clamping force between the members. With

concentric load the relationship between external load and transmitted load to the bolt is linear,

this is also the case for eccentric load as long as the boundary condition, i.e. the contact area

between the clamped members, is constant. For an eccentric load this is typically only valid for
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a relatively small external load (relative to the preload). With the changing boundary condition

we have a non-linear relationship.

The L-flange is an example of an eccentrically loaded connection and many papers in the

literature are related specifically to this connection type, see e.g. [6], [7], [8], [9], [10] and [11].

The standard [2] also specifies a calculation method for these eccentrically loaded connections.

One of the main problems of the L-flange connection is that the relationship between external

load and bolt load is not favorable for a large part of the application range.

In Figure 1 a typical L-flange connection is shown. Various connection types (not shown)

are possible between the tower wall and the flange, see e.g., [1], leading to different problems

with stress concentration which will not be discussed in the present paper.
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Figure 1: Bolted L-flange connection shown with dimensions and eccentric external load.

The relationship between an increase in external load FA and the increase in bolt load is first

linear with a favorable ratio much like the concentrically loaded connection. With higher values

of FA the relationship is non-linear as the boundary condition (contact) changes. Finally for

relatively large external load values the contact conditions do not change anymore and therefore
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we have again a linear relation, in principle the connection acts finally as if there is no preload.

For a concentric connection the loss of clamping force between members result in a one

to one correspondence between increase in external load and increase in bolt load. For the L-

flange connection high external load values results in that the increase in bolt load is controlled

by the ratio Φl.

Φl =
b

a
(2)

which is not favorable. In the above derivation the bolt bending is neglected, we also assume

linear elasticity. Plastic deformation will change the result for high bolt stress values but this is

not within the application range suitable for the connection.

The standard bolted design with concentric load is directly by the layout an excellent design

and to improve the design we must improve the stiffness ratio or alternatively reduce the stress

concentration in the bolt as it can be found in e.g. [12] and [13]. For the L-flange the strength

improvement can also be done by bolt thread shape optimization, however more significant

improvements in strength are found by design modifications made to the connection.

The present paper focus on two points:

• The transfer function between external load and bolt force for L-flange joints.

• Simple design modifications for improving the strength.

In relation to the first bullet many different transfer functions are presented in the literature,

some based on beam models and some on finite element (FE) calculations. In [11] many of

the different models are presented and compared. From the comparison it is clear that the

variation is rather large, the problems being that for some designs the proposed models either

over or under estimate the bolt load. Using the models can therefore lead to a too conservative
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design or an imprudent design that will fail. In [14] a comparison between field experiments,

laboratory experiments and FE calculations are presented. The overall findings are that large

discrepancies between calculated and measured values of bolt stress are found, the reason is

expected primarily to be due to imperfection in real wind turbine connection relative to the

laboratory experiment and the FE calculation. Even the presence of an elastic sealant/gasket

between the two L-flanges can have a significant influence on the experimental result.

The overall inherent shortcomings of the L-flange can be improved in quite many ways.

The reason for choosing the simple L-flange design for the wind turbine towers (as shown in

Figure 1) is related to the price, both in relation to production and inspection. The present paper

therefore focuses on moderate design modifications of the original simple design for improving

the strength.

The paper is organized as follows. In Section 2 the L-flange FE calculation is presented

including the analytical curve-fitted result that can be used to estimate the bolt load (the transfer

function). Section 3 describes some simple design modifications and discuss the influence on

the strength.

2 Bolt force transfer function

For fatigue strength estimation of bolts in a L-flange connection it is not enough only to find

the normal bolt force as presented in many papers on the subject. The bending moment is also

important because it is the maximum stress in the bolt that controls the strength. Depending on

the external load size and the flange design the bending moment can have a significant influence

on the maximum stress. A derivation is therefore made for both in the following.

The essential first part of the transfer function is found from the bolt stiffness and the mem-

ber stiffness. The stiffnesses can be estimated using [2]. In [3] the stiffness for the concentrically
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bolted connection is discussed and it is shown how the stiffness estimation found in the litera-

ture has a rather large variation, and a new stiffness estimate is proposed based on curve fitted

FE results. The stiffness was in this paper found using the elastic energy determined from the

FE analysis and the same is done for the eccentric case.

The elastic energy method for finding the stiffness is shortly described. The stiffness is

evaluated using the finite element method (FEM), and the numerical tool used is the COMSOL

program ([15]). Assuming linearity the stiffness is constant and defined as (one dimensional)

Ks =
Fs

Ds

(3)

where Fs is the force and Ds is the corresponding deflection. For a distributed load the stiffness

can be estimated using the total elastic energy U , which equals twice the strain energy in the

linear case Uǫ = U/2. The linear solution to a FE problem can be stated as

{F} = [K]{D} (4)

where {F} is the nodal load vector, {D} the corresponding nodal deflection and [K] the stiff-

ness matrix. We may express the force as

Fs = ||{F}||2 ⇒ {F} = Fs{v} (5)

where {v} is a unit vector and Fs is the load size. The displacement in the force direction is

given by

Ds = {v}T{D} (6)
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From the FE calculation the total elastic energy is given by

U = {F}T{D} = Fs{v}
T{D} = FsDs (7)

by substitution we find

Ks =
Fs

Ds

=
F 2

s

U
(8)

We can therefore estimate the bolt and the compressed members stiffness from the preload

force FV = Fs and the elastic energy in the bolt, Ub = U , and in the members, Um = U ,

respectively. However for the eccentric load the external load does not act as the preload, it also

add additional bending to the bolt.

From the discussion in the introduction the overall force transfer function shape is known.

The initial part is linear, because the boundary condition, i.e., the contact area does not change.

The most easy way to establishing the linear function is to load the L-flange with a small external

load as compared to the preload say 1kN, the slope is then directly given as the increase in bolt

load relative to the size of the applied external load.

Initially we will apply the same example as found in [11], the data is (refer to Figure 1)

t = 70mm, a = 69mm, b = 128mm, s = 24mm

bolt size M36 class 10.9, i.e. ultimate tensile strength σut = 1000MPa and yield stress σy =

900MPa. The radius of bolt circle R = 1.305m and the number of bolts in the flange is n = 80.

The example is therefore slightly modified when compared to the original example which has a

constant width of 103mm.
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2.1 FE details

The details about the FE, i.e. how the model is build and the assumptions made are important.

In Figure 2 the FE model is shown together with a mesh. The element used in the analysis

is tetrahedrals with a quadratic displacement assumption. The number of degrees of freedom

vary for the different models used in the paper but models with approximately 40000 degreed

of freedom are sufficient. Mesh refinements with up to 250000 degrees of freedom are found to

only have insignificant differences related to the bolt normal load and bolt bending.

Figure 2: A FE mesh of L-flange and bolt.

As seen only one quarter of the bolt and L-Flange connection supported by the bolt is in-

cluded in the model (half of the connection is modelled as a rigid plate). This can be done due

to assumed symmetry in the flange and bolt. Contact analysis is performed between the washer

and the flange and between the flange and the illustrated plate that is assumed to be rigid, i.e.

the washer is assumed to be and integrated bolt part. Friction between the washer and the flange

is modelled as static coulomb friction with a coefficient of friction µ = 0.1.

Ft ≤ µFn (9)
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i.e. the maximum traction force Ft is given by the normal force Fn and the friction coefficient.

The friction coefficient used has been changed to µ = 0.2 which did not cause any significant

change in the derived quantities and therefore µ = 0.1 is used in all computations. The washer

size is selected according to the standard for a M36 bolt. For this model to be valid the tower

wall should be uniformly loaded. In the real case where the wind turbine tower is loaded by

both bending and torsion the stress will vary. But due to large number of bolts in the flange

(typically larger than 80) the variation in the stress on the highest loaded bolt to the adjacent

bolt is so small that the assumption of constant stress and thereby symmetry is valid.

The solution strategy is; first the FE contact problem of finding preload deformations of the

bolt and L-flange is solved, i.e. with zero external load. From this deformed configuration the

external load is gradually increase and the contact problem is solved in each iteration step. For

the standard mesh with 40000 degrees of freedom the computation time for finding the load

transfer function on a standard PC is 1 hour. For the most refined models (used for converges

check) the computation time is 10 hours.

2.2 FE example

In the calculation the bolt preload size is taken from [11], the value is FV = 510kN correspond-

ing approx. to 70% of the maximum static bolt strength. With the shown FE model and the

given size of bolt and flange the stiffness ratio is given by

Φ =
Kb

Kb +Km

=
Um

Um + Ub

= 0.16 (10)

This ratio is however not very accurate and the real transfer function between external load

and bolt load depends highly on the point of attack of the external load as it was discussed in

[5]. In [11] it is proposed that a rough estimate is to use Φ = 0.06. However, even this value
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might be an overestimate. For the given example the ratio can easily be established by applying

a small external load say FA = 10kN and relate this directly to the change in bolt load FB , i.e.

Φ =
∆FB

FA

=
FB − FV

FA

= 0.023 (11)

This ratio between the external load and the bolt load is very favorable, but the ratio only

holds for small external load values where the contact area between the flanges is constant. By

increasing the external load the transfer function given in Figure 3 is determined. The preload

should be selected as high as possible in order to keep the amplitude of the bolt load as small

as possible but so that we are below yielding. Selecting a lower value of the preload will not

have a positive effect on the connection because we will only lower the linear asymptote for

the initial part of the load transfer function the second asymptote will stay the same and for the

same external load variation the amplitude in the bolt will increase.

0 180 360 540 720 900
0

400

800

1200

1600

FB/kN

FA/kN

FE results
linear asymptotes

Elastic Plastic

Figure 3: Bolt normal load transfer function, the curve is not valid in the plastic range.

The overall load curve shape is seen in Figure 3. Linear elasticity is assumed i.e. the effect

of plasticity is not taken into account, in Figure 3 the ultimate load is too high for the assumption

of elasticity to be valid. The maximum allowable load on the bolt depends on the load being
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static or dynamic. If the load is assumed to be static then the maximum load (for this specific

case) is

Fmax

B = Asσy = 735kN (12)

In relation to fatigue the maximum load is smaller, assuming that the external load varies

between Fmin

A = 0 and Fmax

A the maximum bolt load can be estimated. Under the assumption

that the Goodman line is flat (in a Goodman diagram), i.e. that it is only the force amplitude

that influence the strength and assuming that the stress is below the yield stress, we find

Fmax

B = FV + As2σ
max

a = FV + As2
σe

Kf

= 619kN (13)

where σa is the amplitude stress, σe endurance limit for amplitude stress, Kf fatigue stress

concentration factor. In the calculation the following have been used; σe = 0.2σut and Kf = 3.

The selected fatigue stress concentration factor corresponds to the normally selected value for

rolled thread when the strength ISO class is greater than 6.6, i.e. the stress concentration factor

is related to the stress at the thread. In the FE calculation the focus is on the normal load and

the bending moment on the bolt. The finer details of the stress at the points of maximum stress

are not in focus they are accounted for by the use of the fatigue stress concentration factor.

The load transfer function for the working range of dynamic loading is given in Figure 4.

To validate the results of the present paper FE results from [11] are also shown in the figure.

The models are not completely identical, in [11] the flange has a constant width of 103mm

while in the present paper the flange are modeled as a radial slice, the width at the bolt radius is

102.5mm. Although there are small differences the results compares very well. In [11] further

comparison of the results can be found.
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Figure 4: Feasible range of bolt normal load.

In Figure 4 the non-linear transition from one linear asymptote to the second linear asymp-

tote is shown for the limited range of the external load (working range). The reality is even

worse than described here due to the bolt bending. The change in bending moment at the sym-

metry plane (Contact plane between the two L-flanges) is shown in Figure 5. It is seen that the

shape of the bending moment loading curve has a similar shape as found for the normal load.

0 180 360 540 720 900
−1000

0

1000

2000

MB/Nm

FA/kN

FE results

linear curve-fit

Figure 5: Bolt bending moment transfer function.
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2.3 Generalizing the results

The FE results can be used for determining an analytical expression for the bolt normal force

and bending moment. Due to the simple response curve shape it is relatively simple to specify

an analytical curve-fit. The primary parameters that needs to be established are those that define

the initial and the final asymptote (FBi and FBf )

FBi = αniFA + βni (14)

FBf = αnfFA + βnf (15)

For the normal load we have that αni = Φ and βni = FV .

To curve-fit the transfer function it is selected to use a cubic Bézier curve. The four points

that defines the Bézier curve are selected as

{P0} =















0

βni















, {P1} = {P2} =















x1

y1















, {P3} =















x2

y2















(16)

where the following values can be used

x1 = −
βnf − βni

αnf − αni

(17)

x2 = γx1

y1 = αnfx1 + βnf

y2 = αnfx2 + βnf

(18)

In order to have a good and preferable not too conservative curve-fit the value of γ should
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be selected to fit the FE results. It is not possible due to the many design parameters to select a

given γ value that fits all design cases.

The curve-fit is in parametric form given analytically as















FA

FB















= (1− u)3 {P0}+ 3(1− u)u {P1}+ u3 {P3} , u ∈ [0; γx1] (19)

outside the range the bolt normal load is given by (15).

If it is desired to have the normal force, FB, directly as a function of the external load, FA,

this can be found by a rearrangement.

c1 =
FA

x2

c2 = 4c1 − 12c2
1
+ 8γ−3 + 4

√

c2
1
+ 4c1γ−3 − 6c1γ−2 + 4γ−3 − 3γ−4

u = 0.5c
1/3
2

+ 2γ−1(c1 − 1)c
−1/3
2

+ γ−1

FB =















































βni + 3(1− u)u(y1 − βni) + u3(y2 − βni) , FA ≦ γx1

αnfFA + βnf , FA ≥ γx1

(20)

The specific curve-fit has the same slope as the asymptotes at the two end-points, the same

type of curve where we can control the slope at the two end-points can also be used in optimiza-

tion for interpolation functions see e.g. [16]. It should be noted that the assumption behind (20)

is linear elasticity which is not valid for high values of FB.

For the bending moment the same curve-fit can also be used here . The two linear asymptotes

are defined as.
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MBi = αbiFA + βbi (21)

MBf = αbfFA + βbf (22)

For the bending moment a good estimate is to use αbi = 0 and βbi = 0, and in the calculations

αn and βn are exchanged with αb and βb so that, i.e., x1 is given by

x1 = −
βbf − βbi

αbf − αbi

(23)

(24)

For the specific example, Figure 6 show the FE results and the analytical curve-fit. The

curve-fit matches the numerical results very well.

0 90 180 270
500

540

580

620
FB/kN

FA/kN

FE results
Analytical curve-fit
linear asymptotes

0 90 180 270

0

200

400
MB/Nm

FA/kN

FE results
Analytical curve-fit
linear asymptotes

Figure 6: Analytical curve-fit of the bolt normal load and bolt bending moment.

In estimating the L-flange connection fatigue life it would be practical if the amplitude bolt

stress level could be established easily. The most exact load curves evaluation is found by a FE

analysis of a given connection. The evaluation does not need to be computational demanding

since we primarily need to establish the linear asymptotes for the normal load and the bending
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moment. In order to get a conservative estimation we might need a few extra point through the

load history to select a suitable γ parameter value.

An estimate for the normal load curve (the two asymptotes) can be found using the follow-

ing: The first asymptote can be estimated directly assuming that the preload FV is given. The

value of Φ can be evaluated using a FE calculation (the most accurate method), or an estimated

value like Φ = 0.06 suggested in [11] or even Φ = 0. It might also be derived from formula in

[2]. The second asymptote can not be found so easily. In Figure 7 we show the variation in αnf

as a function of a for different values of b.

0.2 0.4 0.6 0.8
1

2

3

αnf

a/(b− s/2)

FE results for b = 2t
FE results for b = 3t
FE results for b = 4t
αnf = (b− s/2)/a

Figure 7: αnf as a function of bolt position for different values of b (see Figure 1).

In Figure 7 we see that a good estimate for αnf is given by

αnf =
b− s/2

a
(25)

In Figure 8 the numerical result for the βnf value is given for different flange width values b.

From Figure 8 it is difficult to make some general conclusion, with a too high beta value choice

the estimated curves for the bolt normal load will be conservative. We see from the figure that

if the flange width is in the normal range, i.e. b < 3t, then βnf can be selected as
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βn ≈ 0.1FV (26)

Selecting the obvious choice βnf = 0 will clearly be an underestimate and the found bolt normal

load values will not be conservative.

0.2 0.4 0.6 0.8

40

60

80

100

120

140
βnf/kN

a/(b− s/2)

FE results for b = 2t
FE results for b = 3t
FE results for b = 4t

Figure 8: βnf as a function of bolt position for different values of b (see Figure 1).

We notice that the strongest design is achieved for larger values of a and b, i.e., the bolt

should be placed as close to the wall as possible (limited by the standard for space around bolt

heads) and the flange width should be large.

For the bolt bending moment the curve can as discussed previously also be estimated by

a Bézier curve if the two asymptotes for the bending moment are known. In Figure 9 the

numerical results for the αbf and βbf values are given for different flange width values b.

From Figure 9 it is difficult to establish general values, we are in this case forced to make

specific FE analysis of a given design.

Modifying the design such that b − a = 46mm and keeping the 80 bolts at the bolt radius

R = 1.305m we have placed the bolt as close to the wall as possible and as close to each other as

possible (limited by the standard for space around bolt heads). In Figure 10 the values defining
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Figure 9: αbf and βbf as a function of bolt position for different values of b (see Figure 1).

the asymptotes given in (15) and (22) are given for different values of a. It is noted that the

values converge for large a values.

0.6 0.60.7 0.70.8 0.8
1.0
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a/(b− s/2) a/(b− s/2)

αnf

αbf/mm

−400

−200

0

200

βnf/kN
βbf/Nm

Figure 10: αbf and βbf as a function of bolt position for different values of b (see Figure 1).

If we assume that the normal load and bending moment at FA = 500kN can be given by

(15) and (22) we can plot the maximum nominal normal stress in the bolt as a function of a,

using the values for the asymptotes in Figure 10

σnom = σN
nom

+ σB
nom

=
αnf500kN + βnf

π
4
0.0362m2

+
αbf500kN + βbf

π
32
0.0363m3

(27)

where σN
nom

is the nominal normal stress due to the normal load and σB
nom

is the nominal normal
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stress due to the bending moment.

100 140 180 220
760

800

840

880

920
σnom/MPa

a/mm

Figure 11: Maximum nominal normal stress in bolt as a function of flange width parameter a.

From Figure 11 we see a minimum stress value for a = 160mm. This corresponds to a

revised design with the data:

t = 70mm, a = 160mm, b = 206mm, s = 24mm

bolt size, M36, bolt radius, R = 1.305m, and number of bolts in the flange, n = 80, is the same

as for the original design.

Selecting this design relative to the original, results in normal load and bending moment

improvements as seen in Figure 12.

The resulting maximum nominal normal stress for the two designs is given in Figure 13. In

the figure the ratio of the normal stress due to the bending moment relative to the stress due to

the normal load is also shown. It can be noted that for high external load values the contribution

from the bending moment should not be neglected.

The shown revised L-flange design shows the range of improvement that can be expected

if the L-flange topology is kept as shown in this section. The reason for choosing this simple
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Figure 12: Transfer function for bolt normal load and bending moment for original design and revised design.

0 080 80160 160240 240320 320400 400
500

600

700

800

900

0

0.04

0.08

0.12

0.16

σnom/MPa σB
nom

/σN
nom

FA/kNFA/kN

Original designOriginal design
Revised designRevised design

Figure 13: Left: Maximum nominal normal stress in bolt for revised and original design. Right: Ratio between

normal stress from bending moment and normal stress from normal load.

design must be the cost of production and/or the assembly method. The examples show that the

bolt should be placed as close to the wall as possible, this is limited by the selected assembly

method being a hand tool or hydraulic. In the next section some simple design modifications

that improves the design further are discussed.

3 L-flange design modification

In this section different L-flange design modifications are investigated in order to improve the

connection strength. Overall the main problem of the connection is the eccentric load; only
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for relatively small loads, where the contact area does not charge, will the connection take

advantage of the preload. For higher loads a highly non-favorable load transfer to the bolt

is controlled by the moment equilibrium as discussed previously. The best design would be

achieved by changing the L-flange into a T-flange bolted on both the inner an outer flange. This

is however not practical for the wind turbine towers due to assembly and transportation issues.

One way of transferring the load from tower wall to the L-flange is to add stiffeners as seen

in Figure 14. This design change will increase the flange production price. The stiffeners will

in themselves improve the design, however in order to fulfill the requirements with respect to

spacing around the bolt the number of bolts have to be reduced. This reduction in the number

of bolts increases the external load on the individual bolt. The overall conclusion is that the

negative effects are stronger than the positive effects and therefore the design with stiffeners

has a smaller strength than the design with the maximum number of bolts.

Figure 14: L-flange with stiffener.

An alternative way of improving the design is to improve the flange bending stiffness. In

many other design of flange a neck as seen in Figure 15 is used. For the present design where

the external loading is primarily tower wall bending the neck design is not beneficial. This is
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primarily due to the negative effect this design has on the moment equilibrium as compared to

the design where we put the bolt as close as possible to the tower wall.

Figure 15: L-flange with added neck.

Design changes to the contact surfaces between the flanges has also been reported in the

literature, see e.g. [7] and [1]. In these papers it is reported that the L-flange with a defined

smaller contact areas has an improved relationship between external load and bolt normal load.

This is also the findings in the present study for e.g. a design as shown in Figure 16, although

the improvement is not valid for the whole loading range. The bolt can for this design be placed

differently relative to two contact areas. Independently of the bolt placement this kind of design

has a sharp change in the load transfer function when there is no longer contact in the contact

area at the tower wall. The overall best design is in this case also with the bolt as close to the

tower wall as possible. If we examine the normal load transfer function for this design, shown

in Figure 17, we find as reported in the literature that this design over a long load range is better

than the traditional design, in that the normal load is smaller.

The design in Figure 16 also give rise to a considerable bending moment in the bolt that is

substantially larger than for the original design. If we compare the maximum nominal normal
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Figure 16: L-flange with reduced contact area.

stress, see Figure 17, we see that only for a relative narrow load range is this design favorable.

The influence from the bending moment on the normal stress is directly seen when there is no

external load.
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Figure 17: Left: Bolt normal load transfer function for revised design and design with reduced contact area. Right:

Maximum nominal normal stress in bolt for the revised design and design with reduced contact area.

The production cost of the design in Figure 16 is larger than the original design, however

the extra control with the contact surface might have a positive influence on the tolerances and
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the removal of flaws and imperfections.

The final design change discussed is the simplest one but also the most efficient one for

increasing the strength, i.e. to increase the flange thickness whereby the flange bending stiffness

is directly improved. The production cost for this design change must be limited to problems

related to the increased mass and to the material cost. In Figure 18 the load transfer curves are

given for the flange thickness t = 70mm, t = 100mm and the double size of the original design

t = 140mm.
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Figure 18: Left: Bolt normal load transfer function for the original design and the revised design with flange

thickness t = 70mm, t = 100mm and t = 140mm. Right: Bending moment in bolt for the original design and

the revised design with flange thickness t = 70mm, t = 100mm and t = 140mm.

The design improvement from the design with the increase flange thickness relative to the

original design is clearly seen both for the normal load and the bending moment. Figure 19 show

the maximum nominal normal stress in bolt as a function of external load. With the assumption

that the maximum allowable normal load is 619kN which corresponds to a maximum normal

stress of approximately 630MPa, we see from Figure 19 that compared to the original design

the design with flange thickness t = 70mm, t = 100mm and t = 140mm are 23%,55% and

65% stronger respectively. These improvements in the L-flange strength are significant.
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Figure 19: Maximum nominal normal stress in bolt as a function of external load. For the original design and the

revised design with flange thickness t = 70mm, t = 100mm and t = 140mm.

4 Conclusion

L-flange assemblies are from a bolt point-of-view a bad design and when this design is selected

anyway it is done due to constraint on the possible layout. The important transfer function

between the external load and load in the bolt is shown to have two linear asymptotes in the

practical load spectrum of the external load. The load curves can be approximated by a Bézier

curve. In order for the analytical curve-fit to be sufficiently accurate, numerical calculations

must be performed. Overall values for the asymptotes can be estimated directly in many cases

and are presented in the paper.

Following the load curves analysis different L-flange design changes are investigated in the

paper. The best design improvement is found by putting the bolt as close to the tower wall

as possible. Further significant improvements are found by increasing the flange thickness.

Strength improvements of up to 65% relative to a standard design are reported.
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