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Measurement of turbulent spatial structure and kinetic energy
spectrum by exact temporal-to-spatial mapping
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2Department of Mechanical Engineering, Technical University of Denmark, Nils Koppels Allé, Bldg. 403,
2800 Kongens Lyngby, Denmark

(Received 29 May 2017; accepted 4 August 2017; published online 21 August 2017)

We present a method for converting a time record of turbulent velocity measured at a point in a flow
to a spatial velocity record consisting of consecutive convection elements. The spatial record allows
computation of dynamic statistical moments such as turbulent kinetic wavenumber spectra and spatial
structure functions in a way that completely bypasses the need for Taylor’s hypothesis. The spatial
statistics agree with the classical counterparts, such as the total kinetic energy spectrum, at least for
spatial extents up to the Taylor microscale. The requirements for applying the method are access to
the instantaneous velocity magnitude, in addition to the desired flow quantity, and a high temporal
resolution in comparison to the relevant time scales of the flow. We map, without distortion and bias,
notoriously difficult developing turbulent high intensity flows using three main aspects that distinguish
these measurements from previous work in the field: (1) The measurements are conducted using laser
Doppler anemometry and are therefore not contaminated by directional ambiguity (in contrast to, e.g.,
frequently employed hot-wire anemometers); (2) the measurement data are extracted using a correctly
and transparently functioning processor and are analysed using methods derived from first principles
to provide unbiased estimates of the velocity statistics; (3) the exact mapping proposed herein has
been applied to the high turbulence intensity flows investigated to avoid the significant distortions
caused by Taylor’s hypothesis. The method is first confirmed to produce the correct statistics using
computer simulations and later applied to measurements in some of the most difficult regions of a
round turbulent jet—the non-equilibrium developing region and the outermost parts of the developed
jet. The proposed mapping is successfully validated using corresponding directly measured spatial
statistics in the fully developed jet, even in the difficult outer regions of the jet where the average
convection velocity is negligible and turbulence intensities increase dramatically. The measurements
in the developing region reveal interesting features of an incomplete Richardson-Kolmogorov cascade
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under development. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4999102]

l. INTRODUCTION

Measurements of spatial structures in high Reynolds num-
ber turbulent flows are important for development and verifica-
tion of turbulence models and indeed for the understanding of
fundamental properties of turbulence. Essential to this problem
is the measurement of high resolution statistical spatial quan-
tities such as moments and turbulent kinetic energy spectra.
Since the overwhelming number of high resolution measure-
ments is obtained as time records with a probe located at a fixed
point in space (e.g., a hot-wire anemometer, HWA, and laser
Doppler anemometer, LDA), a recurrent problem has been the
conversion of time records into spatial records.

Taylor’s hypothesis (TH) has been an invaluable method in
turbulence research since Taylor presented the idea in 1938. In
his seminal paper,' Taylor proposed that the spatial fine-scale
turbulent velocity structure is transported by the local mean
velocity so quickly that the small scales do not have time to
change “so that an unchanging pattern of turbulent motion is
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swept past a stationary probe” (e.g., a hot wire probe). It is
then possible to define a spatial sampling interval dsry by the
relation dsty = u1(Xg,t)dt, where X is the location of the
fixed measurement point (MP), u (X, t) is the mean velocity
in the average flow direction at the MP, and dr is the time
increment. The temporal record, ¢ € [0, T], is mapped into a
spatial record s € [0, L] by the linear transformation

!
stH (1) = / i (Xo, ) dt’. M
=0
Under this condition of “frozen turbulence,” the measured tem-
poral record is interpreted (mapped) as a spatial homogeneous
record upstream from the MP. In order for the statistical quan-
tities to be valid, the method requires local homogeneity along
the upstream mean flow direction.

However, it soon became clear that TH is not adequate
in highly turbulent flows. Lin> was the first to evaluate TH in
a shear flow, and further investigations of its limitations were
presented in subsequent work.>™

Heskestad'” proposed a generalized form of TH in which
the convection due to the large fluctuating velocity compo-
nents was taken into account. Lumley* further examined the
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magnitude of the various terms of a generalized TH, which
takes into account the fact that all spatial structures are car-
ried past the probe by larger eddies, and that these eddies form
a continuum of scales. He concluded that the most important
effect on the temporal energy'! spectrum derives from the con-
vection due to the large energy carrying eddies, the separation
between “large eddies,” and “small isotropic eddies” chosen
somewhat arbitrarily (but later confirmed more rigorously) as
ky/2n > u/uy, where ki is the wave number, u| and u; are
the spatial velocity gradient and the mean velocity in the flow
direction, respectively. Lumley further introduced a correction
to the spatial spectrum derived by expanding the characteristic
function and keeping only terms to second order and argued
that this correction for all practical purposes would not exceed
approximately 30%.

Over the ensuing years, numerous studies investigated TH
by comparison to measurements. For example, Wyngaard and
Clifford® tested TH by comparing measured atmospheric data
with a Gaussian fluctuating convection velocity model and
to Lumley’s correction. Further important studies of the rela-
tion between temporal and spatial scales were published by
Antonia et al.,” Tennekes,'? Thacker,'!? Champagne,'* Zaman
and Hussain,'> and Mi and Antonia'® to mention just a few.

More recent studies of the errors committed by apply-
ing TH to highly fluctuating velocities as in atmospheric
turbulence were published by Gledzer,'” who studied
the shape of the spatial energy spectrum resulting from
different correction methods and the exclusion of the accel-
eration terms in Navier-Stokes equations. Wilczek and co-
workers'® also studied the effect of large-scale random
sweeping velocities on the determination of the Kolmogorov
constant.

Our method relies on the simultaneous measurement of
the desired flow quantity and the magnitude of the instan-
taneous velocity vector. We propose that the instantaneous
velocity magnitude is the relevant quantity that transports
the fluid properties such as small scale velocity structures as
well as scalar quantities such as, e.g., temperature and parti-
cle concentration past a stationary probe and thus should be
the quantity relevant for a mapping of temporal records into
spatial ones. The idea seems to have occurred to just a few
researchers in the past possibly because of the perceived dif-
ficulties such as simultaneous 3D measurements of velocity
components and the resulting irregular spatial sampling inter-
vals that preclude the use of the fast Fourier transform. Hill!®
considers a 3D measurement of the short-time averaged mean
velocity to obtain the velocity in a coordinate system turning
with the instantaneous flow direction from which the velocities
in the lab-coordinates can be obtained. However, he dismisses
the idea because it involves a continually changing coordi-
nate transformation and a non-equidistant sampling scheme.
Pinton and Labbé?® use the averaged velocity over one revolu-
tion in a swirling flow as the basis for applying TH. This is an
improvement over a long time average but does not account for
the randomly fluctuating convection velocity during a single
revolution.

In the following, we introduce the true temporal-to-spatial
mapping and discuss statistical quantities evaluated with the
new method, in particular first order static moments and
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second order dynamic moments, and compare the results with
moments computed by time averaging. In Secs. III and IV,
we describe the method applied to HWA and LDA computer
generated data. One of the results of this analysis is that it
is important to consider if an instrument performs inherently
“temporal sampling” or inherently “spatial sampling.” For
example, we shall show that a digitally sampled HWA per-
forms temporal sampling, whereas an LDA performs spatial
sampling. The type of sampling has consequences for inter-
pretation and computation of static and dynamic moments.
We continue by discussing the range of equivalence between
spectra measured by our method and by conventional meth-
ods. In Secs. III and IV, we illustrate the validity of the
concept by showing that the new method can restore simu-
lated spatial records while Taylor’s hypothesis is not able to
do so.

In Sec. VI, we verify experimentally our method by com-
paring spatial energy spectra from LDA measurements in the
developed jet with corresponding spatial spectra measured
along mapped homogeneous directions using particle image
velocimetry (PIV). The agreement between these spectra even
in the outer parts of the jet is then contrasted to the spatial
spectra obtained using Taylor’s hypothesis. We then apply
the method to LDA measurements in the developing non-
equilibrium part of a round turbulent jet in air and compare
spatial energy spectra and spatial 2nd order structure functions
measured in that region to the same quantities measured further
downstream in the fully developed part of the jet. We discuss
the shape of these functions and interpret them as a result
of incomplete, not fully developed Richardson-Kolmogorov
cascades.

Il. THEORY

We consider an experiment in which we measure some
property of the fluid at a fixed point in space, X, the mea-
surement point (MP, see Fig. 1). The property in question
could typically be a component, u; = u;(Xg, t), say, of the
three-dimensional velocity vector u(xy, f) recorded at X¢ as a
continuous function of time, 7. i = {1, 2, 3} indicates the
three orthogonal coordinate axes. Essential to the method is
that in addition to the quantity of interest, we measure the
magnitude of the instantaneous velocity vector, u(t) = u(Xo, t)
= |u(xg, )|. How this is done will depend on the actual exper-
iment, whether it is, for example, a hot-wire anemometer or a
laser Doppler anemometer or perhaps some other method.

During the infinitesimal time element dft, the fluid veloc-
ity u transports a fluid element dV = dA - ds through the

ds MV u

dA \

X

MP

\—/ Tx

FIG. 1. The instantaneous convection element through the MV.
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infinitesimal measurement volume (MV), where dA is the
cross section and ds = udt is the length of the infinitesimal
record convected through the measuring volume. This finite
length element ds represents a piece of a spatial record of
the fluid having passed through the MV with its associated
physical properties. By adding these consecutive convection
elements, we form a spatial record, s, which we have termed
the convection record

s(t) = / u(xo, 1) dt’. 2)
0

Although s is the scalar length of the accumulated convection
elements for the fluid passing through the MP and although
s has the dimension of length, the measurement is still basi-
cally a temporal measurement where we have converted the
temporal record to a spatial one according to Eq. (2). We
may describe the procedure as an improved version of TH,
where instead of using the local mean velocity to convert from
the temporal to the spatial domain according to the formula
dsty = |ui1(Xg, t)|dt, we use the instantaneous velocity mag-
nitude u(r) = lu(xp, #)l, measured together with the desired
physical property. As explained below, this represents a map-
ping from a record indicating the observation time to a record
indicating the volume flow density through the MP. Note that
the only requirement for using this method to obtain statisti-
cal quantities is that the flow is stationary at the measurement
point.

A. Static moments

We can now compute the moments of any measurable
physical quantities, e.g., the velocity component u; = u;(s),
recorded as a function of s. Let us take as a generic example
the first moment

1 L
(ui)s = I}i—IEOZ/O u;(s) ds, 3

where we shall reserve the bracket ( ); for moments using the
spatial record s. L is here the length of a finite spatial record,
L= fOT u(xo, t)dt, where T is the length of the corresponding
temporal record. The question is how this spatial mean relates
to the temporal mean

T
u; = 71220 % /0 u;(t)dt. “)
Since the mapping from the temporal to the spatial domain rep-
resented by Eq. (2) is a nonlinear one, the two moments cannot
be identical. Recalling that s represents the length of the accu-
mulated convection elements or convection record through
the infinitesimal MV and that JAudt = dAds is a volume
element, we conclude that the moment u; represents the con-
ventional temporal mean velocity of the component u;(¢) at the
MP, whereas the moment (u;), represents the average volume
flow density along the i-axis at the MP.

B. Second order dynamic moments

Most measurements with low noise and high dynamic
spectral range are time measurements, predominantly HWA
measurements, and these measurements register the fluctua-
tions of the time signal as the fluid passes the stationary probe.

Phys. Fluids 29, 085109 (2017)

However, the temporal energy spectrum does not display the
correct distribution of the spatial scales in the turbulent flow
due to the convection effect of the large scale velocity fluctu-
ations that tend to sweep the small scales past the probe with
varying velocity.

TH does not compensate for the mapping effect of the
large velocity fluctuations, and especially at high levels of
turbulence, the form of the spatial spectrum may be quite
different from that of the temporal spectrum.’! By applying
our method and using the measured velocity magnitude to
perform the time-to-space conversion as indicated in Eq. (2),
we obtain a correct representation of the small scale spatial
structures.

We shall consider two forms of the converted one-
dimensional spatial autocovariance function and spatial energy
spectrum according to the quantity we choose to measure:

A single velocity component, u;(s),

Cuy(r) = Cui()ui(s + 1)), ®

where the brackets indicate ensemble mean over many
realizations.

Also of interest is the autocovariance function of velocity
magnitude, u(s),

Cy(r) = (u(s)u(s +r)). 6)
The corresponding spatial energy spectra are given by
Fy(ki) = / eI C () dr ©)
and
Fu(k) = / ek e (r) dr (8)

or by the direct method
1 1
F (ki) = thi(ki)fli(ki)*, Fyu (k) = Zﬁ(k)ﬁ(k)*, &)
where
L .
iij(k;) = / e 2K uy(s) ds (10)
0
and
L Py
(k) = / e 2k y(s) ds (11)
0

are the Fourier transforms performed over a finite length L of
the convection record.

lll. TEMPORAL SAMPLING—THE HWA CASE
A. Sampling

Hot-wire anemometers deliver analog time signals that
are usually digitized with regular sampling intervals At = 1/v
where v is the sampling frequency. The sampled velocity ()
is then

1 N
u(t) = — 3 8t = t)ulr) (12)
n=1

and the individual samples are given by

U = 0(t = t)u(t) = u(ty) 13)
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where N is the number of samples in a record. In practice, the
instantaneous velocity magnitude must be obtained by a sepa-
rate measurement, either by a 3-D HW probe or by a separate
measurement by an omnidirectional small probe located near
the wire measuring the relevant velocity component.

Estimates for the static moments can then be found
by arithmetic averaging over the record, for example, mean
velocity

~ 1 /71 i 1 &
o = —/ =) 8t —t)u(t)dt = — E Up, (14)
T oV n=1 N n=1

where the hat indicates that we are dealing with an estimate
based on one record.

The temporal second order dynamic moments of course
represent the energy of the velocity signal detected by the
probe. However, due to the “harmonium effect,” the frequency
shift due to the convection of the small spatial scales by the
large convecting eddies, the convected dynamic moments do
not represent the spatial velocity structure or the energy content
in the velocity pattern. The separation in convected and con-
vecting eddies is actually somewhat artificial; the frequency
shift is due to the total magnitude of the velocity vector,
but the most significant effect is due to the large scales.* To
get an unbiased measurement of the small spatial structures,
we need to convert from the temporal record 7, to a spatial
one s,

n n
Asp = upAt, Sy = Z Asy = Z Uy AL (15)
n’=1

n'=1

In the spatial domain, the very same samples are used
even if their distribution is different along the spatial and tem-
poral records. Therefore, the temporal mean velocity in the
spatial domain is still given by the arithmetic average over the
measured samples

N

1
(o) = 7 Dt (16)

n=1

The spatial mean needs to be corrected for sampling bias in the
spatial domain. This could be done by resampling the spatial
record with equal sampling increments.

100000 T Illlllll T Illlllll T T TTTTIT T T TTTT
1.0000

0.1000 Temporal spectrum

0.0100

0.0010

1 IIIIIIIl 1 IIIllIII 1 II|lIII| 11 111l
0.0001
1 10 100 1000 10000
Frequency (Hz)
(a)
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We can now compute the spatial energy spectra
—~ 1. . = |
Fy (ki) = Zui(ki)ui(ki) , Fulk) = Zu(k)u(k) NCY))

where the tilde indicates Fourier transform computed over the
measured samples and the hat indicates an estimate based on
a single record. However, the samples are not equidistantly
spaced on the spatial record, so the Fourier transform must be
computed by the discrete Fourier transform, DFT,

N
wik) = ) e, As, (18)
n=1
and
N o
(k) = Z e 2Ry A, (19)
n=1

As ii(k) is the Fourier transform of the velocity vector magni-
tude, u, which is always in the direction of the instantaneous
velocity vector, the second form of the spectra in Eq. (17)
represents the total turbulent kinetic energy of the small scales.

B. Computer generated HWA spectra

To show that the method produces the desired statistics,
we generate the HWA data as follows:

First we generate a large, slowly fluctuating Gaussian 3D
velocity, w;(¢). Then we simulate a smaller spatially isotropic
velocity with a von Karman spectrum, u,(s). The von Kdrmén
spectrum is chosen with an exponential roll-off that models as
closely as possible the jet spectrum described in the experiment
below,

1 1
625 [1+k/452]°/°

This spatial spectrum is shown by the yellow curve in the
following figures. The mean velocity was 1 m s~ and the
record length was 1 s, which allows us to use the same scale
on the abscissa for both temporal and spatial spectra.

The total signal is assumed to be homogeneous and a
continuous function of spatial coordinates (which we achieve
with a sufficiently small primary spatial sampling interval, As).
We use the slowly varying signal, which we assume to be the
so-called energy containing, convecting velocity to transform

Spx (k) = exp [-(k/2500)*3]. (20)

10.0000 T T T T TTTIT T T TTTIT T T 77T
M

1.0000 ' ’A:""I""!‘ Taylor’s hypothesis
0.1000

Spatial spectrum
0.0100 convection

record method
0.0010 VK model /\
0‘0001 1 |l|||||| 1 IIIIIIII 1 |I|||l|| '\ 1 Lol

10 100 1000 10000
Wavenumber (m-1)
(b)

FIG. 2. Computer generated HWA spectra. Block average of 100 records. Yellow: VK-based model. Blue: temporal spectra. Red: spatial spectra. LHS: Temporal
spectrum of resampled time record. RHS: Spatial spectrum by the new method (dark red) and converted by Taylor’s method (light red).
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the spatial record (that of the yellow spatial spectrum) to a
temporal record measured at the MP according to the formula

At, = As/uy,, (21)

where u; , is the magnitude of the n-th sample of the slowly
varying (large scale) convection velocity. We then create a
HWA-like signal by resampling the nonlinear record with a
constant sampling interval, At,;. The blue curve in Fig. 2 left
represents the temporal energy spectrum based on this tem-
poral record. We then apply both our new method and TH
to convert into spatial records and obtain the spatial energy
spectra as described above, see Fig. 2 right.

The turbulence intensity of the total velocity magnitude
for these plots was 54%, and it is clearly seen that the traditional
Taylor’s hypothesis is not valid in this case whereas the new
method is able to restore the original spatial spectrum.

IV. SPATIAL SAMPLING—THE LDA CASE
A. Sampling

The burst-type LDA is an example of an instrument per-
forming spatial sampling or sampling in the spatial domain
because the sampling process is determined by the (assumed)
uniform, albeit random, location of particles in the fluid. The
sampled velocity in space is given by

1 N
uo(s) = — 3 8(s = s)u(s) (22)
n=1

and the individual samples by
u, = (s — s,u(s) = u(sy,). (23)

However, due to the random distribution of particles, the
sampling intervals As, = s, — s,-1 are not equal as in the
case of the HWA. The temporal sampling seen by a stationary
probe, e.g., a laser beam, will now be random with a mean
rate of arrival proportional to the volume flow, assuming a
constant MV cross section. Thus, in the LDA-case, both static
and dynamic moments need to be corrected for velocity bias
by residence time weighting in order to obtain correct time
averages.’>%*

To get the spatial spectrum, we map from the measured
time record to the spatial domain by the formula

n
As, = u,At,, s, = Z Uy Aty (24)

n’=1

where u, is the sampled velocity magnitude. As the LDA
measures components of the velocity, determination of the
velocity magnitude requires a 3-D velocity measurement:

Uy = \Ju?+ uj2 +u;. However, most modern LDA systems

measure the so-called residence time or transit time for a par-
ticle traversing the MV. Knowing the diameter of the MV, d v,
we can estimate u,, as

Uy = dMV/Atrns (25)

where Atr, is the measured residence time. Due to the random
path of particles through the measuring volume, the residence
time will fluctuate around a mean value. Thus u, will be a
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strongly fluctuating quantity. However, as we compute the
spectrum as an average (block average) over many spectral
estimates, and since the particle path and the velocity are uncor-
related, the effect of the residence time fluctuations will be
reduced. As we have shown previously in Ref. 25, the noise
due to the random sampling is the dominant noise source, and
the residence time fluctuations can be neglected. This is also
confirmed by the convergence of the block averaged spectra
shown below.

The time sampling intervals, At,, are now different (ran-
dom) and not known a priori. However, when the sampling
rate is high enough, we can replace the convection element by
the time between samples multiplied by the latest measured
velocity (or by some higher order interpolation scheme)

n
Asy = up(ty —ty1),  Sp = Z Uy (L — by —1). (26)
n=1

The spatial energy spectra can now be computed by

~ 1 .
Fy (ki) = Zfii(ki)ﬁi(ki)* 27)
and
Fulk) = Takyacky 3)
with
N o
wik) = ) e, As, (29)
n=1
and
N -
(k) = Z e 2mksuy A, (30)
n=1

Again, as u, is the magnitude of the instantaneous velocity
vector, Eq. (28) represents the total kinetic energy spectrum.

B. Computer generated LDA spectra

The computer generated data are described in the work of
Buchhave et al.?° and Velte et al.?” Briefly, the random spatial
samples were grabbed from a high data rate primary veloc-
ity record with the von Karman temporal energy spectrum
Eq. (20) by a Poisson process. Since we are sampling the
velocity in space and assuming the particles to be uni-
formly distributed in space, the Poisson process is not mod-
ulated by velocity, and there is no velocity—sample rate
bias.

We now assume that the velocity fluctuations are con-
vected through the LDA MV by 3-D Gaussian large scale
eddies. The mean velocity was 1 m s™! and the record length
was 1 s. The turbulence intensity for the complete fluctuat-
ing convection velocity signal was 54%. The spectra were
averaged over 100 records.

The resulting randomly sampled time record results in an
aliased time spectrum (dark blue) as shown in Fig. 3 LHS.
The RHS shows that the new method restores the von Karman
spectrum even in the presence of large scale low frequency
3-D fluctuations whereas Taylor’s hypothesis in this case with
a 54% turbulence intensity does not adequately restore the
spatial record.
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FIG. 3. Spectra of the von Kdrmén turbulence convected past the LDA MV by a large low frequency Gaussian fluctuation. (Left) Blue: The temporal spectrum.
(Right) Yellow: The original von Karman model spectrum. Dark red: The spatial spectrum restored. Light red: The spatial spectrum restored by the conventional

Taylor’s hypothesis.

V. RELATION TO CLASSICAL SPECTRA

In classical turbulence theory,”® the starting point is a
homogeneous, random velocity field observed at an arbitrary
point in time. The 3-D covariance tensor is defined as

R;;(r) = (u;(X)u;(x + 1)), (3D

where x is an arbitrary point (which could be the MP described
above) and r is the three-dimensional displacement. The brack-
ets indicate ensemble averaging over velocity field realiza-
tions. We notice here that the displacement r is the linear
distance from the MP in the frozen flow field. The correspond-
ing energy density tensor is given by
Fij(k) = FT {R;;(r)} (32)
where Kk is the three-dimensional wave vector. As these three-
dimensional quantities are hard to handle experimentally, the
common practice is to define the i-th component of the one-
dimensional spectra in a principal coordinate system,

Fii(k) = FT {R;(r)} . (33)

However, as is well known, these one-dimensional spectra are
aliased in the sense that spectral components at an angle to the
axes appear at lower spectral values.”

Of crucial importance to turbulence modelling is the so-
called total turbulent kinetic energy spectrum, where all spec-
tral components of a given wave vector magnitude are summed
to provide the kinetic energy spectrum

1
Ek) = = F; (k) dk.
(k) 2Z/k=k| ()

The question here is how our new spectra relate to these
classical ones.

The classical spectra only have statistical meaning for a
homogeneous velocity field measured at a given point in time.
The results are found as ensemble averages over (infinitely)
many realizations. We shall relax the condition of homogeneity
of the velocity field to consider also fields with a non-isotropic
angular velocity distribution in a spherical coordinate system,
P, (¢, 0) (to include, for example, a field with a stationary local

(34)

mean velocity) but still require homogeneity in the sense that
P, (¢, 0) is the same throughout space along any homogeneous
direction. We can then write the averaging process for the
covariance as

Rij(r) = (wi(x)ui(x +1))
= </Pu(¢s O)Mt(xs ¢7 9) d¢ de

./Pu(¢’,0’)uj(x+r,¢',9’)d¢’d9’> , (35

-
where (r, ¢, 0) are the spherical coordinates, the bracket (),
indicates the ensemble average over realizations using the
same scalar distance r, and P,(¢, 0) and P,(¢’, 8") are identi-
cal because of homogeneity but with independently fluctuating
direction angles.

R; j(r)isnow a one-dimensional statistical quantity, which
is only a function of the distance r from the measurement point.
The total turbulent kinetic energy spectrum is

_ 1 —i2mkr
E(k) = 52 / e MR, (r) dr.

We shall now compare this to the new method with reference
to Fig. 4 below.

In the new situation, all measurements refer to the mea-
surement point, MP, and the temporal record is converted
to a spatial record consisting of a sum of convection ele-
ments. Since each convection element and the corresponding
velocity vector are always co-parallel, we can write the one-
dimensional covariance as a function of the spatial record, s,

(36)

FIG. 4. Tllustrating covariance measurements.
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R(s) = (u(so)u(so + 5))

_ < / Pu(¢, )us0. 6, 6) dp d0

-/Pu(¢’,0’)u(s0+s,¢’,9’)d¢’ d0’> (37)

N

and the total turbulent kinetic energy spectrum as

ﬂ@:%/awmmgﬁ. (38)

Note: This is a single term, one-dimensional expression, but
since there are no velocity components normal to the con-
vection, it includes the total turbulent kinetic energy. There
is no need to add three terms. If we now compare the two
paths in Fig. 4, we can see that a certain distance s along
the convection record will not correspond to an equivalent
distance r, unless the convection record can be considered
approximately a straight line. In other words, the radius of
curvature of the streak line should be large compared to the
distance s.

Due to the discrepancy in path length between the accu-
mulated arc length s [Eq. (1)] and the distance r, accurate
direct comparison between the classical and new spectra can
only be achieved within a limited spatial domain around
the measurement point. The extent of this region may be
formulated in terms of the radius of curvature, R, or the
equivalent line curvature x = 1/R. A measure classically
associated with the spatial velocity curvature, or the gra-
dients in the flow, is the Taylor microscale, 4. A relation
between k and 4, based on scaling arguments, was deduced by

Schaefer30-3!
(K)o 272 (39)
or in terms of radius of curvature
R/A = constant  ~ 1. (40)

The region within which the arc curvature can be considered
negligible is therefore of the order of the Taylor microscale.
As the Taylor microscale is an average obtained from flow
statistics, so are the resulting curvature « and curvature radius
R. Schaefer’®?! tested these results using DNS simulations
of four different flows with different Reynolds numbers, dis-
playing excellent agreement independent of Reynolds number
within a range Re; = 50 < 300.

One may therefore argue that, if one can assume local
homogeneity and stationarity within this vicinity of the mea-
suring point, there exists a direct correspondence between
the classical and the here proposed energy spectra for
the wavenumber range within the spatial extent of this
region.

Vi. LDA MEASUREMENTS IN A FREE JET IN AIR

We now apply our method to the measurement of a tur-
bulent round jet in air. The free round turbulent jet is a canon-
ical flow that, apart from the influence of the inlet, develops
freely, unhampered by surrounding constraints such as walls.
It is therefore an ideal experiment for the study of develop-
ing turbulence, both in the region near the jet exit, where
the turbulence generation is most active, and in the region
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further downstream, where the jet is fully developed. We
have made measurements of the streamwise velocity com-
ponent in radial scans from the jet center to points outside
the jet interface to the surrounding air at distances from the
jet exit of 10D, 15D, and 30D, where D is the jet orifice
diameter. The measurements were made with a side scat-
tering laser Doppler anemometer (LDA) specially designed
to obtain high resolution spectral information in a highly
turbulent flow. The signal from the photodetector is digi-
tized and saved, and all signal processing is performed in
software.

The LDA with optical frequency shift and a spherical mea-
surement volume is the only instrument that can make unbiased
velocity measurement in the highly turbulent flow encountered
between 10D and 15D, especially in the shear layers and the
outer region of the jet, and our method of converting time
records into convection records allows us to study the convec-
tion of small spatial scales past the MP even if the flow is highly
inhomogeneous (but stationary, allowing us to make sensible
statistical calculations of, e.g., energy spectra and structure
functions).

The experiment is described in detail in the work of
Velte et al.”* The jet data for present measurements were as
follows: jet exit diameter: D = 10 mm, measurement loca-
tion: 10, 15, and 30 diameters downstream at five points
off axis (corresponding to 0, 0.5, 1.0, 1.5, and 2.0 jet half-
widths, respectively). The jet exit velocity was 30 m s~!,
the measurement volume was 100 pum in diameter and
the average data rate was approx. 6400 s~! on the center
line at downstream distance 30D from the nozzle exit. The
scales are estimated as follows: Kolmogorov scale = 53 um,
Taylor scale = 2.2 mm at the center line at 30D down-
stream location. 4.000.000 data points were used at each
location.

We first show results at 30D, where the jet is assumed
to be fully developed and the turbulence is in equilibrium.
As a baseline, spatial (non-dimensional) spectra measured
by particle image velocimetry (PIV)*? along homogeneous
streamwise directions in a mapped similarity space’® are
shown in Fig. 5 LHS. The spectra are shown to collapse
when normalized by the local velocity variance, indicating
that the spatial energy spectrum does indeed display the same
energy distribution across scales, regardless of radial posi-
tion in the jet. The temporal spectra measured by LDA are
therefore normalized accordingly, see Fig. 5 RHS, result-
ing in normalized values at low frequencies which facili-
tates comparison of the shape of the spectra. As expected,
the temporal energy spectra are shifted towards higher fre-
quencies as the mean velocity increases. For completion,
Fig. 6 displays the corresponding (left) mean velocity, RMS
velocity, turbulence intensity and (right) the temporal Tay-
lor microscale and integral time scale measured with LDA
for all radial positions measured. The Taylor microscale was
extracted by taking the average time between zero cross-
ings in the fluctuating velocity component time history. The
integral time scale was extracted from the temporal energy
spectrum extrapolated to zero frequency where the spec-
trum base level was adjusted from the dominating random
noise level to a level where the integral under the one-sided
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FIG. 5. Left: Spatial energy spectra measured using PIV along homogeneous directions in a mapped similarity space. The spectra have been normalized by
each respective velocity variance. Right: Corresponding temporal spectra of jet velocity at different off-axis positions (normalized). From dark blue to light blue
and from dark red to light red, respectively: off axis position 0, 13, 26, 39, 52 mm.
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FIG. 6. Left: Measured mean velocity, velocity RMS, and turbulence intensity at 30D downstream of the jet nozzle at various radial distances from the jet
centerline. Right: Corresponding measured temporal Taylor microscales and integral time scales.
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FIG. 7. Left: Restored spatial spectra using our method. Off-axis position dark red to light red: 0, 13, 26, 39, 52 mm. Right: Taylor’s hypothesis, same off-axis

positions.

spectrum matched half of the velocity variance, according to

definition.
After application of our conversion method, w

e find the

spatial spectra shown in LHS of Fig. 7. The RHS shows spatial

energy spectra based on Taylor’s method. The spectra based on
the new method collapse to nearly overlapping curves whereas
Taylor’s method deviates a little for the 26 mm off-axis posi-
tion and fails badly for the 39 and 52 mm off-axis positions.
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The turbulence intensities at these positions are 23%, 65%, and
420%, respectively. It is interesting to note that the collapse of
the spatial spectra extend to low frequencies suggesting that
the convection record may be valid also for scales larger than
the Taylor microscale.

We now proceed to the non-equilibrium part of the jet
at 15D and at 10D. Measurements in highly turbulent, non-
equilibrium flows are difficult and prone to errors due to the
fluctuating magnitude and direction of the instantaneous veloc-
ity. A series of measurement of velocity spatial energy spectra
in non-equilibrium flows in wind tunnels behind regular and
fractal grids are reported in Ref. 34. The spectra are examined
with respect to the reference Kolmogorov spectrum and com-
pared to an inertial subrange with a —5/3 slope. It was found
that even close to a fractal grid, a —5/3 slope could be detected
over a wavenumber decade. As we show below, we find that
the —5/3 slope we see at 30D is reduced to just a tangential
approximation to a —5/3 slope at 15D and 10D. We believe
that the —5/3 slope is to be expected in any flow with a uniform
distribution of spatial scales as presumed in Kolmogorov’s
derivation.

Figure 8 displays the temporal and spatial energy
spectra measured at 15D and Fig. 9 displays the spectra

T T TTTTIT T T TTTTIT T T IIIIII| T T TTT1T
1.000 = =
E -5/3 3
0.100 - =
0.010 & Increasing r _
0001 1 Illlllll 1 1 IIlIII| 1 11111
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Frequency (Hz)
(a)
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at 10D. By inspection of these plots, we may conclude the
following.

e The temporal energy spectra are shifted to higher
frequencies where the mean velocity is greater, as
expected. However, unlike the situation at 30D, the
spatial energy spectra do not collapse to a single curve
indicating that the turbulence is not in equilibrium.

e The slope of the high frequency/high wavenumber plots
does not follow the —5/3 slope over any range but do
show a tangential approximation to the —5/3 slope. The
match to the —5/3 slope is worst in the outer parts of
the jet and at x = 10D.

e The deviation from the Kolmogorov spectrum appears
to occur at the high frequency end of the spectrum,
where the curves drop below the —5/3 slope. We hypoth-
esize that the reason is that the Richarson-Kolmogorow
cascade of large scales to small scales through triad
interactions as described in, e.g., Ref. 35 has not had
sufficient time to develop fully. Thus, the measure-
ments give a rough indication of the dynamics of
the cascade. The average convection velocity of the
large eddies between the exit and the 10D position
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FIG. 8. Left: Temporal energy spectra at 0, 0.5, 1.0, 1.5, and 2.0 jet half-widths at x = 15D. Right: Spatial energy spectra computed from the convection record

at the same locations.
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FIG. 9. Left: Temporal energy spectra at 0, 0.5, 1.0, 1.5, and 2.0 jet half-widths at x = 10D. Right: Spatial energy spectra computed from the convection record

at the same locations.
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FIG. 10. From left to right: 2nd order spatial structure functions at 15D and 10D and radial positions at 0, 0.5, 1.0, 1.5, and 2.0 jet half-widths.

is approximately 5 m s~!. Thus, a convection time of
X/Ucony = 0.0l m/5 m/s =0.01/5 s = 20 ms appears
to be insufficient for the cascade to convert the large
scales to the smallest scales that we can measure with
our setup.

o Finally, the different shapes of the curves near the axis
and far from the axis seems to indicate that the turbu-
lence is closer to the Kolmogorov shape near the axis
than at the outer part of the jet.

Figure 10 shows the measured data displayed as the 2nd
order spatial structure function at the locations 15D and 10D.
We see again symptoms of non-equilibrium as differences in
the curves at different radial positions. By inspection of the
plots, we can see that there are relatively more large scale
structures as we move downstream. We also notice that there
is relatively more small scale activity near the center line than
in the outer parts of the jet.

VIl. CONCLUSION

Our spatial record is not equivalent to a conventional
streamline or streak line. It consists of the time-sampled
velocities, but the temporal record is mapped into a spatial
one-dimensional record consisting of a sum of consecutive
convection elements. We can interpret this record as describ-
ing the transport or convection of fluid parcels through the M'V.
With the fluid parcels follow fluid properties such as velocity
structure, temperature, and particle concentration.

Itis intuitively clear that the scrambling of frequencies that
occurs in the temporal energy spectrum because of the trans-
port of small structures by the large instantaneous 3D velocity
will be un-scrambled by the new method, at least with regard
to the small, isotropic high wavenumber velocity structures.
The spatial energy spectrum then expresses the energy of the
spatial structures of the velocity passing the MV.

We show that spatial correlation functions and spatial
energy spectra computed from the convection record are equiv-
alent to the classical quantities within a spatial range defined
by the Taylor microscale. Beyond this range, the statistics may
still be useful though they are not necessarily directly compa-
rable to their classical counterparts in a general flow setting.

As can be observedin Figs. 5 and 7 LHS, comparing the spatial
PIV spectra to the spatial LDA spectra, they do indeed produce
directly comparable statistics across the complete spectrum of
scales measured—even well beyond the Taylor microscale.

Our method completely bypasses the traditional Taylor’s
hypothesis, but at the cost of an additional measurement of the
magnitude of the instantaneous total 3D velocity vector. The
method may be applied to all time sampling measurements (or
flow simulations) obtained at a fixed point in (locally) station-
ary flow, but, in high intensity turbulent flow such as atmo-
spheric and oceanographic flows, only the LDA (or maybe a
3D sonic anemometer) is able to provide reliable and unbiased
high resolution velocity measurements.

Itis important to note that this proposed convection record
mapping is general and thus applicable independently of
flow setting. Although the implementation is most straightfor-
wardly and most accurately measured with correctly function-
ing laser Doppler anemometers, it can indeed be implemented
also on any set of regularly sampled data including computer
simulations. The analysis is based on a continuous signal, so
the discretized signal must reflect the same behavior by being
sampled with a high enough sampling rate to resolve the small-
est scales in the signal. If the smallest temporal/spatial scales
of the analog measured signal cannot be resolved, the signal
must be anti-aliasing filtered prior to sampling to avoid these
effects according to standard theory.® The relevant parameter
in LDA measurements is the mean sample rate of the randomly
arriving temporal samples. To avoid averaging effects in the
determination of the spatial sampling increment [Eq. (26)], the
average (and stationary) sample rate should be greater than the
Nyquist rate.

We applied the method to measurements in a round, tur-
bulent jet in air with radial scans at different downstream dis-
tances from the jet exit, both in the fully developed jet at 30D,
where the turbulence is assumed to be in equilibrium, and in the
strongly non-equilibrium parts of the jet at 15D and 10D. In the
fully developed part of the jet, the spatial spectra measured with
LDA using our method show perfect agreement with spatial
spectra derived from PIV measurements obtained in the same
jet. Our spatial energy spectra and spatial 2nd order struc-
ture functions obtained in the non-equilibrium par of the jet
reveal interesting features of the developing turbulence that can
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be interpreted as resulting from an incomplete Richardson—
Kolmogorov cascade process where the triadic interactions
between large scales and small sales have not had time to reach
equilibrium.

ACKNOWLEDGMENTS

We wish to acknowledge the generous support of Fabrik-
sejer, Civilingenigr Louis Dreyer Myhrwold og hustru Janne
Myhrwolds Fond (Grant Journal Nos. 13-M7-0039 and 15-
M7-0031), and Reinholdt W. Jorck og Hustrus Fond (Grant
Journal No. 13-J9-0026). The authors also wish to thank
Professor Emeritus Poul Scheel Larsen for many helpful
discussions.

IG. L. Taylor, “The spectrum of turbulence,” Proc. R. Soc. London, Ser. A
164, 476 (1938).

2C. C. Lin, “On Taylor’s hypothesis and the acceleration terms in the Navier-
Stokes equations,” J. Appl. Math. 10, 295 (1953).

3M. J. Fisher and P. O. A. L. Davies, “Correlation measurements in a
nonfrozen pattern of turbulence,” J. Fluid Mech. 18, 97-116 (1964).

4J. L. Lumley, “Interpretation of time spectra measured in high-intensity
shear flows,” Phys. Fluids 8, 1056 (1965).

3J. C. Wyngaard and S. E. Clifford, “Taylor’s hypothesis and high frequency
turbulence spectra,” J. Atmos. Sci. 34, 922 (1977).

OA.S. Gurvich, “Influence of time evolution of turbulent inhomogeneities on
frequency spectra,” Atmos. Oceanic Phys. 16, 231-237 (1980) [Izvestiya
Akademii Nauk Sssr Fizika Atmosfery I Okeana 16(4), 345-354 (1980) (in
Russian)].

7R. A. Antonia, N. Phan-Thien, and A. J. Chambers, “Taylor’s hypothesis
and the probability density functions of temporal velocity and temperature
derivatives in a turbulent flow,” J. Fluid Mech. 100, 193 (1980).

8. W. Deardorff and G. E. Willis, “Investigation of the frozen-turbulence
hypothesis for temperature spectra in a convectively mixed layer,” Phys.
Fluids 25, 21-28 (1982).

9].C. Kaimal, R. A. Eversole, D. H. Lenschow, B. B. Stankov, P. Kahn, and
J. A. Businger, “Spectral characteristics of the convective boundary layer
over uneven terrain,” J. Atmos. Sci. 39, 1098-1114 (1982).

10G. Heskestad, “A generalized Taylor hypothesis with application for high
Reynolds number turbulent shear flows,” J. Appl. Math. 32, 735 (1965).

'The temporal energy spectrum is often in the turbulence community refereed
to as the power spectrum (of the velocity fluctuations) by convention from
electrical engineering.

I2H. Tennekes, “Eulerian and Lagrangian time microscales in isotropic
turbulence,” J. Fluid Mech. 67, 561 (1975).

13W. C. Thacker, A Transformation Relating Temporal and Spatial Spectra
of Turbulent Kinetic Energy (Department of Commerce, National Oceanic
and Atmospheric Administration, Environmental Research Laboratories,
Atlantic Oceanographic and Meteorological Laboratories, Miami, Florida
and Boulder, Colorado, 1977).

Phys. Fluids 29, 085109 (2017)

I4F H. Champagne, “The fine-scale structure of the turbulent velocity field,”
J. Fluid Mech. 86, 67 (1978).

I5K. B. M. Q. Zaman and A. K. M. F. Hussain, “Taylor’s hypothesis and
large-scale coherent structures,” J. Fluid Mech. 112, 379 (1981).

165, Mi and R. A. Antonia, “Corrections to Taylor’s hypothesis in a turbulent
circular jet,” Phys. Fluids 6, 1548 (1994).

I7E. Gledzer, “On the Taylor hypothesis corrections for measured energy
spectra of turbulence,” Physica D 104, 163 (1997).

18\, Wilczek, H. Xu, and Y. Narita, “A note on Taylor’s hypothesis
under large-scale flow variation,” Nonlinear Processes Geophys. 21, 645
(2014).

19R. J. Hill, “Corrections to Taylor’s frozen turbulence approximation,”
Atmos. Res. 40, 153 (1996).

20 -F. Pinton and R. Labbé, “Correction to the Taylor hypothesis in swirling
flows,” J. Phys. Il Fr. 4, 1461 (1994).

21p. Buchhave and C. M. Velte, “Conversion of measured turbulence power
spectra from temporal to spatial domain,” in Whither Turbulence and Big
Data, edited by A. Pollard, L. Danaila, and L. Castillo (Springer, Berlin,
2016).

22p, Buchhave, “Errors and correction methods in turbulence measurements
with the LDA,” Ph.D. thesis, State University of New York at Buffalo, 1979.

23p, Buchhave, W. K. George, and J. L. Lumley, “The measurement of tur-
bulence with the laser-Doppler anemometer,” Annu. Rev. Fluid Mech. 11,
443 (1979).

4C. M. Velte, W. K. George, and P. Buchhave, “Estimation of burst-mode
LDA power spectra,” Exp. Fluids 55, 1674 (2014).

25p. Buchhave and C. M. Velte, “Reduction of noise and bias in randomly
sampled power spectra,” Exp. Fluids 56, 79 (2015).

26p, Buchhave, C. M. Velte, and W. K. George, “The effect of dead time
on randomly sampled power spectral estimates,” Exp. Fluids 55, 1680
(2014).

27C. M. Velte, P. Buchhave, and W. K. George, “Dead time effects in laser
Doppler anemometry measurements,” Exp. Fluids 55, 1836 (2014).

28G. K. Batchelor, The Theory of Homogeneous Turbulence (Cambridge
University Press, 1953).

29H. Tennekes and J. L. Lumley, A First Course in Turbulence (MIT Press,
1972).

30p, M. Schaefer, “Curvature statistics of streamlines in various turbulent
flows,” J. Turbul. 28, 1-22 (2012).

31p M. Schaefer, “Statistics, geometries and scaling laws of streamlines and
streamline segments in turbulent flows,” Ph.D. thesis, Technical University
Aachen, 2013.

32A. Hodzi¢, C. M. Velte, and K. E. Meyer, “POD mode robustness for the
turbulent jet sampled with PIV,” in Whither Turbulence and Big Data, edited
by A. Pollard, L. Danaila, and L. Castillo (Springer, Berlin, 2016).

3p, Ewing, B. Frohnapfel, W. K. George, J. M. Pedersen, and J. Westerweel,
“Two-point similarity in the round jet,” J. Fluid Mech. 577, 309 (2007).

34g. Laizet, J. Nedi¢, and J. C. Vassilicos, “The spatial origin of 5/3 spectra
in grid-generated turbulence,” Phys. Fluids 27, 065115 (2015).

35R. H. Kraichnan, “Inertial-range transfer in two- and three-dimensional
turbulence,” J. Fluid Mech. 47, 525-535 (1971).

36y, B. Bendat and A. G. Piersol, Random Data: Analysis and Measurement
Procedures, 4th ed. (John Wiley & Sons, 2010), ISBN: 978-0-470-24877-5.


http://dx.doi.org/10.1098/rspa.1938.0032
http://dx.doi.org/10.1090/qam/51649
https://doi.org/10.1017/s0022112064000076
http://dx.doi.org/10.1063/1.1761355
http://dx.doi.org/10.1175/1520-0469(1977)034<0922:thahts>2.0.co;2
http://dx.doi.org/10.1017/s0022112080001085
http://dx.doi.org/10.1063/1.863623
http://dx.doi.org/10.1063/1.863623
http://dx.doi.org/10.1175/1520-0469(1982)039<1098:scotcb>2.0.co;2
http://dx.doi.org/10.1115/1.3627310
http://dx.doi.org/10.1017/s0022112075000468
https://doi.org/10.1017/s0022112078001019
http://dx.doi.org/10.1017/s0022112081000463
http://dx.doi.org/10.1063/1.868268
http://dx.doi.org/10.1016/s0167-2789(96)00300-4
http://dx.doi.org/10.5194/npg-21-645-2014
http://dx.doi.org/10.1016/0169-8095(95)00032-1
http://dx.doi.org/10.1051/jp2:1994211
http://dx.doi.org/10.1146/annurev.fl.11.010179.002303
http://dx.doi.org/10.1007/s00348-014-1674-z
http://dx.doi.org/10.1007/s00348-015-1922-x
http://dx.doi.org/10.1007/s00348-014-1680-1
http://dx.doi.org/10.1007/s00348-014-1836-z
http://dx.doi.org/10.1080/14685248.2012.702216
http://dx.doi.org/10.1017/s0022112006004538
http://dx.doi.org/10.1063/1.4923042
http://dx.doi.org/10.1017/s0022112071001216

