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Abstract  1 

Diffusive isotope fractionation of organic contaminants in aqueous solution is difficult to quantify 2 

and only a few experimental datasets are available for compounds of environmental interest. In this 3 

study, we investigate diffusive fractionation of perdeuterated and non-deuterated benzene and 4 

toluene. Multitracer experiments were carried out in 1-D gel dissection tubes and in a quasi 2-D  5 

flow-through porous medium. The experiments allowed us to simultaneously and directly compare 6 

the diffusive and dispersive behavior of benzene and toluene. We observed an unexpected, opposite 7 

behavior of the two monoaromatic hydrocarbons. Toluene showed a normal diffusive isotope effect 8 

(DC7D8/DC7H8=0.96) with enrichment of the non-deuterated isotopologue in the direction of the 9 

diffusive and transverse dispersive fluxes. Conversely, the measured trends for benzene indicate 10 

inverse diffusive fractionation (DC6D6/DC6H6=1.02), with a remarkably faster diffusion rate of the 11 

perdeuterated isotopologue that was enriched in the downgradient portion of the diffusion tubes and 12 

at the fringes of the contaminant plumes in the flow-through setup. These outcomes can neither be 13 

interpreted as mass-dependent fractionation nor be described as purely hydrodynamic (i.e., mass 14 

independent) effects. The results of this study are relevant for the use of labeled/non-labeled 15 

mixtures of organic compounds as conservative and (bio)reactive tracers in environmental 16 

applications.      17 

  18 
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Introduction  19 

Aromatic hydrocarbons are widespread contaminants, frequently found in soils and aquatic 20 

environments. Among these chemicals BTEX (i.e., benzene, toluene, ethylbenzene and xylene) 21 

compounds are of particular concern due to their relatively high solubility, mobility and toxicity.
1
 22 

Mixtures of labeled and nonlabeled compounds have been often applied as a diagnostic tool to 23 

understand and quantify contaminant transport and transformation mechanisms. For instance, in the 24 

field of groundwater contamination, deuterium-labeled BTEX compounds have been used in tracer 25 

tests, push-pull tests and in situ microcosms to evaluate contaminant retardation and in situ rates of 26 

transformation during groundwater bioremediation and natural attenuation.
2-6

 One important aspect 27 

that has not (yet) been evaluated in detail is the extent of diffusive isotope fractionation of BTEX 28 

compounds in aqueous solution and its implications in environmental systems. The evaluation of 29 

such effect is important since recent investigation of subsurface solute transport has highlighted the 30 

key controlling role of aqueous diffusion for groundwater contaminant transport at different 31 

scales.
7-10

 Despite the increased recognition of the quantitative importance and of the macroscopic 32 

impact of small scale diffusive processes on large scale transport of organic contaminants, only a 33 

few experimental and modeling studies have attempted to quantify diffusive isotope fractionation 34 

for organic compounds.
11-16

 The lack of data and mechanistic understanding of organic chemicals’ 35 

diffusive isotope fractionation becomes apparent when compared with the advances in the related 36 

field of inorganic isotope geochemistry, in which numerous studies have been carried out to 37 

investigate diffusive isotope effects of major cations, anions and dissolved gases in both aqueous 38 

solutions
17-29

 and non-aqueous systems.
30-33

  39 

In this work we focus on diffusive transport of perdeuterated and non-deuterated benzene and 40 

toluene. The diffusive behavior of these chemicals (particularly of benzene) was investigated in 41 

early studies,
34-36

 mostly as self-diffusion or as tracer diffusion in organic solvents. However, to the 42 
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best of our knowledge, no study has reported a comparison of diffusive isotope fractionation of 43 

these contaminants in aqueous solution. The purpose of this Letter is to report the unexpected, 44 

contrasting fractionation behavior of toluene and benzene that we have observed in a series of 45 

experiments performed in different setups under purely diffusive conditions (1-D gel dissection 46 

tubes), as well as in flow-through systems (2-D flow-through chamber). A key feature of the 47 

experiments was the simultaneous presence of non-deuterated and perdeuterated mixtures of 48 

toluene and benzene undergoing diffusion and lateral dispersion. In this way, in each experiment the 49 

4 tracers (C6H6, C6D6, C7H8, C7D8) were all transported under the same conditions, which facilitates 50 

a direct comparison of the effects of diffusion and transverse dispersion on the concentration of 51 

non-deuterated and perdeuterated benzene and toluene and, more importantly, on their diffusive 52 

isotope fractionation.   53 

 54 

Materials and Methods  55 

Chemicals and Analytical Methods. High-purity organic compounds (99.5%, Sigma-Aldrich, 56 

Germany) were used in the experiments. Measurements were carried out with a 7890A gas 57 

chromatograph (GC) with a capillary column (30m×250 μm, 1.0 μm film thickness; Agilent, USA)  58 

coupled to a 5975C tri-axis mass selective detector (MSD) (Agilent, USA). Headspace samples 59 

were injected for analysis using a COMBIPAL multi-purpose autosampler system.  60 

1-D Diffusion Experiment. Gel dissection experiments were performed in cylindrical glass tubes 61 

(1.1 cm diameter and 20 cm length) using agarose gel prepared with a minimum amount (1% w/w) 62 

of phyto agar (Duchefa, Netherlands). Agar solutions containing mixtures of dissolved toluene, 63 

perdeuterated toluene, benzene and perdeuterated benzene (1:1:1:1 volume proportion) were 64 

prepared and filled in the first 10 cm of the diffusion tubes. This zone acted as contaminant source 65 

during the experiments in which the compounds diffused towards the remaining portion of the tubes 66 
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that was filled with pure gel medium. The tubes were kept horizontally at a constant temperature of 67 

20 
◦
C. After 9 and 15 days, the tubes were sampled by cutting the gel into 1 cm slices with a scalpel. 68 

The slices were immediately sealed in 10 ml glass vials with screw caps and sent to GC analysis.  69 

2-D Flow-through Experiment. Flow-through experiments were performed in a quasi two-70 

dimensional flow-through chamber (inner dimensions: 80cm×18cm×1cm, L×H×W), equipped with 71 

10 equally-spaced (1 cm spacing) ports both at the inlet and at the outlet. The flow-through system 72 

was filled with homogeneous quartz sand (Euroquarz, Germany) with grain diameter of 1.0-1.5 mm. 73 

The sand was washed in an acidic solution and dried for 12 hours in an oven at 120 ºC before filling 74 

the flow-through chamber. The sand was filled with a wet-packing procedure using ultra-pure Milli-75 

Q water (EvoquaWater, USA) to avoid air entrapment in the porous medium.
37

 The inlet and outlet 76 

ports were connected to two high-precision multi-channel peristaltic pumps (IPC-N24, Ismatec, 77 

Switzerland). Sampling was performed with a 10-channel syringe pump (KD Scientific, USA). The 78 

system was operated at a seepage velocity of 0.8 m/d. An aqueous solution containing the four 79 

isotopologues was continuously injected from the two lowermost ports at the inlet of the flow-80 

through chamber. After establishing a steady-state plume (i.e., exchanging at least two pore 81 

volumes), samples were taken at the outlet ports and analyzed for the concentrations of deuterated 82 

and non-deuterated compounds.  83 

Modeling Approach. The governing equations for contaminant transport in the two experimental 84 

setups are the 1-D Fick’s second law of diffusion
38

 in the gel dissection tubes, and the 2-D steady 85 

state advection dispersion equation in the 2-D flow-through setup.
39-40

 The models used to 86 

quantitatively interpret the experimental results are based, respectively, on a numerical and an 87 

analytical solution of these governing equations. The key parameters controlling transport of the 88 

different toluene and benzene isotopologues are their diffusion coefficients and, in the flow-through 89 

setup, their transverse hydrodynamic dispersion coefficients. The governing equations and their 90 
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boundary conditions are summarized in the Supporting Information together with concentration 91 

maps of the steady-state plumes in the 2-D flow-through setup.  92 

 93 

Results and Discussion 94 

Two examples of benzene and toluene spatial profiles measured in the 1-D setup after 9 and 15 days 95 

of diffusion are illustrated in Figure 1. The plots show typical diffusion curves with small 96 

differences between deuterated and non-deuterated compounds that are difficult to appreciate in the 97 

concentration plots. The differences become apparent by plotting the ratios C6D6/C6H6 and 98 

C7D8/C7H8. These ratios surprisingly show an opposite trend with a decreasing pattern for toluene, 99 

and a reverse, increasing trend for benzene. To quantify these observations we used a simple 100 

inverse power law model,
21,41

 which relates the diffusion coefficients of the deuterated and non-101 

deuterated isotopologues to their molecular masses: 102 
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 103 

Figure 1. Spatial profiles of concentration and isotopologue ratio for benzene and toluene along the 104 

length of the diffusion tubes in the 9-day experiment A (panels a-c) and in the 15-day experiment C 105 

(panels d-f). The symbols (squares for the non-deuterated, triangles for the perdeuterated 106 

isotopologues, circles for the ratios) represent the measured data, whereas the lines are the outcomes 107 

of the simulations.  108 

 109 

Fitting the experimental data allowed estimating the values of the diffusion coefficients for the non-110 

deuterated and D-labeled isotopologues and, thus, the value of the exponent  expressing the mass 111 

dependence of the isotopologues diffusion coefficients. The fitting procedure was carried out using 112 

the function lsqnonlin implemented in MATLAB. Table 1 summarizes the results obtained for the 113 

different tube experiments and reports the observed diffusive isotope fractionation. Both the 114 

graphical representation of the experimental data (Figure 1) and the parameters reported in Table 1 115 
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show a normal isotope effect for toluene and an inverse isotope effect for benzene. In the case of 116 

toluene, the deuterated isotopologue has a slightly lower diffusion coefficient and results in 117 

decreasing isotope ratios as the toluene species diffuse towards the pure gel medium. For benzene, 118 

instead, the data show an inverse diffusive isotope effect: the molecules of the deuterated 119 

isotopologue diffuse at a slightly faster rate and become enriched in the initially pure gel medium, 120 

as benzene diffuses from the contamination source. This behavior was consistently observed in all 121 

experiments. The  (0.444-0.490) values for toluene are consistent with those of previous 122 

experiments,
15

 whereas the negative values for benzene clearly indicate an inverse isotope effect. 123 

Average values characterizing normal and inverse isotope fractionation observed for toluene and 124 

benzene in these diffusion experiments are:  DC7D8/DC7H8=0.962±0.002 and 125 

DC6D6/DC6H6=1.019±0.002.  126 

 127 

Table 1. Summary of the results for the multitracer 1-D diffusion experiments. 128 

Experiment  Time DCnHm   DCnDm   β DCnDm/DCnHm   

  [Days] [×10
-9

m
2
s

-1
] [×10

-9
m

2
s

-1
] [-] [-] 

Benzene 
     

A 9 0.958±0.040 0.976±0.017 -0.251 1.019 

B 9 0.958±0.008 0.978±0.007 -0.279 1.021 

C 15 0.956±0.021 0.972±0.020 -0.218 1.016 

D 15 0.957±0.025 0.974±0.024 -0.238 1.018 

Toluene 
    

 A 9 0.800±0.010 0.768±0.009 0.490 0.960 

B 9 0.811±0.015 0.780±0.012 0.460 0.962 

C 15 0.798±0.012 0.769±0.010 0.444 0.964 

D 15 0.810±0.019 0.780±0.016 0.453 0.963 

 129 

Figure 2 shows vertical profiles of concentration and isotope ratio observed for the simultaneous 130 

transport of deuterated and non-deuterated benzene and toluene in the flow-through chamber. The 131 

concentration trends show a typical transverse dispersion profile for plumes continuously injected in 132 

a homogeneous porous medium. The isotope ratio measured at the different ports confirms the 133 
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normal diffusive fractionation for toluene and the inverse fractionation for benzene. In fact, the ratio 134 

C7D8/C7H8 decreases from the core towards the outer fringe of the plume, whereas the ratio 135 

C6D6/C6H6 increases towards the plume fringe. No fitting procedure was used to evaluate the data 136 

from the flow-through experiment. Instead, the experimental results were evaluated with pure 137 

forward modeling of solute transport based on the average diffusion coefficients of the 4 138 

compounds determined in the tube diffusion setups. The key parameter in this setup is the 139 

transverse hydrodynamic dispersion coefficients, which is compound (and isotopologue) specific 140 

and was described with the following parameterization: 141 
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where DP [L
2
/T] denotes the velocity-independent pore diffusion coefficient; Pe = vd/Daq [-] is the 142 

grain Péclet number, in which d [L] is the average grain size diameter and v [L/T] is the seepage 143 

velocity; δ [-] is the ratio between the length of a pore channel and its hydraulic radius; a value of 144 

δ=5.37 was determined in previous tracer experiments performed in a range of porous media, grain 145 

sizes and seepage velocities comprising the conditions of the current flow-through setup.
42

 This 146 

parameterization of transverse dispersion has been tested for solute transport in similar quasi 2-D 147 

systems
43-45

 and verified in pore-scale studies
46-47

 and fully three-dimensional flow-through 148 

experiments.
38

 The essential feature of Eq. 2 is that it acknowledges the importance of aqueous 149 

diffusion also in the non-linear, velocity-dependent mechanical dispersion term. The good 150 

agreement of the predictive, purely forward simulations for both measured concentrations and ratios 151 

(Figure 2) shows the capability of the model to capture the diffusive fractionation effects in the 152 

flow-through system and also the accuracy of the experimentally determined values of aqueous 153 

diffusion for the deuterated and non-deuterated tracers obtained from the 1-D tube experiments. The 154 

latter compare very well with the values of aqueous diffusion coefficients computed with classical 155 
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empirical correlations for organic compounds (see Table S2 in the Supporting Information); this 156 

also indicates that sorption of toluene and benzene was not important in our experiments. The 157 

values of the transverse dispersion coefficients, determined according to Eq. 2, and used in the 158 

profiles and isotope ratio maps shown in Figure 2 are: DT,C7H8=1.563×10
-9

, DT,C7D8=1.547×10
-9

, 159 

DT,C6H6=1.641×10
-9

 and DT,C6D6=1.649×10
-9

 m
2
/s. 160 

 161 

Figure 2. Observed and simulated vertical profiles of concentrations and ratios at the outlet of the 162 

flow-through setup (a-b, d-e) and spatial maps of the isotopologue ratio for benzene (c) and toluene 163 

(f). The concentration data at the outlet ports (squares for the non-deuterated, triangles for the 164 

perdeuterated isotopologues) are average of triplicate measurements of two sampling events of the 165 

steady-state plumes, carried out after flushing 2 and 4 pore volumes (i.e., 48 and 96 hours, 166 

respectively). 167 

  168 
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Diffusive isotope fractionation in condensed systems, such as aqueous solutions, is challenging to 169 

investigate and to conceptualize in a solid theoretical framework. Different factors that may affect 170 

diffusive isotope fractionation include solute mass, volume, shape, molecular structure, polarity, 171 

temperature and solute-solvent interactions. Mass and volume dependencies have dominated the 172 

discussion about diffusive fractionation in condensed systems and the interpretation of diffusion 173 

experiments. Models that have been proposed to capture the effects of diffusive fractionation 174 

include the so-called hydrodynamic description (e.g., Stokes-Einstein relation), as well as the 175 

extension to the condensed phase of formulations derived from Chapman-Enskog kinetic theory of 176 

gas diffusion.
38

 The hydrodynamic model does not include mass dependence and the key parameter 177 

is the radius and, thus, the molar volume of the solute, whereas the kinetic theory predicts an 178 

inverse square root relation with the reduced mass.
41

 Most of the experimental studies for different 179 

aqueous solutes have reported a mass dependence that is typically weaker than the inverse square 180 

root relation from kinetic theory. A simple power law expression (Eq. 1), in which the exponent is 181 

derived by fitting the experimental data, is the model that is most often used to relate the diffusive 182 

isotope effects to the mass of the diffusing solutes in theoretical, computational and experimental 183 

studies.
21,24-26,41

 It is worth pointing out that in this simple model the exponent  is an empirical 184 

coefficient which also lumps other factors such as steric effects and solute-solvent interactions that 185 

are likely to play an important role on diffusive isotope fractionation. Indeed, the data presented in 186 

this study show normal and inverse isotope effects that can neither be interpreted on the basis of 187 

mass dependencies nor be ascribed as purely hydrodynamic (i.e., mass independent) effects. In fact, 188 

based on the sole mass difference the deuterated benzene should have shown lower diffusion rates 189 

than the non-labeled isotopologue. Instead, an inverse effect was observed both in the tube diffusion 190 

experiments and in the flow-through setup. Our experiments also allow excluding a purely 191 

hydrodynamic interpretation of the results. Molar volumes of deuterated benzene and toluene have 192 
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been shown to be smaller than those of the corresponding non-labeled isotopologues; for instance, 193 

Bartell and Roskos
48

 report the following values at 20 
◦
C: VC6D6=88.62 mL/mol, VC6H6=88.86 194 

mL/mol, VC7D8=105.98 mL/mol, and VC7H8=106.28 mL/mol. These differences are commonly 195 

attributed to the smaller effective radius of the C-D bonds compared to the C-H bonds.
48-49

 However, 196 

a pure hydrodynamic interpretation, based on a simple Stokes-Einstein relation and considering the 197 

molar volumes reported above, would predict very weak inverse isotope effects 198 

(DCnDm/DCnHm=1.0009) for both compounds. This was not observed in this study, in which stronger 199 

inverse and normal diffusive isotope fractionation effects were observed for benzene and toluene, 200 

respectively. We hypothesize that the geometry of the hydration shells surrounding the aromatic 201 

molecules and the solvation dynamics play a major role for diffusive isotope fractionation of 202 

deuterated and non-deuterated benzene and toluene in aqueous solutions. For instance, a recent 203 

computational study of benzene hydration
50

 reports that the hydration shell of a benzene molecule 204 

has an average number of 31 water molecules and this number can change and diminish 205 

substantially upon increase of temperature and decrease of density. To explain the unexpected 206 

inverse fractionation observed for benzene, one could hypothesize a similar effect on benzene 207 

hydration due to the deuterium substitutions. Processes connected to the hydrophobic effect of 208 

aromatic molecules in solution and associated changes of density and orientation of water 209 

molecules surrounding the solute,
51

 as well as the structure and patterns of solute hydration
52

 appear 210 

to be more important than the effects due to mass and molar volume differences. This hypothesis 211 

will require future substantiation that might be provided by molecular dynamic simulations of 212 

aqueous diffusion of deuterated and non-deuterated species. Such simulations have been performed 213 

for instance for charged species
22,53-54

 and have contributed to elucidate the importance of the 214 

hydration shell and of the interaction between solute and water molecules for the observed isotope 215 

fractionation of different ions in aqueous solution. The different interaction of deuterated and non-216 
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deuterated benzene and toluene molecules with water molecules appears to be an important factor to 217 

explain the experimental observations of this study. This can be deduced also by comparing the 218 

results of this study with earlier experiments. For instance, benzene self-diffusion
55

 and tracer 219 

diffusion in chlorobenzene
56

 showed only very minor or no isotope effects during diffusion of C6H6 220 

and C6D6 in these organic liquids, which contrasts with the rather large fractionation consistently 221 

observed in the different aqueous systems considered in our study. 222 

We think that the normal and inverse diffusive fractionation effects observed for deuterated and 223 

non-deuterated BTEX will stimulate further research to develop a mechanistic understanding of 224 

transport and transformation of these contaminants and their labeled mixtures in different 225 

environments. Despite fractionation of D/H substituted aromatic compounds due to biodegradation 226 

can be large and may be dominant for many transformation pathways,
57

 our study shows that 227 

diffusive fractionation is also significant and should be considered when these chemicals are used as 228 

tracers and diagnostic tools in environmental systems in which transport and transformation 229 

processes are typically coupled. On a broader perspective, the results of this study, showing 230 

different diffusive isotope fractionation of very similar compounds, also have implications for the 231 

fast developing field of compound specific stable isotope analysis (CSIA) techniques
58-59

, which 232 

will greatly benefit from data for different environmental contaminants. The path towards 233 

developing a comprehensive database of organic pollutant diffusive isotope fractionation and a 234 

sound theory capturing the key mechanisms causing diffusive fractionation is inherently complex 235 

but rich of intriguing future challenges.    236 

 237 

Supporting Information 238 

Description of the flow-through system and of the modeling approach used to quantitatively 239 

interpret the results in the different experimental setups.   240 
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