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Abstract 

 

Analytical expressions for energy release rate and mode mixity phase angle are derived for a sandwich composite double 

cantilever beam fracture specimen with the face sheets reinforced by stiff plates. The sandwich beam is considered symmetric 

with identical top and bottom face sheets. Only pure moment loading is considered. J-integral coupled with laminate theory 

is employed to derive closed form expression for the energy release rate in terms of applied moments, geometry and material 

properties. A scalar quantity ω is obtained to express mode mixity phase angle. It is shown that ω is independent of applied 

loading conditions. The value of ω is found to be moderately influenced by reinforcement thicknesses.  

 

Nomenclature 

ψ – mode-mixity phase angle  

G – energy release rate  

J – J- integral  

a – pre-crack length  
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Γ – integration path for J integral  

0
xε  - laminate mid-plane strain 

xκ - laminate mid-plane curvature 

σij – stress tensor 

Md – moment applied on debonded beam 

Ms – moment applied on substrate beam  

Ef – Young’s modulus of face sheet  

Ec – Young’s modulus of core  

Er – Young’s modulus of reinforcement layer  

hf – thickness of face sheet  

hc – thickness of core  

hr – thickness of reinforcement layer  

K – stress intensity factor 

β - Dundur’s bimaterial parameter  

ε – oscillatory index 

ed – neutral axis distance (debonded beam) 

es – neutral axis distance (substrate beam) 
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I. Introduction 

Face/core interface debonding is a serious failure mode that affects the performance of a sandwich structure.  Debonds (face 

and core separation) can occur during liquid resin processing due to inadequate wetting of the face/core interface region which 

reduces the adhesive strength between face and core. Face/core debonds may also occur due to service loads such as wave 

slamming, impact and fatigue cycling. Debonds may propagate along the interface or kink into the core. The propensity of 

the crack to propagate is determined by the local stress state at the crack tip for a given loading condition. The stress intensity 

factors at the crack tip for a given loading condition can be expressed in terms of a mode-mixity phase angle (ψ) which 

quantifies the ratio of shear to normal loading at the crack tip. 

Determination of the interface fracture resistance is vital from a design perspective. There are various experimental methods 

developed to determine the interface fracture toughness such as the Cracked Sandwich Beam (CSB) [1], Double Cantilever 

Beam (DCB) [2], Tilted Sandwich Debond (TSD) specimen [3], the Three-Point Sandwich Beam (TPSB) [4] , Mixed-mode 

Bending (MMB) specimen [5] and Single Cantilever Beam (SCB) sandwich specimen [6]. Most of the devised experimental 

test methods were inspired by fracture test methods developed for laminate composites. For instance, the MMB test method 

developed for delamination testing [7], [8] was extended to sandwich composites [5] [9]. The SCB sandwich specimen is a 

simple test set-up for determining mode I fracture toughness of face/core interface [10]. However, appropriate sizing of the 

specimen must be undertaken to ensure that the face/core crack propagates along the interface [11] at mode I loading. Efforts 

are underway to implement the SCB sandwich specimen as a standard test method for mode I fracture toughness 

characterization [12].   

Due to the high elastic mismatch across the interface in sandwich composites, the face/core crack is inherently mixed mode. 

A full characterization of the face/core interface inevitably requires testing over a wide array of mode-mixity phase angles. 

Therefore, it is desirable to control the mode-mixity during the test. A relatively recently developed test method for 

delamination testing is the Double Cantilever Beam loaded with Uneven Bending Moments (DCB-UBM) developed by 

Sørensen et al. [13]. This method was recently extended to sandwich composites by Østergaard et al. [14] and Lundsgaard-
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Larsen et al. [15], and is schematically illustrated in Fig 1. In this method, it is possible to perform a fracture test at a desired 

mode-mixity by controlling the moments M1 and M2 applied to the specimen end. 

 

Figure 1. DCB-UBM specimen loaded with edge moments 

 

Reference is made here to the crack element approach by Suo and Hutchinson [16] who developed a fracture mechanics 

analysis approach for a bi-layer element and Kardomateas et al. [17] who extended this procedure to a cracked sandwich 

element. These authors considered only in-plane (axial) forces and moment couples acting on the edge of the specimen. An 

analytical expression for the energy release rate, G, was obtained through the J-integral. The mode decomposition was 

performed using the stress intensity factors KI and KII, derived analytically except for a single scalar parameter ω, which was 

extracted from the numerical solution of one loading combination.  

Sandwich panels with thin facesheets (in the range of 0.5 mm) are not uncommon, especially in the aircraft industry. Fracture 

characterization of such sandwich composites possess many problems such as load application to the debonded face sheets 

which, if thin, will undergo large nonlinear deflections and rotations. A method to reduce displacements is to reinforce one or 

both faces with stiff layers named doublers. This method was adopted by Lundsgaard-Larsen et al. [15], who bonded stiff 

steel plates to both facesheets to reduce the rotation. In this paper, expressions for the energy release rate and mode-mixity 

phase angle are derived for a reinforced DCB-UBM fracture specimen loaded by pure edge moments. The mode-mixity phase 

angle (ψ) quantifies the ratio between mode II and mode I stress intensity factors.  

II. Analysis of Sandwich Fracture Specimen 

The sandwich specimen considered here (see Fig. 2) consists of five layers, two composite face sheet laminates labeled 1 and 

2, the core, and two reinforcing plates of thickness hr, bonded to each of the face sheets. Typically, the face sheets are 
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composed of multi-directional laminates with plies arranged in a symmetric and balanced way. Analysis of such a sandwich 

element is simplified by homogenizing the laminate into a specially orthotropic composite layer of the same thickness as the 

laminate, and stiffness E1, E2, ν12 , ν21 and G12. The approach presented here, however, assumes all layers are isotropic with 

Young’s modulus E and Poisson’s ratio ν. Transformation of orthotropic elastic constant of the laminate face sheet into 

isotropic constant is discussed in Appendix B. 

 

Figure 2. Sandwich beam element with reinforcing doubler layers of thickness hr 

Figure 3 shows the superposition scheme used for the analysis of DCB-UBM specimen. The original configuration is shown 

in Fig. 3a. By adding the un-cracked configuration subject to pure moments per unit width, M3, as shown in Fig. 3b, the force 

and moment configuration shown in Fig. 3c is obtained.  As indicated in Fig. 3c, beam #1,  referred to as the debonded beam, 

consists of the top face sheet and reinforcement layer (thickness, H1 = hr + hf) and beam #2 referred as the substrate part 

consists of the layers beneath the pre-crack i.e. core, bottom face sheet and bottom reinforcement layer (thickness, H2 = hc + 

hf + hr). The intact portion right of the crack front comprising of both face sheets, reinforcement layers and the core is referred 

to as the base part (thickness, H3 = 2hr + 2hf + hc). Hence, the two systems will have same energy-release rate and stress 

intensity factors. This analysis follows the principal approach performed by Suo and Hutchinson for a bi-material interface 

[16]. The DCB-UBM specimen is loaded by pure moments per unit width, M1 and M2, applied to the left edge as shown in 

Fig. 1. Hence, there are no axial in-plane forces or transverse shear force acting on the specimen. In some cases, axial loads 

are acting on the sections. Suo and Hutchinson [18] considered axial loads P1, P2 and P3 per unit width. P1 and P2 act on the 
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left edge and P3 acts on the right edge. The influence of these forces on the crack loading is included in their analysis, and it 

is possible to consider such loads also in the present analysis. For the specific test specimen considered here (DCB-UBM), 

however, there is no axial force present, and hence is not considered in our analysis. 

     

(a)                (b) 

 

(c) 

Figure 3. Superposition scheme of sandwich geometry 

The moment acting on the debonded arm, Md, and axial force, P can be expressed in terms of M3 as:  

 2 3

1 3 3

P c M

M M c Md

= −

= −
      (1) 

where expressions for c2 and c3 are obtained from stress analysis of each beam provided later. Notice that the three original 

loading parameters are reduced to two independent variables, P and Md. From equilibrium,  

*
1M M Pd= + ∆       (2) 

= 
 

 

(1a)  
(1b) 
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where    

            '
1 3 1 2H δ δ∆ = − −                         (3) 

and 

       '
1 1 1Hδ δ= −  

The distribution of stress in each sub-beam can be determined from laminate beam theory [19] where each part of the sandwich 

beam is considered as multi-layered beam (see Fig. 3). The thickness of the debonded beam #1 is H1 = hf + hr and of the 

substrate beam #2 is H2 = hc + hf + hr. The force and moment  (per unit width) are given by [19]: 

0N A Bx x xε κ= +                              (4) 

0M B Dx x xε κ= +                       (3b) 

where Nx and Mx are the force and moment resultants, and  0
xε  and xκ  are the mid-plane strain and curvature. The extension, 

coupling and bending stiffnesses (A, B and D) are defined as: 

(y y )1
1

1 2 2(y y )12 1

1 3 3(y y )13 1

n
A Ek k k

k
n

B Ek k k
k

n
D Ek k kk

∑= − −
=

= −∑ −
=

∑= − −=

       (5) 

where the y-axis is referenced to the geometric mid-plane (y = 0). k is the layer index k = 1, 2 ...n, where n is the number of 

layers. yk is the y-coordinate of the interface between layers k and k+1. Note that y0 = -h/2 where h is the total laminate 

thickness. kE  is the elastic modulus in the x - direction for ply k. For plane strain, 2/ (1 )k k kE E ν= −  while for plane stress,

k kE E= . An example of the layer coordinates, (yk) for the intact part of the specimen (#3 in Fig. 3c) is shown in Fig. 4.  

(4a) 

 
(4b) 

 

 

(5a) 
 

(5b) 
 

(5c) 

 

 

(3a) 
 

 
 

 
 

 

 

 

(3b) 
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Figure 4. Layer definition for the intact part (#3) of the sandwich specimen 

The stress in each layer is:   

( ) Ex k xkσ ε=       (6) 

where the strain is given by:  

0 yx x xε ε κ= +       (7) 

Consider first the configuration shown in Fig. 3b. Figure 4 shows the layer coordinates. For the pure bending case, substituting 

(Nx = 0) in Eq. (4), provides the mid-plane strain, and the y-coordinate of the neutral axis:  

0 x
x

B
A
κ

ε = −       (8) 

NA
By
A

=        

For simplicity, the sandwich beam is assumed to be symmetric (B = 0). For this case, Eq. (4b) yields, x xM Dκ= . Re-

arranging and substituting for 0 0xε = in Eq. (7) gives,  

3My yx x D
ε κ= =       (9) 

(8a) 
 
 

(8b) 
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Substituting xε in Eq. (6) to obtain stress: ( ) 3
x kk

ME y
D

σ = . The force, P, acting on debonded part (beam #1), Fig. 3, is 

obtained by integrating the stress ( )x k
σ over the cross section as:  

/23
2 3

/2

H
P dy c Mx

hc
σ=− =−∫      (10) 

Integration yields,  

( ) ( )2 2 2 2
54 3 4

2 2

E y y E y yf r
c

D

− + −
=      (11) 

where the ply coordinates are illustrated in Fig. 4. The moment Md, Fig. 3, acting on beam #1 (debonded) is given by: 

23
1 122

H hcM M y dyd x
hc

σ δ  = − − +∫     
      (12) 

1 3 3M M c Md = −          

where 

3 23 211 2
3 3 2 8 2 2 4

3 23 211 23 3
3 8 2 2 4 2

hc
E f h h h hc c c cc h hf fD

hc
H HE h hr c ch hf fD

δ

δ

  +             = + − − + −               

  +             + − + − − +             
     

   (13) 

III. J-integral calculation 

The current analysis is carried out in the ambit of Linear Elastic Fracture Mechanics (LEFM) regime. In order to obtain the 

energy release rate for a pre-cracked sandwich element reinforced with stiff doubler layers, the J-integral approach is chosen.  

(12a) 
 
 

(12b) 
 

 

 

9 
 



 

Figure 5. J-integral path in reinforced sandwich beam 

J-integral was calculated for the closed path shown in Fig. 5 using the general expression [20] : 

. uiJ Wdy n dSij j x
σ ∂

= −∫Γ ∂
       (14) 

where σij is the stress tensor, dS is a length increment along the closed path Γ, nj is an outward normal vector to the closed 

contour and ui is the displacement vector. W is the strain energy density, 1
2

W x xσ ε= . The J-integral is non-zero only along the 

vertical paths near the left edge marked Γ1 – Γ3 and Γ9 - Γ10. For the horizontal paths dy= 0  and, the normal vector is directed 

along the y-axis: σijnj = 0, making no contribution to J. Furthermore, the vertical paths (Γ4 – Γ8) along right edge do not 

contribute to J as no load acts on that edge (see Fig. 5). The J-integral is evaluated for all layers and summed up:  

10 1 2
21

J E dyp x
p

σ= −∑ ∫
= Γ

       (15) 

According to Eq. (15) J-integral is calculated from the stress σx which is due to the acting moments and forces (see Fig. 5). 

The total energy release rate then becomes:  

Substrate 1 2 3 9 10J G J J J J J J JDebonded= = + = + + + +    (16) 

J1 through J3 and J9 - J10 are calculated from the stress in each layer. A detailed derivation of the J integral is provided in 

Appendix A, which yields, 
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( ) ( ) ( )

( ) ( )

22 21 1 2 1 3 1 2 2
2 2 2 2 2

2 2 1 3 3
2

L V V V L VG P M dEh HsH H HEh Eh s ss dd s

V L VM Pd Eh H Eh Hd sHs d s

    ∆ ∆  = + + − + + +        

 
∆ − − 

 

  (17) 

This equation is derived in Appendix A. The above expression for G is re-arranged to obtain a quadratic form in P and Md 

similar to [17] as follows: 

2 2
1 2 3J G a P a M a PMd d= = + −      (18) 

where      

( ) ( ) ( )
2

1 1 2 3
1 2 2 2

L V V V
a

Eh HsHEh Eh s sd s

∆ ∆
= + + +         (19) 

2 22 2 2
L Va
H Hsd

= +          (19b) 

( ) ( )
2 2 3 3

3 2
V L V

a
Eh H Eh Hd sHs d s

∆
= − − −        (19c) 

IV. Mode-Mixity expression  

The energy release rate may be expressed in terms of a complex stress intensity factor (K = K1 + iK2) [13, 14] as: 

2|K|G B=       (20) 

where 1i = −  and  

( ) ( )1 1
216 cosh

G Gc f f cB
G Gf c

κ κ

πε

+ + +
=        (21) 

where ε, the oscillatory index is expressed as: 

(19a) 
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1 1ln
2 1

βε
π β

 −
=  + 

       (22) 

The Dundur’s parameter β, is given by 

( ) ( )
( ) ( )

1 1

1 1

G Gf c c f
G Gc c c f

κ κ
β

κ κ

− − −
=

+ + +
        (23) 

Gf and Gc are the shear moduli of the face and core. ( ) ( )3 4 1m m mκ ν ν= − + for plane strain and 3 4m mκ ν= − for 

plane stress conditions. νm is the Poisson’s ratio, m = 1 and 2 for upper face sheet and core respectively. Substituting energy 

release rate, G from Eq. (18) in (20) yields: 

( )12 2 2|K| 1 2 3a P a M a PMddB
= + −       (24) 

There are two possible roots for K in Eq. (24). The roots for K include both real and imaginary parts. Kardomateas et al. [17] 

found the roots of a similar equation following the approach of Thouless et al. [23] and Hutchinson et al. [16]. Therefore, 

exploiting similar arguments the complex stress intensity factor K can be written as: 

( )1K 1 2
iaP a bM a hd fB
ε−= − +        (25) 

It should be noted that Eq. (24) is of same form as in [17]. For the first root, the complex numbers a and b are defined [18]: 

ia e ε=   ( )ib ie ω γ+=−       (26) 

where 

3sin
2 1 2

a
a a

γ =       (27) 

It is required that a and b are independent of loading for the derivation of closed form solution of mode-mixity. Thus, by 

selecting the first root, the parameter ω in Eq. (26) becomes dependent only on geometry and material properties of the 

reinforced sandwich specimen but not on loading. Substituting a and b in Eq. (25) leads to: 
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( )1K 1 2 1 2
i i iK iK P a ie M a h ed fB
γ ε ω−= + = − −      (28) 

The definition of the mode-mixity phase angle follows Hutchinson and Suo [18] for a bimaterial interface crack. The mode 

mixity phase angle ψ is defined as: 

Im[K ]1tan
Re[K ]

ih f
ih f

ε
ψ ε

 
 −=  
 
 

      (29) 

where the real and imaginary parts of the arguments are [23]:  

1Re K cos sin( )1 2
ih P a M adf B
ε ω ω γ   = − + +   

     (30) 

1Im K sin cos( )1 2
ih P a M adf B
ε ω ω γ   = − − +   

                

Note that the near tip oscillation is suppressed by this definition of ψ, and that Re K | |cosih Kf
ε ψ =  

and Im K | |sinih Kf
ε ψ =  

. An 

expression for the phase angle ψ can be obtained from Eqs.(29) and (30): 

( )
( )

sin cos
tan

cos sin
λ ω ω γ

ψ
λ ω ω γ

− +
=

+ +
        (31) 

where 

1

2d

aP
M a

λ = −       (32) 

The parameter λ incorporates the influence of stiffened face sheet through a1 and a2. The parameter ω can be expressed in 

terms of the phase angle as: 

( )cos sin tan1tan
sin cos tan
γ λ γ ψ

ω
λ γ γ ψ

+ + −=  + − 
     (33) 

 

(30a) 

 
 

 

 

(30b) 
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V. Calculation of ψ and ω  

Finite element analysis (FEA) of the DCB-UBM specimen combined with a method to extract the stress intensity factors 

called the Crack Surface Displacement Extrapolation (CSDE) method [24] is employed here to calculate ω and ψ. Two-

dimensional plane strain models of sandwich specimens were made in ANSYS® [25], comprising iso-parametric 4-node 

(PLANE 42) and 8-node (PLANE 82) elements. A highly discretized mesh was used near crack tip (see Fig. 6). The face 

sheets, core and reinforcement layers are considered linear elastic and isotropic. The PLANE 42 elements were used at the 

crack tip with a minimum element size of 0.005 mm. These elements were used to capture the large strain gradients 

encountered at the crack region. The mode-mixity phase angle (ψ) is extracted from the near-tip crack flank displacements in 

the following form: 

( )1 1tan ln tan 2xx
hy

δψ ε ε
δ

   − − = − +     
      (34) 

where x is distance behind the crack tip, ε is the oscillatory index (Eq. 22) and h is a characteristic length, which is taken as 

the face sheet thickness, h = hf. The CSDE method is implemented as a subroutine in the commercial FE-package ANSYS® 

and employs crack flank opening and sliding displacements (δy  and δx) over a region very close to behind the crack tip. The 

energy release rate is given by [24]:  

2(1 4 ) 2 2( )
2 ( 1)
GmGCSDE x yx km

π ε
δ δ

+
= +

+
     (35) 

where (3 4 )km mν= −  for plane strain and ( )(3 4 )/ 1km m mν ν= − + for plane stress, mν is Poisson’s ratio. m =1 and 2 for face and 

core. G1 and G2 are the shear moduli of the face and core materials respectively.  

FEA is performed on both un-reinforced and reinforced DCB-UBM sandwich specimens. FEA results for un-reinforced 

specimens are compared to analytical expressions derived here for the energy release rate Ganal (Eq. (17)) and expressions 

available in literature for un-reinforced specimens [17]. The material properties of face and core employed in the analysis are 

provided in Table 1. In the second part of analysis, a reinforced sandwich DCB-UBM specimen with a soft core (PVC H45 

foam) is considered.  
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Figure 6. FE-model of reinforced DCB-UBM sandwich specimen 

 

Table 1. Material properties of face sheet and core [9] 

Core H45 H100 H250 
Aluminum foam 

core 

Young’s modulus, Ec [MPa] 50 130 300 7000 

Shear modulus, Gc [MPa] 15 35 104 2,630 

Poisson’s ratio, νc 0.32 0.32 0.32 0.32 

Face sheet Aluminum face 
E-glass fibre - 

DBLT-850(0/45/90/-45) 

Young’s modulus, Ef [GPa] 70 16.4 

sShear modulus, Gf [GPa] 26.9 5.8 

Poisson’s ratio, νf 0.30 0.306 
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V. (A). Unreinforced DCB-UBM Sandwich Specimen 

Two unreinforced sandwich configurations comprising of 2 mm thick aluminum face sheets, and a 20 mm thick soft core 

(PVC H100) and a stiff core (aluminum foam) were chosen to benchmark the analytical expressions. For both cases, refer to 

Table 1 for material properties. A crack length, a = 200 mm was used with a sufficiently long specimen to reduce the edge 

effects (c = 300 mm). The mode-mixity of a DCB-UBM specimen is changed by altering the ratio of the moments M1 and M2 

applied to the edge (moment ratio MR = M1/M2) (Fig. 1). The MR values, thicknesses and material properties were taken from 

[17] in-order to compare the energy release rate and mode-mixity results to the results obtained herein (Eqs. 17 and 29). Such 

a direct comparison is made by making the reinforcement layer modulus equal to that of the face sheets and making the sum 

of each face sheet thickness and reinforcement thickness equal to the face thickness analyzed in [17]. The results are examined 

over a range of moment ratios (MR).  

Tables 2 and 3 list energy release rate results for a large range of moment ratios (MR). Close agreement between numerical 

(GCSDE) and analytical (Ganal,) results is noted. The current results for G also agree with [15] and [17]. Note that results from 

[17] are compared here with moment loading only. It is furthermore noted that the parameter ω remains relatively constant 

for each case. For the PVC core sandwich, the largest deviation of ω from the average value is 0.5% whereas the deviation 

for the stiffer aluminum foam core is below 2.1%.  It should be further pointed out that the phase angle results presented in 

Tables 2 and 3 compare well with those published earlier in [17]. 

Table 2. G, ψ and ω results for unreinforced DCB-UBM sandwich specimen with PVC H100 core 

      
Moment Ratio, MR -0.125 -0.25 -1.0 0.25 0.125 
M1 [Nmm] 75.6 129.6 196.1 118.6 71.1 
M2 [Nmm] -604.8 -518.4 -196.1 474.4 568.8 
Ganal [N/mm]  0.4238 0.4349 0.4140 0.3642 0.3749 
GCSDE [N/mm] 0.4076 0.4214 0.4107 0.3553 0.3626 
G  [N/mm] [17] 0.4239 0.4350 0.4140 0.3613 0.3727 
ψ[deg] 52.60 35.60 1.11 -62.87 -85.40 
ω[deg] 74.09 73.66 73.34 73.74 73.54 
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Table 3. G, ψ and ω for unreinforced DCB-UBM sandwich specimen with Aluminum foam core 

      
Moment Ratio, MR -0.002 -0.02 -0.0625 -1.0 0.0625 
M1 [Nmm] 8.340 76.80 157.70 199.40 159.50 
M2 [Nmm] -4170 -3840 -2523.4 -199.40 2552.0 
Ganal [N/mm]  0.3917 0.3953 0.3944 0.3890 0.4035 
GCSDE [N/mm] 0.3848 0.3883 0.3895 0.3872 0.3819 
G [N/mm] [17] 0.3969 0.3997 0.3963 0.3890 0.3862 
ψ[deg] 54.40 33.90 4.04 -30.90 -72.20 
ω[deg] 58.22 57.74 57.05 56.36 55.86 

 

V. (B). Reinforced DCB-UBM Sandwich Specimen 

During fracture characterization tests of unreinforced sandwich specimens, excessive deformation of either crack flank will 

violate Linear Elastic Fracture Mechanics (LEFM).  Reinforcing the fracture specimen with stiff doubler layers prevent 

excessive crack flank rotations (see Fig. 7). Moreover such layers will make it easier to attach loading tabs to specimens for 

experimental testing. The parameter ω is computed for a reinforced DCB-UBM sandwich specimen with a soft PVC foam 

core (H45). As earlier, aluminum face sheets were chosen (hf = 2 mm). Steel reinforcement layers were chosen (Es = 210 GPa, 

νr = 0.3) with a thickness hr = 6 mm [15]. The total length of the specimen was L = 500 mm with a crack length, a = 200 mm.  

Results for the reinforced specimen are presented in Table 4. For the range of moment ratios examined, the phase angle (ψ) 

varied from 18.74 to 77.31°, while the scalar parameter ω, remained nearly constant with an average of 65.09° (± 1.5 %), see 

Table 4. An advantage of a ω parameter that is independent of loading, is that the mode-mixity phase angle may be computed 

using a single ω value. To further examine the parameter ω, the phase angle (ψ) was calculated for a range of MR using Eq. 

(31) with the average value of ω = 65.09° (Table 4). The results for ψ in Table 4 show that ψ values obtained using a fixed ω 

value (ψ*) closely match the ones from FEA. 

 

Figure 7. Sandwich DCB-UBM specimen reinforced with steel plates 
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Table 4. G, ψ and ω results for sandwich DCB-UBM specimen with PVC H45 foam core reinforced with 
steel layers 

      
Moment Ratio, MR -0.125 -0.25 -1.0 0.25 0.125 
M1 [Nmm] 210 415 1110 410 210 
M2 [Nmm] -1680 -1660 -1110 1640 1680 
Ganal [J/mm] 0.2254 0.1994 0.2005 0.2048 0.2049 
GCSDE [J/mm] 0.2075 0.2319 0.2078 0.2252 0.2248 
ψ [deg] 57.53 50.87 18.74 77.31 72.88 
ω[deg] Eq. (33) 65.42 66.09 65.77 62.63 65.56 
ψ* [deg] Eq. (31) 57.24 49.97 18.32 79.61 72.31 
* calculated using ω (avg.) = 65.09° 

 

VI. Influence of reinforcement layer thickness  

A study was conducted to examine the influence of reinforcement layer thickness on the ω parameter. A moderately dense 

H100 core with aluminum face sheet was considered. The face sheet and core thicknesses were held constant at hf = 6 mm 

and hc = 30 mm (see Table 1 for material properties). The thickness of the steel reinforcement doubler layers (Er = 210 GPa, 

νr = 0.3) was varied from 1 to 6 mm. The mode-mixity phase angle ψ, computed using CSDE method was used to obtain ω 

parameter using Eq. (33). The moment ratio (MR) was varied between -0.25 to 0.25.  

Results for the phase angle and ω parameter are provided in Table 5. For hr = 1 mm, the maximum deviation in ω is ± 1.7%.  

Similar results are found for the other reinforcement thickness. This confirms that the results of ω for each reinforcement 

thickness concurred with the load-independent ω hypothesis. The results show, however, that ω depends on the thickness of 

the reinforcement layer. The difference between ω for thin (64.19°) and thick (58.30°) steel reinforcement layers is 10.1%.  

Average ω values obtained for each reinforcement thickness and MR values are listed in Table 5. These values are used to 

compute the phase angle ψ, here denoted ψ* from Eq. (31). Values of ψ* in Table 5 may be compared against the mode-

mixity phase angle (ψ) obtained using FEA. For most cases, ψ* agrees with ψ obtained using FEA within 3%. A maximum 

deviation of 9.2% is observed for MR = 0.0625 and hr = 6 mm.  
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Table 5. ω parameter for a H100 sandwich specimen with varying reinforcement thicknesses 

H100 core (130 MPa), hc = 30 mm, hf = 6 mm, hr = 1 - 6 mm 
Moment Ratio, MR -0.250 -0.0625 -1 0.0625 0.250 
M1 [N.mm] 199 158 199 160 199 
M2 [N.mm] -798 -2523 -199 2550 798 

hr = 1 mm 
Ganal [J/mm] 0.0881 0.7942 0.0140 0.8101 0.0872 
ψ[deg] 45.2 60.0 9.97 -112 -97.4 
ω[deg] 64.3 65.3 63.6 63.3 64.4 
    ω1 (avg) = 64.2 
ψ *[deg]  43.0 56.0 9.2 -115 -102 

hr = 2 mm 
Ganal [J/mm] 0.0672 0.6139 0.0099 0.6261 0.0665 
ψ[deg] 45.0 58.8 10.6 -114 -100 
ω[deg] 62.9 63.8 62.3 61.9 62.8 
 ω2 (avg) = 62.7 
ψ*[deg] 44.0 56.2 11.0 -115 -103 

hr = 3 mm 
Ganal [J/mm] 0.0518 0.4769 0.0072 0.4862 0.0512 
ψ [deg] 44.4 57.5 10.7 -116 -103 
ω[deg] 61.6 62.4 61.0 60.6 61.4 

 ω3 (avg) = 61.4 
ψ*[deg] 44.6 56.4 12.0 -116 -104 

hr = 4 mm 
Ganal [J/mm] 0.0404 0.3736 0.0055 0.3809 0.0399 
ψ[deg] 43.7 56.3 10.6 -117 -104 
ω[deg] 60.3 61.1 59.9 59.4 60.2 
 ω4 (avg) = 60.2 
ψ*[deg] 44.6 56.4 12.0 -116 -104 

hr = 5 mm 
Ganal [J/mm] 0.0319 0.2959 0.0042 0.3015 0.0314 
ψ[deg] 42.9 55.1 10.2 -127.9 -106.0 
ω[deg] 59.2 59.9 58.8 56.8 59.0 
 ω5 (avg) = 58.8 
ψ*[deg] 45.0 56.5 12.8 -116 -104 

hr = 6 mm 
Ganal [J/mm] 0.0255 0.2370 0.0033 0.2414 0.0251 
ψ[deg] 42.0 54.0 9.84 -127 -108 
ω[deg] 58.1 58.8 57.9 58.8 58.0 
 ω6 (avg) = 58.3 
ψ*[deg] 43.2 56.5 13.3 -116 -104 

*Phase angle (ψ) computed with an average ω = 60.92° using Eq. (31)  

 

 

19 
 



VI. (A). Parametric study on influence of reinforcement layer thickness (hr) 

In order to further examine the dependence of the ω parameter on the reinforcement layer thickness, the study is extended to 

other foam core sandwich configurations: E-glass/H45, E-glass/H100, E-glass/H250, Al/H45 and Al/H250. The E-glass face 

laminates considered are quasi-isotropic (see Table 1 for material properties). Face thicknesses of 6 and 2 mm were considered 

for the glass fiber and aluminum faces. As before, the steel reinforcement layer (Er = 210 GPa, νr = 0.3) thickness is varied 

from 1 to 6 mm. The ω parameter is calculated from Eq. (33). An average from two MR values (MR = -0.250 and +0.250) 

was used to determine ω.  

Fig. 8 shows a plot of ω vs thickness of the steel reinforcement layer. It is noticed that when stiff aluminum face sheets are 

combined with a soft core (H45), the omega variation across the range of reinforcement layer thicknesses, is 9%. However, 

for stiffer cores the variation is below 5%. For sandwich specimens with E-glass face sheets and H45 core, a deviation of 

7.2% in ω across hr is observed. The deviation in ω across hr for sandwich specimens with E-glass face sheets and stiffer 

H250 core is below 2.8%. The trends in ω vs hr are quantified using a polynomial curve fit to the data. The curve fitting 

parameters are provided in Table 6.  

 

Figure 8. Omega parameter variation for typical sandwich specimens across reinforcement thickness 
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Table 6. Curve fitting parameters for ω vs hr plot for E-glass/PVC core and aluminum/PVC core sandwich systems 

Aluminum/PVC Core, 1 2shω ς ς= +  
Al/H45 

1ς  = -1.649, 2ς = 61.33 
Al/H100 

1ς  = -1.252, 2ς = 65.40 
Al/H250 

1ς  = -1.158, 2ς = 65.22 

E-glass/PVC Core, 
2

1 2 3s sh hω η η η= + +  
E-glass/H45 

1η  = -0.111, 2η  = 1.34, 3η = 76.1 
E-glass/H100 

1η  = -0.401, 2η  = 1.71, 3η = 70.5 
E-glass/H250 

1η  = -0.389, 2η  = 2.90, 3η = 65.4 
 

VII. Conclusion 

Closed form expressions for energy release rate and mode-mixity phase angle for a reinforced DCB-UBM sandwich specimen 

were derived using a superposition scheme, the J-integral and laminate beam theory. The phase angle was expressed in terms 

of a load independent scalar parameter ω. Finite-element analysis was used to determine energy release rate and mode-mixity 

phase angle for the various sandwich systems analysed. It was found that the ω value remained practically independent of the 

loading configuration for a fixed reinforcement thickness. The value of ω varies weakly with reinforcement thickness and the 

dependence is expressed by curve fitting for typical sandwich specimens. The closed form expressions derived in this paper 

can be used for fracture analysis of various sandwich systems with thin face sheets requiring reinforcement layers. 

APPENDIX A. J-integral calculations  

Each beam (#1 and #2) is analyzed separately, Figs. A1 and A2. The J integral is calculated from the stress σx in each layer 

along the paths: Γ1 – Γ3 and Γ3 - Γ10, see Fig. 5. The stress, σx, in each layer due to moment and force was calculated and 

substituted in Eq. (15). All equations are expressed in terms of the elastic modulus for ply k in the x-direction, kE . As explained 

in section II, for plane strain, 2/(1 )E Ek k kν= −  while for plane stress, E Ek k= . 
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Debonded beam (Beam #1): 

 

Figure A1. Force and moment acting on beam #1  

Figure A1 shows the beam consisting of upper face sheet and stiffener layer acted upon by a force and moment according to 

the superposition analysis. The force P, and moment Md act on the neutral axis (see Fig. A1). The location of the neutral axis 

is given by the ratio of extension-bending coupling stiffness and extensional stiffness ( yNA B A= ). The stress σx in each layer 

is expressed as follows: 

( ) ( ) [ ]

( ) ( )

1 22

0 12

; Reinforcement

; [ ]

d rr

dd d
d

x
f d f

NA

NA
dd d

d

M EPE y y y y
Eh BD A

PE M E
y y y y UpperFacesheet

E

y

h BD A

y
σ

 −−
+ − ≤ ≤   −   

= 
− − + − ≤ ≤  −  

 

    (A1) 

where ( )Eh E h E hd r r f f= + . The J-integral is calculated for debonded beam by substituting Eqs. (A1) in Eq. (15) along paths 

(Γ9 and Γ10) to obtain: 

( ) ( )

( ) ( )

2

1

2

9

222 2
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3
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d
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d f r d r d r
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h h hM E PM EP E h h h e h h e h e h
H Eh HEh

Γ
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 
 

    
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(A1b) 
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  (A2b) 

where 
2BdH Dd d Ad

 
 = −
 
 

 and Nd Ae y=  (neutral axis in Fig. A1). 

The J-integral contribution from the debonded beam becomes: 

9 10J J JDebonded = +Γ Γ        (A3) 

( ) ( )
22

1 2 32 2
d d

Debonded
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M PMPJ L L L
H Eh HEh

= + +      (A4) 
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( )1
1
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3 1 1 3
2 3 4 4 2 3 4 4

f fr r
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3 2 2
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h h h h
L E e h E e h

   
= − − +   
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     (A5c) 
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Substrate beam (Beam #2): 

Analysis similar to the one above for the debonded beam is conducted here. The layers of the substrate beam are the lower 

reinforcement layer, bottom face sheet and core (see Fig. 10). J is evaluated along paths (Γ1 – Γ3) in Fig. 5. The stress σx due 

to P and M* (Fig. A2) can be expressed as:  

( ) ( ) [ ]
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   (A6)  

where ( )s r r f f c cEh E h E h E h= + + . The location of neutral axis (yNA = B/A) for the substrate beam (#2) is shown in Fig. A2.  

 

Figure A2. Loads acting on substrate beam #2 

Substituting Eqs. (A6) in (15) for each path (Γ1 – Γ3):  
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J for the substrate beam is obtained by summation of contributions from the individual layers: 

Substrate 1 2 3J J J JΓ Γ Γ= + +       (A8) 

Substitution yields: 
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where 
2
s

s s
s

BH D A
 = − 
 

 ; Ns Ae y=  (neutral axis in Fig. A2). 

Now, M* can be expressed in terms of Md as, *
1dM M P= + ∆ (see Eq. (2)). Substitution for M* in Eq. (A9) yields,   
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The J integral for both substrate and debonded beams are summed to obtain the total J as:  

Substrate 1 2 3 9 10DebondedJ G J J J J J J J= = + = + + + +     (A12) 

Substituting Eqs. (A4) and (A11) in (A12):  
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Appendix B. Homogenization of laminate face sheet  

Several sandwich panels employ multi-directional composite laminates, Fig. B1.  The analysis presented here assumes 

isotropic constituent where Ef refers to Young’s modulus of an isotropic material.  To use the analysis presented here for 

sandwich specimens with composite laminate face sheets, a homogenized modulus should be appropriate.  
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Figure B1. Schematic of typical face laminate. 

The homogenized modulus may be computed using laminated plate theory [26]. For an element of a laminate, the stress 

resultants may be expressed as: 

0N A B
M B D

ε
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      (B1) 

where εo are the mid-surface strains and κ are the mid-surface curvatures. A, B and D represent the extensional, coupling and 

bending stiffness matrices of the laminate. It should be noted that symmetrical laminates are considered for this evaluation, 

hence B = 0. The 6 x 6 matrix in Eq. (B1) may be inverted to obtain the compliance matrix: 
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    (B2) 

By subjecting the laminate strip to an axial load Nx only, the extension strain becomes: 

  0
11x xa Nε =         (B3) 

The effective extensional stiffness can be written as: 
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= = =       (B4) 

Similarly, by applying only moment about the x-axis, the curvature can be expressed in terms of moment, M as: 

11x xf
x

M M d
E

κ = =       (B5) 

With 3 /12I wh= and Mx = M/w, this analysis provides the effective flexural modulus: 

3
11

12f
xE

d h
=       (B6) 

The average value of e
xE and f

xE may be used to replace E in the analysis.  
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