The impact of a diet with fructan-rich chicory roots on Oesophagostomum dentatum worm population dynamics and host immune responses in pigs

Thamsborg, Stig Millan; Mejer, Helena; Skovgaard, Kerstin; Sengupta, Mita E.; Kringel, Helene; Petersen, Heidi Huus; Jensen, Bent Borg; Andreasen, Annette

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
The impact of a diet with fructan-rich chicory roots on *Oesophagostomum dentatum* worm population dynamics and host immune responses in pigs

Stig Milan Thamsborg*1; Helena Mejer1; Kerstin Skovgaard1; Mita E. Sengupta1; Helene Kringel1; Heidi H. Petersen1; Bent Borg Jensen2; Annette Andreasen1

1 Veterinary and Animal Sciences / University of Copenhagen / Denmark, 1 Veterinary Institute / Technical University of Denmark / Denmark, 2 Animal Science/ Aarhus University / Denmark

*Oesophagostomum* infections in pigs persist for months. We hypothesized that feeding fructans (dried chicory roots) may improve immunity and facilitate worm expulsion. We therefore examined the effects of long-term chicory on *O. dentatum* population dynamics and host immune responses. Methods: Seventy-two pigs were allocated to four groups in a 2-factorial design. Group O was fed regular feed and trickle inoculated with 15 *O. dentatum* L3/kg/day 0-12 weeks post-infection (pi.) start. Group OC was also trickle inoculated but switched to a chicory-rich diet (12% inulin in DM) weeks 3-12 pi. Group C was uninfected but switched to chicory diet while Group Ctr remained uninfected on regular feed. Six pigs per group were necropsied 5, 9 and 12 weeks pi. for worm counts and qRT-PCR for gene expression in the gut. Faecal egg counts (FEC) and specific antibody levels were assessed regularly. Results: When group OC switched to chicory diet, FECs dropped within 3-4 days and remained very low. Worm counts were reduced 50-65% by chicory feeding (Group OC versus O; p<0.001) and was accompanied by a 2-fold higher *O. dentatum*-specific IgG1 response. In group O, a build-up of a typical Th2-type immune response was seen but leveled out later and worm counts remained stable. Group C had a down-regulated Th1-type response and thus an anti-inflammatory effect in colon. Conclusions: We found little evidence that chicory feeding improved host protective immunity against *Oesophagostomum*. It seems more likely, as previously suggested, that physico-chemical changes in caeco-colon are responsible for the observed anthelmintic effects.

*Keywords: swine; oesophagostomum; chicory; prebiotics; immune response*