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The Effect of Autocorrelation on the Hotelling
T2 Control Chart
Erik Vanhataloa*† and Murat Kulahcia,b
One of the basic assumptions for traditional univariate and multivariate control charts is that the data are independent in
time. For the latter, in many cases, the data are serially dependent (autocorrelated) and cross-correlated because of, for
example, frequent sampling and process dynamics. It is well known that the autocorrelation affects the false alarm rate
and the shift-detection ability of the traditional univariate control charts. However, how the false alarm rate and the shift-
detection ability of the Hotelling T2 control chart are affected by various autocorrelation and cross-correlation structures
for different magnitudes of shifts in the process mean is not fully explored in the literature. In this article, the performance
of the Hotelling T2 control chart for different shift sizes and various autocorrelation and cross-correlation structures are
compared based on the average run length using simulated data. Three different approaches in constructing the Hotelling
T2 chart are studied for two different estimates of the covariance matrix: (i) ignoring the autocorrelation and using the
raw data with theoretical upper control limits; (ii) ignoring the autocorrelation and using the raw data with adjusted control
limits calculated through Monte Carlo simulations; and (iii) constructing the control chart for the residuals from a
multivariate time series model fitted to the raw data. To limit the complexity, we use a first-order vector autoregressive
process and focus mainly on bivariate data. © 2014 The Authors. Quality and Reliability Engineering International published
by John Wiley & Sons Ltd.

Keywords: statistical process control (SPC); Hotelling T2 chart; autocorrelation; multivariate data; time series modeling, simulation
1. Introduction

S
tatistical process control (SPC) provides an important toolbox for improving the process performance and maintaining an
efficient manufacturing process. Shewhart control charts together with cumulative sum and exponentially weighted moving
average charts, to a large extent, form the basis of SPC when a single quality characteristic is of interest. However, in many

applications of SPC, data are often collected for more than one quality characteristics, and therefore, multiple variables need to be
monitored simultaneously. Process industry provides typical examples where processes often are richly instrumented with sensors
and/or people routinely collecting measurements on many process variables and finished product characteristics. The multiple
measurements are typically cross-correlated because a few underlying events usually drive the process at any given time. Many of
the measured variables are therefore just different reflections of the same underlying event; see, for example, Kourti and MacGregor.1

Sometimes, univariate control charts provide sufficient information, but when multiple variables require simultaneous monitoring,
a univariate approach is normally neither effective nor efficient; see, for example, MacGregor.2 An important advantage of multivariate
control charts is that the performance of a process can be monitored using a single or a few multivariate charts instead of many
univariate charts. Comprehensive overviews of the multivariate SPC (MSPC) methods can be found in Bersimis et al.3 and Kourti.4

The traditional MSPC charts include the Hotelling T2,5 multivariate cumulative sum,6 and multivariate exponentially weighted moving
average7 control charts. Furthermore, applications of the latent variable techniques such as PCA and partial least squares for
multivariate monitoring are commonly used in cases where a large number of highly correlated variables are of interest.

2. Motivation

The traditional SPC techniques assume that the data are independent in time. However, because of system dynamics and/or frequent
sampling, successive observations will often be correlated; see Montgomery et al.8 and Bisgaard and Kulahci.9 This is particularly true
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for continuous processes. The issue of autocorrelation when using traditional univariate control charts has been previously discussed
by many authors; see Johnson and Bagshaw,10 Vasilopoulos and Stamboulis,11 Alwan and Roberts,12 Montgomery and Mastrangelo,13

Wardell et al.,14 Zhang15 among others.
Two different general solutions to the problem emerge in the literature. The first is to adjust the control limits of the traditional charts, for

example, by accounting for the autocorrelation in the estimation of the process standard deviation. The second solution is to fit a time series
model to the data and then apply the traditional control charts to the residuals from the model—sometimes referred to as the ‘Alwan and
Roberts method’.12 Zhang15 shows that in the univariate case, the Shewhart chart based on residuals does not have the same properties as
the individual Shewhart chart for independent data. While the univariate residuals chart has a higher probability in detecting a shift in the
process mean in the first plotted point after the shift occurs, the detection ability at future points depends on the autocorrelation
structure potentially liable to cause excessive delays in detecting an out-of-control signal.

The concern related to the impact of autocorrelation in the data extends to the multivariate case as well. For example, an important
assumption for desired performance of the Hotelling T2 control chart is that data are independent in time. However, in reality, data
collected in time often exhibit various degrees of serial dependency (autocorrelation). It is to be expected that MSPC control charts
that have been developed assuming independent observations should be affected by the violation of this assumption.

A detailed literature review of SPC techniques for autocorrelated univariate and multivariate data can be found in Psarakis and
Papaleonida.16 Kalgonda and Kulkarni17 propose a control chart called the Z chart to monitor a process modeled by a first-order vector
autoregressivemodel (VAR(1)). Pan and Jarrett18–20 illustrate howmultivariate Hotelling T2 charts can be applied to residuals from state space
models as well as from vector autoregressive (VAR) models. Essentially, this is an extension of Alwan and Robert’s12 approach to the
multivariate case. Furthermore, Pan and Jarrett21 show that the Hotelling T2 chart based on residuals from a VAR model cannot distinguish
between shifts in the mean and the variability. Instead, they propose using the Hotelling T2 chart, theW chart, and the portmanteau test on
residuals from a VARmodel tomonitor the variability of amultivariate autocorrelated process. Snoussi22 proposes a technique formonitoring
short-run autocorrelated data using a multivariate transformation technique on the residuals from a VAR(1) model.

In this article, our main goal is to provide a more detailed study of how autocorrelation affects the Hotelling T2 control chart, which is
the most widely used MSPC chart. The shift-detection ability of the Hotelling T2 control chart for simulated data using a VAR(1) model is
evaluated for different shifts in the mean vector. For a comparative study, three different approaches are considered: (i) ignoring the
autocorrelation and using the raw data with theoretical upper control limits (UCLs); (ii) ignoring the autocorrelation and using the raw data
with adjusted control limits calculated through simulations; and (iii) using the residuals from amultivariate time series model fitted to the
raw data. We use the average run length (ARL) as the performance measure. Throughout the study, we focus on the Hotelling T2 chart
for individual observations.

3. The Hotelling T2 control chart

A popular multivariate process monitoring chart for monitoring the mean vector of a process is the Hotelling T2 control chart. The
method assumes that the quality characteristics of interest are distributed according to a multivariate normal distribution. The
multivariate normal distribution is an extension of the univariate normal distribution to a situation with multiple (k) variables
(Montgomery 23). The multivariate normal density function is:

f xð Þ ¼ 1

2πð Þk=2 Σj j1=2
e�

1
2 x�μð Þ′Σ�1 x�μð Þ; (1)

where x= [x1, x2,…, xk]′ is a k-dimensional random vector, μ is a k× 1 vector with the means of the k variables and Σ is the k× k
variance-covariance matrix:

Σ ¼

σ211 σ12 … σ1k
σ12 σ222 … σ2k
⋮ ⋮ ⋱ ⋮

σ1k σ2k … σ2kk

2
66664

3
77775 (2)

where σ2ii is the variance of the ith variable and σij is the covariance between ith and jth variables.
There are two basic versions of the Hotelling T2 chart; one for subgrouped data and one for individual observations; see

Montgomery23 for further details. In this study we are concerned with the T2 statistic for individual observations which is:

T2 ¼ x� xð Þ′S�1 x� xð Þ (3)

where x and S are the sample mean vector and sample covariance matrix, respectively.
It should be noted that the proper estimation of the covariance matrix is a concern even for independent data. Sullivan and

Woodall24 compare five different estimators. The traditional estimator which they denote as S1 is the sample covariance matrix.

S1 ¼ 1

m� 1
¼

Xm
i¼1

xi � xð Þ� xi � xð Þ′ (4)
© 2014 The Authors. Quality and Reliability Engineering International published by John Wiley & Sons Ltd. Qual. Reliab. Engng. Int. 2015, 31 1779–1796
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Sullivan and Woodall24 recommend using S5 for detecting a step or ramp shift for individual observations, which is based on the
first difference of successive pairs of observations vi= xi+ 1� xi for i=1,…,m� 1 and

S5 ¼ 1

2

V′V

m� 1ð Þ (5)

where vi make up the rows of the V matrix.
However, Kulahci and Bisgaard25 show that S5 underestimates the true covariance matrix compared with S1 for positive

autocorrelation. In this study, we use both S1 and S5 to compare the results for all proposed approaches.
When using S1, Tracy et al.26 give the Phase I UCL as

UCLS1 ¼
m� 1ð Þ2

m
βα;k=2; m�k�1ð Þ=2 (6)

where βα,k/2,(m� k� 1)/2 is the upper α percentile of the β distribution with k/2 and (m-k-1)/2 degrees of freedom, k is the number
of variables, m is the number of samples (i.e., observations) in Phase I, and α is the acceptable false alarm rate. The Phase II UCL
is given as

UCLS1 ¼
k mþ 1ð Þ m� 1ð Þ

m2 �mk
Fα;k;m�k (7)

where Fα,k,m� k is the upper α percentile of the F distribution with k and m-k degrees of freedom.
When S5 is used to estimate the covariance matrix, the approximate UCL for the T2 statistic is provided by Sullivan and Woodall24

and Mason and Young27 as

UCLS5 ¼
f � 1ð Þ2

f
βα;k=2; f�k�1ð Þ=2 (8)

where f= 2(m� 1)2/(3m� 4). The lower control limit is 0 in both Phase I and Phase II for both estimators.

4. Simulating autocorrelated multivariate data

To limit complexity, we use the VAR(1) model. Furthermore, we primarily focus on a process with two variables (k= 2) in our
simulations. In Section 8, we consider a five-variable case for further generalization. The bivariate VAR(1) model with two quality
characteristics, x1 and x2, can be expressed as

x1;t ¼ c1 þ ϕ11x1;t�1 þ ϕ12x2;t�1 þ ε1;t
x2;t ¼ c2 þ ϕ21x1;t�1 þ ϕ22x2;t�1 þ ε2;t

or

xt ¼ cþΦxt�1 þ εt (9)

where xt ¼
x1;t

x2;t

� �
, c ¼ c1

c2

� �
, Φ ¼ ϕ11 ϕ12

ϕ21 ϕ22

� �
, and εt ¼

ε1;t
ε2;t

� �
For the process to be stationary, the eigenvalues of the autocorrelation coefficient matrix Φ should be less than one in absolute

value; see Reinsel.28 For a stationary VAR(1) process, the mean vector is

E xtð Þ ¼ μ ¼ I�Φð Þ�1c (10)

where I is the identity matrix. The covariance matrix of the VAR(1) process is then

Γ 0ð Þ ¼ Φ′Γ 0ð ÞΦþ Σ (11)

where Γ(0) is the covariance matrix of the VAR(1) process (or the autocovariance matrix at lag 0) and Σ is the covariance matrix of the
errors (Reinsel28). The covariance structure of the first-order autoregressive process is hence dependent on both the autocorrelation
matrix Φ and the covariance matrix Σ of the errors. For example, for

Φ ¼
ϕ11 ϕ12

ϕ21 ϕ22

" #
¼

0:95 0

0 0:95

" #
and Σ ¼

1 0:9

0:9 1

" #
; we have

Γ 0ð Þ ¼
10:256 9:231

9:231 10:256

" # (12)
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In this study, we investigate how changes to the autocorrelation matrix Φ and the covariance matrix Σ of the errors affect the ARL
of the Hotelling T2 control chart using the three different methods. We generate different autocorrelation and cross-correlation
structures by changing the elements of the Φ and Σ matrices. Shifts in the mean vector are generated as multiples of the standard
deviations of the corresponding variables.

5. Approaches for constructing Hotelling T2 control chart

In the following text, we describe the three approaches that we consider in this study in more detail. The performance of the three
approaches are based on simulations using m=500 observations and k= 2 variables. That is, we assume that the mean vector and
covariance matrices (S1 and S5) can be estimated from 500 observations from an in-control process in Phase I. These estimates are
then used in the online monitoring stage in Phase II.

The in-control ARL (ARL0) and the out-of-control ARL (ARL1) for different shifts in the mean vector are evaluated. The theoretical
UCLs are calculated based on a false alarm rate of 0.0027, which corresponds to an in-control ARL of approximately 370. We have also
run simulations with m= 100, 1000, 5000, and 10000. The nominal value of 370 for ARL0 is achieved for m ≥ 1000. However, we used
m= 500 in our simulations because we found that ARL0 is fairly close to 370 for independent data, while 500 observations in Phase I
are still feasible from a practical viewpoint. All simulations in this article are performed in R statistics software, and the R code for the
simulations is available upon request.

To limit the number of cases to simulate, we begin by simplifying the bivariate VAR(1) model:

x1;t

x2;t

� �
¼ c1

c2

� �
þ ϕ11 ϕ12

ϕ21 ϕ22

� �
x1;t�1

x2;t�1

� �
þ ε1;t

ε2;t

� �

with

c1

c2

� �
¼ 0

0

� �
;

and

Φ ¼ ϕ11 ϕ12

ϕ21 ϕ22

� �
¼ ϕ11 0

0 ϕ22

� �
with ϕ11;ϕ22 ¼ ±0:25;±0:5;±0:75;±0:95 (13)

Furthermore we consider three covariance matrices for the errors:

1. Uncorrelated Σ ¼ 1 0

0 1

� �

2. Moderately correlated Σ ¼ 1 0:5

0:5 1

� �

3. Highly correlated Σ ¼ 1 0:9

0:9 1

� �

5.1. Theoretical upper control limit

In this first approach, the autocorrelation is ignored, and the theoretical UCLs are calculated. This approach is expected to
provide a benchmark to which the other two approaches are compared. For the first approach, we compare the results using
S1 and S5.

5.2. Adjusting the upper control limit through simulations

In this approach, the UCL is adjusted through Monte Carlo simulation to yield the desired in-control ARL of 370, which corresponds to
a false alarm rate of 0.0027.

When m=500, not all simulated samples generate an out-of-control signal. To calculate the control limit corresponding to a
desired in-control run length of 370, the following procedure is therefore employed. For a given false alarm rate α for each
(independent) observation, the probability that there is at least one signal in a sample of m observations is

αOVERALL ¼ 1� 1� αð Þm (14)

Now, let NS be the number of samples with one or more out-of-control signals among n simulated samples, and NNS be the number
of samples with no out-of-control signal such that NS+NNS= n. The overall false alarm rate can now be expressed as NS/n= αOVERALL =
© 2014 The Authors. Quality and Reliability Engineering International published by John Wiley & Sons Ltd. Qual. Reliab. Engng. Int. 2015, 31 1779–1796
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1� (1� α)m. Hence, NS= n(1� (1� α)m). To find the adjusted UCL value that corresponds to the given overall false alarm rate, we

calculate the maximum T2 value in each sample and rank them in descending order. The adjusted UCL is the Nth
s (rounded down

to the nearest integer) maximum T2 value in descending order.
It should be noted that the probability calculation in (14) assumes independent observations. For Hotelling T2 charts, it can be

shown that even for independent data, T2 values are not independent; see Mason and Young.27 However, for independent data,
the dependence among T2 values in Phase I is shown to be equal to � 1/(m� 1) and can therefore be considered negligible
for large m as in our case; see Mason and Young27 and Sullivan and Woodall.24 On the other hand, when the observations
are autocorrelated, the dependence among T2 values clearly cannot be ignored. We present this approach as an alternative
to the first approach and assume that the autocorrelation is once again ignored, and as opposed to the first approach for
which the theoretical UCL is used, the UCL is instead calculated using Monte Carlo simulation. As stated earlier, our main goal
in this study is to present the repercussions of ignoring or simply not being aware of autocorrelation in the raw data when
constructing Hotelling T2 control charts.

Table I shows the adjusted UCLs for various autocorrelation values and covariance structures for the errors. The adjusted UCLs are
based on n=100,000 simulations of samples of size m= 500 and the false alarm rate α=0.0027. The theoretical UCL for independent
data is 11.25 and 10.96 using S1 and S5, respectively.

From Table I, we can see that to achieve the specified overall false alarm rate, we need to decrease the UCL using S1 as the
autocorrelation increases, both for positive and negative autocorrelation. The largest decrease in the UCL occurs when both variables
exhibit a large magnitude of autocorrelation, |ϕ11| = |ϕ22| = 0.95. This suggests that if the autocorrelation in the data is ignored and
the theoretical UCL is used, the resulting control chart will have larger than expected in-control ARLs. This may at first be
interpreted as welcoming news, but it is expected to have an adverse effect on the shift-detection ability of the control chart
because the UCL would be set too high compared to the UCL that will result in the nominal in-control ARL.

Table I also shows that for S5, the adjusted UCL increases with increasing positive autocorrelation and decreases with increasing
negative autocorrelation. This is due to the fact that S5 is akin to the estimate of standard deviation based on moving ranges in
univariate control charts. Successive differences for positive autocorrelation will tend to be small, whereas the situation is reversed
for negative autocorrelation. Therefore for the former, the variation will be underestimated using successive differences, and for the
latter, it will be overinflated. The changes in the adjusted UCL using S5 is rather dramatic suggesting that if the autocorrelation in the
data is ignored and the theoretical UCL is used, the resulting control chart can have a very small in-control ARL for positive
autocorrelation and a very large in-control ARL for negative autocorrelation depending on the magnitude of autocorrelation.

5.3. Monitor the residuals from a vector autoregressive moving average model

The third approach is an extension of Alwan and Robert’s12 method to the multivariate case. Essentially, the approach filters
the data through an appropriate time series model and uses the residuals from the model for monitoring. Although the
identification of a suitable time series model may be fairly straightforward in the univariate case, it is much more complicated
in the multivariate case.

Consider a stationary vector autoregressive moving average model, VARMA (p,q) process for k variables as

xt ¼ cþΦ1xt�1 þ…þΦpxt�p þ θ1εt�1 þ…þ θqεt�q þ εt (15)

where Φ1,Φ2,…,Φp are all k× k autoregressive parameter matrices, θ1, θ2,…, θq are moving average parameter matrices of order k×
k, c is a k×1 vector of constants, and εt is a k×1 vector of multivariate normally distributed uncorrelated error terms with mean zero
and variance–covariance matrix Σk× k. In matrix notation (15) can be expressed as

x1;t

x2;t

⋮

xk;t

2
666664

3
777775 ¼

c1

c2

⋮

ck

2
666664

3
777775þ

ϕ1
11 ϕ1

12 ⋯ ϕ1
1k

ϕ1
21 ϕ1

22 ⋯ ϕ1
2k

⋮ ⋮ ⋱ ⋮

ϕ1
k1 ϕ1

k2 ⋯ ϕ1
kk

2
666664

3
777775�

x1;t‘�1

x2;t�1

⋮

xk;t�1

2
666664

3
777775þ…þ

ϕp
11 ϕp

12 ⋯ ϕp
1k

ϕp
21 ϕp

22 ⋯ ϕp
2k

⋮ ⋮ ⋱ ⋮

ϕp
k1 ϕp

k2 ⋯ ϕp
kk

2
666664

3
777775�

x1;t‘�p

x2;t�p

⋮

xk;t�p

2
666664

3
777775…

…þ

θ111 θ112 ⋯ θ11k

θ121 θ122 ⋯ θ12k

⋮ ⋮ ⋱ ⋮

θ1k1 θ1k2 ⋯ θ1kk

2
666664

3
777775�

ε1;t�1

ε2;t�1

⋮

εk;t�1

2
666664

3
777775þ…þ

θq11 θq12 ⋯ θq1k

θq21 θq22 ⋯ θq2k

⋮ ⋮ ⋱ ⋮

θqk1 θqk2 ⋯ θqkk

2
666664

3
777775�

ε1;t�q

ε2;t�q

⋮

εk;t�q

2
666664

3
777775…

…þ

ε1;t

ε2;t

⋮

εk;t

2
666664

3
777775:

(16)

It is evident from (16) that the number of parameters to estimate in the VARMA(p,q) model quickly becomes
overwhelmingly large with increasing orders of p and q and can cause estimation issues during the model fitting stage. Some
© 2014 The Authors. Quality and Reliability Engineering International published by John Wiley & Sons Ltd. Qual. Reliab. Engng. Int. 2015, 31 1779–1796
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form of simplification or approximation is therefore usually necessary. In this study, the ARL performance of Hotelling T2 charts
based on residuals from a VAR(1) model is calculated assuming that a perfect model with the known parameters is available as
in the analysis of univariate control charts with autocorrelated data by Zhang.15 This is expected to provide the ‘best case
scenario’ for this approach.

6. Performance of the Hotelling T2 control chart for different autocorrelation and
cross-correlation structures for two variables

6.1. ARL0 with autocorrelation and cross-correlation for two variables

We first consider the in-control Phase II performance of the T2 control chart for the three approaches: the first approach for which the
autocorrelation is ignored and the theoretical UCLs are obtained from Equations (7) and (8), the second approach using the adjusted
UCLs from Table I, and finally, the residuals-based approach using the theoretical UCLs. Again, it should be noted that for the last
approach, even though we only consider two variables in this study to avoid additional complications due to the estimated
parameters, we still use the true parameter values to obtain the residuals.

The in-control ARLs in Phase II monitoring for various scenarios for the autocorrelation parameters and error covariance structures
are provided in Tables IIA and IIB, where there is no evidence suggesting a systematic effect of the level of cross-correlation between
the errors on the ARL0 values. The first approach applying the Hotelling T2 chart to raw autocorrelated data, using S1, and the
theoretical UCL in Equation (7) results in substantially higher ARL0 values than what is to be expected with a UCL obtained for a false
alarm rate of 0.0027. For raw data using S5 and theoretical limits, the ARL0 values are dramatically decreased with increasing
magnitude of positive autocorrelation and dramatically increased with increasing magnitude of negative autocorrelation. Hence,
we conclude that S5 is clearly more sensitive to autocorrelation than S1 and results in unacceptably many false alarms for positively
autocorrelated data and vice versa for negative autocorrelation.

The results in Tables IIA and IIB also show that the second approach of adjusting the UCLs does a fairly good job of adjusting the
ARL0 values closer to the nominal value of 370. As expected, the adjustment is not as effective for high positive autocorrelation, while
it performs somewhat better for high negative autocorrelation. The adjustment of the UCL corresponding to S5 seems to perform
clearly worse than for S1 for positive autocorrelation and highly correlated errors.

Applying the Hotelling T2 chart on the residuals from the VAR(1) model results in stable ARL0 values across all autocorrelation cases.
The ARL0 values are fairly close to the nominal value of 370, although for S1, the average ARL0 value lies slightly above 370, and for S5,
the average lies somewhat below 370. Therefore, we should expect that the residuals-based approach using S5 and theoretical UCLs
will produce slightly lower ARL1 values as well.

As discussed in the previous section, high ARL0 values may not at first be seen as problematic; however, as it will be shown in the
next section, it can have dire repercussions in detecting a shift in the mean in due time.

6.2. Detecting shifts in the means of two variables

In this section, we consider the shift-detection ability through the ARL1 performance of the Hotelling T2 chart for individual
observations for autocorrelated data. Shifts in the mean of the two variables, δx1 and δx2, are generated as multiples of their standard
deviations. Note that the true standard deviations of the variables are dependent on both Φ and Σ. Tables III–VI present ARL1 values
for different cases. We generate shifts in only one variable, in both variables, and with different autocorrelation structures. The
covariance between the error terms is chosen to be 0.9 in all cases.

Tables III and IV show the shift-detection ability when there is a shift in only one variable. Using the first approach and S1, the ARL1
values increase with larger magnitude of autocorrelation. For the first approach using S5, the ARL1 values are low for positive
autocorrelation and high for negative autocorrelation, which is expected from the results in Tables IIA and IIB. The performance of
the second approach with adjusted UCLs is better than of the first approach. Overall, the shift-detection ability is slightly better for
adjusted UCLs using S1. The residuals-based approach performs best overall especially for negative autocorrelation. Although the
results are comparable for the residuals-based approach for both covariance matrix estimates, using S5 results in slightly lower
ARL1 values for small shift sizes. This is again expected based on the results for ARL0 in Tables IIA and IIB.

As positive autocorrelation seems to pose a bigger challenge also for the residuals-based approach, Tables V and VI show the
results from further simulations of different shift scenarios for positive autocorrelation only.

Comparing the results in Table V with Table III, it is interesting to note that although the residuals-based approach can be argued
to have the best overall performance in Table V, it is not as effective when both variables have equal shift sizes.

From Table VI, where variables have different shift sizes, we note that the second approach with adjusted UCLs performs worse
especially using S5 compared with the results in Tables III–V. Again, the residuals-based approach has the best overall performance.
However, we note that for some combinations of the autocorrelation coefficients in Φ and for smaller shifts, the ARL1 values are
actually lower for the first approach with theoretical limits.

From Tables III–VI, we conclude that, as expected, the first approach—the Hotelling T2 chart based on raw autocorrelated data, S1,
and theoretical UCL—performs the worst with substantially higher ARL1 values than the other two methods. Comparing the results in
Tables III and IV, it is also clear that the worst case is for positive autocorrelation, which results in higher ARL1 values for all methods
compared with negative autocorrelation. This is in line with the conclusions made by Zhang15 for the univariate control charts. The
differences among the three approaches are expectedly more significant for small shift sizes. The second approach applying the
Hotelling T2 chart on raw data but with an adjusted UCL performs better than the first approach, especially for cases with high
© 2014 The Authors. Quality and Reliability Engineering International published by John Wiley & Sons Ltd. Qual. Reliab. Engng. Int. 2015, 31 1779–1796
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autocorrelation. The Hotelling T2 chart based on the residuals from the VAR(1) model clearly outperforms the other approaches when
there is a shift in only one variable, especially for negative autocorrelation. However, it should be once again noted that the perfect
VAR(1) model fit is assumed in obtaining the residuals. The results for the residuals-based approach should be expected to differ when
estimated parameters are used.

The results for the cases with equal shifts in both variables given in Table V are more mixed. On average, the Hotelling T2 chart
based on the residuals from the VAR(1) model has the lowest ARL1 values for all tested shift combinations but not for all cases of
the autocorrelation structure. For equal shift sizes and when ϕ11 =ϕ22, there is a visible trend that the ARL1 values increase using
the residuals from the VAR(1) model (Table V). In contrast, when the autocorrelation in one of the variables is high and the
autocorrelation in the other variable is low, the Hotelling T2 chart based on the residuals from the VAR(1) model catches the shift
substantially faster than the other methods.

The special case for which ϕ11 =ϕ22 =ϕ presents an interesting pattern. Note that for this case, we have

Γ 0ð Þ ¼ Φ′Γ 0ð ÞΦ′ þ Σ

¼ ϕ
1 0

0 1

" #
Γ 0ð Þϕ

1 0

0 1

" #
þ Σ

¼ ϕ2Γ 0ð Þ þ Σ

⇒Γ 0ð Þ ¼ 1� ϕ2
� ��1Σ

(17)

We can see that in this case, the true covariancematrix is simply the error covariancematrix adjusted for the autocorrelation in both variables.
Comparing the results for S1 and S5, we conclude that for the first approach using raw autocorrelated data S5 is clearly an

inappropriate estimate. In the second approach, with adjusted UCLs, S5 cannot be recommended either because it performs in an
unpredictable manner suggesting that the adjustment of the UCL works poorly for S5. However, in the residuals-based approach
using S5 results in slightly faster shift detection albeit also in lower ARL0 values.
1
7
8
5

7. Examples with a more complicated Φ matrix

The results in Section 6 were based on simulations with a diagonal Φ matrix. To explore more complicated Φ matrix structures, we
test two additional scenarios for the bivariate VAR(1) model. In the simulations, we assume highly correlated errors:

Σ ¼ 1 0:9

0:9 1

� �

and two different Φ matrices; the first with one off-diagonal element and the second with two off-diagonal elements as:

1. Φ ¼ 0:25 0:25

0 0:25

� �

2. Φ ¼ 0:2 0:5

0:5 0:2

� �
Here, we choose the Φ matrices to have non-zero eigenvalues. Also, all absolute eigenvalues of the autocorrelation coefficient

matrices are less than one so that the resulting VAR(1) processes are stationary.
In the second approach, we adjust the UCLs through simulation as described earlier. Table VII presents the ARL0 and ARL1 values of

the three approaches for different shift combinations in the two variables.
From Table VII, we conclude that the ARL0 values are fairly close to the nominal value of 370 except for the first approach using S5,

which yields low ARL0 values. We again note that for the residuals-based approach using S1, the average ARL0 values lie above the
nominal value, while the opposite is true when using S5.

The results for the ARL1 values are more mixed. The second approach using S1 performs slightly better than the first
approach for the tested cases. However, once again, the second approach using S5 performs in an unpredictable manner,
producing lower ARL1 values for some cases while higher ARL1 values for most cases compared to the second approach
using S1.

The difference among the methods is most apparent for the second Φ matrix and shifts in only one variable. The
Hotelling T2 chart based on the residuals from the VAR(1) model performs slightly better than the second approach when
only one of the variables has a shift in the mean. However, we once again observe that when both variables have equal
shifts, the residuals-based approach in some cases performs worse than the first approach using S1. Using S5, the
residuals-based approach results in slightly lower ARL1 values but then so are the ARL0 values. Overall, the performance
of the residuals-based approach is best except for cases when both variables have equal shifts for which the second
approach has the lowest ARL1 values.
© 2014 The Authors. Quality and Reliability Engineering International published by John Wiley & Sons Ltd. Qual. Reliab. Engng. Int. 2015, 31 1779–1796
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Table VII. The ARL0 and ARL1 performance in Phase II for different Φ matrices and different shifts in the two variables and
cov εx1 ; εx2ð Þ ¼ 0:9 for all cases. The ARL values are based on 1000 simulations in each case

Φ ¼ :25 :25

0 :25

� �
Φ ¼ :2 :5

:5 :2

� �

Shift sizes

Raw Adj. UCL Residuals Raw Adj. UCL Residuals

S1 S5 S1 S5 S1 S5 S1 S5 S1 S5 S1 S5

a) No shift (ARL0) 429 46 373 391 410 331 423 21 370 343 391 331
b) δx1 ¼ 0:5; δx2 ¼ 0 66 15 60 79 78 67 24 11 22 199 10 9
c) δx1 ¼ 1; δx2 ¼ 0 9 4 8 11 9 8 2 3 2 47 2 2
d) δx1 ¼ 2; δx2 ¼ 0 1 1 1 1 1 1 1 1 1 2 1 1
e) δx1 ¼ 0; δx2 ¼ 0:5 66 21 60 138 49 44 27 11 24 202 10 10
f) δx1 ¼ 0; δx2 ¼ 1 8 5 7 23 6 6 2 3 2 49 2 2
g) δx1 ¼ 0; δx2 ¼ 2 1 1 1 2 1 1 1 1 1 2 1 1
h) δx1 ¼ 0:5; δx2 ¼ 0:5 234 29 197 202 255 213 260 15 218 192 355 297
i) δx1 ¼ 1; δx2 ¼ 1 81 15 73 69 116 98 97 9 86 62 240 207
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8. A five-variable example

Finally, we explore if the results for the three approaches can be extended to more than two variables. Here, we choose five
variables because the Hotelling T2 chart is generally considered most effective for a moderate number of variables. When the
number of variables increases dimensionality reduction techniques, such as PCA, are preferred; see Montgomery.23

Even with only five variables, the number of possible combinations of covariance structures for the errors and autocorrelation
basically becomes unfeasibly large. Therefore, we only consider a model for a given covariance structure for the errors and vary
the autocorrelation through different diagonal Φ matrices.

We assume that we have a five-variable VAR(1) model with the error covariance matrix:

Σ ¼

1 :8 :3 0 0

:8 1 :6 0 0

:3 :6 1 0 0

0 0 0 1 :6

0 0 0 :6 1

2
6666664

3
7777775

which essentially means that the variables are correlated through two blocks of correlated errors. The first block contains correlated
errors for x1, x2, x3, and the second block contains correlated errors for x4, x5. In the simulations, we change the parameters of the
diagonal Φ matrix:

Φ ¼

ϕ11 0 0 0 0

0 ϕ22 0 0 0

0 0 ϕ33 0 0

0 0 0 ϕ44 0

0 0 0 0 ϕ55

2
6666664

3
7777775

where ϕ11 ¼ ϕ22 ¼ ϕ33 ¼ ϕ44 ¼ ϕ55 ¼
0:25 low autocorrelation

0:5 moderate autocorrelation

0:95 high autocorrelation

8><
>:

We also include two additional cases with high negative autocorrelation and with different autocorrelation parameters for all
variables as

ϕ11 ¼ 0:95;ϕ22 ¼ 0:85;ϕ33 ¼ 0:75;ϕ44 ¼ 0:65;ϕ55 ¼ 0:55:

In the second approach for each case, we adjust the UCLs through simulation and then proceed to test the shift-detection ability of
the three methods. We test a number of scenarios with various shifts. Table VIII shows the ARL0 and ARL1 values for the three methods
and different shift combinations in the five-variable case.
© 2014 The Authors. Quality and Reliability Engineering International published by John Wiley & Sons Ltd. Qual. Reliab. Engng. Int. 2015, 31 1779–1796
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From Table VIII, it is again evident that the first approach using S5 is inappropriate because the ARL0 values are far too low for
positive autocorrelation and too high for negative autocorrelation. Another interesting result is that the ARL1 values for the first
approach using S1 are fairly competitive, especially for small-to-moderate positive autocorrelation. However, the adjustment of the
UCLs in the second approach is less effective in the five-variable case because the ARL0 values are too low, especially for high
autocorrelation and using S1.

We also note that the residuals-based approach does not appear as competitive as in the two-variable cases for positive
autocorrelation. However, it is still clearly the best approach for negative autocorrelation. When the autocorrelation parameters
in the Φ matrix are positive and of small-to-moderate magnitude, the residuals-based approach actually performs the worst
among the three approaches. When the autocorrelation increases, the shift-detection ability of the residuals-based approach
is clearly improved for larger shifts. For the high positive autocorrelation case in Table VIII, the residuals-based approach
catches shifts of one standard deviation and above faster than the other two methods. Using S1 in the residuals-based
approach seems to produce ARL0 values closest to the nominal value of 370. However, for small shift sizes and high positive
autocorrelation, the residuals-based approach performs worse than the first approach using S1. A possible explanation might
be that if a small shift does not signal instantly in the residuals-based approach, the VAR(1) model may actually incorporate
and adapt to the shift resulting in higher ARL1 values. The analogue phenomenon for univariate residual charts is described
by Zhang.15

9. Conclusions and discussion

In this article, we study the impact of autocorrelation in the raw data on the Hotelling T2 control chart. We provide simulation
results for in-control and out-of-control ARLs for various autocorrelation and error covariance structures and shifts in the mean.
To limit the potentially myriad of possibilities, we primarily explore a two-variable case but also provide an example of a five-
variable case.

The results clearly show that the first approach of ignoring the autocorrelation and using theoretical UCLs can lead to
erroneous conclusions, in-control ARLs (sometimes significantly) different from the nominal, and poor shift-detection ability,
particularly with increasing amount of autocorrelation in the data. Moreover, there is the associated problem of the estimation
of the covariance matrix, which is also an issue for independent data. In this article, we compare the performance of the
‘traditional’ estimate S1 with S5, which is based on the first difference of successive pairs of observations and has been
recommended for the detection of step or ramp shifts in the mean.

As in the case of univariate Shewhart charts, we find that using a naïve approach that completely ignores the autocorrelation leads
to an overestimation of the UCL, when using S1, and increasing in-control ARL (ARL0) of the Hotelling T2 chart. As expected, the
consequence of fewer false alarms when the process is in control is that the shift-detection ability diminishes substantially. This
approach when using S5 gives even worse performance with too low ARL0 values for positive autocorrelation and too high ARL0
values for negative autocorrelation. We therefore conclude that S5 is not a proper estimator of the covariance matrix to be used in
Hotelling T2 calculation when data are autocorrelated.

We show that it is possible to reduce the effect of autocorrelation by adjusting the UCLs through simulation. The Hotelling T2 chart
with adjusted UCLs has improved shift-detection ability compared to the first approach for the majority of cases we tested. However,
the adjustment of the UCLs we used suffers from the fact that it also assumes independent T2 values, which is clearly violated for
autocorrelated raw data.

We found that the Hotelling T2 chart based on residuals from the VAR(1) model performs best overall, catching the shifts faster on
average, and turns out to be especially effective for shifts larger than one standard deviation and for negative autocorrelation. Using
S1 and theoretical UCLs for the residuals-based approach seems to result in ARL0 values closest to the nominal value of 370. Using S5
and corresponding theoretical UCLs produces somewhat too low ARL0 values. However, the residuals-based approach is not as
effective in detecting shifts of smaller magnitude and especially when the variables have the same shift size. In fact, for some cases
of smaller shifts of equal size and direction, the first approach using S1 and theoretical UCLs produced lower ARL1 values than the
residuals-based approach. For smaller shifts, there seems to be a risk; given that the residuals-based chart does not signal instantly
after the shift, that the VAR(1) model incorporates and adapts to the shift causing longer run lengths.

Applying the Hotelling T2 chart to the residuals from a multivariate time series model can improve out-of-control run lengths, but
there are of course modeling issues to consider. To avoid such complications, we assumed that the true parameter estimates of the
VAR(1) model were known and the residuals were calculated accordingly. Therefore, we believe that the results provided in this article
constitute the ‘best case scenario’ for this method and further research is certainly needed to study the impact of estimated
parameters on the control chart performance. The residuals-based approach has further drawbacks when the number of variables
gets large because fitting an appropriate multivariate time series model then becomes increasingly difficult.

Since the results in this article produces no clear ‘best’ method in all situations, we believe that a larger study that compares the
performance of different approaches to tackle the autocorrelation issue would be of value to the users of Hotelling T2 charts.
Examples of such methods are those illustrated in this article: to adjust the control limits and to use residuals from a multivariate time
series model. Other methods of interest to investigate are to use residuals from univariate time series models for each variable and to
include lagged variables in the data matrix. How to properly adjust the control limits for autocorrelated data is another important
research question.
© 2014 The Authors. Quality and Reliability Engineering International published by John Wiley & Sons Ltd. Qual. Reliab. Engng. Int. 2015, 31 1779–1796
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