

The Effect of Autocorrelation on the Hotelling T-2 Control Chart

Vanhatalo, Erik; Kulahci, Murat

Published in: Quality and Reliability Engineering International

Link to article, DOI: 10.1002/qre.1717

Publication date: 2015

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA): Vanhatalo, E., & Kulahci, M. (2015). The Effect of Autocorrelation on the Hotelling T-2 Control Chart. *Quality and Reliability Engineering International*, *31*(8), 1779-1796. https://doi.org/10.1002/qre.1717

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Published online 29 September 2014 in Wiley Online Library

The Effect of Autocorrelation on the Hotelling *T*² Control Chart

Erik Vanhatalo^a*[†] and Murat Kulahci^{a,b}

One of the basic assumptions for traditional univariate and multivariate control charts is that the data are independent in time. For the latter, in many cases, the data are serially dependent (autocorrelated) and cross-correlated because of, for example, frequent sampling and process dynamics. It is well known that the autocorrelation affects the false alarm rate and the shift-detection ability of the traditional univariate control charts. However, how the false alarm rate and the shift-detection ability of the traditional univariate control charts. However, how the false alarm rate and the shift-detection ability of the Hotelling T^2 control chart are affected by various autocorrelation and cross-correlation structures for different magnitudes of shifts in the process mean is not fully explored in the literature. In this article, the performance of the Hotelling T^2 control chart for different shift sizes and various autocorrelation and cross-correlation structures are compared based on the average run length using simulated data. Three different approaches in constructing the Hotelling T^2 chart are studied for two different estimates of the covariance matrix: (i) ignoring the autocorrelation and using the raw data with theoretical upper control limits; (ii) ignoring the autocorrelation and using the raw data with adjusted control limits; calculated through Monte Carlo simulations; and (iii) constructing the control chart for the residuals from a multivariate time series model fitted to the raw data. To limit the complexity, we use a first-order vector autoregressive process and focus mainly on bivariate data. © 2014 The Authors. *Quality and Reliability Engineering International* published by John Wiley & Sons Ltd.

Keywords: statistical process control (SPC); Hotelling T² chart; autocorrelation; multivariate data; time series modeling, simulation

1. Introduction

Statistical process control (SPC) provides an important toolbox for improving the process performance and maintaining an efficient manufacturing process. Shewhart control charts together with cumulative sum and exponentially weighted moving average charts, to a large extent, form the basis of SPC when a single quality characteristic is of interest. However, in many applications of SPC, data are often collected for more than one quality characteristics, and therefore, multiple variables need to be monitored simultaneously. Process industry provides typical examples where processes often are richly instrumented with sensors and/or people routinely collecting measurements on many process variables and finished product characteristics. The multiple measurements are typically cross-correlated because a few underlying events usually drive the process at any given time. Many of the measured variables are therefore just different reflections of the same underlying event; see, for example, Kourti and MacGregor.¹

Sometimes, univariate control charts provide sufficient information, but when multiple variables require simultaneous monitoring, a univariate approach is normally neither effective nor efficient; see, for example, MacGregor.² An important advantage of multivariate control charts is that the performance of a process can be monitored using a single or a few multivariate charts instead of many univariate charts. Comprehensive overviews of the multivariate SPC (MSPC) methods can be found in Bersimis *et al.*³ and Kourti.⁴ The traditional MSPC charts include the Hotelling $T^{2,5}$ multivariate cumulative sum,⁶ and multivariate exponentially weighted moving average⁷ control charts. Furthermore, applications of the latent variable techniques such as PCA and partial least squares for multivariate monitoring are commonly used in cases where a large number of highly correlated variables are of interest.

2. Motivation

The traditional SPC techniques assume that the data are independent in time. However, because of system dynamics and/or frequent sampling, successive observations will often be correlated; see Montgomery *et al.*⁸ and Bisgaard and Kulahci.⁹ This is particularly true

^aLuleå University of Technology, Luleå, Sweden

^bTechnical University of Denmark, Kongens Lyngby, Denmark

^{*}Correspondence to: Erik Vanhatalo, Luleå University of Technology, Luleå, Sweden.

⁺E-mail: erik.vanhatalo@ltu.se

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

for continuous processes. The issue of autocorrelation when using traditional univariate control charts has been previously discussed by many authors; see Johnson and Bagshaw,¹⁰ Vasilopoulos and Stamboulis,¹¹ Alwan and Roberts,¹² Montgomery and Mastrangelo,¹³ Wardell *et al.*,¹⁴ Zhang¹⁵ among others.

Two different general solutions to the problem emerge in the literature. The first is to adjust the control limits of the traditional charts, for example, by accounting for the autocorrelation in the estimation of the process standard deviation. The second solution is to fit a time series model to the data and then apply the traditional control charts to the residuals from the model—sometimes referred to as the 'Alwan and Roberts method'.¹² Zhang¹⁵ shows that in the univariate case, the Shewhart chart based on residuals does not have the same properties as the individual Shewhart chart for independent data. While the univariate residuals chart has a higher probability in detecting a shift in the process mean in the first plotted point after the shift occurs, the detection ability at future points depends on the autocorrelation structure potentially liable to cause excessive delays in detecting an out-of-control signal.

The concern related to the impact of autocorrelation in the data extends to the multivariate case as well. For example, an important assumption for desired performance of the Hotelling T^2 control chart is that data are independent in time. However, in reality, data collected in time often exhibit various degrees of serial dependency (autocorrelation). It is to be expected that MSPC control charts that have been developed assuming independent observations should be affected by the violation of this assumption.

A detailed literature review of SPC techniques for autocorrelated univariate and multivariate data can be found in Psarakis and Papaleonida.¹⁶ Kalgonda and Kulkarni¹⁷ propose a control chart called the *Z* chart to monitor a process modeled by a first-order vector autoregressive model (VAR(1)). Pan and Jarrett^{18–20} illustrate how multivariate Hotelling T^2 charts can be applied to residuals from state space models as well as from vector autoregressive (VAR) models. Essentially, this is an extension of Alwan and Robert's¹² approach to the multivariate case. Furthermore, Pan and Jarrett²¹ show that the Hotelling T^2 chart based on residuals from a VAR model cannot distinguish between shifts in the mean and the variability. Instead, they propose using the Hotelling T^2 chart, the *W* chart, and the portmanteau test on residuals from a VAR model to monitor the variability of a multivariate autocorrelated process. Snoussi²² proposes a technique for monitoring short-run autocorrelated data using a multivariate transformation technique on the residuals from a VAR(1) model.

In this article, our main goal is to provide a more detailed study of how autocorrelation affects the Hotelling T^2 control chart, which is the most widely used MSPC chart. The shift-detection ability of the Hotelling T^2 control chart for simulated data using a VAR(1) model is evaluated for different shifts in the mean vector. For a comparative study, three different approaches are considered: (i) ignoring the autocorrelation and using the raw data with theoretical upper control limits (UCLs); (ii) ignoring the autocorrelation and using the raw data with adjusted control limits calculated through simulations; and (iii) using the residuals from a multivariate time series model fitted to the raw data. We use the average run length (ARL) as the performance measure. Throughout the study, we focus on the Hotelling T^2 chart for individual observations.

3. The Hotelling T² control chart

A popular multivariate process monitoring chart for monitoring the mean vector of a process is the Hotelling T^2 control chart. The method assumes that the quality characteristics of interest are distributed according to a multivariate normal distribution. The multivariate normal distribution is an extension of the univariate normal distribution to a situation with multiple (*k*) variables (Montgomery ²³). The multivariate normal density function is:

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{k/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})'\Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})},$$
(1)

where $\mathbf{x} = [x_1, x_2, ..., x_k]'$ is a k-dimensional random vector, $\boldsymbol{\mu}$ is a $k \times 1$ vector with the means of the k variables and $\boldsymbol{\Sigma}$ is the $k \times k$ variance-covariance matrix:

$$\Sigma = \begin{bmatrix} \sigma_{11}^2 & \sigma_{12} & \dots & \sigma_{1k} \\ \sigma_{12} & \sigma_{22}^2 & \dots & \sigma_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1k} & \sigma_{2k} & \dots & \sigma_{kk}^2 \end{bmatrix}$$
(2)

where σ_{ii}^2 is the variance of the *i*th variable and σ_{ij} is the covariance between *i*th and *j*th variables.

There are two basic versions of the Hotelling T^2 chart; one for subgrouped data and one for individual observations; see Montgomery²³ for further details. In this study we are concerned with the T^2 statistic for individual observations which is:

$$T^{2} = (\mathbf{x} - \overline{\mathbf{x}})' \mathbf{S}^{-1} (\mathbf{x} - \overline{\mathbf{x}})$$
(3)

where $\overline{\mathbf{x}}$ and \mathbf{S} are the sample mean vector and sample covariance matrix, respectively.

It should be noted that the proper estimation of the covariance matrix is a concern even for independent data. Sullivan and Woodall²⁴ compare five different estimators. The traditional estimator which they denote as S_1 is the sample covariance matrix.

$$\mathbf{S}_{1} = \frac{1}{m-1} = \sum_{i=1}^{m} (x_{i} - \overline{x}) \times (x_{i} - \overline{x})^{'}$$
(4)

E. VANHATALO AND M. KULAHCI

Sullivan and Woodall²⁴ recommend using S_5 for detecting a step or ramp shift for individual observations, which is based on the first difference of successive pairs of observations $\mathbf{v}_i = \mathbf{x}_{i+1} - \mathbf{x}_i$ for i = 1, ..., m - 1 and

$$\mathbf{S}_5 = \frac{1}{2} \frac{\mathbf{V}' \mathbf{V}}{(m-1)} \tag{5}$$

where \mathbf{v}_i make up the rows of the **V** matrix.

However, Kulahci and Bisgaard²⁵ show that S_5 underestimates the true covariance matrix compared with S_1 for positive autocorrelation. In this study, we use both S_1 and S_5 to compare the results for all proposed approaches.

When using S_1 , Tracy *et al.*²⁶ give the Phase I UCL as

$$UCL_{\mathbf{S}_{1}} = \frac{(m-1)^{2}}{m} \beta_{\alpha,k/2,(m-k-1)/2}$$
(6)

where $\beta_{\alpha,k/2,(m-k-1)/2}$ is the upper α percentile of the β distribution with k/2 and (m-k-1)/2 degrees of freedom, k is the number of variables, m is the number of samples (i.e., observations) in Phase I, and α is the acceptable false alarm rate. The Phase II UCL is given as

$$UCL_{s_1} = \frac{k(m+1)(m-1)}{m^2 - mk} F_{a,k,m-k}$$
(7)

where $F_{\alpha,k,m-k}$ is the upper α percentile of the F distribution with k and m-k degrees of freedom.

When S_5 is used to estimate the covariance matrix, the approximate UCL for the T^2 statistic is provided by Sullivan and Woodall²⁴ and Mason and Young²⁷ as

$$UCL_{\mathbf{S}_{5}} = \frac{(f-1)^{2}}{f} \beta_{a,k/2,(f-k-1)/2}$$
(8)

where $f = 2(m-1)^2/(3m-4)$. The lower control limit is 0 in both Phase I and Phase II for both estimators.

4. Simulating autocorrelated multivariate data

To limit complexity, we use the VAR(1) model. Furthermore, we primarily focus on a process with two variables (k=2) in our simulations. In Section 8, we consider a five-variable case for further generalization. The bivariate VAR(1) model with two quality characteristics, x_1 and x_2 , can be expressed as

$$x_{1,t} = c_1 + \phi_{11}x_{1,t-1} + \phi_{12}x_{2,t-1} + \varepsilon_{1,t}$$

$$x_{2,t} = c_2 + \phi_{21}x_{1,t-1} + \phi_{22}x_{2,t-1} + \varepsilon_{2,t}$$

 $\mathbf{x}_{t} = \mathbf{c} + \mathbf{\Phi} \mathbf{x}_{t-1} + \mathbf{\varepsilon}_{t}$

or

where $\mathbf{x}_t = \begin{bmatrix} x_{1,t} \\ x_{2,t} \end{bmatrix}$, $\mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$, $\mathbf{\Phi} = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}$, and $\mathbf{\varepsilon}_t = \begin{bmatrix} \varepsilon_{1,t} \\ \varepsilon_{2,t} \end{bmatrix}$

For the process to be stationary, the eigenvalues of the autocorrelation coefficient matrix Φ should be less than one in absolute value; see Reinsel.²⁸ For a stationary VAR(1) process, the mean vector is

$$E(\mathbf{x}_t) = \boldsymbol{\mu} = (\mathbf{I} - \boldsymbol{\Phi})^{-1} \mathbf{c}$$
(10)

where I is the identity matrix. The covariance matrix of the VAR(1) process is then

$$\Gamma(0) = \Phi' \Gamma(0) \Phi + \Sigma \tag{11}$$

where $\Gamma(0)$ is the covariance matrix of the VAR(1) process (or the autocovariance matrix at lag 0) and Σ is the covariance matrix of the errors (Reinsel²⁸). The covariance structure of the first-order autoregressive process is hence dependent on both the autocorrelation matrix Φ and the covariance matrix Σ of the errors. For example, for

$$\Phi = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix} = \begin{bmatrix} 0.95 & 0 \\ 0 & 0.95 \end{bmatrix} \text{ and } \Sigma = \begin{bmatrix} 1 & 0.9 \\ 0.9 & 1 \end{bmatrix}, \text{ we have}$$

$$\Gamma(0) = \begin{bmatrix} 10.256 & 9.231 \\ 9.231 & 10.256 \end{bmatrix}$$
(12)

1781

(9)

In this study, we investigate how changes to the autocorrelation matrix Φ and the covariance matrix Σ of the errors affect the ARL of the Hotelling T^2 control chart using the three different methods. We generate different autocorrelation and cross-correlation structures by changing the elements of the Φ and Σ matrices. Shifts in the mean vector are generated as multiples of the standard deviations of the corresponding variables.

5. Approaches for constructing Hotelling T² control chart

In the following text, we describe the three approaches that we consider in this study in more detail. The performance of the three approaches are based on simulations using m = 500 observations and k = 2 variables. That is, we assume that the mean vector and covariance matrices (S_1 and S_5) can be estimated from 500 observations from an in-control process in Phase I. These estimates are then used in the online monitoring stage in Phase II.

The in-control ARL (ARL₀) and the out-of-control ARL (ARL₁) for different shifts in the mean vector are evaluated. The theoretical UCLs are calculated based on a false alarm rate of 0.0027, which corresponds to an in-control ARL of approximately 370. We have also run simulations with m = 100, 1000, 5000, and 10000. The nominal value of 370 for ARL₀ is achieved for $m \ge 1000$. However, we used m = 500 in our simulations because we found that ARL₀ is fairly close to 370 for independent data, while 500 observations in Phase I are still feasible from a practical viewpoint. All simulations in this article are performed in *R* statistics software, and the *R* code for the simulations is available upon request.

To limit the number of cases to simulate, we begin by simplifying the bivariate VAR(1) model:

$$\begin{bmatrix} x_{1,t} \\ x_{2,t} \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix} \begin{bmatrix} x_{1,t-1} \\ x_{2,t-1} \end{bmatrix} + \begin{bmatrix} \varepsilon_{1,t} \\ \varepsilon_{2,t} \end{bmatrix}$$

with

 $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$

and

$$\mathbf{\Phi} = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix} = \begin{bmatrix} \phi_{11} & 0 \\ 0 & \phi_{22} \end{bmatrix} \text{ with } \phi_{11}, \phi_{22} = \pm 0.25, \pm 0.5, \pm 0.75, \pm 0.95$$
(13)

Furthermore we consider three covariance matrices for the errors:

- 1. Uncorrelated $\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ 2. Moderately correlated $\Sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}$
- 3. Highly correlated $\boldsymbol{\Sigma} = \begin{bmatrix} 1 & 0.9 \\ 0.9 & 1 \end{bmatrix}$
- 5.1. Theoretical upper control limit

In this first approach, the autocorrelation is ignored, and the theoretical UCLs are calculated. This approach is expected to provide a benchmark to which the other two approaches are compared. For the first approach, we compare the results using \mathbf{S}_1 and \mathbf{S}_5 .

5.2. Adjusting the upper control limit through simulations

In this approach, the UCL is adjusted through Monte Carlo simulation to yield the desired in-control ARL of 370, which corresponds to a false alarm rate of 0.0027.

When m = 500, not all simulated samples generate an out-of-control signal. To calculate the control limit corresponding to a desired in-control run length of 370, the following procedure is therefore employed. For a given false alarm rate α for each (independent) observation, the probability that there is at least one signal in a sample of *m* observations is

$$\alpha_{\text{OVERALL}} = 1 - (1 - \alpha)^m \tag{14}$$

Now, let N_5 be the number of samples with one or more out-of-control signals among *n* simulated samples, and N_{NS} be the number of samples with no out-of-control signal such that $N_5 + N_{NS} = n$. The overall false alarm rate can now be expressed as $N_5/n = \alpha_{OVERALL} =$

 $1 - (1 - \alpha)^m$. Hence, $N_s = n(1 - (1 - \alpha)^m)$. To find the adjusted UCL value that corresponds to the given overall false alarm rate, we calculate the maximum T^2 value in each sample and rank them in descending order. The adjusted UCL is the N_s^{th} (rounded down to the nearest integer) maximum T^2 value in descending order.

It should be noted that the probability calculation in (14) assumes independent observations. For Hotelling T^2 charts, it can be shown that even for independent data, T^2 values are not independent; see Mason and Young.²⁷ However, for independent data, the dependence among T^2 values in Phase I is shown to be equal to -1/(m-1) and can therefore be considered negligible for large *m* as in our case; see Mason and Young²⁷ and Sullivan and Woodall.²⁴ On the other hand, when the observations are autocorrelated, the dependence among T^2 values clearly cannot be ignored. We present this approach as an alternative to the first approach and assume that the autocorrelation is once again ignored, and as opposed to the first approach for which the theoretical UCL is used, the UCL is instead calculated using Monte Carlo simulation. As stated earlier, our main goal in this study is to present the repercussions of ignoring or simply not being aware of autocorrelation in the raw data when constructing Hotelling T^2 control charts.

Table I shows the adjusted UCLs for various autocorrelation values and covariance structures for the errors. The adjusted UCLs are based on n = 100,000 simulations of samples of size m = 500 and the false alarm rate $\alpha = 0.0027$. The theoretical UCL for independent data is 11.25 and 10.96 using **S**₁ and **S**₅, respectively.

From Table I, we can see that to achieve the specified overall false alarm rate, we need to decrease the UCL using S_1 as the autocorrelation increases, both for positive and negative autocorrelation. The largest decrease in the UCL occurs when both variables exhibit a large magnitude of autocorrelation, $|\phi_{11}| = |\phi_{22}| = 0.95$. This suggests that if the autocorrelation in the data is ignored and the theoretical UCL is used, the resulting control chart will have larger than expected in-control ARLs. This may at first be interpreted as welcoming news, but it is expected to have an adverse effect on the shift-detection ability of the control chart because the UCL would be set too high compared to the UCL that will result in the nominal in-control ARL.

Table I also shows that for S_5 , the adjusted UCL increases with increasing positive autocorrelation and decreases with increasing negative autocorrelation. This is due to the fact that S_5 is akin to the estimate of standard deviation based on moving ranges in univariate control charts. Successive differences for positive autocorrelation will tend to be small, whereas the situation is reversed for negative autocorrelation. Therefore for the former, the variation will be underestimated using successive differences, and for the latter, it will be overinflated. The changes in the adjusted UCL using S_5 is rather dramatic suggesting that if the autocorrelation in the data is ignored and the theoretical UCL is used, the resulting control chart can have a very small in-control ARL for positive autocorrelation depending on the magnitude of autocorrelation.

5.3. Monitor the residuals from a vector autoregressive moving average model

The third approach is an extension of Alwan and Robert's¹² method to the multivariate case. Essentially, the approach filters the data through an appropriate time series model and uses the residuals from the model for monitoring. Although the identification of a suitable time series model may be fairly straightforward in the univariate case, it is much more complicated in the multivariate case.

Consider a stationary vector autoregressive moving average model, VARMA (p,q) process for k variables as

$$\mathbf{x}_{t} = \mathbf{c} + \mathbf{\Phi}_{1} \mathbf{x}_{t-1} + \dots + \mathbf{\Phi}_{p} \mathbf{x}_{t-p} + \mathbf{\theta}_{1} \mathbf{\varepsilon}_{t-1} + \dots + \mathbf{\theta}_{q} \mathbf{\varepsilon}_{t-q} + \mathbf{\varepsilon}_{t}$$
(15)

where $\boldsymbol{\Phi}_1, \boldsymbol{\Phi}_2, ..., \boldsymbol{\Phi}_p$ are all $k \times k$ autoregressive parameter matrices, $\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, ..., \boldsymbol{\theta}_q$ are moving average parameter matrices of order $k \times k$, **c** is a $k \times 1$ vector of constants, and ε_t is a $k \times 1$ vector of multivariate normally distributed uncorrelated error terms with mean zero and variance–covariance matrix $\Sigma_{k \times k}$. In matrix notation (15) can be expressed as

$$\begin{bmatrix} x_{1,t} \\ x_{2,t} \\ \vdots \\ x_{k,t} \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{bmatrix} + \begin{bmatrix} \phi_{11}^{1} & \phi_{12}^{1} & \cdots & \phi_{1k}^{1} \\ \phi_{21}^{1} & \phi_{22}^{1} & \cdots & \phi_{2k}^{1} \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{k1}^{1} & \phi_{k2}^{1} & \cdots & \phi_{kk}^{1} \end{bmatrix} \times \begin{bmatrix} x_{1,t-1} \\ x_{2,t-1} \\ \vdots \\ x_{k,t-1} \end{bmatrix} + \dots + \begin{bmatrix} \phi_{21}^{p} & \phi_{22}^{p} & \cdots & \phi_{2k}^{p} \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{k1}^{p} & \phi_{k2}^{p} & \cdots & \phi_{kk}^{p} \end{bmatrix} \times \begin{bmatrix} x_{1,t-p} \\ x_{2,t-p} \\ \vdots \\ x_{k,t-p} \end{bmatrix} \dots$$

$$\dots + \begin{bmatrix} \theta_{11}^{1} & \theta_{12}^{1} & \cdots & \theta_{1k}^{1} \\ \theta_{21}^{1} & \theta_{22}^{1} & \cdots & \theta_{2k}^{1} \\ \vdots & \vdots & \ddots & \vdots \\ \theta_{k1}^{1} & \theta_{k2}^{1} & \cdots & \theta_{kk}^{1} \end{bmatrix} \times \begin{bmatrix} \varepsilon_{1,t-1} \\ \varepsilon_{2,t-1} \\ \vdots \\ \varepsilon_{k,t-1} \end{bmatrix} + \dots + \begin{bmatrix} \theta_{11}^{q} & \theta_{12}^{q} & \cdots & \theta_{1k}^{q} \\ \theta_{21}^{q} & \theta_{22}^{q} & \cdots & \theta_{2k}^{q} \\ \vdots & \vdots & \ddots & \vdots \\ \theta_{k1}^{q} & \theta_{k2}^{q} & \cdots & \theta_{kk}^{q} \end{bmatrix} \times \begin{bmatrix} \varepsilon_{1,t-q} \\ \varepsilon_{2,t-q} \\ \vdots \\ \varepsilon_{k,t-q} \end{bmatrix} \dots$$

$$(16)$$

$$\dots + \begin{bmatrix} \varepsilon_{1,t} \\ \varepsilon_{2,t} \\ \vdots \\ \varepsilon_{k,t} \end{bmatrix}.$$

It is evident from (16) that the number of parameters to estimate in the VARMA(p,q) model quickly becomes overwhelmingly large with increasing orders of p and q and can cause estimation issues during the model fitting stage. Some

form of simplification or approximation is therefore usually necessary. In this study, the ARL performance of Hotelling T^2 charts based on residuals from a VAR(1) model is calculated assuming that a perfect model with the known parameters is available as in the analysis of univariate control charts with autocorrelated data by Zhang.¹⁵ This is expected to provide the 'best case scenario' for this approach.

6. Performance of the Hotelling *T*² control chart for different autocorrelation and cross-correlation structures for two variables

6.1. ARL₀ with autocorrelation and cross-correlation for two variables

We first consider the in-control Phase II performance of the T^2 control chart for the three approaches: the first approach for which the autocorrelation is ignored and the theoretical UCLs are obtained from Equations (7) and (8), the second approach using the adjusted UCLs from Table I, and finally, the residuals-based approach using the theoretical UCLs. Again, it should be noted that for the last approach, even though we only consider two variables in this study to avoid additional complications due to the estimated parameters, we still use the true parameter values to obtain the residuals.

The in-control ARLs in Phase II monitoring for various scenarios for the autocorrelation parameters and error covariance structures are provided in Tables IIA and IIB, where there is no evidence suggesting a systematic effect of the level of cross-correlation between the errors on the ARL₀ values. The first approach applying the Hotelling T^2 chart to raw autocorrelated data, using S_1 , and the theoretical UCL in Equation (7) results in substantially higher ARL₀ values than what is to be expected with a UCL obtained for a false alarm rate of 0.0027. For raw data using S_5 and theoretical limits, the ARL₀ values are dramatically decreased with increasing magnitude of positive autocorrelation and dramatically increased with increasing magnitude of negative autocorrelation. Hence, we conclude that S_5 is clearly more sensitive to autocorrelation than S_1 and results in unacceptably many false alarms for positively autocorrelated data and vice versa for negative autocorrelation.

The results in Tables IIA and IIB also show that the second approach of adjusting the UCLs does a fairly good job of adjusting the ARL₀ values closer to the nominal value of 370. As expected, the adjustment is not as effective for high positive autocorrelation, while it performs somewhat better for high negative autocorrelation. The adjustment of the UCL corresponding to S_5 seems to perform clearly worse than for S_1 for positive autocorrelation and highly correlated errors.

Applying the Hotelling T^2 chart on the residuals from the VAR(1) model results in stable ARL₀ values across all autocorrelation cases. The ARL₀ values are fairly close to the nominal value of 370, although for **S**₁, the average ARL₀ value lies slightly above 370, and for **S**₅, the average lies somewhat below 370. Therefore, we should expect that the residuals-based approach using **S**₅ and theoretical UCLs will produce slightly lower ARL₁ values as well.

As discussed in the previous section, high ARL₀ values may not at first be seen as problematic; however, as it will be shown in the next section, it can have dire repercussions in detecting a shift in the mean in due time.

6.2. Detecting shifts in the means of two variables

In this section, we consider the shift-detection ability through the ARL₁ performance of the Hotelling T^2 chart for individual observations for autocorrelated data. Shifts in the mean of the two variables, δ_{x1} and δ_{x2} , are generated as multiples of their standard deviations. Note that the true standard deviations of the variables are dependent on both Φ and Σ . Tables III–VI present ARL₁ values for different cases. We generate shifts in only one variable, in both variables, and with different autocorrelation structures. The covariance between the error terms is chosen to be 0.9 in all cases.

Tables III and IV show the shift-detection ability when there is a shift in only one variable. Using the first approach and S_1 , the ARL₁ values increase with larger magnitude of autocorrelation. For the first approach using S_5 , the ARL₁ values are low for positive autocorrelation and high for negative autocorrelation, which is expected from the results in Tables IIA and IIB. The performance of the second approach with adjusted UCLs is better than of the first approach. Overall, the shift-detection ability is slightly better for adjusted UCLs using S_1 . The residuals-based approach performs best overall especially for negative autocorrelation. Although the results are comparable for the residuals-based approach for both covariance matrix estimates, using S_5 results in slightly lower ARL₁ values for small shift sizes. This is again expected based on the results for ARL₀ in Tables IIA and IIB.

As positive autocorrelation seems to pose a bigger challenge also for the residuals-based approach, Tables V and VI show the results from further simulations of different shift scenarios for positive autocorrelation only.

Comparing the results in Table V with Table III, it is interesting to note that although the residuals-based approach can be argued to have the best overall performance in Table V, it is not as effective when both variables have equal shift sizes.

From Table VI, where variables have different shift sizes, we note that the second approach with adjusted UCLs performs worse especially using S_5 compared with the results in Tables III–V. Again, the residuals-based approach has the best overall performance. However, we note that for some combinations of the autocorrelation coefficients in Φ and for smaller shifts, the ARL₁ values are actually lower for the first approach with theoretical limits.

From Tables III–VI, we conclude that, as expected, the first approach—the Hotelling T^2 chart based on raw autocorrelated data, **S**₁, and theoretical UCL—performs the worst with substantially higher ARL₁ values than the other two methods. Comparing the results in Tables III and IV, it is also clear that the worst case is for positive autocorrelation, which results in higher ARL₁ values for all methods compared with negative autocorrelation. This is in line with the conclusions made by Zhang¹⁵ for the univariate control charts. The differences among the three approaches are expectedly more significant for small shift sizes. The second approach applying the Hotelling T^2 chart on raw data but with an adjusted UCL performs better than the first approach, especially for cases with high

autocorrelation. The Hotelling T^2 chart based on the residuals from the VAR(1) model clearly outperforms the other approaches when there is a shift in only one variable, especially for negative autocorrelation. However, it should be once again noted that the perfect VAR(1) model fit is assumed in obtaining the residuals. The results for the residuals-based approach should be expected to differ when estimated parameters are used.

The results for the cases with equal shifts in both variables given in Table V are more mixed. On average, the Hotelling T^2 chart based on the residuals from the VAR(1) model has the lowest ARL₁ values for all tested shift combinations but not for all cases of the autocorrelation structure. For equal shift sizes and when $\phi_{11} = \phi_{22}$, there is a visible trend that the ARL₁ values increase using the residuals from the VAR(1) model (Table V). In contrast, when the autocorrelation in one of the variables is high and the autocorrelation in the other variable is low, the Hotelling T^2 chart based on the residuals from the VAR(1) model catches the shift substantially faster than the other methods.

The special case for which $\phi_{11} = \phi_{22} = \phi$ presents an interesting pattern. Note that for this case, we have

$$\Gamma(0) = \mathbf{\Phi} \Gamma(0) \mathbf{\Phi}' + \mathbf{\Sigma}$$

$$= \phi \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Gamma(0) \phi \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \mathbf{\Sigma}$$

$$= \phi^2 \Gamma(0) + \mathbf{\Sigma}$$

$$\Rightarrow \Gamma(0) = (1 - \phi^2)^{-1} \mathbf{\Sigma}$$
(17)

We can see that in this case, the true covariance matrix is simply the error covariance matrix adjusted for the autocorrelation in both variables.

Comparing the results for S_1 and S_5 , we conclude that for the first approach using raw autocorrelated data S_5 is clearly an inappropriate estimate. In the second approach, with adjusted UCLs, S_5 cannot be recommended either because it performs in an unpredictable manner suggesting that the adjustment of the UCL works poorly for S_5 . However, in the residuals-based approach using S_5 results in slightly faster shift detection albeit also in lower ARL₀ values.

7. Examples with a more complicated Φ matrix

The results in Section 6 were based on simulations with a diagonal Φ matrix. To explore more complicated Φ matrix structures, we test two additional scenarios for the bivariate VAR(1) model. In the simulations, we assume highly correlated errors:

$$\Sigma = \begin{bmatrix} 1 & 0.9 \\ 0.9 & 1 \end{bmatrix}$$

and two different Φ matrices; the first with one off-diagonal element and the second with two off-diagonal elements as:

1. $\Phi = \begin{bmatrix} 0.25 & 0.25 \\ 0 & 0.25 \end{bmatrix}$ 2. $\Phi = \begin{bmatrix} 0.2 & 0.5 \\ 0.5 & 0.2 \end{bmatrix}$

Here, we choose the Φ matrices to have non-zero eigenvalues. Also, all absolute eigenvalues of the autocorrelation coefficient matrices are less than one so that the resulting VAR(1) processes are stationary.

In the second approach, we adjust the UCLs through simulation as described earlier. Table VII presents the ARL₀ and ARL₁ values of the three approaches for different shift combinations in the two variables.

From Table VII, we conclude that the ARL₀ values are fairly close to the nominal value of 370 except for the first approach using S_5 , which yields low ARL₀ values. We again note that for the residuals-based approach using S_1 , the average ARL₀ values lie above the nominal value, while the opposite is true when using S_5 .

The results for the ARL₁ values are more mixed. The second approach using S_1 performs slightly better than the first approach for the tested cases. However, once again, the second approach using S_5 performs in an unpredictable manner, producing lower ARL₁ values for some cases while higher ARL₁ values for most cases compared to the second approach using S_1 .

The difference among the methods is most apparent for the second Φ matrix and shifts in only one variable. The Hotelling T^2 chart based on the residuals from the VAR(1) model performs slightly better than the second approach when only one of the variables has a shift in the mean. However, we once again observe that when both variables have equal shifts, the residuals-based approach in some cases performs worse than the first approach using S_1 . Using S_5 , the residuals-based approach results in slightly lower ARL₁ values but then so are the ARL₀ values. Overall, the performance of the residuals-based approach is best except for cases when both variables have equal shifts for which the second approach has the lowest ARL₁ values.

are based ch case	6. 6	S	11.83	12.22	11.93	10.85	9.92	12.23	9.46	9.43	8.86	8.13	11.93	9.42	7.84	7.50	6.89	10.83	8.87	7.50	6.48	5.85	9.91	8.12	6.89	5.86	4.78
usted UCLs ions for ead	M 	S	11.80	11.73	11.54	11.32	10.96	11.74	11.78	11.64	11.30	10.91	11.53	11.63	11.70	11.28	10.75	11.29	11.30	11.28	11.29	10.34	10.95	10.90	10.74	10.35	9.27
es. The adju 000 simulat	5 - 5	\mathbf{S}_5	11.85	11.02	10.70	10.32	9.83	11.02	9.47	8.86	8.49	8.07	10.72	8.86	7.83	7.29	6.86	10.31	8.49	7.30	6.48	5.86	9.82	8.07	6.86	5.86	4.79
itrix estimat ed on 100,(א 	S	11.81	11.79	11.71	11.50	11.02	11.80	11.80	11.74	11.52	10.99	11.72	11.74	11.69	11.46	10.85	11.51	11.51	11.48	11.27	10.48	11.01	10.98	10.84	10.48	9.28
⁄ariance ma ults are bas		\mathbf{S}_5	11.84	10.79	10.24	9.93	9.75	10.79	9.47	8.73	8.29	8.02	10.23	8.74	7.84	7.23	6.83	9.93	8.29	7.24	6.47	5.85	9.74	8.02	6.82	5.86	4.79
the two cov S ₅ . The resi		S	11.80	11.80	11.76	11.62	11.08	11.80	11.80	11.75	11.59	11.06	11.77	11.75	11.71	11.51	10.93	11.62	11.61	11.52	11.27	10.55	11.08	11.06	10.93	10.55	9.28
atrices, and 10.96 using		ϕ_{22}	0	-0.25	-0.5	-0.75	-0.95	0	-0.25	-0.5	-0.75	-0.95	0	-0.25	-0.5	-0.75	-0.95	0	-0.25	-0.5	-0.75	-0.95	0	-0.25	-0.5	-0.75	-0.95
fferent Σ maing S_1 and 1		ϕ_{11}						-0.25					-0.5					-0.75					-0.95				
ure, three d	[6: [1]	\mathbf{S}_{5}	11.83	17.14	28.61	56.33	204.17	17.13	15.76	27.9	64.45	248.51	28.63	27.96	23.37	65.31	312.34	56.41	64.46	65.38	44.58	376.96	205.04	248.66	312.82	376.63	168.76
lation struct eoretical UC	⊠ = ⊡:	S	11.80	11.74	11.54	11.30	10.97	11.75	11.80	11.63	11.30	10.91	11.53	11.64	11.70	11.28	10.77	11.32	11.29	11.28	11.29	10.35	10.96	10.92	10.75	10.36	9.40
he autocorre ison, the the	5 - 5	S	11.83	14.54	21.55	41.84	153.50	14.53	15.76	21.47	42.56	163.27	21.54	21.46	23.35	41.45	171.20	41.79	42.54	41.46	44.51	168.38	153.51	163.06	171.33	168.56	168.62
it cases of th For compar	$\mathbf{\Sigma} = \begin{bmatrix} \mathbf{Z} \\ \mathbf{Z} \end{bmatrix}$	s,	11.81	11.80	11.73	11.52	11.03	11.78	11.80	11.74	11.51	11.00	11.74	11.73	11.71	11.46	10.87	11.51	11.52	11.48	11.27	10.51	11.03	10.99	10.87	10.49	9.38
the differer. .h sub-case.		\mathbf{S}_5	11.85	14.06	19.23	34.52	119.69	14.06	15.77	20.21	35.12	120.16	19.23	20.23	23.35	36.54	121.21	34.58	35.10	36.51	44.65	123.69	119.81	120.30	121.03	123.67	168.36
sted UCL for tions in eac	$\Sigma = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	S	11.81	11.79	11.77	11.61	11.11	11.80	11.81	11.75	11.59	11.08	11.77	11.75	11.70	11.51	10.95	11.61	11.60	11.53	11.29	10.59	11.10	11.07	10.96	10.58	9.38
l. The adjus 0000 simula		ϕ_{22}	0	0.25	0.5	0.75	0.95	0	0.25	0.5	0.75	0.95	0	0.25	0.5	0.75	0.95	0	0.25	0.5	0.75	0.95	0	0.25	0.5	0.75	0.95
Table on 100		ϕ_{11}	0					0.25					0.5					0.75					0.95				

Quality and Reliability Engineering International

E. V	ANHA	TALO	AND	Μ.	KULA	HCI
------	------	------	-----	----	------	-----

simulation	s in each	case			5			5)	Г Ц					Γ L		5 5 5 2	
				$\Sigma = 0$	0 –				N						$\Sigma =$	- e: 		
	œ	ław	Adj.	NCL	Resid	uals	Raw		Adj. U	G	Resid	uals	Rav	~	Adj. U	JCL	Resid	uals
$\phi_{11} \phi_{22}$	S	S_5	\mathbf{S}_1	S_5	S_1	S_5	S	S ₅	S	S ₅	S	S ₅	S	S_5	S	\mathbf{S}_5	S_1	\mathbf{S}_5
0	382	325	354	349	382	325	387 3	29	352	358	387	329	375	324	343	350	375	324
0.25	397	144	361	372	389	322	389 1	30	352	417	404	330	423	86	359	599	432	349
0.5	391	44	350	388	404	331	420	39	369	566	405	349	425	25	344	626	385	326
0.75	408	14	339	338	391	340	429	14	336	543	394	331	509	10	361	491	402	328
0.95	455	Ś	307	276	399	337	469	5	308	414	386	330	586	4	354	376	384	327
0.25 0	387	133	358	380	394	330	395 1	28	357	422	392	326	384	89	343	569	388	325
0.25	380	79	342	357	404	337	384	76	347	350	380	319	392	80	351	361	414	339
0.5	374	34	333	343	392	329	406	32	347	449	414	344	421	25	351	710	399	342
0.75	420	13	332	351	394	318	423	12	339	608	415	358	458	6	340	649	394	328
0.95	488	5	316	295	400	313	513	4	322	504	398	314	562	m	338	405	400	331
0.5 0	413	44	366	367	398	331	405	44	359	502	428	359	452	24	347	671	402	333
0.25	394	34	352	377	392	336	408	36	363	472	415	338	406	25	338	693	373	310
0.5	398	22	349	347	419	345	392	22	345	341	394	317	410	21	356	382	402	334
0.75	414	10	327	343	396	328	424	10	327	508	389	328	492	8	353	911	398	343
0.95	490	4	315	274	383	321	512	4	323	516	382	307	601	ε	324	487	406	338
0.75 0	412	15	352	339	398	325	434	13	341	567	420	355	512	6	352	543	398	331
0.25	403	14	326	348	413	333	461	12	367	650	406	334	478	6	320	659	397	312
0.5	405	10	316	339	409	326	427	10	333	521	380	320	494	8	343	898	386	331
0.75	485		337	342	404	331	462	9	341	321	401	339	471	7	328	336	405	336
0.95	580	m	303	268	399	326	519	m	280	497	402	326	674	2	337	713	394	337
0.95 0	444	۰Ω	307	282	382	313	468	2	294	396	408	335	549	4	318	363	381	317
0.25	478	5	299	272	392	335	489	5	326	466	375	319	532	m	329	415	406	338
0.5	476	4	289	282	383	305	539	4	303	533	387	327	587	m	334	494	413	331
0.75	541	m	270	265	407	332	542	ε	294	527	415	344	704	ε	332	668	406	325
0.95	688	7	256	251	416	342	638	2	259	251	375	324	635	2	249	258	404	334
Remark: The data. 'Adj. U article	ARLs are CL' denot	repor tes the	ted in th e ARL va	intee colum	ns and for the approi	both covar ach with ac	iance ma ljusted Ur	ntrix estir CLs. 'Res	mators. 'R siduals' re	aw' denot ports the	tes the AR ARL value	:L values fro es from resi	iduals-b	irst appr	oach with oroach. Th	theoretic nis holds f	al UCLs fo for all tabl	r the raw es in this

Quality and Reliability Engineering International

1787

		luals	S5	322	318	328	344	345	342	327	311	346	334	323	312	336	328	329	337	338	331	329	333	344	320	325	334	351
		Resic	S	378	401	395	423	405	417	377	379	419	399	389	363	402	400	85	404	411	399	412	412	40x8	393	398	411	419
	[6: 6] [1]	NCL	S5	351	477	443	455	410	483	348	429	419	376	488	411	370	412	420	417	432	385	385	411	369	387	450	448	448
	N	Adj.	S	343	357	347	402	411	358	343	335	390	377	345	359	365	380	389	368	368	344	381	414	365	376	410	411	442
		W	S5	322	371	388	672	1051	379	1343	1754	2433	4025	423	1760	6260	8946	13489	633	2464	8239	18008	23055	995	3938	14400	22828	22253
		Ra	s	378	419	447	569	670	411	385	410	544	673	451	430	418	541	742	513	528	488	530	956	598	638	771	901	1508
		uals	S5	322	334	330	338	338	337	333	315	339	324	339	303	327	330	326	326	343	328	320	335	312	322	329	315	324
		Resid	S	398	393	391	398	422	406	408	389	391	399	403	376	394	384	403	400	404	393	385	401	392	398	399	382	390
	1 5 5 1	NCL	S5	358	413	430	435	361	416	376	372	415	406	431	383	354	371	373	415	433	399	348	363	366	390	396	383	381
	N =	Adj.	S ₁	363	361	362	368	348	362	369	369	357	413	350	344	353	345	361	374	366	386	351	356	378	362	389	372	375
		aw	S5	322	576	739	006	1031	586	1401	2481	3308	4464	714	2388	5810	9745	12871	904	3326	10036	17759	20625	956	4070	12618	21111	20790
case		R	S ¹	398	400	414	476	605	397	409	423	454	672	406	391	408	471	671	473	468	496	488	688	594	635	654	735	1238
s in each		luals	S5	325	309	338	322	327	341	340	320	317	326	344	338	333	341	348	325	325	325	333	329	333	336	338	305	333
imulation	0	Resic	S	399	375	396	385	378	408	400	389	380	391	399	398	418	413	404	411	397	406	398	384	405	407	395	379	405
n 1000 s		. UCL	S5	55	341	377	387	367	368	359	373	362	366	369	361	369	357	369	374	332	372	395	352	367	373	400	337	427
based c	M	Adj.	S1	357	343	359	376	384	351	3 354	1 354	1 365	2 376	360	359 () 363	0 345	3 378) 364) 332	8 372	9 388	2 351) 387	t 369	6 386	1 332	4 419
alues are		Raw	S5	325	560	1 754	t 937	7 1041	593	5 1488	5 2694	7 3444	3952) 828	1 2630	3 5660	9 10720	3 1341	3 1000	3400	5 1060	2007) 2148.	2 1030	2 4354	5 1321(2046	3 2140
.RLo vē			S,	395	376	401	454	567	391	395	405	457	611	410	401	436	449	658	438	410	465	539	690	592	572	625	702	131.

Quality and Reliability Engineering International

Table IIB. The

 ϕ_{22}

 ϕ_{11}

0

© 2014 The Authors. Quality and Reliability Engineering International published by John Wiley & Sons Ltd. Qual. Reliab. Enging. Int. 2015, 31 1779–1796

-0.25

-0.25-0.75-0.75-0.9500.95-0.25-

-0.5

-0.75

-0.5 -0.75 -0.95

-0.95

100	0 sim	ne out ulatio	t-of-co ons in	ontrol each	I ARL (case	ARL1)	perfo	rmano	ce in l	ohase	ll for c	differe	nt shi	fts in .	x ₁ onl	ly, wit	h cov($\varepsilon_{X_1}, \varepsilon_X$	$(2^{2}) = (2^{2})^{2}$	0.9, ai	ioj pr	' positi	ve au	tocori	elatic	'n. ⊤	ne AR	L ₁ valı	les are	e based
			δ_{x_1}	= 0.5	$\overline{5}, \delta_{x_2} =$	0 =			δ_{χ_1}	= 1.0	$\delta_{x_2} =$	0			$\delta_{x_1} =$	= 1.5,	$\delta_{\chi_2} =$	0		ô.		$0, \delta_{x2}$	0			Ş		3.0, δ _x	= 0	
		Rav	2	Adj.	ncL	Resid	luals	Rav	2	Adj. L	Ŋ	Residı	sler	Raw		Adj. U	CL B	esidua	als	Raw	Ac	ij. uct	Res	iduals	8	aw	Adj	. UCL	Resi	duals
2 ¹¹	ϕ_{22}	S	\mathbf{S}_5	S	\mathbf{S}_5	S	S_5	S	S_5	S	S_5	S	S_5	S	S ₅	S ₁ 5	55 5		55 5	S.	5 S	\mathbf{S}_5	S	S_5	S	S_5	S	\mathbf{S}_5	S	\mathbf{S}_5
0		52	45	48	48	52	45	9	9	9	9	9	9	2	2	2	2	5	5	1	1	٢	1	1	1	1	-	٢	1	1
0).25	76	30	67	158	51	45	6	7	6	23	9	9	m	2	2	5	2	, N	-	-	2	-	-	-	-	-	-	-	-
0).5	125	19	104	352	54	47	21	∞	19	128	9	9	S	č	5	8	2	2	2	2	13	-	-	-	-	-	7	-	-
0	0.75	204	6	148	460	52	46	47	7	36	295	9	9	13	4	11 1	17	2	5	ŝ	4	95	-	-	2	-	-	31	-	-
0	.95	243	4	156	342	50	42	73	m	51	349	9	9	25	Μ	18 2	66	2	2	0	7	291	-	-	2	-	7	239	-	1
.25 (~	73	22	67	86	93	79	10	5	10	12	13	12	m	2	m	m	2		-	-	-	-	-	-	-	-	-	-	-
0	0.25	54	18	50	51	93	81	~	4	~	~	13	11	2	-	2	5	m	5	-	-	-	-	-	-	-	-	-	-	-
0).5	84	14	74	236	94	80	1	4	10	44	13	12	m	7	с С	0	2	5	_	-	m	-	-	-	-	-	-	-	-
0	0.75	157	∞	123	494	92	79	32	4	26	260	13	11	6	m	8	16	m	, 2	4	Υ	58	-	-	-	-	-	12	-	-
0	.95	250	ω	156	390	95	81	77	m	51	397	13	12	24	N	17 3	49	m	2	0	7	308	-	-	2	-	7	228	-	-
.5 (143	13	114	154	140	122	29	5	25	32	28	24	∞	2	2	, 6	4	m	-	m	m	-	-	-	-	-	-	-	-
0).25	87	11	77	118	154	130	14	m	13	19	27	23	4	-	m	5	m	m	2	-	7	-	-	-	-	-	-	-	-
0).5	64	∞	57	60	152	126	∞	2	∞	∞	27	23	2	-	5	, 2	4	M	-	-	-	-	-	-	-	-	-	-	-
0	0.75	114	9	86	455	138	121	21	m	17	137	28	25	S	-	4	15	m	m	2	2	14	-	-	-	-	-	7	-	1
0	.95	251	ω	158	465	158	133	75	7	48	431	28	25	25	N	17 3	78 ,	4	3	0	7	313	-	-	m	-	7	185	-	-
.75 (254	∞	190	221	249	199	84	4	63	63	45	38	26	5	21 2	2	m	2 1	0	6	6	-	-	2	-	2	2		-
0	0.25	228	~	170	242	239	200	56	m	44	63	44	38	17	N	15 2	5	m	е м	,1	5	7	-	-	-	-	-	7	-	1
0).5	152	5	115	214	233	197	29	7	23	43	42	34	8	-	7	=	~	2	- 1	2	4	-	-	-	-	-	-	-	-
0	0.75	84	4	99	68	239	198	13	2	1	1	46	38	m	-	ŝ	m	2	5	-	-	-	-	-	-	-	-	-	-	-
0	.95	275	7	143	655	238	196	76	2	43	484	50	40	21	—	14 3	46	2	5		9	224	-	-	2	-	7	84	-	-
0.95 (~	432	m	277	268	144	112	220	7	155	132	-	-	111	2	76 5	54	–	1	5 1	33	25	-	-	10	-	4	4	-	-
0).25	394	m	244	272	143	118	210	2	140	134	-	-	90	5	202	6	-	1	2	31	23	-	-	6	-	7	Ŝ	-	-
0).5	430	m	242	322	128	103	192	7	129	141	-	-	85	2	59	12	-	1 3	3 1	24	22	-	-	7	-	Ŋ	Ŋ	-	-
5	0.75	472	2	240	443	156	120	154	7	93	157	-	-	58		37 5	54	–	1 2	2 1	14	21	-	-	m	-	2	m	-	-
0	.95	428	7	108	103	139	113	38	-	20	20	-	-	7	-	4	m	_	-	2	-	-	-	-	-	-	-	-	-	-

on 10	IV. The 00 simul	out-of- ations	-control in each	ARL (case.	(ARL ₁)) perto	orman	ce in F	hase II	tor di	Iteren	t shift:	s in X ₁	only,	with	cov(ɛ,	$(_1, \varepsilon_{X_2})$	= 0.9), and	nega:	live al	utoco	rrelatio	n. In	e AKI	- ₁ valt	les ar	e base(5
			$\delta_{\chi_1} =$	= 0.5,	$\delta_{\chi_2} =$	0			$\delta_{\chi_1} =$	= 1.0,	$\delta_{x_2} =$	0		-	$\delta_{X_1} =$	$1.5, \delta_{\chi}$	² = 0			$\delta_{X_1} =$	= 2.0,	$\delta_{\chi_2} =$	0		$\delta_{X_1} =$	= 3.0,	$\delta_{x_2} =$	0	
	ľ	æ	aw	Adj.	ncL	Resid	duals	Rć	ŴĘ	Adj. l	Ŋ	Residu	sla	Raw		Adj. UCL	Resi	duals	Rã	3	Adj. UCL	Re	siduals	Ra	×	Adj. UCL	Res	siduals	
ϕ_{11}	ϕ_{22}	S	S_5	S	\mathbf{S}_5	S	S_5	S	\mathbf{S}_5	S	\mathbf{S}_5	S	S 5	S ₁ S	5. S	S ₅	S	\mathbf{S}_5	S	\mathbf{S}_5	S ₁ S	5 S	1 S ₅	S	S ₅	S ₁ S	5 S1	\mathbf{S}_5	
0	0	51	45	47	48	51	45	9	9	9	9	9	9	2	2 2	2	2	2	-	-	-	_	-	-	-	-	-	-	
	-0.25	73	64	65	78	53	47	10	∞	6	10	9	9	m	2 2	m	7	7	-	-		_	-	-	-	1	-	-	
	-0.5	126	103	100	113	53	48	23	18	20	19	9	9	9	5 5	S	2	2	7	7	2	-	-	-	-	1	-	-	
	-0.75	212	210	156	147	51	45	48	43	38	33	9	Ŝ	14 1	3 12	2 10	2	2	5	5	5	+	-	2	2	1	-	-	
	-0.95	280	340	182	155	53	46	82	89	56	45	9	9	27 2	6 15	3 15	2	2	10	10	∞	-	-	2	2	2	-	-	
-0.25	0	73	97	64	119	27	24	10	14	6	17	m	m	5	3 2	4	-	-	-	-		_	-	-	-	-	-	-	
	-0.25	54	138	50	53	26	24	9	11	9	9	m	m	5	2 2	2	-	-	-	-	—	_	-	-	-	1	-	-	
	-0.5	79	209	68	72	27	23	10	19	6	10	m	m	°,	4 2	m	-		-	2	-	_	-	-	-	1	-	-	
	-0.75	159	485	119	120	26	24	32	73	25	24	m	m	8	6 7	9	2	-	ω	5	m	~	-	-	-	1	-	-	
	-0.95	269	1258	99	156	28	25	76	246	50	42	m	m	24 5	7 18	3 15	-		∞	18	9	-	-	2	m	2	-	-	
-0.5	0	125	190	102	212	12	10	22	45	18	49	2	2	6 1	2 5	13	-	-	7	4	7	+	-	-	-	1	-	-	
	0.25	81	369	71	113	1	10	1	37	10	16	2	2	2	5 2	m	-	-	-	7		_	-	-	-	1	-	-	
	-0.5	51	423	47	46	11	10	9	25	9	9	2	2	5	3 2	2	-	-	-	-	-	_	-	-	-	1	-	-	
	-0.75	115	1079	83	82	11	10	17	92	14	13	2	2	4	2 3	m	-	-	7	m		_	-	-	-	1	-	-	
	0.95	270	4051	163	156	-	10	69	728	45	41	2	2	21 1.	23 14	1 13	-	-	7	32	5	-	-	7	4	2	-	-	
-0.75	0	216	428	156	272	m	m	56	159	42	110	-	-	16 5	7 13	3 42	-		S	21	4 1	6 1	-	-	m	1 3	-		
	-0.25	175	1057	131	224	m	m	40	81	32	m	-	-	9	5 8	9			m	14	~ ~	-	-	-	7	-	-	-	
	-0.5	119	1871	90	120	m	m	19	198	15	21	-	-	4	5 3	4	-	-	-	5	-	-	-	-	-	1	-	-	
	0.75	65	1684	49	51	m	m	~	72	۰2	9	-	-	5	7	2	-	-	-	7		_	-	-	-	1	-	-	
	0.95	264	9210	129	130	m	m	58	1277	33	31	-	-	14 1.	79 9	6			4	40	, m	~	-	-	m	-	-	-	
-0.95	0	374	810	242	327	-	-	162	473	106	198	-	-	62 24	49 4() 103	-	-	21	114	15 5	2	-	m	25	3	- 1	-	
	-0.25	384	2796	228	275	-	-	172	1476	108	165	-		57 5.	78 35	3 74	-	-	18	204	13 3	0	-	7	28	2	-	-	
	-0.5	436	8274	244	276	-	-	161	3246	88	129	-	-	48 9.	75 3() 45	-	-	15	251	10 1	7	-	7	30	5	-	-	
	-0.75	382	14273	193	209	-	-	109	4685	62	71	-	~	32 9,	70 17	7 20	-	-	6	182	5	.0	-	-	13	1	-	-	
	-0.95	157	6294	54	56	-	-	15	532	9	9	-	-	2	1	-	-	-	-	4		_		-	-	-	-	-	
																													-

elation. The	3.0	Residuals	S ₁ S ₅	2 2	2 2	2 2	1 1	1 1	2 2	4	ς Γ	1 1	1	2 2	с С	7 6	2 2	1 1	1	1	1 1	6 5	1 1	1 1	1 1	1 1	1 1	1
autocorr	$0, \delta_{x_2} =$. UCL	\mathbf{S}_{5}	2	m	9	7	6	4	m	S	6	10	S	S	m	10	14	∞	6	10	4	21	∞	6	13	19	9
sitive a	1 = 3.	Adj	\$	2	2	2	2	-	2	m	m	2	2	2	m	m	m	2	2	2	m	4	m	2	2	2	m	9
od pu	$\delta_{\mathbf{x}}$	Raw	S	2	2	2	-	, -	2	2	-	-	, -	-	-	. 	-	-	, -	-	-	-	-	-	, -	-	-	.
0.9, aı		Ľ	Š	2	2	ŝ	2	2	2	ŝ	ŝ	m	2	ŝ	ŝ	ŝ	ŝ	m	2	ŝ	m	S	4	2	2	2	4	12
$s_{x_2}) =$		iduals	S	8	7	5	2	-	8	17	15	5	-	5	15	37	18	-	2	5	18	64	-	-	-	-	-	-
$(\varepsilon_{\chi_1}, \varepsilon_{\chi_2})$	= 2.0	Res	\$	6	8	S	2	-	∞	19	16	5	-	S	17	42	20	-	2	5	21	75	-	-	-	-	-	-
th cov	$0, \delta_{x_2} =$. UCL	S	6	15	23	28	38	13	6	22	34	41	22	22	1	40	57	28	36	40	16	82	38	41	54	87	30
es, wit	1 = 2.0	Adj	Š	6	6	∞	8	9	6	6	10	10	7	6	10	11	12	6	∞	6	12	16	14	9	7	6	15	31
/ariabl	δ_{x}	ław	\mathbf{S}_{5}	8	Ŝ	m	2	-	S	Ŝ	m	2	-	m	m	m	2	-	2	2	2	2	-	-	-	-	-	-
both v		æ	S	6	6	6	10	8	6	10	11	11	6	10	11	12	15	13	10	11	14	19	22	8	6	12	22	59
ifts in		duals	S	59	60	36	20	-	58	103	98	50	2	40	88	156	122	4	20	51	120	212	21	-	2	ŝ	21	155
qual shi	1.0	Resic	S	70	67	41	22	-	67	120	112	58	2	46	104	180	147	4	23	60	141	257	24	-	2	4	27	186
es of e	$\delta_{x_2} = 0$	NCL	\mathbf{S}_{5}	63	107	130	137	155	109	69	155	174	175	138	153	74	215	228	140	192	233	87	315	147	175	223	321	116
ent cas	1 = 1.0	Adj.	s'	64	65	61	56	52	65	69	72	64	55	63	65	73	74	69	58	67	71	84	89	46	55	67	83	119
· differ	δ_{χ}	~	S	59	24	11	9	m	25	23	11	5	2	12	11	6	S	7	9	5	5	4	2	m	7	2	2	7
se II for		Rav	S	70	71	74	72	75	74	74	84	83	84	73	76	81	98	106	74	91	95	107	153	69	80	100	143	273
in Pha: ase		uals	\mathbf{S}_{5}	183	178	149	105	47	178	217	215	182	79	142	226	245	263	150	98	170	248	304	234	48	86	154	228	323
rmance each c	2	Resid	Ś	217	213	174	117	56	205	258	261	208	94	172	266	289	316	182	117	201	297	369	274	57	101	184	284	383
) perfol tions in	$x_2 = 0.2$	Ţ	S55	201	326	359	326	269	321	196	367	459	300	394	439	193	568	403	335	424	559	214	562	270	346	370	556	202
L (ARL ₁ simulat	= 0.5, <i>ð</i>	Adj. U	S	200	206	197	181	169	187	188	191	203	159	195	192	187	202	185	194	196	190	219	208	171	165	173	210	200
rol AR 1000	$\delta_{X_1} =$		5	83	58	19	~	m	56	49	19	~	m	19	19	16	~	m	6	~	~	9	7	m	m	m	7	7
f-cont ed on		Raw		7 16	~	6	50	0	~		0	_	~	2	~	~	50	2	0	4	~	~	0	~	_	10	~	~
out-o re bas			Š	217	22{	23	24(26(213	20	22	27	25.	24.	22	213	27(29;	245	254	25.	29]	40	25.	27	29	41(54
V. The values a			ϕ_{22}	0	0.25	0.5	0.75	0.95	0	0.25	0.5	0.75	0.95	0	0.25	0.5	0.75	0.95	0	0.25	0.5	0.75	0.95	0	0.25	0.5	0.75	0.95
Table ARL ₁			ϕ_{11}	0					0.25					0.5					0.75					0.95				

1791

ne		uals	S ₅	2	m	2	-	-	2	m	m	-	-	2	2	4	-	-	2	2	m	m	-	-	-	-		-
Ion.	0	Resid	s	2	4	2	-	1	2	m	4	-	-	2	2	4	-	-	2	2	m	m	-	-	-	-	- ·	-
rrelat	$\hat{x}_{x_2} = 3.$	JCL	S5	2	2	4	ŝ	∞	S	2	m	S	∞	27	13	2	Ŝ	10	40	58	71	m	12	41	56	79	149	4
1000	= 2.0, δ	Adj. L	s,	2	m	m	4	4	2	2	m	5	4	2	2	2	4	5	2	m	m	m	7	2	2	с	4.	4
/e au	δ_{x_1}	.	S ₅	2	-	-	-	1	2	-	-	-	-	2	2	-	-	1	2		-	-	-	-	-	-	- ·	-
OSITIV		Raw	s'	2	m	4	ŝ	5	2	2	m	2	2	m	2	2	S	7	m	m	m	m	11	2	m	4	ц, с	×
nua p		ials	S ₅	1	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	-	-	-	1	-	2	2		-
۵. م ۵.	_	Residu	s	1	-	-	-	-	-	-	-	-	-			-	-	-	-		-	-	-	2	2	2	. .	. - -
²) =	₂ = 3.0	Ы	S	۱	-	2	m	9	2	-	-	m	2	14	m	-	2	9	202	146	20	-	7	209	265	351	454	-
ŝ _{X1} , ^E X	= 1.0, <i>ô</i> ,	Adj. U	S	1	-	2	4	∞	٦	-	-	m	∞	-	-	-	2	10	5	2	-	-	6	5	m	m	m i	-
COV	$\delta_{x_1} =$		Š	1	-	-	-	1	-	-	-	-	1	2	-	-	-	1	2	-	-	-	-	-	-	-		_
MITH		Raw	S ₁	1	-	2	Ŝ	11	-	-	-	4	11	2	-	-	2	14	2	2	-	-	14	m	m	4	4	-
oles, v		sle	S5	e	10	24	m	1	e	9	21	8	-	2	4	13	∞	-	2	4	8	15	-	-	2	m	15	
ariac		Residua	S.	4	10	28	4	-	e	7	24	12	-	2	5	14	6	1	2	4	6	17	-	-	2	4	11	-
	= 2.0	_	5	3	ŝ	10	15	27	17	4	7	17	32	78	4	2	13	37	47	57	78	9	42	91	80	22	52	=
	1.0, δ_{x_2}	Adj. UC	-	~	10	_	~	10	4	4	2	80	~	5		5	m	10	8	m m	5 2	5	~	9	9	с М	2	~
SUITC	$\delta_{x_1} =$		s S	~		-	-	2	-			-	2	-	~		-	m.	-	~	-	_	4	~	-	-	_	_
iqual		Raw	s	4	5	2	m		4	4	8	2	6	7	5	5	5	7	7 0	6	7	7	0	-	-	4	~ ·	7
r une		als	S ₅	1	-	1	1	1	-	-	-	-	- 3	-	-	-	-	1	1	-	-	-	1	-	1	-		-
ses o	3.0	Residu	s.	٢		-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
nt cas	$\delta_{x_2} = 0$	ncr	S5	-	-	-	2	2	-	-	-	2	4	ŝ	-	-	-	5	93	40	9	-	4	316	346	366	244	-
Terer	= 0.5	Adj.	Ś	۲		-	m	6		-	-	2	6	-	-	-	-	6	2	-	-	-	5	2	2	2	7	-
or an	δ_{x_1}	ław	\mathbf{S}_5	۲	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
e = 1		-	Ś	1	-	-	4	12	-	-	-	2	12	-	-	1	-	12	2	2	-	-	7	m	m	m	m ·	-
r nas		esiduals	1 S5	2 2	3	4	-	-	2	2	m	-	-	2	2	m	2	-	2	2	m	-	-	2	ŝ	4	2	-
case case	² = 2.0	L B	s	2	5	5	=	25	5	2	 m	=	8	27	0	2	7	30	33	17	55	2	30	10	00	56	=	m
each	0.5, $\delta_{\rm x}$	Adj. UC	10	2	2	9	4	92	2	2	e	-	Ξ	4	2	2	9	4	6 3	5 2	m	2	5	8	8	9	6 1	m
error 1s in	$\delta_{\chi_1} =$		ŝ	2	-	2	2	-	2	1	-	-	-	m	2	1	-	1	m	2	-	-	-	2	2	-	-	-
atior		Raw	s'	2	2	9	18	49	2	2	m	13	57	4	2	2	9	68	7	9	4	2	51	10	1	12	13	9
imul		als	ŝ	30	75	151	138	-	22	55	124	173	2	15	39	98	203	-	12	27	72	159	2	80	18	43	113	49
1 AKL	0.	Residu	S,	34	87	182	166	-	24	65	146	215	2	17	45	121	239	4	14	31	84	193	m	8	20	49	133	67
ontro on 1($\delta_{x_2} = 1$	JCL	S ₅	32	37	67	93	138	165	33	57	104	148	466	321	38	95	175	419	527	648	48	231	288	339	430	639	74
-or-co	= 0.5,	Adj. L	s'	31	40	65	97	116	38	32	51	96	140	49	41	37	72	143	60	57	49	47	166	58	59	61	67	11
re ba	δ_{χ_1}	~	S	30	12	œ	ŝ	m	29	12	7	S	2	16	11	9	4	7	∞	9	ŝ	m	2	m	m	2	7	-
• Ine		Rav	Ś	34	44	77	128	177	42	35	58	125	205	-	46	42	98	222	80	73	62	59	309	87	89	95	112	168
1 valt	·		ϕ_{22}	0	0.25	0.5	0.75	0.95	0	0.25	0.5	0.75	0.95	0	0.25	0.5	0.75	0.95	0	0.25	0.5	0.75	0.95	0	0.25	0.5	0.75	0.95
ARL			ϕ_{11}	0					0.25					0.5					0.75					0.95				

5

Table VII.	The ARL_0 and	ARL ₁ performance	in Phase II for	different Φ	matrices and	l different	shifts in	the two	variables and
$cov(\varepsilon_{x_1}, \varepsilon_{x_2})$	$) = 0.9$ for all α	cases. The ARL valu	es are based or	n 1000 simu	lations in each	case			

				$\Phi = \begin{bmatrix} \end{bmatrix}$	25 .25 0 .25					$\Phi = \left[\right]$.2 .5 .5 .2		
		Ra	W	Adj.	UCL	Resid	duals	Ra	w	Adj.	UCL	Resid	duals
	Shift sizes	S ₁	S ₅	S ₁	S ₅	S ₁	S ₅	S ₁	S ₅	S ₁	S ₅	S ₁	S ₅
a)	No shift (ARL ₀)	429	46	373	391	410	331	423	21	370	343	391	331
b)	$\delta_{x_1} = 0.5, \delta_{x2} = 0$	66	15	60	79	78	67	24	11	22	199	10	9
c)	$\delta_{x_1} = 1, \delta_{x2} = 0$	9	4	8	11	9	8	2	3	2	47	2	2
d)	$\delta_{x_1} = 2, \delta_{x2} = 0$	1	1	1	1	1	1	1	1	1	2	1	1
e)	$\delta_{x_1} = 0, \delta_{x2} = 0.5$	66	21	60	138	49	44	27	11	24	202	10	10
f)	$\delta_{x_1} = 0, \delta_{x2} = 1$	8	5	7	23	6	6	2	3	2	49	2	2
g)	$\delta_{x_1} = 0, \delta_{x2} = 2$	1	1	1	2	1	1	1	1	1	2	1	1
h)	$\delta_{x_1} = 0.5, \delta_{x2} = 0.5$	234	29	197	202	255	213	260	15	218	192	355	297
i)	$\delta_{x_1} = 1, \delta_{x2} = 1$	81	15	73	69	116	98	97	9	86	62	240	207

8. A five-variable example

Finally, we explore if the results for the three approaches can be extended to more than two variables. Here, we choose five variables because the Hotelling T^2 chart is generally considered most effective for a moderate number of variables. When the number of variables increases dimensionality reduction techniques, such as PCA, are preferred; see Montgomery.²³

Even with only five variables, the number of possible combinations of covariance structures for the errors and autocorrelation basically becomes unfeasibly large. Therefore, we only consider a model for a given covariance structure for the errors and vary the autocorrelation through different diagonal Φ matrices.

We assume that we have a five-variable VAR(1) model with the error covariance matrix:

	[1	.8	.3	0	0]	
	.8	1	.6	0	0	
$\Sigma =$.3	.6	1	0	0	
	0	0	0	1	.6	
	lo	0	0	.6	1	

which essentially means that the variables are correlated through two blocks of correlated errors. The first block contains correlated errors for x_1, x_2, x_3 , and the second block contains correlated errors for x_4, x_5 . In the simulations, we change the parameters of the diagonal Φ matrix:

$$\Phi = \begin{bmatrix} \phi_{11} & 0 & 0 & 0 & 0 \\ 0 & \phi_{22} & 0 & 0 & 0 \\ 0 & 0 & \phi_{33} & 0 & 0 \\ 0 & 0 & 0 & \phi_{44} & 0 \\ 0 & 0 & 0 & 0 & \phi_{55} \end{bmatrix}$$
$$= \begin{cases} 0.25 & \text{low autocorrelation} \\ 0.5 & \text{moderate autocorrelation} \\ 0.5 & \text{high autocorrelation} \end{cases}$$

where $\phi_{11} = \phi_{22} = \phi_{33} = \phi_{44} = \phi_{55} = \begin{cases} 0.5 & \text{moderate autocorrelation} \\ 0.95 & \text{high autocorrelation} \end{cases}$

We also include two additional cases with high negative autocorrelation and with different autocorrelation parameters for all variables as

$$\phi_{11} = 0.95; \phi_{22} = 0.85; \phi_{33} = 0.75; \phi_{44} = 0.65; \phi_{55} = 0.55.$$

In the second approach for each case, we adjust the UCLs through simulation and then proceed to test the shift-detection ability of the three methods. We test a number of scenarios with various shifts. Table VIII shows the ARL₀ and ARL₁ values for the three methods and different shift combinations in the five-variable case.

From Table VIII, it is again evident that the first approach using S_5 is inappropriate because the ARL₀ values are far too low for positive autocorrelation and too high for negative autocorrelation. Another interesting result is that the ARL₁ values for the first approach using S_1 are fairly competitive, especially for small-to-moderate positive autocorrelation. However, the adjustment of the UCLs in the second approach is less effective in the five-variable case because the ARL₀ values are too low, especially for high autocorrelation and using S_1 .

We also note that the residuals-based approach does not appear as competitive as in the two-variable cases for positive autocorrelation. However, it is still clearly the best approach for negative autocorrelation. When the autocorrelation parameters in the Φ matrix are positive and of small-to-moderate magnitude, the residuals-based approach actually performs the worst among the three approaches. When the autocorrelation increases, the shift-detection ability of the residuals-based approach is clearly improved for larger shifts. For the high positive autocorrelation case in Table VIII, the residuals-based approach catches shifts of one standard deviation and above faster than the other two methods. Using S_1 in the residuals-based approach seems to produce ARL_0 values closest to the nominal value of 370. However, for small shift sizes and high positive autocorrelation, the residuals-based approach performs worse than the first approach using S_1 . A possible explanation might be that if a small shift does not signal instantly in the residuals-based approach, the VAR(1) model may actually incorporate and adapt to the shift resulting in higher ARL_1 values. The analogue phenomenon for univariate residual charts is described by Zhang.¹⁵

9. Conclusions and discussion

In this article, we study the impact of autocorrelation in the raw data on the Hotelling T^2 control chart. We provide simulation results for in-control and out-of-control ARLs for various autocorrelation and error covariance structures and shifts in the mean. To limit the potentially myriad of possibilities, we primarily explore a two-variable case but also provide an example of a five-variable case.

The results clearly show that the first approach of ignoring the autocorrelation and using theoretical UCLs can lead to erroneous conclusions, in-control ARLs (sometimes significantly) different from the nominal, and poor shift-detection ability, particularly with increasing amount of autocorrelation in the data. Moreover, there is the associated problem of the estimation of the covariance matrix, which is also an issue for independent data. In this article, we compare the performance of the 'traditional' estimate S_1 with S_5 , which is based on the first difference of successive pairs of observations and has been recommended for the detection of step or ramp shifts in the mean.

As in the case of univariate Shewhart charts, we find that using a naïve approach that completely ignores the autocorrelation leads to an overestimation of the UCL, when using S_1 , and increasing in-control ARL (ARL₀) of the Hotelling T^2 chart. As expected, the consequence of fewer false alarms when the process is in control is that the shift-detection ability diminishes substantially. This approach when using S_5 gives even worse performance with too low ARL₀ values for positive autocorrelation and too high ARL₀ values for negative autocorrelation. We therefore conclude that S_5 is not a proper estimator of the covariance matrix to be used in Hotelling T^2 calculation when data are autocorrelated.

We show that it is possible to reduce the effect of autocorrelation by adjusting the UCLs through simulation. The Hotelling T^2 chart with adjusted UCLs has improved shift-detection ability compared to the first approach for the majority of cases we tested. However, the adjustment of the UCLs we used suffers from the fact that it also assumes independent T^2 values, which is clearly violated for autocorrelated raw data.

We found that the Hotelling T^2 chart based on residuals from the VAR(1) model performs best overall, catching the shifts faster on average, and turns out to be especially effective for shifts larger than one standard deviation and for negative autocorrelation. Using S_1 and theoretical UCLs for the residuals-based approach seems to result in ARL₀ values closest to the nominal value of 370. Using S_5 and corresponding theoretical UCLs produces somewhat too low ARL₀ values. However, the residuals-based approach is not as effective in detecting shifts of smaller magnitude and especially when the variables have the same shift size. In fact, for some cases of smaller shifts of equal size and direction, the first approach using S_1 and theoretical UCLs produced lower ARL₁ values than the residuals-based approach. For smaller shifts, there seems to be a risk; given that the residuals-based chart does not signal instantly after the shift, that the VAR(1) model incorporates and adapts to the shift causing longer run lengths.

Applying the Hotelling T^2 chart to the residuals from a multivariate time series model can improve out-of-control run lengths, but there are of course modeling issues to consider. To avoid such complications, we assumed that the true parameter estimates of the VAR(1) model were known and the residuals were calculated accordingly. Therefore, we believe that the results provided in this article constitute the 'best case scenario' for this method and further research is certainly needed to study the impact of estimated parameters on the control chart performance. The residuals-based approach has further drawbacks when the number of variables gets large because fitting an appropriate multivariate time series model then becomes increasingly difficult.

Since the results in this article produces no clear 'best' method in all situations, we believe that a larger study that compares the performance of different approaches to tackle the autocorrelation issue would be of value to the users of Hotelling T^2 charts. Examples of such methods are those illustrated in this article: to adjust the control limits and to use residuals from a multivariate time series model. Other methods of interest to investigate are to use residuals from univariate time series models for each variable and to include lagged variables in the data matrix. How to properly adjust the control limits for autocorrelated data is another important research question.

tions	22	als	S ₅	263 263
simula	6 6 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	Residu	S	40 2
1000 5		С	S_5	113 53 74 9 8 36 1 18 18
d on	385	Adj. U	S,	115 54 75 9 88 8 8 1 18 18
e base	95 0 0 0 0 0		S5	901 0666 248 236 929 576 583 29 29 29 379 14
les are		Raw	-	7 10 10 10 11 10 12 10 13 10 14 10 15 <t< td=""></t<>
rl valı	÷	s	5 S	50 30 33 13 54 20 58 10 7 2 58 10 72 11 11 5 72 5 11 5 72 5 11 5 72 5 11 5 72 5 72 5 72 5 72 5 72 5 72 5 72 5 72
he AF	55 55 55	Residua	Š	889 26 99 29 940 21 940 21 64 11 1 1 68 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ple. T	0 0 0 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0	L L	S.	280 3 181 3 65 65 258 3 258 2 56 64 64 131 1 146 1 146 1 146 1
exam	85 0 0	Adj. U	S,	174 153 69 69 60 129 32 32 33 33 33 33 33
able	.95 0 0 0	>	\mathbf{S}_5	N N F N F F F F F F F F
-vari	= Φ	Rav	Ś	302 244 111 162 89 162 44 44 44 110 52 52
e five	0 0 56:	luals	S ₅	259 95 95 1138 138 1138 112 112
for th	0 0 0 95 0	Resid	S1	393 303 303 136 1156 216 2 1 1155 21 21 21 21
tions	0 0 <u>9</u> 2 0 0	. UCL	S	214 51 127 163 96 32 32 32 32 58 58 58
bina	0 26: 0 0	Adj	Š	89 62 57 19 19 19 19 23 33 33
com	6	Raw	S5	3 8 5 5 8 4 5 3 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
shift	Ð	-	Š	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
erent	0 0 5.	esidual	¹ S ₅	82 26 96 18 97 14 98 14 95 13 95 13
d dif	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L R	5.	98 398 33 97 37 37 11 15 6 12 38 11 5 12 38 11 5 12
es an	0 40 0 0	Adj. UC	Ś	54 2 26 15 76 1 15 21 15 2 31 2 31 2 2 2
latric			S ₅	10 10 × × × × × × × × × × × × × × × × × × ×
t⊕⊐	Φ =	Raw	Š	349 147 32 237 77 106 18 18 81 81 38 38
ieren	0 0 0 25	luals	\mathbf{S}_5	252 150 150 24 24 27 27 27 27 27 27 27 27 27 27 27 27
or dif	0 0 0 25 0	Resic	Š	369 211 59 59 263 1161 161 31 34 2 131 74 2 2 2
nce fo	0 0 0 0	NCL	S5	314 125 24 24 65 90 90 14 14 14 31 31
ormar	0 0 0	Adj.	Š	284 120 23 23 63 63 84 13 13 13 13 13 61 61
perto	[.25 0 0 0	M	S ₅	46 24 15 15 15 15 15
ARL ₁	$\Phi = \Phi$	ß	Š	380 149 28 28 79 76 15 15 15 76 35 35 35
Table VIII. The AKL ₀ and in each case			Shift sizes	a) No shift (ARL ₀) b) $\delta_{x_1} = 0.5$ c) $\delta_{x_1} = 1$ d) $\delta_{x_2} = 0.5$ e) $\delta_{x_4} = 1$ f) $\delta_{x_1} = 1, \delta_{x_4} = 1$ f) $\delta_{x_1} = 1, \delta_{x_4} = 1$ h) $\delta_{x_1} = 1, \delta_{x_4} = -1$ j) $\delta_{x_1} = 2, \delta_{x_4} = 2$ j) $\delta_{x_1} = 2, \delta_{x_2} = \delta_{x_3} = 1$ j) $\delta_{x_1} = \delta_{x_2} = \delta_{x_3} = 1$

Acknowledgements

We gratefully acknowledge the financial support from the Swedish Research Council under grant number 340-2013-5108.

References

- 1. Kourti T, MacGregor JF. Process analysis, monitoring and diagnosis, using multivariate projection methods. *Chemometrics and Intelligent Laboratory* Systems 1995; 28:3–21. DOI: 10.1016/0169-7439(95)80036-9
- MacGregor JF. Using on-line process data to improve quality: challenges for statisticians. International Statistical Review 1997; 65(3):309–323. DOI: 10.1111/j.1751-5823.1997.tb00311.x
- 3. Bersimis S, Psarakis S, Panaretos J. Multivariate statistical process control charts: an overview. *Quality and Reliability Engineering International* 2007; 23(5):517–543. DOI: 10.1002/qre.829
- 4. Kourti T. Application of latent variable methods to process control and multivariate statistical process control in industry. International Journal of Adaptive Control and Signal Processing 2005; 19:213–246. DOI: 10.1002/acs.859
- 5. Hotelling H. Multivariate quality control—illustrated by the air testing of sample bombsights. In Techniques of Statistical Analysis, (eds.), Eisenhart C, Hastay MW, Wallis WA. MacGraw-Hill: New York, 1947.
- 6. Crosier RB. Multivariate generalizations of cumulative sum quality control schemes. Technometrics 1988; 30(3):291-303.
- 7. Lowry CA, Woodall WH, Champ CW, Rigdon SE. A multivariate exponentially weighted moving average control chart. *Technometrics* 1992; **34**(1):46–53.
- 8. Montgomery DC, Jennings CL, Kulahci M. Introduction to Time Series Analysis and Forecasting. Wiley: Hoboken, NJ, 2008.
- 9. Bisgaard S, Kulahci M. Time Series Analysis and Forecasting by Example. Wiley: Hoboken, NJ, 2011.
- 10. Johnson RA, Bagshaw M. The effect of serial correlation on the performance of CUSUM tests. *Technometrics* 1974; **16**(1):103–112.
- 11. Vasilopoulos AV, Stamboulis AP. Modification of control chart limits in the presence of data correlation. *Journal of Quality Technology* 1978; **10**(1): 20–30.
- 12. Alwan LC, Roberts HV. Time-series modeling for statistical process control. Journal of Business & Economic Statistics 1988; 6(1):87–95.
- 13. Montgomery DC, Mastrangelo CM. Some statistical process control methods for autocorrelated data. Journal of Quality Technology 1991; 23(3):179–193.
- 14. Wardell DG, Moskowitz H, Plante RD. Run-length distributions of special-cause control charts for correlated processes. Technometrics 1994; 36(1):3–17.
- 15. Zhang NF. Detection capability of residual control chart for stationary process data. Journal of Applied Statistics 1997; 24(4):475–492.
- 16. Psarakis S, Papaleonida GEA. SPC procedures for monitoring autocorrelated processes. Quality Technology & Quantitative Management 2007; 4(4): 501–540.
- 17. Kalgonda AA, Kulkarni SR. Multivariate quality control chart for autocorrelated processes. *Journal of Applied Statistics* 2004; **31**(3):317–327. DOI: 10.1080/0266476042000184000
- 18. Pan X, Jarrett JE. Why and how to use vector autoregressive models for quality control: the guideline and procedures. *Quality & Quantity* 2012; **46**:935–948. DOI: 10.1007/s11135-011-9437-x
- 19. Pan X, Jarrett JE. Using vector autoregressive residuals to monitor multivariate processes in the presence of serial correlation. *International Journal of Production Economics* 2007; **106**(1):204–216. DOI: 10.1016/j.ijpe.2006.07.002
- 20. Pan X, Jarrett JE. Applying state space to SPC: monitoring multivariate time series. Journal of Applied Statistics 2004; **31**(4):397–418. DOI: 10.1080/ 02664860410001681701
- 21. Pan X, Jarrett, JE. Monitoring variability and analyzing multivariate autocorrelated processes. *Journal of Applied Statistics* 2007; **34**(4):459–469. DOI: 10.1080/02664760701231849
- 22. Snoussi A. SPC for short-run multivariate autocorrelated processes. Journal of Applied Statistics 2011; 38(10):2303–2301. DOI: 10.1080/ 02664763.2010.547566
- 23. Montgomery DC. Statistical Quality Control: A Modern Introduction (7th edn). Wiley: Hoboken, NJ, 2013.
- Sullivan JH, Woodall WH. A comparison of multivariate control charts for individual observations. *Journal of Quality Technology* 1996; **28**(4):398–408.
 Kulahci M, Bisgaard S. Challenges in multivariate control charts with autocorrelated data. Proceedings of the 12th ISSAT International Conference on Reliability and Quality in Design, Chicago, IL, 2006.
- 26. Tracy ND, Young JC, Mason RL. Multivariate control charts for individual observations. *Journal of Quality Technology* 1992; **24**(2):88–95.
- 27. Mason RL, Young JC. Multivariate Statistical Process Control with Industrial Applications. Society for Industrial and Applied Mathematics: Philadelphia, PA, 2002.
- 28. Reinsel GC. Elements of Multivariate Time Series Analysis (2nd edn). Springer-Verlag: New York, NY, 1993.

Authors' biographies

Erik Vanhatalo is an assistant professor and senior lecturer of quality technology and management at the Luleå University of Technology (LTU). He holds an MSc degree in industrial and management engineering from LTU and a PhD in quality technology and management from LTU. His current research is focused on the use of statistical process control, experimental design, time series analysis, and multivariate statistical methods especially in process industry. He is a member of the European Network for Business and Industrial Statistics.

Murat Kulahci is an associate professor in the Department of Applied Mathematics and Computer Science at the Technical University of Denmark and in the Department of Business Administration, Technology and Social Sciences at LTU in Sweden. His research focuses on design of physical and computer experiments, statistical process control, time series analysis and forecasting, and financial engineering. He has presented his work in international conferences and published over 50 articles in archival journals. He is the coauthor of two books on time series analysis and forecasting.