Electrical breakdown phenomena of dielectric elastomers

Yu, Liyun; Mateiu, Ramona Valentina; Skov, Anne Ladegaard

Publication date: 2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Electrical breakdown phenomena of dielectric elastomers

Liyun Yu (1), Ramona Valentina Mateiu (2), Anne Ladegaard Skov (1)*

(1) Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark; (2) Center for Electron Nanoscopy, Technical University of Denmark, Kgs. Lyngby, Denmark

Abstract

Silicone elastomers have been heavily investigated as candidates for dielectric elastomers and are as such almost ideal candidates with their inherent softness and compliance but they suffer from low dielectric permittivity. This shortcoming has been sought optimized by many means during recent years. However, optimization with respect to the dielectric permittivity solely may lead to other problematic phenomena such as premature electrical breakdown. In this work, we focus on the chloropropyl functionalized silicone elastomers prepared in Madsen et al.[1,2] and we investigate the electrical breakdown patterns of two similar chloropropyl functionalized silicone elastomers which break down electrically in a rather different way as well as we compare them to a silicone based reference. Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS) are used to evaluate the elastomers after electrical breakthrough.

Keywords: silicone elastomers, dielectric, electrical breakdown, voltage stabilization, characterization

Background

Recent studies have shown that by incorporation of dipolar moieties in minute amounts the electrical breakdown strength of silicone elastomers can be increased. Such studies include incorporation of chloropropyl groups on the silicone backbone.

Experimental

![Figure 2. The structure of chloropropyl functional silicone elastomer.](image)

Table 1. Details of prepared silicone elastomers.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Molecular weight (g mol⁻¹)</th>
<th>Concentration of chloropropyl groups (mol%)</th>
<th>Molecular weight of chloropropyl groups (g mol⁻¹)</th>
<th>Tensile strength (MPa)</th>
<th>Strain at break (%)</th>
<th>ε (ε₀ LTH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAE-V52 reference</td>
<td>29000</td>
<td>0</td>
<td>82</td>
<td>1.81</td>
<td>6.08</td>
<td>374</td>
</tr>
<tr>
<td>Co-1</td>
<td>29000</td>
<td>2.0</td>
<td>74</td>
<td>0.15</td>
<td>0.65</td>
<td>429</td>
</tr>
<tr>
<td>Co-2</td>
<td>29000</td>
<td>3.0</td>
<td>94</td>
<td>0.52</td>
<td>1.27</td>
<td>314</td>
</tr>
</tbody>
</table>

Testing

![Figure 3. Breakdown Strength Instrument (spherical electrodes, stainless steel, diameter of 20 mm).](image)

Conclusion

It was shown the chemically very similar silicone elastomers broke down electrically in very different ways. These observations emphasize that the modification of the silicone backbone may open up for completely new possibilities for stabilizing the silicone elastomer electrically. In order to tailor the elastomers, more knowledge is needed but these copolymers pave the first path towards a better understanding of the complex connection between electrical and thermal stability. Minor changes in the polymer backbone structure result in changes in electrical breakdown patterns and understanding why is crucial for enabling design for extraordinarily stable elastomers and thus ultimately reliable dielectric elastomer based products.

References

Acknowledgments

The authors gratefully acknowledge the financial support of InnovationsFonden.