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Image fusion and denoising using fractional-order gradient
information ∗

Jin-Jin Mei† Yiqiu Dong‡ Ting-Zhu Huang§

Abstract

Image fusion and denoising are significant in image processing because of the availability
of multi-sensor and the presence of the noise. The first-order and second-order gradient infor-
mation have been effectively applied to deal with fusing the noiseless source images. In this
paper, due to the advantage of the fraction-order derivative, we first integrate the fractional-
order gradients of noisy source images as the target fraction-order feature, and make it fit
with the fractional-order gradient of the fused image. Then we introduce the total variation
(TV) regularization for removing the noise. By adding the data fitting term between the fused
image and a preprocessed image, a new convex variational model is proposed for fusing the
noisy source images. Furthermore, an alternating direction method of multiplier (ADMM)
is developed for solving the proposed variational model. Numerical experiments show that
the proposed method outperforms the conventional total variation methods for simultaneously
fusing and denoising.

Keywords: image fusion and denoising, alternating direction method of multiplier, inverse
problem, fractional-order derivative, structure tensor

1 Introduction

Image fusion is an important issue due to the availability of multi-sensor data in various fields such
as concealed weapon detection, remote sensing, medical diagnosis, defect inspection, and military
surveillance [1–3]. Image fusion is to synthesize several source images of the same scene into a
single image which contains much more visual information. But, the observed source images are
inevitably corrupted by the noise during the process of image collection, acquisition, transmission
and storage. For obtaining a high-quality image, it is necessary to simultaneously fuse and denoise
the source images.

Researchers have paid great attention to image fusion and studied various efficient algorithms.
According to the different degree of information extracted from the source images, image fusion
methods are typically divided into three levels: pixel-level methods, feature-level methods and
decision-making level methods. The pixel-level methods are to directly estimate the pixel values
of the fused image by integrating the pixel values of several source images with a feature selection
rule [4,5]. In this paper, since it preserves more original information from the source images [6,7],
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we devote to the study of the image fusion methods based on the pixel-level. Generally, the pixel-
level fusion approaches mainly consist of spatial domain fusion methods [8–12] and transform
domain fusion methods [13–19]. Among the spatial domain fusion methods, some variational
methods combined the structure tensor with gradient information have been studied for dealing
with the image fusion problem [11, 12, 20].

Before introducing the pixel-level fusion approaches, we firstly review some notations with
respect to the structure tensor. Suppose that Ω ⊂ R2 is a connected bounded image domain
with the compacted Lipschitz boundary, u : Ω → R is the unknown fused image, fi : Ω → R,
i = 1, 2, · · · , l are the source images. According to [11, 21, 22], the structure tensor is used for
depicting the local structure feature, which is defined as follows

G(x, y) ,


∑l

i=1

(
∂ fi
∂x

)2 ∑l
i=1

∂ fi
∂x

∂ fi
∂y∑l

i=1
∂ fi
∂y

∂ fi
∂x

∑l
i=1

(
∂ fi
∂y

)2

 , ∀(x, y) ∈ Ω.

Then, the target gradient V : Ω → R2 consists of eigenvalues and eigenvectors of the structure
tensor G. Since G is positive semi-definite, the target gradient V is formulated as

V ,
√
λe

where λ denotes the largest eigenvalues of G which conveys the sharp information, e is the corre-
sponding unit eigenvector which indicates the orientation maximizing the pixel-value fluctuations
and satisfies that 〈e,

∑l
i=1 ∇ fi〉 ≥ 0. Based on the above target gradient of source images, a classic

variational model is proposed as

min
u

∫
Ω

|∇u − V |2dx. (1)

Note that the model (1) results in the decrease of the contrast and the solution is not unique.
In [11], Piella combined the image enhancement techniques and proposed a variational model for
integrating the salient structure of source images and enhancing the contrast of the fused image.
The author derived the corresponding Euler-Lagrange equation and applied the gradient descent
method for obtaining the unknown fused image. But due to the slow convergent speed, the gradient
descent method is extremely time-consuming. In [23], the authors considered the first-order and
second-order gradient information at different directions. By adding a fidelity term which requires
that the fused image is close to a predefined image u0. They presented a new variational approach
(called FSGF for short),

min
u

∫
Ω

(
|∇u − sv| + α|∇2u − sw|

)
dx +

β

2

∫
Ω

|u − u0|
2dx (2)

where α ≥ 0, β > 0, s ≥ 1, v and w denote the target gradients which integrated the first-order and
second-order gradient information of the source images, respectively. A new feature selection was
used to construct the target gradient v and w. Note that if s = 1, the model (2) is just for image
fusion; if s > 1, the model is for simultaneous image fusion and enhancement. Moreover, the split
Bregman method [24–26] was applied to solve the model (2).

As far as we know, a few researchers have paid attention to study the effective variational
approaches for fusing the noisy source images. In [20], combining with the TV regularization,
Wang et al. proposed a variational model for fusing and denoising the noisy multi-focus images
(just referred to as WFTV),

min
u

∫
Ω

(
α1(x)(u − f1)2 + α2(x)(u − f2)2

)
dx + 2β

∫
Ω

|∇u|dx (3)
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where α1(x) and α2(x) are two nonnegative weight functions such that α1(x) + α2(x) = 1, f1 and
f2 are the noisy source images, β is the positive parameter which trades off the fidelity term for
fusing the noisy multi-focus images and the TV regularization for smoothing the fused image.
They applied the gradient descent method to deal with (3). In [27], the authors proposed a adap-
tive sparse representation model for image fusion and denoising. Assume that the high-quality
image patches were classified into several categories in advance. Then, based on the gradient in-
formation of images, they learned a set of compacted sub-dictionaries from numerous high-quality
image patches and designed an algorithm to select adaptively one of the sub-dictionaries. Their
method was based on dictionary learning, not belong to the variational method. And it was fairly
complicated and time consuming. However, in the following, we only focus on the variational
methods for image fusion and denoising.

Recently, in [28], the authors illustrated the theoretical properties of the total fraction-order
variation. Based on the the total fraction-order variation, their proposed model could preserve the
edges and smoothness. Inspired by this advantage, we combine the fraction-order derivative and
propose a novel variational model for image fusion and denoising. According to [29–31], we build
the target fractional-order gradient information from the noisy source images by a simple salience
criterion [23]. For fusing the source images, we require that the fractional-order gradient informa-
tion of the fused image should be matched with the target fractional-order gradient information in
the sense of L2 norm. Meanwhile, the fused image is closed to the predefined image. Since the
source images are corrupted by the noise, we add the TV regularization to the variational model
for the regularity constrain. Furthermore, we prove the existence and uniqueness of the solution.
Under the framework of ADMM [32–34], a fast algorithm is developed for solving the proposed
model.

The rest of this letter is organized as follows. In the next section, we introduce the elemen-
tary properties of the fractional-order derivative and the framework of ADMM. In Section 3, we
obtain the target the fractional-order feature from the noisy source images and construct a new
variational model with the TV regularization for image fusion and denoising. Meanwhile we give
the existence and the uniqueness of the solution. In Section 4, we apply the ADMM algorithm to
solve the proposed model. Numerical experiments are shown in Section 5. Finally, we conclude
the paper with a summary.

2 Preliminaries

In this section, for the completeness of the paper, we briefly review the fraction-order derivative
and the classic ADMM algorithm.

2.1 Fractional-order derivative

As a generalization of the integer-order derivatives, the fractional-order derivative has been widely
used in image processing [28, 35–37]. Firstly, the definition and property of the fractional-order
derivative have been studied over the one-dimensional domain, see [29–31] and references therein.
Assume that a fraction γ ∈ R+ and a function h ∈ L1([a, b];R), the left and right Riemann-Liouville
(RL) fractional-order derivatives are respectively defined by

aDγ
x[h](x) =

1
Γ(1 − γ)

d
dx

∫ x

a

h(τ)
(x − τ)γ

dτ, x ∈ (a, b]

xDγ
b[h](x) =

−1
Γ(1 − γ)

d
dx

∫ b

x

h(τ)
(τ − x)γ

dτ, x ∈ [a, b)
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where Γ(γ) represents a Gamma function. Based on the left and the right Riemann-Liouville
fractional-order derivatives, the Riesz-RL (central) fractional-order derivative is given by

aDγ
b[h](x) =

1
2

(
aDγ

x[h](x) − xDγ
b[h](x)

)
, x ∈ (a, b).

Similarly, the left, the right and the Riesz-Caputo fraction-order derivatives are defined by as
follows

C
a Dγ

x[h](x) =
1

Γ(1 − γ)

∫ x

a

h′(τ)dτ
(x − τ)γ

, x ∈ (a, b]

C
x Dγ

b[h](x) = −
1

Γ(1 − γ)

∫ b

x

h′(τ)dτ
(τ − x)γ

, x ∈ [a, b)

C
a Dγ

b[h](x) =
1
2

(
C
a Dγ

x[h](x) − C
x Dγ

b[h](x)
)
, x ∈ (a, b)

where h′(x) denotes the first-order derivative of the function h with respect to x. In what follows,
we consider only the Riesz-RL and the Riesz-Caputo fractional-order derivatives. Note that when
h is continuously differentiable and its first-order derivative is integrable, the RL and the Caputo
fractional-order derivatives are equivalent under the homogeneous boundary condition [29, 38].
Due to the equivalency, both fractional-order derivatives are uniformly denoted by Dγ. More-
over, since there is a singularity at the endpoint, we set h(a) = h(b) = 0 for the fractional-order
derivative.

In the discrete case, assume that u ∈ Rn×n under Dirichlet boundary condition. According
to [39,40], we give the discrete fractional-order derivatives at the point (i, j) with the order γ along
the horizontal and the vertical direction, respectively

Dγ
hui, j =

1
2

 i+1∑
k=0

cγk ui−k+1, j +

n−i+2∑
k=0

cγk ui+k−1, j

 , i, j = 1, · · · , n

Dγ
v ui, j =

1
2

 j+1∑
k=0

cγk ui, j−k+1 +

n− j+2∑
k=0

cγk ui, j+k−1

 , i, j = 1, · · · , n

where cγk = (−1)k
(
γ

k

)
for k = 0, 1, · · · , n + 1. Actually, we compute the coefficients cγk by the

following recursive relation

cγ0 = 1, cγk =

(
1 −

1 + γ

k

)
cγk−1, k = 1, 2, · · · .

Let c = cγ0 + cγ2, the discrete fractional-order derivative of u is formulated as

Dγ : Rn×n → R2n×n, Dγu :=
(
Mu
uM

)
where

M =



2cγ1 c cγ3 · · · cγn

c 2cγ1
. . .

. . .
...

cγ3
. . .

. . .
. . . cγ3

...
. . .

. . . 2cγ1 c
cγn · · · cγ3 c 2cγ1


∈ Rn×n.
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Due to the symmetry of the matrix M and the definition of the inner production on the matrix, i.e.,
〈A, B〉 = tr(A>B) = (vecA)>vecB for all A, B ∈ Rn×n where vecA and vecB are vectors by stacking
all the columns of the matrix A and B respectively, we have the following equations

〈Mu, v1〉 = tr(u>(Mv1)) = 〈u,Mv1〉

〈uM, v2〉 = (vec(uM>))>vecv2 = (vecu)>vec(v2M) = 〈u, v2M〉,

for any v1, v2 ∈ Rn×n. Finally, we obtain that

〈Dγu, v〉 = 〈Mu, v1〉 + 〈uM, v2〉 = 〈u,Mv1 + v2M〉, for all v =

(
v1

v2

)
∈ R2n×n.

Here we define the transform of the discrete fraction-order operator as (Dγ)>v = Mv1 + v2M.

2.2 Classic ADMM

According to [32–34, 41], the ADMM technique is widely applied for dealing with the following
general constrained optimization problem

min
x∈X,y∈Y

f (x) + g(y) (4)

s.t. Ax + By = b

where f (x) and g(y) are closed convex and lower semi-continuous functions, X ⊂ Rm and Y ⊂ Rn

are closed convex set, A ∈ Rl×m and B ∈ Rl×n are linear operators. By introducing a multiplier
p ∈ Rl with the linear constraint Ax + By = b, the corresponding augmented Lagrangian function
is given by

L(x, y; λ) = f (x) + g(y) + p>(Ax + By − b) +
δ

2
‖Ax + By − b‖22 (5)

where β is a positive penalty parameter. Since the x-subproblem and the y-subproblem are decou-
pled, the solution (xk+1, yk+1) of (4) is iteratively obtained by

xk+1 = arg min
x

f (x) +
δ

2

∥∥∥∥∥∥Ax + Byk − b +
pk

δ

∥∥∥∥∥∥2

2
,

yk+1 = arg min
y

g(y) +
δ

2

∥∥∥∥∥∥Axk+1 + By − b +
pk

δ

∥∥∥∥∥∥2

2
,

pk+1 = pk + τδ(Axk+1 + Byk+1 − b)

(6)

where τ > 0 controls the convergence speed. According to [42], if τ ∈
(
0,
√

5+1
2

)
, the classic

ADMM algorithm is convergent.

3 The Proposed Models

In this paper, we build the target fraction-order gradient feature by integrating several noisy source
images. For obtaining the fused image, we assume that the fractional-order gradient information
of the fused image matches with the target fractional-order gradient feature, and the fused image
is closed to the predefined image u0. Moreover, the TV regularization preserves the image edges

5



while removes the noise [43]. Inspired by the works [23, 29–31], by combining with the TV reg-
ularization, we propose a new variational model for simultaneously fusing and denoising (called
FTVL1 for short),

min
u

∫
Ω

|∇u| dx + α

∫
Ω

|∇γu − w| dx +
β

2

∫
Ω

|u − u0|
2 dx, (7)

where α, β are positive regularization parameters which control the balance between image fusion
and denoising, w denotes the target fractional-order feature, u0 represents the preprocessed image.
Similarly, we also present a variational model by using the difference between of ∇γu and w in the
sense of the L2 norm (just referred to as FTVL2)

min
u

E(u) =

∫
Ω

|∇u| dx +
α

2

∫
Ω

|∇γu − w|2 dx +
β

2

∫
Ω

|u − u0|
2 dx, (8)

Here, the first term
∫
Ω
|∇u| dx in the models (7) and (8) represents the total variation (TV) regular-

ization, defined as follows∫
Ω

|∇u| dx := sup
{ ∫

Ω

u divϕ dx
∣∣∣ϕ ∈ (C∞0 (Ω))2, ‖ϕ‖∞ ≤ 1

}
where (C∞0 (Ω))2 is the space of vector-valued functions with the compacted support in Ω. It is
used for removing the Gaussian white noise in the source images.

The second terms
∫
Ω
|∇γu−w| dx in (7) and

∫
Ω
|∇γu−w|2 dx in (8) are used to integrate all the

important salient features from the noisy source images. By combining the selection criterion [23],
we construct the target fractional-order feature w from the noisy source images. Specifically,

assume that two source images f1 and f2, we compute the fractional-order gradient ∇γ fi =

(
M fi
fiM

)
,

for i = 1, 2. According to the selection criterion [44, 45], we propose a relatively simple method
for selecting the salient features from the noisy source images. The target fractional-order feature
w is formulated as follows,

w = s∇γ f1 + (1 − s)∇γ f2

where s denotes a binary mask for fusing the salient features from the noisy source images. By
smoothing and thresholding, the binary mask is given as

s(x) =

1, if K ∗ s̃ > 0.5

0, otherwise,
with s̃(x) =

1, if K ∗ (∇γ f1)2 > K ∗ (∇γ f2)2

0, otherwise,
(9)

where ∗ represents the convolution and K is a mean kernel function, i.e., if y ∈ Ωx, then K(x, y) =

1/|Ωx|; otherwise K(x, y) = 0. The domain Ωx is a bounded neighborhood of x with area |Ωx|. Note
that when the number of the source images is more than two, we utilize the recursive method and
only incorporate two source images at one time. Furthermore, we choose the L2 norm to measure
the gap ∇γu − w in (8). This is because the L2 norm comes from Gaussian distribution by taking
− log operaton. Specially, we consider the image “Cameraman” as the test image. The noisy
source images are obtained by blurred the left part and right part with the out-of-focus kernel, then
added the Gaussian white noise with mean zero and standard variance 20, 30, respectively. The
desired fused image u is equal to the truth image, the target fractional-order feature w is obtained
by the above feature selection criterion. Figure 1 shows that the gap ∇γu − w in the horizontal
direction for the Gaussian white noise with standard variance 20 and 30. Their corresponding
histograms are shown in Figure 1(b) and (d) together with a fitting array containing random values
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Figure 1. The corresponding histograms of the gaps ∇γu − w for the Gaussian white noise with standard
variance 20 (in the left side) and 30 (in the right side), respectively.

follows Gaussian distribution. We find that the histogram of ∇γu−w is matched with the histogram
of an array obeyed Gaussian distribution. Therefore, we prefer to apply the L2 norm to measure
the gap ∇γu − w.

Furthermore, in order to obtain a better fused image, we assume that the fused image should
be close to a preprocessed image u0. Thus, a data-fitting term

∫
Ω
|u − u0|

2 dx is added to the
proposed variational model. Since the preprocessed image u0 contains all the information from
the noisy source images, the proposed model improves effectively the quality of the fused images.
Furthermore, for preserving the image contrast, we combine the average contrast (AC) [23] with
the selection criterion. Specifically, if AC( f1) − AC( f2) > 0.5, then u0 = s f1 + (1 − s) f2 where s
satisfies the equation (9); otherwise, u0 is equal to the average of the noisy source images.

In the following, we give a theorem to illustrate the existence and uniqueness of the solution
of the proposed model (8). First, according to [28], we give some notations and definitions of
the space of functions with γ-bounded variation on Ω. Let C`0(Ω,R2) denote the space of `-order
continuously differentiable functions with compact support in Ω ⊂ R2, K is the space of special
test functions, which is formulated as

K :=
{
ϕ ∈ C`0(Ω,R2)

∣∣∣ |ϕ| 6 1 for all x ∈ Ω
}

where |ϕ| =
√
ϕ2

1 + ϕ2
2. Then, the fractional-order total variation of u is defined by∫

Ω

|∇γu| dx := sup
{∫

Ω

−u divγϕ dx
∣∣∣ϕ ∈ K}

where divγϕ =
∂γϕ1
∂x +

∂γϕ2
∂y , ∂γϕ1

∂x and ∂γϕ2
∂y denote the fractional-order derivatives along the x-

direction and y-direction, respectively. Moreover, the space of functions with γ-bounded variation
on Ω is given as follows,

BVγ(Ω) :=
{

u ∈ L1(Ω)
∣∣∣ ∫

Ω

|∇γu| dx < +∞

}
.

With the γ-BV norm ‖u‖BVγ = ‖u‖L1 +
∫
Ω
|∇γu| dx, the space BVγ(Ω) is a Banach space.

Theorem 3.1. Assume that u0 ∈ BVγ(Ω)∩L2(Ω) and w has a finite vector-valued Radon measure,
then the minimization problem (8) exists an unique minimizer u∗ ∈ BVγ(Ω) ∩ L2(Ω).
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Proof. In order to prove the existence and uniqueness of the solution, we first let {uk} ⊂ BVγ(Ω)∩
L2(Ω) be a minimizing sequence of (8). Since E(0) is finite, the minimum of the energy function
E(u) is also finite. In other words, there exists a positive constant C such that

E(uk) =

∫
Ω

|∇uk|dx +
α

2

∫
Ω

|∇γuk − w|2dx +
β

2

∫
Ω

|uk − u0|
2dx 6 C.

Since w has the finite vector-valued Radon measure, we have that∫
Ω

|w| := sup
{∫

Ω

w · ϕ dx
∣∣∣ϕ ∈ K}

< +∞.

Due to the fact that
∫
Ω
|∇γuk −w| dx := sup

{∫
Ω

(
−uk divγϕ + w · ϕ

)
dx

∣∣∣ϕ ∈ K}
, then we obtain the

following inequalities as follows,∫
Ω

|∇γuk| dx 6
∫

Ω

|∇γuk − w| dx +

∫
Ω

|w| 6 C (10)

Since
∫
Ω
|∇uk| dx := sup

{ ∫
Ω

uk divϕ dx
∣∣∣ϕ ∈ (C∞0 (Ω))2, ‖ϕ‖∞ ≤ 1

}
, we have∫

Ω

|uk − u0|
2 dx 6 C. (11)

According to the triangle inequality and L2(Ω) ⊂ L1(Ω), we deduce that∫
Ω

|uk|2 dx 6 C,
∫

Ω

|uk| dx 6 C. (12)

Combining with (10), (11) and (12), we have that {uk} is bounded in BVγ(Ω)∩L2(Ω). Based on the
weak∗ topology of BVγ(Ω) [28] and the reflexivity of L2(Ω), there exists a subsequence converged
to u∗ ∈ BVγ(Ω) ∩ L2(Ω) such that

uk BVγ−w∗
−−−−−−→ u and uk L2(Ω)

−−−−→ u.

According to the lower semi-continuity of bounded variation, γ-bounded variation and L2-norm,
we get ∫

Ω

|∇u∗| dx 6 lim inf
k→∞

∫
Ω

|∇uk| dx,∫
Ω

|∇γu∗ − w|2 dx 6 lim inf
k→∞

∫
Ω

|∇γuk − w|2 dx,∫
Ω

|u∗ − u0|
2 dx 6 lim inf

k→∞

∫
Ω

|uk − u0|
2 dx.

Therefore, by Fatou’s lemma, we can conclude that E(u∗) 6 lim infk→∞ E(uk) and u∗ is a mini-
mizer of (8). Moreover, since the energy function E(u) is obviously strictly convex, the minimizer
u∗ is unique. �
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4 Proposed Algorithms

In this section, we develop an effective numerical algorithm for solving the proposed model (8)
based on the classic ADMM algorithm. In fact, some other numerical methods can also be used
for addressing the proposed model, such as the gradient descent method [43], the primal-dual
method [46, 47], the split Bregman method [25] and the alternating minimization method [48,
49]. Hereafter, we transform the proposed model into a discrete minimization. For the sake of
simplicity, we still use the same notations in the model (8). The discrete minimization is rewritten
as follows,

min
u∈Rn×n

‖Du‖1 +
α

2
‖Dγu − w‖2F +

β

2
‖u − u0‖

2
F . (13)

where u denotes the n × n gray-scale image and ‖ · ‖F represents the Frobenius norm. The discrete
TV regularization term ‖Du‖1 under the zero boundary condition is formulated by

D : Rn×n → R2n×n, Du :=
(

Nu
uN>

)
where

M =


1
−1 1

. . .
. . .

−1 1

 ∈ Rn×n.

In order to apply the ADMM algorithm, we introduce a new auxiliary variable v ∈ R2n×n and
give the following constraint convex optimization problem

min
u∈Rn×n,v∈R2n×n

‖v‖1 +
α

2
‖Dγu − w‖2F +

β

2
‖u − u0‖

2
F , (14)

s.t. v = Du

Then, let p ∈ R2n×n be the Lagrangian multiplier for the linear constraint v = Du, we give the
corresponding augmented Lagrangian function,

L(u, v, p) = ‖v‖1 +
α

2
‖Dγu − w‖2F +

β

2
‖u − u0‖

2
F + 〈p,Du − v〉 +

δ

2
‖Du − v‖2F

where δ > 0 is the penalty parameter. Therefore, under the framework of ADMM, the minimiza-
tion is divided into two separated subproblems.

For solving the v-subproblem, we utilize the shrinkage formula [48]. The solution is computed
iteratively by

vk+1 = arg min
v
‖v‖1 +

δ

2

∥∥∥∥∥∥Duk − v +
pk

δ

∥∥∥∥∥∥2

F

= shrink(Duk +
pk

δ
,

1
δ

) (15)

where shrink(x, y) = max(‖x‖F − y, 0) · x
‖x‖F

, obeying the convention 0 · 0
0 = 0.

With respect to the u-subproblem, the minimization is written as

uk+1 = arg min
u

α

2
‖Dγu − w‖2F +

β

2
‖u − u0‖

2
F + 〈pk,Du − vk+1〉 +

δ

2
‖Du − vk+1‖2F .
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By the first-order optimality condition [50], we obtain the simplified linear system as follows,(
α(Dγ)>Dγ + δD>D + βI

)
u = α(Dγ)>w + D>(δvk+1 − pk) + βu0.

By some simple operations, we obtain the following Sylvester-like equation(
αM2 + δN>N + βI

)
u + u(αM2 + δN>N) = α(Dγ)>w + D>(δvk+1 − pk) + βu0. (16)

Then, we apply the conjugate gradient (CG) method [51] to solve the equation. In conclusion, the
whole algorithm for fusing the noisy source images is given as follows.

Algorithm 1. ADMM algorithm for solving (13)

1: Initialize u0, v0 and p0; set the parameters α, β, γ, δ.
2: For k = 1, 2, . . . ,N, compute iteratively uk+1, vk+1, and pk+1 by

1) Compute vk+1 by the shrinkage formula (15);
2) uk+1 is obtained by the CG method for solving (16);
3) Update the multipliers:

pk+1 = pk + τδ(Duk+1 − vk+1).

Finally, motivated by the works in [42, 52], we give a following theorem to show the conver-
gence of Algorithm 1.

Theorem 4.1. For the fixed parameter δ > 0 and τ ∈ (0,
√

5+1
2 ), the ADMM algorithm for solving

the FTVL2 model (14) is convergent.

Proof. In order to prove the convergence of Algorithm 1, we first transform the proposed model
into the general constrained convex problem. Specially, we set two functions as follows,

f (u) =
α

2
‖Dγu − w‖2F +

β

2
‖u − u0‖

2
F , g(y) = ‖v‖1.

Then with the linear constrained condition Du − v = 0, we can deduce that for fixed δ > 0 and
τ ∈ (0,

√
5+1
2 ), Algorithm 1 is convergent. �

Note that although the u-subproblem is approximatively solved by the conjugate gradient (CG)
method, Algorithm 1 is empirically convergent.

In addition, for fair comparison with the FTVL1 model, we also apply the classic ADMM
algorithm to solve (7). The corresponding discrete minimization problem is given as follows:

min
u∈Rn×n

‖Du‖1 + α‖Dγu − w‖1 +
β

2
‖u − u0‖

2
F . (17)

By introducing two variables v and t, we transforms into the following constrained minimization
problem

min
u,v,t
‖v‖1 + α‖t‖1 +

β

2
‖u − u0‖

2
F , (18)

s.t. v = Du, t = Dγu − w.

10



Therefore, the augmented Lagrangian function of (18) is formulated as

L(u, v, t, p1, p2) = ‖v‖1 + α‖t‖1 +
β

2
‖u − u0‖

2
F + 〈p1,Du − v〉 +

δ1

2
‖Du − v‖2F

+ 〈p2,Dγu − w − t〉 +
δ2

2
‖Dγu − w − t‖2F

where p1 and p2 denotes the multipliers, δ1 and δ2 denotes the positive penalty parameters. Simi-
larly, we apply the following algorithm to solve the FTVL1 model.

Algorithm 2. ADMM algorithm for solving (17)

1: Initialize u0, v0, t0, p0
1 and p0

2; set the parameters α, β, γ, δ1, δ2.
2: For k = 1, 2, . . . ,N, compute iteratively uk+1, vk+1, tk+1, pk+1

1 and pk+1
2 by

1) Compute vk+1 and tk+1 by the shrinkage formulas

vk+1 = shrink(Duk +
pk

1

δ1
,

1
δ1

);

tk+1 = shrink(Dγuk − w +
pk

2

δ2
,
α

δ2
);

2) uk+1 is obtained by the CG method;
3) Update the multipliers:

pk+1
1 = pk

1 + τδ1(Duk+1 − vk+1),

pk+1
2 = pk

2 + τδ2(Dγuk+1 − w − tk+1).

5 Experiments

In this section, we present several numerical experiments to illustrate the superior performance of
the proposed method for fusing the noisy source images. All numerical experiments are performed
under Windows 8 and Matlab (R2015b) running on a desktop with 3.40GHz Intel Core i3-2130
CPU and 4G RAM memory. In the experiments, all the pixel values of the test source images
belong to the interval [0, 255]. In order to show the efficiency of the proposed method, we compare
with some existing popular algorithm including the WFTV model [20] and the FSGF model [23].
For the FSGF model, we first denoise the source images and then fuse the denoised images.

In real applications, it is not easy to quantitatively measure the quality of the fused results due
to the absence of the true original image. According to [53], for evaluating the quality of the fused
results, we just consider two of all the objective fusion metrics. The mutual information based
fusion metric [54, 55] is defined by

QMI = MI(u∗, f1) + MI(u∗, f2),

where u∗ is the fused image, f1 and f2 are the reference images. The mutual information operation
MI(x, y) can be expressed as

MI(x, y) = H(x) + H(y) − H(x, y)

11



with

H(x) = −
∑

x

p(x) log2 p(x)

H(x, y) = −
∑
x,y

p(x, y) log2 p(x, y),

where p(x) is the marginal probability distribution function and p(x, y) is the joint probability
distribution function. The higher MI values implies the better fused results. Moreover, by com-
bining with the principal (maximum and minimum) moments of the image phase congruency, a
new fusion metric [56, 57] is defined as a product,

QP = (Pp)α(PM)β(Pm)γ,

where p is the phase congruency, M is the maximum moment, and m is the minimum moment,
Pp = max{Cp

f1u∗ ,C
p
f2u∗ ,C

p
su∗}, PM = max{CM

f1u∗ ,C
M
f2u∗ ,C

M
su∗}, Pm = max{Cm

f1u∗ ,C
m
f2u∗ ,C

m
su∗}. Note

that s is the maximum-select map. The parameters α, β and γ can be tuned according to the
importance of the three components. The correlation coefficient between two sets x and y is given
by

Ck
xy =

σk
xy + C

σk
xσ

k
y + C

,

where k ∈ {p,M,m}, σx and σy are their respective standard variances, σxy are the covariance of x
and y, C > 0 is a constant.

For the fair compasions, we set the same maximum iteration number as 10 in the FSGF model,
the FTVL1 model and the FTVL2 model. In Algorithm 1 and 2, since the parameters α and β

balance the trade-off between the TV regularization and the data-fitting terms, we manually tune
them for obtaining the good fused results. Then we set 1 ≤ γ ≤ 2 in the fractional-order gradient
operator and 0 ≤ δ ≤ 10−5. Furthermore, since the parameter τ controls the convergence speed,
we set τ = 1.618 which the ADMM algorithm 1 converges faster than τ = 1. In addition, the
iterative number of the conjugate gradient method is equal to 5 for solving the u-subproblem.

5.1 Experiment on the Image Cameraman

The test image “Cameraman” is blurred in the left part and right part respectively with a Gaussian
kernel (mean zero, standard deviation σ = 2, kernel size 5 × 5). Then the Gaussian noise is added
to the blurring images, where the noise level σ ∈ {15, 20, 25, 30}. We compare the fused results
by using the FSGF, WFTV, FTVL1 and FTVL2 model. Table 1 lists the values of QMI and QP by
using four different methods for the test image “Cameraman”. By comparing the values of QMI

and QP, the FTVL1 and FTVL2 model obtain the higher results than the FSGF and WFTV model.
Moreover, the FTVL2 model obviously improves the values of QMI .

Figure 2 shows the fused images by using different methods for the test image “Cameraman”,
where the noise level σ = 30. We find that the noise is not thoroughly removed by the FSGF
model, but the WFTV, FTVL1 and FTVL2 model are able to eliminate the white Gaussian noise
in the source images (b) and (c). Unfortunately, the WFTV model suffers from some undesired
false edges. The FTVL1 model products some artifacts in the background. The fused image by
using the FTVL2 model is obviously better than the the WFTV and FTVL1 model. The FTVL2
model not only efficiently removes the white Gaussian noise, but also fuses highly the important
features from two source images.
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Table 1. The values of QMI and QP by using different methods for the test image “Cameraman” .

QMI QP

Noise FSGF WFTV FTVL1 FTVL2 FSGF WFTV FTVL1 FTVL2

15 5.4948 5.8548 5.9135 6.0294 0.5060 0.4955 0.5132 0.5195
20 5.1070 5.6269 5.6509 5.8047 0.4064 0.4353 0.4398 0.4490
25 4.7996 5.4410 5.4244 5.6272 0.3451 0.3935 0.3828 0.4007
30 4.5384 5.2760 5.2344 5.4845 0.2985 0.3583 0.3411 0.3672

(a) (b) (c)

(d) (e) (f) (g)

Figure 2. Comparison of different methods for fusing and denoising, the noise standard variance σ = 30.
(a) The original image; (b) and (c) two source images by blurring the left part and right part; (d) FSGF [23];
(e) WFTV [20]; (f) FTVL1; (g) FTVL2.

For illustrating the superior performance of the proposed model, we give the corresponding
edge maps of the fused images by the canny edge detector in Figure 3. By the edge maps com-
parison of the fused images, the FTVL2 model outperforms the three other methods. In the edge
map of the FSGF model, there still exists much noise. However, although the region of the grass
is smoothed by the WFTV, FTVL1 and FTVL2 model, there are no much artifacts in the region of
the sky and the black coat for the FTVL2 model.

5.2 Experiment on the Real Image

In this section, we do several experiments on the real images for simultaneously denoising and
fusing. Figure 4 shows the test real images, including three pairs of multi-focus images and
five pairs of multi-modal images, which can be found in the website http://www.quxiaobo.
org/index.html. The noisy images are obtained by adding the white Gaussian noise with the
standard variance σ ∈ {15, 20, 25, 30}, respectively. First, we list Table 2 shown the values of
QMI and QP by using four different model for the real multi-focus images. Our proposed FTVL2
model obtains the highest values of QMI by comparing with the FSGF, WFTV and FTVL1 model.
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(a) (b)

(c) (d) (e)

Figure 3. Edge maps of the fused images in Figure 2 by using the canny edge detector. (a) The original
image; (b) FSGF [23]; (c) WFTV [20]; (d) FTVL1; (f) FTVL2.

But, by comparing with the values of QP, we nearly get the higher values than the other models.
Especially, when the noise level is fairly large, the results of the proposed model shows the notable
improvement.

Table 2. The values of QMI and QP by using different methods for the real multi-focus images.

QMI QP

Image Noise FSGF WFTV FTVL1 FTVL2 FSGF WFTV FTVL1 FTVL2

15 4.0347 3.9987 4.1202 4.1370 0.3192 0.3299 0.3637 0.3634
Leaves 20 3.8820 3.8466 3.9819 4.0141 0.2784 0.2762 0.2956 0.2965

25 3.7433 3.7377 3.8746 3.9069 0.2382 0.2370 0.2430 0.2476
30 3.6106 3.6350 3.7671 3.8061 0.2075 0.2086 0.2032 0.2129

15 5.3383 6.0771 6.0383 6.0930 0.2698 0.3343 0.3228 0.3401
Book 20 5.0130 5.8697 5.8207 5.9102 0.2072 0.2952 0.2868 0.2954

25 4.7648 5.6822 5.6342 5.7364 0.1678 0.2649 0.2516 0.2659
30 4.5413 5.5135 5.4604 5.5848 0.1401 0.2415 0.2265 0.2514

15 4.8575 5.6256 5.6138 5.6456 0.2875 0.3722 0.3503 0.3499
Plane 20 4.4670 5.3921 5.3303 5.3998 0.2372 0.3335 0.3007 0.3107

25 4.1008 5.1903 5.0720 5.2062 0.1939 0.3022 0.2641 0.2864
30 3.8178 5.0092 4.8324 5.0186 0.1573 0.2754 0.2350 0.2519

Figure 5 and 7 show the fused images by applying four different models, where the white
Gaussian noise σ = 20, 30. Since the FSGF model is just used to fuse the noiseless source images,
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(a) Leaves (204 × 204) (b) Book (256 × 256) (c) Plane (160 × 160) (d) Brain (256 × 256)

(e) Crossroad (256 × 256) (f) Hill (240 × 240) (g) Grass (256 × 256) (h) Plant (256 × 256)

Figure 4. Source images.

(a) (b) (c) (d) (e) (f)

Figure 5. Comparison of different models for the images “Leaves”, where the white Gaussian noise σ = 20
(in the 1st row) and σ = 30 (in the 2nd row), respectively. (a) and (b): two input source images; (c)
FSGF [23]; (d) WFTV [20]; (e) FTVL1; (f) FTVL2.

we find that the fused result (c) still retains some noise. The WFTV model is able to remove the
noise, but oversmoothes the details of images. Compared with the FSGF and WFTV model, the
fused images of the FTVL1 and FTVL2 model are obviously improved. Furthermore, the fused
images of the FTVL2 model preserve a little clearer texture than the FTVL1 model. In conclusion,
the proposed FTVL2 model can effectively remove the white Gaussian noise as well as fuse the
salient feature from the source images. Especially, we give the zoomed parts of the fused images
by using different models, shown in Figure 6. The texture of the leaves by the FTVL2 model is
clearer than the FTVL1 model.

Secondly, we do the experiments for the test multi-modal images by using four different mod-
els. Table 3 shows the values of QMI and QP by applying four different models, where the noise
level σ = 15, 20, 25, 30. The FTVL1 and FTVL2 model almost obtain the higher values with re-
spect to QMI and QP than the FSGF and WFTV model. However, the fused results of the proposed
FTVL2 model is better than the FTVL1 model. Due to this reason, we observe that the FTVL2
model is more suitable for fusing the noisy source images.

Figure 8 shows the Comparison of different models for fusing the noisy computed tomography
(CT) image and the noisy magnetic resonance imaging (MRI) image, where the white Gaussian
noise σ = 20 and σ = 30, respectively. Figure 8(a) shows the CT images which well provides the
detail structure of the body’s bone, Figure 8(b) shows the MRI images which mainly illuminates
the detail structure of the body’s soft tissue. Figure 8(c-f) show the fused results by applying the
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(a) (b) (c) (d)

Figure 6. Comparison of zoomed fused images in Figure 5, where the white Gaussian noise σ = 20 (in the
1st row) and σ = 30 (in the 2nd row), respectively. (a) FSGF [23]; (b) WFTV [20]; (c) FTVL1; (d) FTVL2.

FSGF model [23],the WFTV model [20], the FTVL1 model and the FTVL2 model. Figure 8(c)
is the fused result of the FSGF model, there still retains some noise. But from Figure 8(d-f), the
noise is effectively removed by the WFTV model [20], the FTVL1 model and the FTVL2 model.
Unfortunately, the WFTV model darken the fused image and reduce the image contrast. The
FTVL1 model and the FTVL2 model gets the better fused images. But the FTVL1 model products
the undesired artifacts in the fused images. The FTVL2 model fuses the abundant information and
salient feature of the noisy source images, especially by comparing with the zoomed parts of the
fused image in Figure 9. By compared with the FTVL1 model, the fused images of the FTVL2
model better fit with the quality perception of the human visual system (HVS). Therefore, the
proposed model effectively removes the noise as well as fuses the salient detail of the CT images
and MRI images.

(a) (b) (c) (d) (e) (f)

Figure 7. Comparison of different models for the images “Book”, where the white Gaussian noise σ = 20
(in the 1st row) and σ = 30 (in the 2nd row), respectively. (a) and (b): two input source images; (c)
FSGF [23]; (d) WFTV [20]; (e) FTVL1; (f) FTVL2.
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Table 3. The values of QMI and QP by using different models for the real multi-modal images.

QMI QP

Image Noise FSGF WFTV FTVL1 FTVL2 FSGF WFTV FTVL1 FTVL2

15 2.6017 2.5786 2.7504 2.7885 0.2057 0.2014 0.2192 0.2133
Brain 20 2.4345 2.4550 2.6302 2.6861 0.1553 0.1698 0.1788 0.1735

25 2.3198 2.3498 2.5310 2.6105 0.1268 0.1481 0.1496 0.1529
30 2.2203 2.2695 2.4614 2.5499 0.1035 0.1314 0.1285 0.1385

15 3.1104 2.6442 3.1401 3.1529 0.4861 0.3601 0.4891 0.4943
Grass 20 2.9784 2.5556 2.9814 2.9981 0.4227 0.2943 0.4123 0.4208

25 2.8489 2.4823 2.8461 2.8892 0.3602 0.2449 0.3448 0.3586
30 2.7402 2.4173 2.7420 2.7936 0.3079 0.2094 0.2894 0.3093

15 2.7077 2.1029 2.8007 2.8271 0.2774 0.2531 0.2958 0.3012
Crossroad 20 2.4283 1.9897 2.5829 2.6417 0.2132 0.2185 0.2481 0.2492

25 2.2137 1.9043 2.4015 2.4753 0.1669 0.1916 0.2124 0.2147
30 2.0501 1.8284 2.2745 2.3578 0.1388 0.1709 0.1813 0.1901

15 2.5245 1.7110 2.5897 2.9196 0.1073 0.1091 0.1105 0.01147
Hill 20 2.3027 1.6892 2.4380 2.4840 0.0797 0.0925 0.0901 0.0926

25 2.1320 1.6677 2.3204 2.3704 0.0611 0.0806 0.0748 0.0806
30 2.0114 1.6477 2.2236 2.2957 0.0516 0.0724 0.0656 0.0737

15 3.1427 3.1157 3.3199 3.3327 0.3800 0.3734 0.3935 0.4000
Plant 20 3.1056 2.9502 3.1316 3.1385 0.3175 0.3122 0.3117 0.3194

25 2.9366 2.8258 2.9659 2.9919 0.2527 0.2553 0.2531 0.2639
30 2.8034 2.7230 2.8278 2.8532 0.2137 0.2197 0.2083 0.2208

Figure 10 and 11 are the Comparison of different models for fusing the noisy visible image
and the noisy infrared image. The visible image captures many spatial details and background
information, while the infrared image easily determines the position of thermal objects. The visible
image is different from the infrared image. And the information of the visible image and the
infrared image is complementary. Obviously, for the FSGF model, the noise is not thoroughly
removed. The WFTV model reduce the contrast of the fused image. But, for the proposed FTVL1
and FTVL2 models, all the salient features of are fairly clear. Furthermore, the proposed FTVL2
model obtains the better fused image without the undesired artifacts.

6 Conclusion

In this paper, according to the underlying properties of the fractional-order derivative, we as-
sume that the synthetical fractional-order gradient information from the source images fits with
the fractional-order gradient information of the fused image in the sense of L2 norm. By combin-
ing the total variation (TV) regularization for removing the noise with the fidelity term for making
the fused image close a predefined image, we present a novel convex variational model for fus-
ing the noisy source images. Then, an alternating direction method of multiplier (ADMM) is
developed for solving the proposed FTVL2 model. Numerical experiments show that our method
outperform the state-of-the-art variational methods in terms of visual and quantitative measures.

Acknowlegenments

We would like to thank Fang Li and Weiwei Wang for providing the software codes [23] and [20].

17



(a) (b) (c) (d) (e) (f)

Figure 8. Comparison of different models for fusing and denoising in the images “Brain”, where white
Gaussian noise σ = 20 (in the 1st row) and σ = 30 (in the 2nd row), respectively. (a) and (b): two source
images; (c) FSGF [23]; (d) WFTV [20]; (e) FTVL1; (f) FTVL2.
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