STROBE-X: X-Ray Timing and Spectroscopy on Dynamical Timescales from Microseconds to Years

Wilson-Hodge, Colleen A; Ray, Paul S.; Gendreau, Keith C.; Chakrabarty, Deepto; Feroci, Marco; Arzoumanian, Zaven; Brandt, Søren; Hernanz, Margarita; Hui, Michelle; Jenke, Peter

Total number of authors:
14

Published in:
Results in Physics

Link to article, DOI:
10.1016/j.rinp.2017.09.013

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Accepted Manuscript

STROBE-X: X-ray Timing and Spectroscopy on Dynamical Timescales from Microseconds to Years

Colleen A. Wilson-Hodge, Paul S. Ray, Keith Gendreau, Deepto Chakrabarty, Marco Feroci, Zaven Arzoumanian, Soren Brandt, Margarita Hernanz, C. Michelle Hui, Peter A. Jenke, Thomas Maccarone, Ron Remillard, Kent Wood, Silvia Zane, for the STROBE-X collaboration,

PII: S2211-3797(17)31664-9
DOI: http://dx.doi.org/10.1016/j.rinp.2017.09.013
Reference: RINP 929

To appear in: Results in Physics

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
STROBE-X: X-ray Timing and Spectroscopy on Dynamical Timescales from Microseconds to Years

Colleen A. Wilson-Hodgea,∗, Paul S. Rayb, Keith Gendreauc, Depeo Chakrabartyd, Marco Ferocie, Zaven Arzoumaniancf, Soren Brandtg, Margarita Hernanzh, C. Michelle Huiia, Peter A. Jenkea, Thomas Maccaronel, Ron Remillardd, Kent Wood1,k, Silvia Zanel, for the STROBE-X collaboration

aNASA/MSFC/ST12, 320 Sparkman Dr., Huntsville, AL 35805, USA
Corresponding author: NASA/MSFC/ST12, 320 Sparkman Dr., Huntsville, AL 35805, USA
e-mail: colleen.wilson@nasa.gov

ABSTRACT

The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) probes strong gravity for stellar mass to supermassive black holes and ultradense matter with unprecedented effective area, high time-resolution, and good spectral resolution, while providing a powerful time-domain X-ray observatory.

1. Introduction

The high-energy sky is extremely dynamic, requiring both wide-field monitoring, to catch a source at the right time, and highly flexible scheduling, to quickly repoint for detailed studies of critical events. Studies of strong gravity and ultradense matter require large collecting areas with low detector dead-time to access the shortest timescales. Broad energy coverage with good spectral resolution is needed to accurately determine continuum spectral shape, to characterize spectral features such as iron lines, to constrain absorption, and to accurately measure the relationship between thermal and non-thermal components. A flexible, high-throughput observatory, the Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) has been selected as one of NASA’s Astrophysics Probes Mission Concept Studies. These studies will provide input to the 2020 Astrophysics Decadal Survey. STROBE-X serves a large community in a decade of multi-wavelength time-domain astronomy with unique and complementary capabilities to the large high spectral and spatial resolution missions.

2. Science

STROBE-X’s key science goals include:

• Probing stationary spacetimes near black holes (BHs) to explore the effects of strong-field general relativity and measure the masses and spins of BHs, using multiple techniques that allow for cross-calibration.
• X-ray reverberation mapping of the geometry of BH accretion flows across all mass scales, from stellar-mass BHs in...
our Galaxy to supermassive BHs in active galactic nuclei.

- Fully determining the ultradense matter equation of state by measuring the neutron star mass-radius relation using a large number of pulsars with multiple methods to mitigate systematic uncertainties over an extended mass range.

- Exploring cosmic chemical evolution by measuring bulk metallicity for numerous high-redshift ($z > 2$) clusters.

- Continuously surveying the dynamic X-ray sky with a large duty cycle plus high spectral and time resolution to characterize source behavior over a vast range of time scales. This enables multi-messenger and multi-wavelength studies through cross-correlation with time-domain observatories such as LIGO/Virgo, IceCube, LSST, and SKA.

3. Mission Concept

STROBE-X is planned for a Falcon 9 launch into an orbit with as low an inclination as possible. The satellite bus and mission operations are designed to allow rapid (~hours) and autonomous (~minutes) repointing. STROBE-X comprises three instruments as shown in Figure 1. The soft band (0.2–12 keV) is covered by the X-ray Concentrator Array (XRCA), an array of lightweight optics (3-m focal length) that concentrate incident photons onto small solid state detectors with CCD-like (85–130 eV) energy resolution, 100 ns time resolution, and low background rates. The harder band (2 to at least 30 keV) is covered by the Large Area Detector (LAD), comprising large-area silicon drift detectors (SDDs), with 200–240 eV energy resolution, collimated to a 1° field-of-view with lead-glass micropore collimators. Each instrument would provide an order of magnitude improvement in effective area compared with its predecessor (NICER in the soft band and RXTE in the hard band). A sensitive wide-field sky monitor (WFM) would act as a trigger for pointed observations, provide high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with ~10 times the sensitivity of the RXTE All-Sky Monitor [3], and enable multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis. Continuous telemetry of the WFM data will make it a powerful instrument in its own right.

STROBE-X builds upon the X-ray timing results, existing technologies, and community built from the Rossi X-ray Timing Explorer (RXTE, 1995–2012, [4]), the Large Observatory For x-ray Timing (LOFT, [5, 6]), studies for the Advanced X-ray Timing Array (AXTAR, [7]) and LOFT-Probe (LOFT-P, [8]), and the Neutron star Interior Composition Explorer (NICER, 2017–present, [9]). The X-ray concentrator optics, fully developed for NICER, are scaled up with longer focal-lengths to provide large collecting area with low background at low cost. SDDs, developed for LOFT, provide high time resolution with low dead time and CCD-like spectroscopy. Micropore collimators have dramatically less mass and volume than traditional designs, enabling large missions at modest cost.

References

