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Abstract

Electricity and power produced from waste heat is particularly relevant in shipping because fuel

expenses constitute the majority of the cost of operating the ships; however, the cost-benefit

aspect limits the widespread implementation of waste heat recovery power units on ships. This

paper presents the thermodynamic analysis of a concept that aims at reducing the cost of an

organic Rankine cycle unit by using one of the cylinders in a large diesel engine as expansion

device. Numerical models were used to optimise the process parameters and thereby determine

the power potential for this concept. The evaluation of 104 working fluids points to cyclopropane,

R245fa and R1234ze(z) as the most promising. The results suggest that the power produced by

the organic Rankine cycle cylinder is at least equivalent to that of the cylinders operating with the

diesel process. This enables potential fuel savings and emissions reductions of about 8.3 % in the

studied scenario.

Keywords: Organic Rankine cycle, Marine diesel engine, Waste heat recovery, Piston expander,

Novel configuration

1. Introduction

The production of mechanical energy and electricity using waste heat recovery (WHR) systems

requires no fuel input and associated CO2 emissions. For these reasons, the application of WHR

systems have received much attention as a technology that can help to reduce emissions, that are

commonly known to lead to global warming. Large ships are technically feasible candidates for
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the implementation of this technology. Motivation for doing so exists because the fuel expenses

amount to about 30 to 55 percent of the ship operational costs [1] and because emission regulations

are being tightened.

The idea of WHR for the use on ship combustion engines dates back to at least 1919 when

the innovative Still engine was disclosed [2]. It utilised exhaust heat to produce steam that was

expanded under the pistons to reduce the compression power and thereby increase the engine’s

efficiency.

The steam Rankine cycle (SRC) technology, for WHR, is now well established and advanced

plants are used on the largest container ships, such as the Maersk Triple-E type [3]. Several major

global players within the maritime industry [4–7] have proposed SRC combined cycle systems that

promise efficiency gains of around 11-12 %. This number has been confirmed in theoretical studies,

e.g., by Dimopoulus et al. [8], who presented a detailed study of the SRC system while considering

various engine loads.

Recently, the organic Rankine cycle (ORC) for ship application has received significant attention

in the scientific literature. Song et al. [9] presented a thermodynamic analysis of an ORC plant

utilising both the engine jacket water heat and the exhaust gas and the conclusion was that such a

plant is both technically and economically feasible. Yang and Yeh [10] presented a techno-economic

study of an ORC using the same two heat sources. The authors found a number of suitable working

fluid candidates and associated optimised values for the ratio of net power to equipment cost. Choi

and Kim [11] investigated the potential of a dual-loop cycle for WHR on a large two-stroke engine,

while considering realistic operating conditions. The authors found a potential for fuel savings of

about 9.4 %.

The installation of energy saving technologies on board ships, such as a WHR unit, relies

heavily on the cost-benefit aspect [12]. Prater [13] listed three prerequisites for the success of a

given WHR technology: 1) minimal losses in the process of transporting the heat from the source

to the conversion unit, 2) efficient vapour expansion, and 3) a limited system complexity.

Embracing these three items, a previous study by Conklin and Szybist [14] proposed a new

engine cycle with integrated WHR. In this concept, two additional strokes were added to the

conventional four stroke engine, in order to produce power by expanding vapour generated from

the engine’s waste heat.
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Nomenclature

Acronyms

BDC Bottom dead centre

CAD Crank angle degrees

EOI End of injection

EVC Exhaust valve closing

EVO Exhaust valve opening

FH Fire hazard

GWP Global warming potential

HH Health hazard

IMO The International Maritime Organisation

MCR Maximum continuous rating

ODP Ozone depletion potential

ORC Organic Rankine cycle

PH Physical hazard

SFOC Specific fuel oil consumption

SOI Start of injection

T/C Turbocharger

TDC Top dead centre

WHR Waste heat recovery

Greek Symbols

α Geometrical expansion ratio (-)

∆ Difference (-)

γ Reduced pressure (-)

ψ Relative valve opening (-)

ρ Density (kg/m3)

θ Crank angle degree (◦)

Symbols

ṁ Mass flow rate (kg/s)

A Flow area (m2)

A Heat transfer area (m2)

C Coefficient (-)

D Diameter (m)

h Specific enthalpy (kJ/kg)

k Ratio of specific heats (-)

L Lift (m)

P Pressure (bar)

Q Heat (kJ)

R Specific gas constant (kJ/kg-K)

r Inlet valve radius (m)

s Specific entropy (kJ/kg-K)

T Temperature (◦C)

t Time (s)

U Internal energy (kJ)

U Overall heat transfer coefficient (kW/m2-K)

V Volume (m3)

W Work (kW)

Subscripts

0 Stagnation property

d Discharge

i In

lm Logarithmic mean

o Out

v Valve
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Table 1: Diesel engine specifications

Type 12K98ME-C6

Cylinders (-) 12

Bore (m) 0.98

Stroke (m) 2.66

Engine speed MCR (rpm) 104

Specified MCR (MW) 68.52

Turbochargers (-) 3

Turbochargers type (-) High efficiency

Mean effective pressure (bar) 18.2

The present study introduces a WHR concept which aims at utilising a single cylinder in a

multi-cylinder engine as expansion device for high pressure vapour, generated from waste heat

using an organic Rankine cycle. The purpose of this arrangement, besides the reduction of fuel

consumption and emissions, is to reduce the overall WHR plant capital cost by removing the need

for the turbine, gearbox, generator and frequency converter components.

The objective of this study is to present a thermodynamic steady-state analysis of the mentioned

concept at design point conditions. This includes the identification of optimised process conditions

and of the potential power production.

Section 2 includes descriptions of the concept, the model and the optimisation approach. Results

are presented in Sec. 3, discussion follows in Sec. 4 and Sec. 5 concludes this paper.

2. Methodology

The models presented in the following were programmed in the Matlab language (v.2015a) [15].

The Coolprop (v.5) [16] library was used to estimate organic Rankine cycle fluid properties.

2.1. System description

The general idea of the concept presented is to use one of the cylinders in a large ship engine

as an ORC expander, instead of using a turbine. The aim is to save the fuel input of one cylinder

while maintaining the originally rated main engine power output. The engine used in this study is

the MAN 12K98ME 12 cylinder low-speed two-stroke diesel engine, see the main specifications in

Table 1. This engine is used to power very large container vessels.
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Figure 1: Sketch of the considered system. The bold lines indicate ORC working fluid flows.

A sketch of the system is shown in Fig. 1. The ORC pump elevates the working fluid pressure

(1-2). The working fluid then enters the first boiler where it is pre-heated by heat from the engine

turbocharger (T/C) compressor air, (6-7) and (2-3); if the evaporation pressure of the fluid and the

amount of heat from the compressor air allows for it, the working fluid is partially evaporated in

this boiler. If needed, the scavenge air is cooled further down in a seawater cooler before it enters

the engine.

After expansion in the engine T/C, the main engine exhaust gases are utilised to further

heat/evaporate and superheat the working fluid, (3) and (8-9). The fluid and process conditions,

set by the optimisation variables, influence whether or not the working fluid reaches the boiling

point during heating with the compressor air or with the exhaust gas heat.

The superheated fluid enters a buffer tank, which is not modelled, and from there it is injected

into one of the engine cylinders at an appropriate time (4). Here, it expands to a low pressure

before exiting the cylinder (5) to enter another buffer tank. Finally, the fluid is condensed using

seawater as cooling media (1).

The organic Rankine cycle working fluid expansion process comprises the following five phases,

see Fig. 2:

1. Compression starts when the exhaust valves are fully closed. Working fluid injection may

start at the end of this stage because the valves take some time to fully open. The expected

optimum time to start the injection is near the top dead centre (TDC)
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2. The TDC is reached and fluid is injected with fully open valves

3. Expansion with further injection of fluid

4. Expansion without injection until the bottom dead centre (BDC)

5. Exhaustion of the working fluid while the exhaust valve is open

1 2 3 4 5

Figure 2: Sketch of the expansion process

Depending on the working fluid and process conditions, the pressure may be below the conden-

sation pressure when the BDC is reached. In those cases some re-compression is needed (between

stages 4 and 5) to avoid losses associated with fluid being sucked back into the cylinder from the

condenser or buffer tanks when the exhaust valve is opened.

The available waste heat sets a limit on the working fluid mass flow rate; moreover, the engine

speed is fixed by the relationship between the propeller and engine of the ship. Therefore, work-

ing with a fixed cylinder geometry may require unconventional valve timings that result in fluid

injection late in the compression stage and re-compression before the exhaust stage.

2.2. Modelling

2.2.1. Main engine

The main engine cylinders that are operated with a regular combustion engine diesel cycle were

simulated with a previously developed zero-dimensional model [17, 18]. The model was validated

against experimental data provided by MAN Diesel & Turbo and data found in the literature. It

can predict the main performance parameters at different loads and the effects on fuel consumption

and NOx emissions due to engine tuning. Referring to Larsen et al. [17], the model prediction

accuracies are within 0.5-2.0 % for maximum pressure, 0.8-0.9 % for power, 1.0-1.1 % for exhaust

temperatures and 0.9-4.0 % for specific fuel consumption. The cooling demand is under-predicted

with 11.8-37.3 %.
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Briefly described the model consists of a two-zone combustion model, a double Wiebe function

[19] heat release model, a heat transfer model using the Woschni correlation [20], and a NOx

emissions model based on the extended Zeldovich mechanisms [21] with added reactions, as shown

by Kilpinen [22]. The working gases were modelled using the Redlich-Kwong equation of state as

according to the work of Danov et al. [23]. Friction losses were modelled using a correlation by

Chen and Flynn [24].

The turbochargers were modelled using maps of the ABB A175 model provided by ABB. Due

to confidentiality, the maps are not shown here, but the isentropic efficiencies of the compressors

and turbines are well above 80 %.

Table 2 lists the performance characteristics at engine maximum continuous rating (MCR) (100

% load), as calculated by the model. The remaining system is also designed for this load.

Table 2: Engine performance characteristics

Power (kW/cylinder) 5,593

Compression pressure (bar) 128.0

Peak pressure (bar) 140.8

Fuel flow rate (kg/s-cylinder) 0.276

Air flow rate (kg/s-cylinder) 17.0

Fuel consumption (g/kWh) 178.1

Compressor outlet temperature (◦C) 185.3

T/C turbine outlet temperature (◦C) 248.0

Exhaust flow rate (kg/s-cylinder) 17.3

2.2.2. Piston expander

The one engine cylinder which is used for ORC working fluid expansion was modelled by

modifying the engine model described in the previous section. The combustion event was removed

and more detailed models for the valve opening and the inlet and outlet flows were added (see the

next section).

The basis of the model is a set of differential equations, that are solved over one engine cycle

using the ODE15i solver. The following equation describes the overall energy balance of the

cylinder:

dU

dt
=
dW

dt
− dQ

dt
+ ṁihi − ṁoho (1)
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where U , W , Q are internal energy, work and heat, while t, ṁ and h are time, fluid mass flow

rate and specific enthalpy. Subscripts i and o are short for inlet and outlet. Here, dW = pdV and

the mass in the cylinder is ρV ; T , p, V and ρ are, temperature, pressure, volume and density.

The friction loss was assumed to be the same as was calculated for the diesel process cylinders

and the heat loss in the ORC expander cylinder was assumed to be insignificant. This seems

reasonable because the cylinder liner temperature may be close to that of the diesel cylinders due

to high conductivity of the cylinder material, i.e., about 175◦C, and the average working fluid

temperature is about the same temperature. It is noted that this temperature depends on whether

or not the cylinder is cooled actively. Further studies may investigate how these assumptions affect

the results.

2.2.3. Valves

The two inlet valves and the two outlet valves were modelled as poppet valves as described

by Heywood [25]. The fluid flows were assumed non-ideal by using a discharge coefficient (or

flow coefficient), Cd, which is a function of the relative valve lift Lv/Dv; L is the lift, D is the

valve diameter and subscript v is short for valve. The coefficient values were taken from a map of

measured data [25], and depend on the valve geometry; in this case an isolated valve geometry was

chosen because of the high efficiencies. The maximum valve lift was set to 0.25 Dv as recommended

by Heywood [25].

The changing flow areas, as the valves open and close, depend on the valve lift which was

modelled using a simple transition function provided by Wronski et al. [26]. The function was not

derived from physical phenomena; however, with the correct timing it fits closely (confidential)

valve lift curves provided by the engine manufacturer MAN Diesel & Turbo. The relative opening

(ψ) was found by:

ψ(θ) = −3

4

(
1

3
cos2φsinφ+

2

3
sinφ

)
+

1

2
(2)

φ =
θ − θt

∆θ
π (3)

where θ is the engine crank angle degree, ∆θ is the time of transition (from open to close or

vice versa) and subscript t indicates the desired time of transition. ∆θ was fixed to 10 degrees,

a value that is reasonable considering real valve lift curves. The start of injection time was fixed
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to five degrees after valve closing time, to limit the amount of optimisation parameters, as it was

found to be of minor importance. The number five was chosen (arbitrarily) to emulate a time gap

that ensures that the valves are closed before injection starts.

The so-called curtain area Ac, equal to πDvLv, was chosen as reference flow area because of

the simplicity of use. The mass flow rates in and out of the cylinder under choked flow conditions

were found by:

ṁ =
CdAcp0

(RT0)1/2
k1/2

(
2

k + 1

)(k+1)/2(k−1)

(4)

where subscript 0 indicates the stagnation properties. R is the gas constant and k is the specific

heats ratio and both were found using the Coolprop library. Choked flow conditions were assumed

to occur when pT /p0 ≤ [2/(k + 1)]k/(k−1). Here pT is the pressure after the valve. The mass flow

rates for non-choked flows were found with:

ṁ =
CdAcp0

(RT0)1/2

(
pT
p0

)1/k
(

2k

k − 1

[
1 −

(
pT
p0

)(k−1)/k
])1/2

(5)

The choice of using poppet valves in the modelling should be seen as a first approximation. It

is, from practical experiences with piston expanders, expected that significant efforts go into the

detailed design of the valves.

2.2.4. Boilers and pump

The two boilers were modelled with basic mass and energy balance equations as described in

Larsen et al. [27]. To assess the relationship between performance and heat exchanger requirements,

mean UA values for each boiler were calculated using the well-known logarithmic mean temperature

method for counter-flow heat exchangers:

UA =
Q̇

∆Tlm
(6)

U and A are the overall heat transfer coefficient and the heat transfer area, Q̇ is the transferred

heat and ∆Tlm is the logarithmic mean temperature. Since this method assumes linear temperature

profiles, each boiler was discretised into 30 control volumes with an equal amount of heat transfer
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to approximate linear profiles. No heat or pressure losses were accounted for and all flows were

considered having homogeneous properties.

The pump was modelled using an isentropic efficiency of 70 %. The minimum pump inlet

temperature was assumed to be 40◦C to keep condensers limited in size. The seawater temperature

was assumed to be 25◦C.

The lower limit for the exhaust boiler outlet temperature was fixed to 160◦C, which is the

minimum allowed for avoidance of sulphuric acid condensation. Simulations with boiler outlet

temperatures higher than 160◦C were found to lead to suboptimal power outputs, and this param-

eter was therefore not optimised further.

2.3. Optimisation

The Particle Swarm Optimisation and the Pattern Search methods, both included in the Matlab

Toolbox [15], were used to screen a number of possible fluid candidates and to determine useful

parameter values for the system. An objective function convergence criteria of 10−6 was used

together with a swarm size of 2,000 individuals.

The optimisation variables are shown in Table 3. Zero crank angle degrees (CAD) is at the

bottom dead centre (BDC). The valve timings in the table refer to the time when the valves begin

their transition (from open to close or vice versa).

Due to the large variation in the properties of the screened fluids (dry, isentropic and wet types),

and to not limit the optimisation procedure, relatively wide parameter ranges were allowed; thus,

the ranges do not necessarily present feasible operational conditions. For example, a superheating

approach of 1◦C represents an extreme heat exchanger requirement. Another example is the

maximum pressure, which in practice would be limited to a lower value than the critical pressure

(pc) to avoid supercritical pressure in the pump, when taking into account the heat exchanger

pressure drops.

The range of geometrical expansion ratios depend, in this case, on the dead volume of the

cylinder as the remaining cylinder has a fixed geometry. To modify this volume, the piston crown

can be fitted with shims and the entire cylinder head can be re-designed. High expansion ratios

may be difficult to obtain in practice because of the need for room for the valve arrangement. For

this reason, the influence of this parameter is investigated in the following section.
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Table 3: Optimisation variables

Limits

ORC evaporation pressure (bar) 5-pc

Superheating approach (◦C) 1-150

Temperature difference T7 − T2 (◦C) 5-100

Exhaust valve closing time (CAD) 90-179

Condensing temperature (◦C) 40-120

End of injection time (CAD) 185-359

Exhaust valve opening time (CAD) 361-500

Inlet valve radius (m) 0.005-0.18

Geometrical expansion ratio (-) 2-50

2.4. Model validity

Due to the size of the machine, it is expensive and challenging to obtain test data to properly

validate the ORC expander cylinder model. For verification, the results were compared with results

made using a dynamic model presented in a previous study [28], see Table 4. The power outputs

were calculated at optimised mass flow rates for the most promising fluid candidates (see the

following section). The deviations are seen to range from 1.1 to 8.4 percent. The validity of the

method used to simulate the expander is to some degree supported by the fact that it was derived

from the validated diesel engine model; moreover, the approach is in general terms comparable to

what can be found in the recent literature [29]. It is, however, still desirable to further validate the

results.

Table 4: Comparison with dynamic model

Fluid Mass flow (kg/s) Power, relative (%)

Cyclopropane 70 -2.2

Isobutene 67 -1.1

R245fa 125 -8.4

R1234ze(z) 132 -4.8

Cis-2-butene 57 -7.0
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3. Results

3.1. Fluid screening

Figure 3 presents the results of a first screening of the 104 fluids in the Coolprop library. Each

fluid have been submitted to the optimisation algorithm for optimisation of the model variables

listed in Table 3, with the objective of obtaining maximum power. Fluids with very poor perfor-

mance (below 2,000 kW) are not shown. The dashed vertical line marks the nominal diesel engine

power per cylinder for comparison. The results suggest that a number of fluids have the potential

to produce as much power as the diesel cylinders.
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R1234ze(z)
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Figure 3: Optimised power for various fluids

From the state points of the optimised cases, shown in Fig. 3, the exergy flow rates were

calculated as ṁ((h− h0) − T0(s− s0)), with a T0 of 298.15 K, and h0 and the specific entropy, s0,

found at T0 and a pressure of 1 bar. See also Table 5 that presents the details of fluids, mass flow
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rates, pressures and temperatures. Figure 4 shows how the exergy flow rates at the inlet of the

expander relates to the cylinder power, thus providing an insight into the exergy efficiency of the

expansion process, as expressed by the ratio of exergy flow rate to power. It is seen that this ratio

ranges from about 15 to 50 percent. Moreover, the fact that the largest exergy flow rate does not

lead to the highest power output suggests that the boiler and the expander parameters are best

optimised simultaneously. This supports the choice of optimisation approach applied in this study.
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Figure 4: Optimised cylinder power in relation to the exergy flow from the boilers

The optimised parameters are shown in Table 5. Here γ, ∆i and α are short for the maximum

pressure in the process divided by the critical pressure, the fluid injection window and the expansion

ratio. EVO, r, and ∆T are exhaust valve opening time, injection valve radius and the temperature

difference between points (7) and (2), see Fig. 1.

It is evident that the optimised cycle maximum pressure, for most of the fluids, converges to the

critical pressure, which is the maximum allowed in the optimisation. Despite the wide parameter

ranges in the optimisation, it is seen that some of the optimised parameters do not differ much. The

condensation temperature and valve timings converge towards what is expected, i.e., the minimum

condensation temperature and an injection that starts near TDC.

Table 6 lists selected fluids that all have the potential to produce power at a level similar to the

diesel process cylinders. Cyclopropane was selected for further analysis due to the superior power

potential; R245fa was selected because it is a proven candidate for use in ORCs [10], and R1234ze(z)

was selected since it is environmentally safe and non-flammable. The table lists values for global

warming potential (GWP), ozone depletion potential (ODP), and fire, physical and health hazards

(FH, PH, HH) as according to the HMIS classification [30]. The HMIS scale ranges from one to

13



Table 5: Optimised parameters

Fluid γ (-) T4 (◦C) ∆i (-) EVO (◦) T1 (◦C) α (-) r (m) ∆T (◦C) ṁ1 (kg/s) UA1 (kW/K) UA2 (kW/K)

Cyclopropane 0.998 200 177-231 361 40 44.3 0.13 6 70 3474 385

Propyne 1.000 229 177-230 384 50 39.5 0.14 8 57 2947 574

Cis-2-butene 0.946 242 177-230 361 40 49.0 0.16 24 57 2506 1586

1-Butene 0.999 207 177-232 362 40 49.8 0.18 9 71 2658 533

Isobutene 0.998 220 177-232 361 40 49.4 0.15 9 67 3314 634

R1234ze(z) 0.997 205 175-232 361 40 43.1 0.10 6 133 3793 570

R245fa 0.999 224 175-230 361 40 47.2 0.09 7 125 4021 817

N-butane 0.998 230 180-232 363 40 50.0 0.11 11 61 4146 926

Neopentane 0.999 204 176-230 361 40 49.1 0.16 5 75 3321 1034

R236ea 0.897 210 177-236 366 40 49.9 0.18 6 148 2654 460

R1234ze(e) 1.000 214 177-238 361 40 50.0 0.18 5 131 1996 462

R236fa 1.000 224 177-236 361 40 49.3 0.18 6 143 2715 639

N-propane 0.997 172 182-243 362 40 49.0 0.16 5 80 1452 255

Propylene 1.000 192 184-244 375 40 43.9 0.18 6 76 1409 303

Isopentane 0.905 200 177-221 361 40 50.0 0.16 32 66 813 2476

R1234yf 1.000 180 177-245 361 40 37.1 0.18 5 163 1380 278

R365mfc 0.611 194 176-243 361 40 49.9 0.17 5 129 3865 923

N-pentane 0.550 193 177-250 362 40 50.0 0.16 9 70 3903 927

Isohexane 0.574 201 175-234 361 40 47.4 0.12 57 55 410 3381

Ethanol 0.260 244 179-235 362 59 49.8 0.16 99 20 82 1801

Benzene 0.235 197 180-249 361 57 49.9 0.16 100 40 69 3332

N-hexane 0.295 213 177-288 361 42 36.3 0.18 23 59 3754 4178

N-heptane 0.356 209 179-242 362 40 49.7 0.16 99 40 117 1882

MM 0.519 215 176-238 361 48 49.9 0.17 72 62 221 2875

Methanol 0.081 247 184-333 361 40 4.2 0.16 70 22 406 438

four, where at hazard level four the fluid is life threatening in case of exposure(s); it may ignite

spontaneously with air and is able to chemically react in an explosive manner. At hazard level one,

the fluid may only cause irritation upon exposure; it will only burn if preheated and is chemically

stable under normal conditions.

Table 6: Enviromental and safety factors

GWP100 ODP FH PH HH

Cyclopropane 1.1 0 4 0 2

R245fa 1030 0 1 0 2

R1234ze(z) 6 0 0 0 2

Figure 5 presents the simulated diesel cycle process and the simulated ORC compression and

expansion cycle process with two pressure-volume plots. It is the optimised case using cyclopropane

as working fluid which is shown. The pressure development of the organic fluid expansion process

is seen to be limited by the maximum allowed pressure of the ORC system.

The instantaneous power in the processes, equal to 1
2 ∗ (pi + pi−1)(Vi − Vi−1)/(ti − ti−1), can
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be seen in Fig. 6. These data are also derived from the optimised cyclopropane case. The diesel

process has a large negative power during the compression stage, while the ORC expansion process

looses power during the working fluid exhaust stage. It is also seen that the timings of the negative

and positive powers are not entirely dissimilar; future tests may show whether or not this causes

concerns related to the dynamic balance of the engine during operation. Note that the scavenging

process is not modelled for the diesel process since the power required to scavenge is delivered by

the turbochargers.
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Figure 6: Instantaneous power

Because the parameter ranges in the optimisations were allowed to be wide, the optimum con-

verges towards possibly very large heat exchangers in the boilers. The heat transfer temperatures

for the optimised system with R245fa can be seen in Fig. 7.

The hot and cold temperature profiles align very closely and it is expected that large heat ex-

changers are required under these conditions. Therefore, the sensitivity of the system performance

to the boiler size, is reviewed in the following subsection.
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Figure 7: Heat transfer temperatures using R245fa

3.2. Sensitivity to parameters

In the following analysis, the model parameters shown in Table 3 were optimised using the

approach described in Sec. 2.3, having the power output as the optimisation objective. Limitations

on the total UA value for both boilers were set so that solutions with exceeding UA values were

discarded. Pinch point temperature differences in the boilers were allowed to approach 1 degree K,

thus allowing the UA value to be the limiting parameter. Compared to what is commonly found

in the literature, e.g. Karellas et al. [31], 1 K is extreme and would lead to a relatively large heat

exchanger volume. However, the application of the UA value as indicator rather than the pinch

point has been used in other studies, e.g. Andreasen et al. [32].

In all cases, the optimisation algorithm converged towards the maximum allowed UA value and

thus was the data for Fig. 8 produced. Since UA values higher than 5,000 kW/K did not yield

higher power outputs, this value was chosen as an upper limit. The results are shown in Fig. 8

with a dotted line indicating the nominal engine cylinder power. The results show that, compared

to the other two alternatives, using cyclopropane leads to higher power outputs for a given allowed

boiler UA value. Figure 8 also suggests that it is possible to obtain the required power with UA

values that are significantly smaller than the maximum 5,000. However, the steep decline in power

at UA value limitations around 1,000 shows how strongly the power depends on the heat exchanger

sizes.

The cycle pressure ratio is set by the optimisation algorithm with the evaporation pressure and

condensing temperature, see Table 3. The pressure ratio experienced by the piston expander is a

function of the cylinder geometry, i.e., the expansion ratio, and the closing and opening times of

the valves. All these three parameters are optimisation variables, see Table 3. To get an efficient
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Figure 8: Optimised power in cases with limited combined boiler UA values

expansion process, the cycle pressure ratio and the expander pressure ratio must match, and this

matching was therefore done by the optimisation algorithm in the search for high power and thereby

high expansion efficiency.

Figure 9 presents the result of cases that are optimised for power while limiting the allowed

range for geometrical expansion ratio of the cylinder, see Table 3. It is clear that the sensitivity

to this parameter is not very significant within a range that may be assumed practically feasible.

This is to some extent surprising since it is well known that the geometrical pressure ratio is of high

importance with regards to cycle efficiency and thus cycle power. It is noted that the diameter

of the inlet valves also influences the effective pressure ratio, since it influences the injection mass

flow rate and thus the extent to which the pressure can be kept high during expansion.
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Figure 9: Optimised power in cases with limited geometrical expansion ratios

Thermal degradation of working fluids is closely related to the maximum temperature of the

fluid [33] so it is of interest to limit the maximum temperature in the process. Figure 10 shows

cases of optimum power when imposing limits from 150◦C to 225◦C and the tendency is that this
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constraint penalises the power output. Cyclopropane shows potential to produce power at a level

of the diesel cylinders at all the investigated temperature limits.
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Figure 10: Maximum power in cases with limited maximum working fluid temperature

As mentioned, it is in the interest to keep the maximum process pressure at a certain level

below the critical pressure. Figure 11 presents optimised cases when the pressure is limited to 80

to 95 percent of the respective critical pressures. The results suggest that the nominal power can

be achieved while avoiding super critical pressures in the process.
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Figure 11: Optimised power in cases with limited maximum pressure

4. Discussion

The present study has a number of important limitations. Firstly, the load pattern of marine

engines in large ships is not limited to full load, but includes also very low loads [34]. The results

presented here are therefore considered a first step and a part-load analysis is the aim of a following

study. The dynamics of the system may also be important to consider and is also targeted for a

future study.
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Secondly, the modelling approach is simplified to be able to screen a large number of working

fluids for potential, but not to study the process in detail. The possibility of neglecting important

losses is therefore present. It is highlighted that the effects of having finite buffer tank sizes may

play an important role. It is of particular interest to investigate to what degree the pressure varies

during opening of valves and the consequences that follow. Also flow losses related to the design

of the inlet and outlet valves deserve further attention.

The technical challenges before realisation of the concept are likely noteworthy. The two buffer

tanks need to be large to accommodate the large amounts of gas flowing without too significant

pressure drops during injection. Furthermore, for the implementation on a ship, the safety is

paramount and the concept has inherent safety risks, especially if a flammable fluid is to be used.

Conversely, the concept may pose an interesting business case since it has other inherent ad-

vantages than the already mentioned, for example, the power produced is immediately available

and will not have to be considered in the overall ship energy system configuration. Moreover, all

emissions, including NOx, are reduced in proportion to one cylinder out of 12. Due to the well

known fuel consumption and NOx trade-off mechanism, the engine can therefore be tuned to obtain

an even lower fuel consumption at the cost of a little more NOx.

Although not in the scope of the present work, heat for on board steam services has to be

considered in the design of WHR systems for large ships. The present concept utilises all of the

available high-temperature waste heat; however, there is a large amount of 100◦C to 120◦C heat

available at the outlet of the (ORC) cylinder which may be combined with the available jacket

water heat, for low pressure steam production.

Regarding the fluid screening method, it is a generally accepted approach to first exclude

fluids on the basis of non-thermodynamic reasons and then run the thermodynamic computations.

However, the following aspects motivated the choice of an approach that considered a large range

of fluids. Firstly, the results suggest that fluids that are suitable for the present piston expander,

are not the same as those found in the literature for an ORC with a turbine in a similar application.

Instead, it seems that the best fluids are fluids that are usually found to be better for lower heat

source temperatures [35]. Secondly, the limitations in the fluid selection in the present case study

are diffuse since various technical measures can be taken to enable the use of fluids that would

otherwise not be acceptable. For example, double walled piping can be used to minimise the fire
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hazard.

The relatively new fluid R1234ze(z) stands out as a promising fluid candidate, environmentally

and in terms of safety which is of major importance for ship implementation. The safety measures

needed on board are far more comprehensive for highly flammable fluids, such as cyclopropane,

although not insurmountable; for example, methane is routinely used as a fuel on large ships. In

addition, as Petr et al. [36] found in a recent study, R1234ze(z) has in ORC applications lower

viscosities and similar thermal conductivities compared to R245fa, thus having potentially better

heat transfer characteristics. A study by Longo et al. [37] confirms this in an experimental study,

finding that R1234ze(z) has much higher heat transfer coefficients than other alternatives in high

temperature heat pump applications. These properties may results in smaller heat exchangers,

in particular the condenser where the working fluid heat transfer coefficient is relatively more

important than in the boilers.

In the shipping world it seems commonly recognised that the capital cost of a WHR system

is the main barrier to the installation; according to Lemmens [38] this is also the case for ORC

installations outside of shipping. Lemmens [38] examined the literature about the cost of ORCs

and, based on this work, the installed cost of an ORC, of the size as the one examined in the

previous sections, is at least 11 million Euro (2013). The expected inaccuracy of this number is

about +/- 30 % [38].

With the presented concept, the plant costs may possibly be halved, compared to a conventional

ORC plant, due to the lower number of components. Lemmens [38] reported that the expander

and generator constitute more than half of the price, and similar numbers are found in other recent

works [39].

5. Conclusion

Based on the presented results it is concluded that one cylinder in a 12 cylinder two-stroke

marine diesel engine can, in theory, successfully be converted into an ORC expander. Since the

waste heat alone powers one cylinder out of 12, fuel is not needed for that cylinder and this

contraption will thus lead to direct fuel savings and emissions reductions of about 8.3 % (or 1/12)

at a full load design point.

Numerous ORC working fluids are able to deliver power equivalent to the nominal diesel engine
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cylinder power, although with a different pressure/power development. R1234ze(z) appears to be

a very suitable working fluid candidate for the use on a ship, with R245fa as an alternative with

about the same performance. Cyclopropane leads to the most power but is more problematic for

ship applications due to a very high flammability.

A sensitivity investigation of key system design parameters suggests that the power does not

suffer significantly from reduced maximum pressure, maximum temperature and expansion ratio;

however, large reductions in heat exchangers sizes does reduce the potential power significantly.

With the studied concept, a brief economical assessment suggests that an ORC can be installed

for about half the capital cost, thus presenting a potentially attractive business case.

Future work is identified in a number research topics for the concept, among those analysis of

the part-load performance, dynamic behaviour, further validation of results and analysis of various

losses.
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