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Abstract—Uneven load allocations and random load behaviors 

are two major causes for three-phase power imbalance. The 
former mainly cause systematic imbalance, which can be 
addressed by low-cost phase swapping; the latter contribute to 
random imbalance, which requires relatively costly demand-side 
managements. To reveal the maximum potential of phase 
swapping and the minimum need for demand-side managements, 
this paper first proposes a novel a priori judgment to classify any 
set of three-phase power series into one of four scenarios, 
depending on whether there is a definite maximum phase, a 
definite minimum phase, or both. Then, this paper proposes a new 
method to decompose three-phase power series into a systematic 
imbalance component and a random imbalance component as the 
closed-form solutions of quadratic optimization models that 
minimize random imbalance. A degree of power imbalance is 
calculated based on the systematic imbalance component to guide 
phase swapping. Case studies demonstrate that 72.8% of 782 low 
voltage substations have systematic imbalance components. The 
degree of power imbalance results reveal the maximum need for 
phase swapping and the random imbalance components reveal the 
minimum need for demand side management, if the three phases 
are to be fully rebalanced.   

Index Terms— low voltage distribution network, power 
imbalance, random imbalance, systematic imbalance, three phase 
electric power 
 

I. NOMENCLATURE 

  The degree of power imbalance at time 
point  

  The total number of time points 

∅  where 
∅ ∈ , ,  

Phase ∅ power at time point  

∅  where 
∅ ∈ , ,  

The average power of phase ∅ over time  
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∅  where 
∅ ∈ , ,  

Phase ∅  power of the systematic 
imbalance component at time point  

, ,   The random imbalance component of the 
three-phase power (phases x, y, and z) at 
time point  

, ,   The systematic imbalance component of 
three-phase power (phases x, y, and z) at 
time point  

 

II. INTRODUCTION 

ORE than 70% of the UK’s low voltage (LV) networks 
experience observable degrees of three-phase imbalance 

[1]. Such an imbalance leads to: 1) neutral wire energy losses 
up to hundreds of millions of British pounds each year in the 
UK’s distribution networks [2], [3]; and 2) additional network 
investment cost amounting to billions of British pounds each 
year [4], [5]. Major causes for this issue are uneven load 
allocations across the three phases and random load behaviors 
[6], [7], [8].  

Uneven load allocations cause systematic imbalance (SIB) 
where there is a definite maximum phase (a definite phase with 
the greatest power among the three phases), a definite 
minimum phase (a definite phase with the least power among 
the three phases), or both. SIB can be addressed by phase 
swapping [9], [10], [11], i.e., moving single-phase 
loads/laterals from one phase to another, which is a relatively 
cheap and mature technique.  

Random load behaviors, on the other hand, are a major 
contributor to random imbalance (RIB) with neither a definite 
maximum phase nor a definite minimum phase. RIB requires 
demand-side managements [12], [13] to address, which incur 
relatively high implementation and operation costs (including 
the costs for per-phase monitoring, communication, and control 
systems) and a risk of non-delivery.  

The motivation and objective of this paper is therefore to find 
a way to decompose any set of time series power data from 
three phases into a SIB component and a RIB component that 
reveal the maximum potential for phase swapping and the 
minimum need for demand-side managements, thus 
corresponding to the lowest cost to rebalance three-phase 
supply. This idea is analogous to the decomposition of physics 
experiment observational errors into systematic errors and 
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random errors [14]: systematic errors result from the non-ideal 
mechanism (analogous to the non-ideal load allocation across 
three phases) of the experiment. It has a non-zero mean and is 
not reduced when observations are averaged [14]. Random 
errors, on the other hand, result from inherently unpredictable 
fluctuations [14], which are analogous to the random individual 
load fluctuations.  

Three-phase power imbalance is the direct result of 
voltage/current imbalances [15]. The majority of publications 
studied the underlying power imbalance components, i.e., 
voltage/current imbalances: References [16], [17], [18] 
estimated voltage imbalance of medium-voltage (MV) 
distribution networks. Reference [19] assessed the sequence 
values of imbalanced voltages without phasor measurements. 
Reference [20] quantified current imbalance on short 
transmission lines. Reference [21] forecasted voltage 
imbalance on low voltage feeders with photovoltaic (PV) 
generation. Reference [22] converts three-phase imbalanced 
currents into two orthogonal AC currents with equal 
amplitudes. The above references implicitly decompose 
three-phase power imbalance into voltage and current 
imbalances.  

A number of publications that focus on power imbalance are 
about reducing power imbalance [15], [23], [13], rather than on 
decomposing power imbalance into its underlying components.  

The decomposition of three-phase imbalanced power series 
into a SIB component and a RIB component is a gap. The 
purpose for the decomposition is mentioned above. To bridge 
the gap, this paper makes the following contributions: 

1) Propose a novel a priori judgment method to classify any 
set of three-phase power series into one of the following four 
scenarios: definite-max, definite-order, definite-min, and 
random imbalance scenarios (their definitions are given in 
Section III). The judgment method takes into account both the 
percentage of time when the definite phase occurs and the 
average power to ensure a robust judgment.  

2) Propose a novel three-phase power decomposition method 
for all scenarios except the random imbalance one to 
decompose three-phase power series into a SIB component and 
a RIB component, which are the closed-form solution to a 
quadratic optimization problem that minimizes the RIB 
component.  

3) Define the degree of power imbalance for each of the 
definite-max, definite-order, and definite-min scenarios based 
on the SIB component obtained from 2) and calculate the trend 
of the degree of power imbalance over time.  

The SIB component, as a direct consequence of uneven load 
allocations, serves as the basis for calculating the degree of 
power imbalance, which provides a direct guidance for phase 
swapping; the RIB component, as a result of random individual 
load behaviors, indicates at least how much power on each 
phase has to be reduced by demand-side managements, if the 
three phases are to be fully rebalanced.  
    Therefore, the research outcome brings three values: 1) the 
decomposition helps distribution network operators (DNOs) to 
understand the potential (also the maximum need) of phase 
swapping to address SIB and how much power on each phase 

has to be reduced by demand-side managements, if the three 
phases are to be fully rebalanced; 2) By calculating the degree 
of power imbalance based on the SIB component, the research 
also reveals the underlying trend of the SIB over time, 
reflecting the trend of uneven load allocations – this is 
particularly useful when increasing single-phase electric 
vehicles and heat pumps are connected to low voltage 
networks, causing the SIB to vary over time; 3) the degree of 
power imbalance also provides a guidance for phase swapping 
practices.      
    The remainder of the paper is organized as follows: Section 
III presents an overview of the methodology; Section IV 
presents a new a priori judgment method; Section V details the 
decomposition method; Section VI defines the degree of power 
imbalance; Section VII performs a case study; and Section VIII 
concludes the paper.  

III. OVERVIEW OF METHODOLOGY 

The proposed methodology requires three-phase power 
series as an input only. Therefore, as a mathematical method, it 
is applicable to where: 1) there is monitoring of three-phase 
power (or three-phase voltages and currents which can be used 
to derive power); and 2) there is three-phase power imbalance. 
In reality, the methodology is highly suitable for monitored low 
voltage distribution networks in the UK and the rest of Europe 
and monitored medium voltage distribution networks in the US, 
where three-phase power imbalance is obvious.  

Fig. 1 shows an overview of the methodology. 

 
Fig. 1.  An overview of methodology. 

 
Each phase has a time series of power (called a power series) 

monitored at the LV (415V) substation side. The following 
definitions are used throughout the paper: 

1) Three-phase power series: a set of three time series of 
power data monitored and collected from three phases. The 
data are normally measured from distribution substations at an 
interval of , e.g., 10 min.   

2) Definite-max phase: a definite phase with the greatest 
power among three phases. 

3) Definite-max scenario: the scenario where there is a 
definite-max phase for the majority of time. 

4) Definite-min phase: a definite phase with the least power 
among three phases.  

5) Definite-min scenario: the scenario where there is a 
definite-min phase for the majority of time. 

A priori judgment: 
classify three-phase power 
series into one of the four 
scenarios, i.e., definite-max, 
definite-order, definite-min, 
and random imbalance 
scenarios

Definite-max 
decomposition

Definite-order 
decomposition

Definite-min 
decomposition

Decomposition is not 
applicable. The three-
phase power is the 
random imbalance 
component

Calculate the degree of 
power imbalance for the 
definite-max scenario

Calculate the degree of 
power imbalance for the 
definite-order scenario

Calculate the degree of 
power imbalance for the 
definite-order scenario

Definite-max

Definite-order

Definite-min

Random 
imbalance

Three-phase power imbalance 
decomposition

Section IV Section V Section VI
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6) Definite order: the existence of both a definite-max phase 
and a definite-min phase, e.g., ‘phase a > phase b > phase c’.  

7) Definite-order scenario: the scenario where there are both 
definite-max and definite-min phases for the majority of time. 

8) Random imbalance scenario: the scenario where there is 
neither a definite-max phase nor a definite-min phase. 

9) SIB component: a set of three-phase power series with a 
definite-max phase, a definite-min phase, or a definite order. 

10) RIB component: a set of three power series with neither a 
definite-max phase nor a definite-min phase.   

IV. A PRIORI JUDGMENT 

    This section presents a new a priori judgment method to 
classify any set of three-phase power series into one of the four 
scenarios (definite-max, definite-order, definite-min, and 
random imbalance scenarios). The judgment considers both the 
percentage of time when a definite phase/order occurs and the 
average power. The rationale for this is to ensure robustness: 
the definite phase/order, if exist, should not only occur for the 
majority of time but also have the average power showing the 
same trend. The judgment method consists of three steps: 
Step 1): The percentage of time judgment 

In principle, Step 1) judgment indicates that:  
1) If for the majority of time, phase a is the definite-max 

phase and phase c is the definite-min phase, then this is a 
definite-order scenario with a definite three-phase order: phase 
a > phase b > phase c.  

2) If condition 1) is not met, and phase a has the greatest 
power among the three phases for the majority of time which is 
no less than the time when any phase has the least power among 
the three phases, then this is a definite-max scenario where 
phase a is the definite-max phase.  

3) If condition 1) is not met, and phase c has the least power 
among the three phases for the majority of time which is more 
than the time when any phase has the greatest power among the 
three phases, then this is a definite-min scenario where phase c 
is the definite-min phase.  

4) Any scenario that does not meet conditions 1) – 3) is a 
random imbalance scenario with neither a definite-max phase 
nor a definite-min phase. 

The percentage of time when phases a is the definite-max 
phase and phase c is the definite-min phase is given by, 
 ∑ 1

100% (1)   

where  is defined in Section I.  is a binary value:  
 1

when	 1 δ 	
and	 1 δ

0
otherwise

 (2)   

where ∅  is defined in Section I. δ  is a threshold to 
distinguish any two power values, e.g., δ 5% . Such a 
threshold accounts for measurement errors, which arise from 
monitoring devices, the communication system, and other 
factors. This value is chosen according to network operator’s 
experience. If the difference between two power values is 
below this threshold, then the difference is immersed in the 

measurement error and is not regarded as a credible difference. 
In this paper, δ 5% by default. 
     is also a binary value:  
 

	

1
when	 1 δ 	
and	 1 δ

0
otherwise

 (3)   

The percentage of time when each phase a has the greatest 
power is given by, 
 ∑ 1 100% (4)   

Where  is given by (2).  
Similarly, the percentage of time when each phase  has the 

least power is given by, 
 ∑ 1

100% (5)   

where  is given by (3). Based on the results from (1), (4), 
and (5), Step 1) judgment is listed in Table I.  

TABLE I 
STEP 1) JUDGMENT 

Case 
ID 

Condition Step 1) judgment 

1 

If ∃phase	 , such that 

∅ ∅ 50% and 
50% and ∅, 

where ∅ , ∅ , ∅ ∈ , ,   

Definite-max 
scenario: phase a is 
the definite-max 
phase 

2 

If ∃phase	 , such that 
∅ ∅ 50% and 

50% and ∅, 
where ∅ , ∅ , ∅ ∈ , ,  

Definite-min 
scenario: phase c is 
the definite-min 
phase 

3 
If ∃phases	 	and	 , such 
that 50% 

Definite-order 
scenario: phase a > 
phase b > phase c 

4 Other 
Random imbalance 
scenario 

 

The 50% threshold of time is consistent with the criteria 
detailed at the beginning of this section, where the term 
“majority” means a 50% threshold by default. 
    It should be noted that Step 1) produces preliminary 
judgment results which are not necessarily the final ones.   
Step 2): Calculation of the average power 

The average power of each phase ∅ is given by, 
 

∅
∑ ∅1    where ∅ ∈ , ,  (6)   

Where all variables are defined in Section I. 
The resultant set of the three average power , ,  will 

be used for judgment in Step 3). 
Step 3): Combined judgment 

Table II lists the final judgments of the scenarios (in the right 
column of Table II) as the combinations of the judgments from 
Step 1) and Step 2). It should be noted that the logic is ‘and’ 
between the conditions in the first (Step 1) and second (Step 2) 
columns.   

TABLE II 
FINAL JUDGMENTS 

Step 1) Step 2) condition Combined judgment 
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case ID  

1 

If max , 1
δ , 1 δ  

Definite-max scenario: 
phase a is the 
definite-max phase 

Otherwise 
Random imbalance 
scenario 

2 

If min , 1
δ , 1 δ  

Definite-min scenario: 
phase c is the definite-min 
phase 

Otherwise 
Random imbalance 
scenario 

3 

If 1 δ  
and 1 δ  

Definite-order scenario: 
phase a > phase b > phase 
c  

If min 1
δ , 1 δ ,  

Definite-min scenario: 
phase c is the definite-min 
phase 

If max , 1
δ , 1 δ  

Definite-max scenario: 
phase a is the 
definite-max phase 

Otherwise 
Random imbalance 
scenario 

4 Any  
Random imbalance 
scenario 

δ  is the same threshold as appeared in (2). The left column, 
Step 1) case ID, corresponds to the case ID in Table I.   

V. POWER IMBALANCE DECOMPOSITION 

According to the priori judgment in Section III, three-phase 
power series are classified into four scenarios, i.e., 
definite-max, definite-order, definite-min, and random 
imbalance scenarios. For the first three scenarios, this section 
presents three decomposition methods: definite-max 
decomposition, definite-order decomposition, and definite-min 
decomposition. Each decomposition corresponds to a quadratic 
optimization problem that minimizes the RIB component. The 
fourth scenario, i.e., the random imbalance scenario, cannot be 
decomposed.  

The quadratic optimization problems have closed-form 
solutions. Therefore, the decompositions are achieved by 
directly applying the closed-form solutions without the need for 
iterations to solve the optimization problems. This significantly 
simplifies the decomposition process and ensures that the 
decomposition only has linear complexity (linear to the length 
of the three-phase power series).  

The resultant SIB can be addressed by phase swapping, 
which is a low frequency, relatively long-lasting, mature 
solution. However, phase swapping is not suitable for resolving 
RIB which does not have a particular phase order. The RIB 
requires solutions such as demand-side managements, which 
incur higher monitoring, communication, and control costs as 
well as a risk of non-delivery. Therefore, this justifies the 
principle of the three decompositions to minimize the RIB 
component, thus revealing the maximum potential of phase 
swapping (i.e., the maximum possible reduction in phase 
imbalance from phase swapping) as well as the minimum need 
for demand-side managements. 

The purposes of the decomposition are twofold: i) to serve as 
the basis to calculate the degree of power imbalance (in Section 
VI), which not only reveals the potential of phase swapping to 
address the SIB but also serves as a guidance for phase 
swapping; ii) to understand how much power on each phase 
needs to be reduced by demand-side managements, if the three 
phases are to be fully rebalanced.  

A. Definite-Max Decomposition 

    The definite-max decomposition decomposes imbalanced 
three-phase power series into: 1) a SIB component with a 
definite-max phase; and 2) a RIB component without the 
definite-max phase.   
    The definite-max decomposition applies to the definite-max 
scenario, in which phase a is defined as the definite-max phase. 
The definite-max decomposition is the solution to the following 
quadratic optimization problem: 
 

min  

subject to    
 
 

 
 

, , 0 
, , 0 

(7)   

Where all variables are defined in Section I.   
    The quadratic optimization problem given by (7) aims to 
minimize the RIB component that requires demand-side 
management to address. This is justified because demand-side 
management, which addresses RIB, incurs relatively high 
implementation and operation costs and a risk of non-delivery. 
On the other hand, phase swapping, which addresses systematic 
imbalance, is a relatively economic and mature technique. By 
minimizing RIB (hence maximizing SIB), the quadratic 
optimization model aims to reveal the minimum need for 
demand-side management and the maximum need for phase 
swapping, thus corresponding to the lowest cost. The same 
justification applies to the optimization problems for the 
definite-order and definite-min scenarios. 
    The original problem of (7) minimizing the summation of a 
time series is transformed into a total of  optimizations, each 
for a time point . In this way, the summation is removed and 
the objective function of (7) becomes: 
 ∀ ∈ 1, 								min  (8)  

    A closed-form solution exists for the optimization problem 
in (8). The solution includes both the SIB and RIB components, 
assuming that phase a is the definite-max phase:  
 SIB , ,  (9)   

where 
=min , ; 
=min , . 

Because 
 SIB RIB , ,  (10)   

The RIB component is given by 
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 RIB 0, ,  (11)   

where  
=max 0, 	 	 ; 
=max 0, 	 	 . 

B. Definite-Order Decomposition     

    The definite-order decomposition decomposes imbalanced 
three-phase power series into: 1) a SIB component with a 
definite-order; and 2) a RIB component without the 
definite-order.   
    Suppose that the phase order is ‘a > b > c’. The quadratic 
optimization model is the same as given by (7) except that the 
first two inequality constraints are replaced by  
  

 
(12)  

    The definite-order decomposition is the closed-form solution 
to the optimization model. Assuming that the order of the three 
phases is ‘a > b > c’, the SIB component is given by, 
 SIB , ,  (13)   

where 
=min , , 
min , , . 

     
    Equation (10) still holds. The RIB component is given by, 
 RIB 0, ,  (14)   

where  
=max 0, 	 	 ; 

max 0, , . 
The definite-order scenario provides more information than 

the definite-max and definite-min scenarios, because its SIB 
component gives a definite three-phase order with both 
definite-max and definite-min phases, whereas the SIB 
components of the latter two scenarios give only the 
definite-max or the definite-min phase. On the other hand, the 
definite-order scenario is more restrictive than the latter two 
because it requires that a definite three-phase order exists. 

C. Definite-Min Decomposition     

    The definite-min decomposition decomposes imbalanced 
three-phase power series into: 1) a SIB component with a 
definite-min phase; and 2) a RIB component without the 
definite-min phase.  
    Suppose that the definite-min phase is phase c. The quadratic 
optimization model is the same as given by (7) except that the 
first two inequality constraints are replaced by 
  

 
(15)  

    The definite-min decomposition is the closed-form solution 
to the optimization problems. Assuming that phase c is the 
definite-min phase, the SIB component is given by, 
 SIB , ,  (16)  

where min , , .    
    Equation (10) still holds. The RIB component is given by, 
 RIB 0, 0,  (17)   

where max 0, , . 

For the definite-max, definite-order, and definite-min 
scenarios, the SIB component is the basis for calculating the 
degree of power imbalance, which provides a direct guidance 
for phase swapping as explained in Section VI. The RIB

, ,  has a clear meaning: for phases a, b, 
and c, at least , , and  of loads require 
demand-side managements for phase rebalancing, respectively.  

VI. DEGREE OF POWER IMBALANCE 

    This section presents the definitions for the degree of power 
imbalance for the definite-max, definite-order, and definite-min 
scenarios. For all three scenarios, the degree of power 
imbalance is defined as the deviation of the 
definite-max/definite-min phase from the average, based on the 
SIB component. The definition of the degree of power 
imbalance is to not only reveal the trend of SIB over time but 
also guide phase swapping (as explained later in this section). 
Assume that phase a is the definite-max phase for the 
definite-max scenario; phase c is the definite-min phase for the 
definite-min scenario; and the phase order is ‘a > b > c’ for the 
definite-order scenario. The mathematical definition for the 
degree of power imbalance for each scenario is given by, 
 

Definite-max: 
∑ ∅∅∈ , ,

∑ ∅∅∈ , ,

100% 

(18)   

 
Definite-min: 

∑ ∅∅∈ , ,

∑ ∅∅∈ , ,

100% 

(19)   

 Definite-order: 
∑ ∅∅∈ , ,

∑ ∅∅∈ , ,

∑ ∅∅∈ , ,

∑ ∅∅∈ , ,

 
(20)   

Where all variables are defined in Section I. SIB
, ,  as given by (9), (13), and (16). It 

should be noted that for the definite-max or definite-min 
scenarios, the degree of power imbalance is a single value; but 
for the definite-order scenario, the degree of power imbalance 
is a vector of two values. 

The average three-phase power of the SIB component is 
given by, 
 ∑ ∅∅∈ , ,

3
 (21)   

where ∅  is defined in Section I. 
The degree of power imbalance is a time series. It brings 

three values by: 1) revealing the trend of the SIB over time, i.e., 
the trend of uneven load allocations – this is particularly useful 
when increasing single-phase electric vehicles are connected to 
the network; 2) showing the potential of phase swapping to 
address SIB; iii) and providing a direct guidance for phase 
swapping:  

i) For the definite-max scenario, the degree of power 
imbalance suggests the move of loads totaling 3  
from the definite-max phase to the other two phases, where 

 is given by (21). ii) For the definite-order scenario, the 
degree of power imbalance suggests the move of loads totaling 
3  away from the definite-max phase and the move of  
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3  to the definite-min phase, where  and  are 
defined in (20). iii) For the definite-min scenario, the degree of 
power imbalance suggests the move of loads totaling 
3  to the definite-min phase from the other two 
phases. 

VII. NUMERICAL RESULTS 

    The input data are three-phase power series for 782 low 
voltage substations derived from the three-phase voltages and 
currents monitored at the secondary side of 11kV/415V 
transformers throughout Western Power Distribution (a UK 
DNO)’s business area [24]. Therefore, the three-phase power 
series are the power injected from 11kV networks to 415V 
networks. The data cover a good mix of geographical 
characteristics and customer types [24]. Four representative 
substations are selected to demonstrate the methodology. 
Matlab is used for the simulation. 

A. Definite-Max Scenario 

Substation No. 536,753 is selected to represent the 
definite-max scenario. The study period is one year, covering 
five seasons (spring, summer, high summer, autumn, and 
winter) and different day types (weekday and weekend). 
Because the original three-phase power series and the SIB 
component have more than 50,000 time points (one sample 
every 10 minutes for a year) on the X axis, they are presented in 
the form of probability density distributions for clarity. This 
also applies to the definite-order and definite-min scenarios. 
The probability density functions of the three-phase power 
series are presented in Fig. 2.  

 
Fig. 2.  The probability density functions of the three-phase power series 

over a year for definite-max scenario 
 
The priori judgment process is presented in Table III.  

TABLE III 
A PRIORI JUDGMENT FOR THE DEFINITE-MAX SCENARIO 

Sub No. Variables Phase a Phase b Phase c 

536,753 
∅ 71.47% 7.15% 2.67% 

∅ 1.66% 26.18% 37.88% 

∅ (kW) 74.25 62.63 61.03 

∅, ∅, and ∅ are given by (4), (5), and (6), respectively. 
Phase a is the definite-max phase. Although phase c has the 

least power among the three phases for the majority of time (as 
shown in the second row of Table III), its average power is 
approximately the same as that of phase b (their difference is 
lower than the threshold δ  as defined in (2)). Therefore, phase 

c is not judged as the definite-min phase and only the 
definite-max phase exists in this case.   

 
Fig. 3. The probability density functions of the SIB component over a year for 

definite-max scenario 

 
Fig. 4. The RIB component over a year for definite-max scenario 

 
Fig. 5. The degree of power imbalance over a year for definite-max scenario 

Similar as Fig. 2, the SIB component is also presented in the 
form of probability density functions in Fig. 3. It can be seen 
that the probability density functions in Fig. 3 look similar to 
those in Fig. 2 with only slight differences. In the SIB 
component, phase a has the greatest power among the three 
phases for 100% of the time – this is consistent with the 
definition of the SIB for the definite-max scenario, reflecting 
that too much load is allocated to phase a.  

The RIB component presented in Fig. 4 shows the anomalies 
of when either phase b or c overtakes phase a to become the 
maximum phase – this occurs for 18.40% of the time, reflecting 
the random load fluctuations on phases b and c.  

For the whole year, the degree of power imbalance results in 
Fig. 5 provide a guidance for phase swapping: 1) on average, up 
to 8.61kW of loads can be moved from phase a to the other two 
phases; 2) at 15:50 on the 80st day in the year (21th March), a 
maximum of 34.88kW of loads can be moved from phase a to 
the other two phases; 3) for 4.20% of time, no load needs to be 
moved from phase a to the other two phases (the degree of 
power imbalance is zero during this period). If phase swapping 
is performed to move loads away from phase a, then the loads 
on the other two phases need to be reduced for phase 
rebalancing during this minority period.   
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B. Definite-Order Scenario 

    Substation No. 512,457 is selected to represent the 
definite-order scenario. The probability density functions of the 
three-phase power series are presented in Fig. 6.  

TABLE IV 
A PRIORI JUDGMENT FOR THE DEFINITE-ORDER SCENARIO 

Sub No. Variables Phase a Phase b  Phase c 

512,457 
∅ 83.35% 5.88% 0 

∅ 0 1.10% 96.11% 

∅ (kW) 45.36 36.89 25.26 
In this case, 79.86% . The average power also 

demonstrates the order of ‘a > b > c’. Therefore, phases a and c 
are the definite-max and definite-min phases, respectively.  

 
Fig. 6.  The probability density functions of the three-phase power series over a 
year for definite-order scenario 

 
Fig. 7. The probability density functions of the SIB component over a year for 
definite-order scenario 

 
Fig. 8. The RIB component over a year for definite-order scenario 

 
Fig. 9. The degree of power imbalance over a year for definite-order scenario 

 
For the whole year, the probability density functions of the 

SIB component is presented in Fig. 7. According to the SIB 
component, phase a has the greatest power among the three 

phases for 100% of the time and that phase c has the least power 
for 100% of the time – this is consistent with the definition of 
the SIB for the definite-order scenario, reflecting the existence 
of excessive loads on phase a and insufficient loads on phase c.  

The RIB component presented in Fig. 8 shows the anomalies 
when the phase order is not ‘a > b > c’ – this occurs for 12.27% 
of the time, reflecting the random load fluctuations on each 
phase.  

The degree of power imbalance results in Fig. 9 provide a 
guidance for phase swapping: 1) on average, up to 9.66kW of 
loads can be moved away from phase a and up to 10.50kW of 
loads can be moved to phase c; 2) at 22:30 on the 32nd day in the 
year (1st February), a maximum of 28.65kW of loads can be 
moved from phase a to the other two phases: 9.89kW to phase b 
and 18.76kW to phase c. 

C. Definite-Min Scenario 

    Substation No. 521,071 is selected to represent the 
definite-min scenario. The three-phase power series are 
presented in Fig. 10. The priori judgment process is presented 
in Table V. 

TABLE V 
A PRIORI JUDGMENT FOR THE DEFINITE-MIN SCENARIO 

Sub No. Variables Phase a Phase b  Phase c 

521,071 
∅ 0 67.62% 13.00% 

∅ 69.26% 0 15.02% 

∅ (kW) 46.92 60.95 54.86 

Phase a is the definite-min phase. Although phase b has a 
power greater than the other two phases by more than 5% for 
67.62% of the time, the order of ‘b > c > a’ only occurs for 
37.79% (< 50%) of the time – it does not meet the criteria for 
the definite-order scenario. Therefore, only a definite-min 
phase exists.  

For a whole year, Fig. 10 – 13 depict the probability density 
functions of the three-phase power series, the probability 
density functions of the SIB component, the time series of the 
RIB component, and the degree of power imbalance, 
respectively.  

 
Fig. 10.  The probability density functions of the three-phase power series over 
a year for definite-min scenario 
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Fig. 11. The probability density functions of the SIB component over a year for 
definite-min scenario 

 
Fig. 12. The RIB component over a year for definite-min scenario 
 

 
Fig. 13. The degree of power imbalance over a year for definite-min scenario 

 
The SIB component presented in Fig. 11 shows that phase a 

has the least power among the three phases for 100% of the 
time – this is consistent with the definition of the SIB for the 
definite-min scenario, reflecting that insufficient loads are 
allocated to phase a.  

The RIB component presented in Fig. 12 shows that the 
abnormal cases when phase a is not the minimum phase occur 
for 21.58% of the time, reflecting the random load fluctuations 
that breach the majority rule.  

The degree of power imbalance results in Fig. 13 provide a 
guidance for phase swapping: 1) on average, up to 7.75kW of 
loads can be moved from phases b and c to phase a; 2) At the 
14192nd time point (at 13:20, 8th April), a maximum of 
21.48kW of loads can be moved from phases b and c to phase a. 

D. Random Imbalance Scenario 

    Substation No. 521,064 is selected to represent the random 
imbalance scenario. The a priori judgment process is presented 
in Table VI. 

TABLE VI 
A PRIORI JUDGMENT FOR THE RANDOM IMBALANCE SCENARIO 

Sub No. Variables Phase a Phase b  Phase c 

521,064 
∅ 30.10% 21.03% 26.26% 

∅ 25.39% 18.21% 31.99% 

∅ (kW) 46.43 45.34 43.52 
 

Although phase c has the least power among the three phases 
for half of the time, its average power is not lower than that of 
phase b by more than the threshold δ . Therefore, phase c is not 
judged as the definite-min phase. The three-phase power series 
then belong to the RIB scenario which cannot be decomposed 
into SIB and RIB. In this case, the three-phase power series are 
the RIB component. The probability density functions of the 
three-phase power series are presented in Fig. 14.  

 
Fig. 14.  The probability density functions of the three-phase power series over 
a year for random imbalance scenario 

E. Impact of Majority Threshold on Decomposition 

According to Table I, the majority threshold is the key for the 
a priori judgment. When the majority threshold is set as 50% 
(by default), 99.2% of the definite-max cases exhibit this 
feature: the average power of their definite-max phase is greater 
than those of the other two phases by more than 5% – this 
indicates that the majority threshold of 50% is reasonable 
because the order of the average power is consistent with the 
percentage of time when the definite-max occurs; similarly, 
96.5% of the definite-order cases demonstrate the consistency 
between the order of the average power and the percentage of 
time when the order occurs; 97.8% of the definite-min cases 
demonstrate the consistency between the order of the average 
power and the percentage of time when the definite-min phase 
occurs. Therefore, the majority threshold of 50% is judged to be 
reasonable. 

If, for example, the majority threshold is set as 60%, out of 
782 substations, 14.07% (110) that were classified as 
definite-max, definite-order, and definite-min scenarios under 
the threshold of 50% are now classified as the random 
imbalance scenario under the new threshold of 60%. The 
threshold of 60% is not reasonable because those 14.07% (110) 
of substations actually have a definite-max phase, a 
definite-min phase, or both in terms of the average power, 
indicating the existence of systematic imbalance and the 
potential for phase swapping.  

Table VII presents the a priori judgment results (i.e, the 
number of substations belonging to each scenario) under 
different majority thresholds. 

TABLE VII 
A PRIORI JUDGMENT RESULTS UNDER DIFFERENT MAJORITY THRESHOLDS 

Majority threshold 
Numbers of definite-max, 

definite-order, and definite-min 
cases, respectively 

50% 235, 164, 170, 213 

55% 220, 131, 169, 262 
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60% 205, 101, 153, 323 

65% 191, 77, 144, 370 

 
Table VII shows that, with the increase of the majority 

threshold, the numbers of definite-max, definite-order, and 
definite-min cases all decrease but the number of random 
imbalance cases increases.  

The impact of the majority threshold on three-phase power 
decomposition is derived from Table VII: each time the 
majority threshold increases by 5%, approximately 6.4% of the 
‘decomposable’ cases (i.e., cases that can be decomposed into 
systematic imbalance and random imbalance) becomes 
‘non-decomposable’ (i.e., belonging to the random imbalance 
scenario which cannot be decomposed).  

However, as mentioned above, the increase of the majority 
threshold to over 50% masks the existence of systematic 
imbalance and the potential for phase swapping; the majority 
threshold of 50% is found to be reasonable. 

F. Impact of Measurement Error Threshold on Decomposition 

In Equations (2) and (3), there is a threshold δ  that accounts 
for measurement errors. How this threshold affects the a priori 
judgment results and consequently the decomposition is 
investigated in this section. Fig. 15 depicts the numbers of 
substations belonging to the four scenarios under different 
measurement error thresholds.  

 
Fig. 15.  The impact of measurement error threshold on judgment results 

 
Fig. 15 shows that: 1) with the increase of the measurement 

error threshold from 0 to 10%, the number of random 
imbalance cases increases from 211 to 237, i.e., 26 more cases 
become ‘non-decomposable’ under the threshold of 10% as 
compared to that under the threshold of 0; 2) when the 
measurement error threshold is below 5%, the threshold has 
negligible impact on the a priori judgment results.  

G. Validation by Phase Swapping 

In this section, preliminary phase swapping is performed 
under the guidance of the degree of power imbalance to 
validate the methodology. Take Substation No. 536,753 
(belonging to the definite-max scenario) as an example. Before 
phase swapping, its three-phase power series, the SIB 
component, the RIB component, and the degree of power 
imbalance are presented in Fig. 2 – 5, respectively.  

The degree of power imbalance results suggest that the 
distribution network operator move an average load of 8.61kW 
from phase a to the other two phases. Therefore, a preliminary 
phase swapping strategy is to move 10 single-phase domestic 
customers from phase a to phases b and c (5 customers to phase 

b and 5 customers to phase c). Suppose that the total load of 
these 10 customers follows a normal distribution with an 
average value of 8kW and a standard deviation of 3kW.  

After phase swapping, the three-phase power series then 
belongs to the random imbalance scenario (the systematic 
component is zero). The RIB component equals the three-phase 
power series, the probability density functions of which are 
presented in Fig. 16.  

 
Fig. 16. Three-phase power series after phase swapping 

The phase swapping eliminates systematic imbalance: after 
phase swapping, there is no phase that exhibits the greatest 
power among the three phases for more than 50% of the time; 
neither is there any phase that exhibits the least power among 
the three phases for more than 50% of the time. Furthermore, 
after phase swapping, the average power for the three phases 
are 66.22kW, 66.64kW, and 65.04kW, respectively – the 
difference is below 2.5%. The remaining random imbalance 
requires demand-side response to address, if the three phases 
are to be fully rebalanced.  

Based on the above results, it is concluded that the degree of 
power imbalance provides a useful guidance for phase 
swapping – this validates the methodology proposed by this 
paper.  

H. Discussions 

Among the 782 substations, 235 (30.1%), 164 (21.0%), 170 
(21.7%), and 213 (27.2%) of them belong to the definite-max, 
definite-order, definite-min, and random imbalance scenarios, 
respectively. This indicates that the majority (72.8%) of the low 
voltage substations have SIB that can be addressed by phase 
swapping.  

Three-phase power imbalance is directly associated with the 
costs for distribution network operators, including energy 
losses along the neutral wire and additional network investment 
costs. Although there is no regulatory limit on power 
imbalance, it will save costs for distribution network operators 
to rebalance three-phase power. A key value of this work is 
therefore to guide phase rebalancing practices. Furthermore, a 
few references [13], [15], [23] also focus on three-phase power 
imbalance.  

It is necessary to judge the scenario according to the a priori 
judgment criteria before performing the decomposition. The 
necessity of the a priori judgment is because of the nature of 
three-phase power imbalance, i.e., the fact that any set of 
three-phase power series belong to one and only one of the four 
mutually exclusive scenarios. Once the scenario is determined, 
the three-phase power decomposition is definite as the 
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closed-form solution to the quadratic optimization problem of 
the scenario.  

Phase swapping (also known as rephasing) is a popular 
technique to rebalance three-phase supply in the 
medium-to-long term [9], [11], [25]. It requires scheduled 
outage, the time of which can be carefully chosen to minimize 
the impact on customers.  
    The degree of power imbalance based on the SIB component 
reveals the maximum potential (also the maximum need) of 
phase swapping. However, it does not mean that phase 
swapping will always meet the maximum need in practice. 
Rather, it is common for phase swapping to mitigate the SIB 
but not completely eliminate it – in this case demand-side 
managements will be required to resolve the residual SIB and 
the RIB, if the three phases are to be fully rebalanced; 
alternatively, phase swapping may deliver more than the 
maximum need by swapping too much, causing an 
overcompensation that requires demand-side managements to 
further rebalance the three phases.  
    The RIB component reveals the minimum need for 
demand-side managements. If phase swapping exactly meets 
the maximum need as indicated by the degree of power 
imbalance, then demand-side managements only need to reduce 
the loads equal to the RIB component for each phase. However, 
because of the imperfect phase swapping in practice (as 
explained above), the actual need for demand-side 
managements is likely to be greater than the RIB component.  

It should be noted that reactive power also affects network 
loading and phase imbalance. A major obstacle to quantifying 
the time-varying power factor (hence the time-varying reactive 
power) in real-time operation is the lack of phasor 
measurements in distribution networks, especially in low 
voltage networks. Therefore, there is hardly any information on 
power factor (reactive power) in real-time operation. A feasible 
solution is to assume an average power factor: existing 
publications [9], [25], [11] on phase rebalancing considers load 
patterns represented by active power only, based on an implicit 
assumption of an average power factor. Reference [1] also 
assumes an average power factor when calculating loading 
levels. Reference [26] derived an average power factor of 0.9 
for residential customers. Assuming such an average power 
factor, if the active power is rebalanced, the reactive power is 
automatically rebalanced. Hence, the decomposition method 
needs to consider three-phase active power only.  

The three-phase power decomposition method proposed by 
this paper is not limited to substations, but is equally applicable 
to nodes along the feeder with three-phase power 
measurements. A major obstacle to understanding the phase 
imbalance along feeders beyond substations is the lack of 
monitoring along low voltage (415V) feeders. Only a selection 
of the UK’s low voltage substations are monitored [27], 
because of cost barriers. Furthermore, existing publications 
[13], [15] focus on phase rebalancing at the substation side to 
prevent the imbalance from propagating to higher-level 
networks. Otherwise, three-phase power imbalance will further 
cause energy losses and increased investment costs in 
higher-level networks. This research therefore focuses on 

three-phase power imbalance at the substation side, using the 
available substation-side data provided by Western Power 
Distribution. 

VIII. CONCLUSIONS 

    This paper identifies the systematic imbalance component 
and random imbalance component from any set of three-phase 
power series. The systematic component, as a direct 
consequence of uneven load allocations, can be addressed by 
phase swapping; the random imbalance component, as a result 
of random individual load fluctuations, requires demand-side 
managements, if the three phases are to be fully rebalanced. A 
new a priori judgment method is proposed to classify any set of 
three-phase power series into one of the four scenarios, i.e. 
definite-max, definite-order, definite-min, and random 
imbalance scenarios, by judging both the percentage of time 
and the average power to ensure robustness. For each scenario 
except the random imbalance one, a novel decomposition 
method is proposed to decompose three-phase power series into 
a systematic imbalance component and a random imbalance 
component, which are the closed-form solution to a quadratic 
optimization problem that minimizes the random imbalance 
component. The degree of power imbalance is defined for each 
scenario based on the systematic imbalance component.  

Case studies demonstrate that 30.1%, 21.0%, 21.7%, and 
27.2% of 782 low voltage substations belong to the 
definite-max, definite-order, definite-min, and random 
imbalance scenarios, respectively. Decompositions are applied 
to the first three groups and the degree of power imbalance 
values are calculated based on the systematic imbalance 
component. The effectiveness of the degree of power 
imbalance as a guidance for phase swapping is validated by 
preliminary phase swapping.  

The methodology is highly suitable for monitored low 
voltage distribution networks in the UK and the rest of Europe 
and monitored medium voltage distribution networks in the US. 
Distribution network operators can use the results to find out 
the maximum potential of phase swapping to address 
systematic imbalance and the minimum need for demand-side 
managements to address random imbalance, if the three phases 
are to be fully rebalanced. In addition, the degree of power 
imbalance not only reveals the underlying trend of systematic 
imbalance over time but also provides a guidance for phase 
swapping practices.  
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