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Preface 

 

This thesis is submitted to the Technical University of Denmark (DTU), Department of 

Biotechnology and Biomedicine as part of the requirements to obtain the degree as doctor 

of philosophy (Ph.D.).  

The work was conducted at DTU, Lyngby, Denmark and Nordic Bioscience, Herlev, 

Denmark from April 2014 to March 2017. Associate Professor Lars I. Hellgren, Ph.D. at 

DTU and Kim Henriksen, Ph.D. at Nordic Bioscience supervised the work. 

In the results section, I present five papers – four published and one manuscript. A 

combined summary of the findings is presented in advance of the manuscripts and 

publications.  

Besides the five papers, this thesis includes an introduction to the topics relevant for the 

presented data followed by a summarizing discussion of the most significant findings 

obtained during this thesis in relation to relevant literature. 
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Summary 

 

Amylin and/or calcitonin receptor agonists such as pramlintide and davalintide have shown 

promise on weight reduction in preclinical models and clinical settings, albeit with limited 

efficacy on glucose homeostasis.  

The overall aim of this Ph.D. project was to investigate the metabolic effect of the dual 

amylin and calcitonin receptor agonists (DACRA), KBP-042, KBP-088, KBP-089, focusing 

on the weight reducing and glucoregulatory potential in preclinical animal models of obesity 

and related morbidities like type 2 diabetes (T2D) and nonalcoholic steatohepatitis (NASH). 

Both synthetic and naturally occurring DACRAs exert prolonged receptor activation and it 

is hypothesized that this prolonged receptor activation will improve the in vivo efficacy. 

Furthermore, it is hypothesized that DACRAs have beneficial metabolic effects beyond 

caloric intake and simple diet-induced weight loss. 

In this series of studies, the focus was on metabolic effects of KBPs. Effects on body weight 

and adipose tissue as well as glucose metabolism were thoroughly explored in experimental 

rat models resembling the phenotypes of obesity, T2D and NASH, to address whether these 

beneficial effects were solely due to suppression of food intake and the subsequent weight 

loss. As amylin agonism induces a well-known anorexic effect at dose initiation, these 

studies also focused on different dosing regimens including dose escalation and dosing 

frequency. Finally, we compared KBPs to a second-generation amylinomimetic, davalintide, 

and combination of KBPs with the GLP-1 analogue, liraglutide.   

KBPs potently activated both the amylin and calcitonin receptors in vitro, and 

demonstrated a prolonged receptor activation when compared to second-generation 

amylinomimetic, davalintide.  

KBPs transiently suppressed caloric intake, and induced and sustained a dose-dependent 

weight loss compared to vehicle and pair-fed rats. Concomitantly, overall adiposity was 

decreased and obesity related adipocyte hypertrophy were improved – findings superior to 

the effects obtained with davalintide treatment. The inappropriate high fat diet-induced 

lipid accumulation was eliminated by KBP treatment, and interestingly, KBPs alleviated 

hyperinsulinemia and improved glucose tolerance even with significantly lower insulin 

levels. KBP treatment increased the glucose infusion rate during a hyperinsulinemic 

euglycemic clamp indicating enhanced insulin action. Importantly, KBPs also improved 

glucose homeostasis and enhanced insulin action in Zucker Diabetic Fatty rats. 

To investigate beneficial effects beyond weight loss, a weight-matched group was 

implemented. Of interest, weight matching led to improved glucose homeostasis through 

lowered plasma insulin; however, these were inferior to the effect of KBPs.  
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KBPs were introduced using various dosing regimens and frequencies. Dosing every day 

and every second day resulted in an equal weight loss at study end; however, with a later 

onset of maximal weight loss. To optimize tolerability, KBPs were introduced by dose 

escalation. In a 4-fold dose escalation, KBPs induced a transient reduction in food intake at 

every escalation step – with reducing magnitude over time. Two-fold and linear escalations 

suppressed body weight evenly with no significant reduction in food intake at either 

escalation step; however, with a delayed onset of maximum efficacy.  

Interestingly, when KBP and liraglutide were combined, the effect on acute food intake was 

superior to either of peptides as single-dose. Chronically, KBP-089 (1.25 µg/kg) and 

liraglutide (50 µg/kg) lowered body weight 8% and 2% in HFD rats, respectively, while the 

combination resulted in a 12% body weight reduction. Moreover, the combination improved 

glucose tolerance. 

In a rat model resembling the phenotype of human NASH, KBP treatment led to a reduction 

of the high fat, high cholesterol and cholate diet induced increase in liver weight and 

circulating aspartate transaminase (AST) levels. Finally, at the histological level KBP 

treatment reduced hepatic steatosis, ballooning and inflammation, hence resulting in a 

reduced NAS score in combination with a lowered fibrosis stage. 

In conclusion, KBPs induce and sustain weight loss, leading to improved metabolic 

parameters including food preference, and these are beyond those observed simply by diet-

induced weight loss. Additionally, these peptides are well tolerated when introduced by dose 

escalation. Finally, KBPs reduce liver steatosis in both obese and NASH rats, and 

importantly reduced inflammation and fibrosis scores in NASH, hence underscoring the 

DACRA potential as an anti-obesity agent with benefits on glucose control and NASH. 

  



              Dansk Resume 

 

11 

Dansk Resume 

 

Fedme og de associerede livsstilssygdomme, såsom type 2 diabetes (T2D), non-alkoholisk 

steatohepatitis (NASH), hjerte-karsygdomme og kræft er konsekvenser af den moderne 

stillesiddende livsstil. Behandlingen af fedme er begrænset til livsstilsinterventioner. I 

alvorlige tilfælde kan fedmekirurgi og nogle få farmakoterapier dog benyttes. Der er derfor 

intensiv søgen på nye lægemidler, der fokuserer på vægttab, insulinfølsomhed og lever 

patofysiologi. Amylin og/eller calcitonin receptor agonister såsom pramlintide og 

davalintide har vist potentiale i forbindelse med vægtreduktion i prækliniske modeller og 

kliniske forsøg, omend effekten på glukosemetabolismen var begrænset.  

Det overordnede formål med dette Ph.D. projekt var at undersøge den metaboliske effekt af 

kombinerede amylin og calcitonin receptoragonister (DACRA) behandling, hvor fokus var 

på vægttab samt glukoseregulering i forskellige prækliniske modeller for fedme, T2D og 

NASH.  

Hypotesen er, at en forlænget receptoraktivering vil forbedre effekten in vivo, og at de 

gavnlige effekter af DACRA behandling ikke kun er drevet af et reduceret fødeindtag samt 

vægttab. 

I denne række undersøgelser, var der fokus på de metaboliske effekter af behandling med 

de tre DACRA, KBP-042, KBP-088 og KBP-089. Effekten på kropsvægt og fedtvæv samt på 

glukosemetabolismen blev undersøgt i eksperimentelle rottemodeller med fedme, T2D og 

NASH fænotyper, og ligeledes undersøgtes det, om de gavnlige effekter alene skyldtes et 

reduceret fødeindtag med efterfølgende vægttab. Det er velkendt, at amylin injektioner 

inducerer en anorektisk effekt ved doseringsstart, hvorfor disse forsøg ligeledes er fokuseret 

omkring forskellige doseringsregimer – herunder dosiseskalering samt variabel 

doseringsfrekvens. Endelig har vi sammenlignet KBP-behandling med en 2. generations 

amylinanalog, davalintide, og kombinationen af en KBP og GLP-1-analogen, liraglutide. 

KBP peptiderne aktiverede både amylin og calcitonin receptorer in vitro meget potent, og 

ligeledes havde de en forlænget aktiveringen af receptorerne sammenlignet med 

davalintide. 

KBP-behandling havde en transient effekt på kalorieindtaget, inducerede og vedligeholdte 

et dosisafhængigt vægttab sammenlignet med ubehandlede rotter. Samtidig reducerede 

behandlingen den samlede mængde kropsfedt og størrelsen af fedtcellerne. KBP-behandling 

eliminerede den ophobning af fedt, der var i leveren og ligeledes forbedrede KBP-behandling 

hyperinsulinæmien og glukosetolerance i rotterne selv med væsentligt lavere insulin 

niveauer. I en hyperinsulinæmisk euglykæmisk clamp øgede KBP-behandling 

glukoseinfusionsraten, hvilket indikerer øget insulinfølsomhed. Endeligt forbedrede KBP-

behandling og glukosehomeostase og insulinvirkningen i T2D rotter. 
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For at undersøge om KBP-behandlingen havde effekter, der ikke kun var drevet af 

vægttabet, implementerede vi en vægt-matchet gruppe. Vægttabet i sig selv medført en 

forbedret glukosetolerance via sænkede insulinniveauer – disse var dog ringere end 

effekterne med KBP-behandling. 

Vi testede dosering hver og hver anden dag. Begge doseringsformer resulterede i samme 

vægttab ved afslutning. Ligeledes opnåede rotterne, der dosiseskaleredes, et lignende 

vægttab dog med en knap så kraftig reducering af fødeindtaget. 

Da vi kombinerede KBP og GLP-1 var effekten på akut fødeindtag overlegen sammenlignet 

med DACRA og GLP-1 hver for sig. I det kroniske behandlingsforsøg kombinerede vi KBP-

089 (1,25 ug / kg) og liraglutide (50 ug / kg). De reducerede kropsvægten i fede rotter med 

henholdsvis 8% og 2%, hvorimod kombinationen resulterede i en reduktion på 12%. 

Ydermere forbedrede kombinationen glukosetolerancen. 

I en rotte model med en NASH-lignende fænotype reducerede KBP-behandling 

levermarkører, leversteatosen samt ”ballooning” og inflammationen i leveren, hvilket 

resulterede i en sænket NAS score og et sænket fibrose niveau. 

Konklusionen er, at KBP-behandling var i stand til at sænke samt vedligeholde et 

substantielt vægttab, der medførte en række forbedrede metaboliske parametre. Disse 

gavnlige effekter var større end effekterne set med almindeligt vægttab. Ydermere var 

peptiderne tolerable selv i høje doser, når de introduceredes ved dosiseskalering. Endeligt 

forbedrede KBP-behandling leverstatussen, hvilket understreger potentialet af KBP-

behandling som pharmakoterapi til fedme og eventuelt T2D og NASH.   
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CHAPTER I 

I. Introduction 

Obesity   

Obesity and the development of the metabolic syndrome (MS) are major health concerns. 

The associated morbidities, such as cardio vascular disease (CVD), type 2 diabetes 

mellitus (T2D), metabolic disorders, certain cancers (i.e., endometrial, breast, colon)1, 

depression2,3, osteoarthritis, and infertility4 are among this century’s greatest health 

challenges5–8. Worldwide obesity has more than doubled since 1980. In 2014, 39% of the 

adult population were overweight, 13% obese, and most people worldwide live in 

countries where overweight kills more people than underweight. Unfortunately, adults 

are not the only affected by the cheap and easily accessible calories – 41 million children 

under the age of 5 were overweight or obese in 20149, underpinning the necessity for both 

prevention, management, and treatment of this pandemic.  

 

The Pathophysiology of Obesity 

Obesity is a multifactorial disorder. Due to an imbalance in energy consumption and 

expenditure, excessive fat accumulates and the pathogenesis involves both genetic, 

environmental, and behavioral factors. The most easily accessible measurement of 

overweight and obesity is the body mass index (BMI). Although not all phenotypes fit 

this index, it provides an apt surrogate for overweight and additionally for total body fat. 

In adults, except for those of Asian heritage10, a BMI from 25 to 29.9 kg/m2 indicates 

overweight, whereas a BMI >30 kg/m2 defines obesity9.  

The main role of adipose tissue is to store energy in the form of lipids and modulates the 

metabolism by releasing free fatty acids (FFA), pro-inflammatory cytokines and 

hormones11–13. In obese individuals many of these mediators are increased such as the 

inflammatory cytokines IL-6 and TNF-α, while the anti-inflammatory adipokine, 

adiponectin is diminished14,15. Interestingly, adiponectin has been found to protect against 

insulin resistance (IR) and CVD16, while FFA and pro-inflammatory cytokines promote the 

development of IR11,17,18. 

 

Impaired glucose uptake and Insulin Resistance 

Glucose is an essential substrate for the metabolism and homeostasis in eukaryotic cells 

and cannot passively diffuse through the cell membrane but requires facilitated transport 
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by glucose transporters (GLUT). 14 different GLUTs are known; however, the most well 

characterized are GLUT1-419. GLUT1 and GLUT3 are located in plasma membranes and 

facilitate maintenance of the basal rate of glucose uptake from the bloodstream20. GLUT2 

is expressed in hepatocytes and β-cells and the rate of glucose uptake is proportional to 

blood glucose concentrations. GLUT4 transporters are situated in skeletal muscle and 

adipose tissue and under normal conditions highly insulin sensitive19–21. Glucose is storage 

is facilitated mainly by skeletal muscle and adipose tissue; hence, GLUT4 is important in 

clearance of excess glucose in the bloodstream22. 

When insulin is secreted in response to nutrient ingestion, the binding of insulin to the 

receptors activates the IRS-PI3K-Akt pathway initiating glucose uptake. A phosphorylation 

inactivates the protein that prevents GLUT4 translocation, and thereby the cytoplasmic 

vesicles storing GLUT4 moves towards the cell surface and are fused with the membrane. 

Thus, insulin promotes the GLUT4 translocation from inner vesicles, resulting in increased 

GLUT4 expression on the cell surface, and thereby induce glucose uptake (Figure 1A)21,23,24. 

 

 
 

Figure 1. Simplified schematic illustration of insulin stimulated glucose uptake in peripheral tissues (A) under 

normal circumstances and (B) in insulin resistant peripheral tissues, where GLUT4 translocation fail. Figure is 
modified from Harrison's Principles of Internal Medicine, 17th Edition. 

 

Generally, the term insulin sensitivity is the ability of insulin to regulate the circulating 

FFA and glucose uptake, by stimulating disposal into skeletal muscle, inhibiting hepatic 

gluconeogenesis and the ability to suppress lipolysis in adipose tissue. In healthy 

individuals, there is a feedback regulation between the insulin sensitive tissues and the 

insulin producing β-cells as they increase insulin levels in response to the demand from the 

muscles, liver, and adipose tissue 25,26. When the feedback loop is damaged it will result in 

a deviating glucose tolerance27. IR is the reduced ability of insulin to promote glucose uptake 

in peripheral tissues28,29. Adipose and skeletal muscle cells require insulin to absorb glucose, 

and when these cells respond insufficiently to circulating insulin, GLUT4 will not 

translocate to the cell membrane resulting in rising glycemia (Figure 1B). The impaired 
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translocation of GLUT4 transporters is suggested to be linked to receptor desensitizing and 

deficiency in IRS-1 phosphorylation30. 

Under normal conditions, the liver is part of maintaining glucose homeostasis. In the 

presence of insulin, hepatic glucose production (HGP) is reduced – a reduction that may not 

occur in insulin resistant individuals29. This feedback loop regulating the interaction 

between the insulin-sensitive tissues and β-cells, as well as the relationship between insulin 

sensitivity and insulin secretion might explain the hyperinsulinemia in insulin resistant 

individuals compared to insulin-sensitive individuals28. IR reduces insulin-mediated 

suppression of lipolysis, hence elevating the FFA release into the circulation which are 

taken up by striated muscle where they inhibit insulin signaling and impair glucose uptake 

– as well as in the liver where increased FFA concentrations lead to an increase of the 

hepatic glucose output, and consequently to an increase in glucose load. The pancreatic β-

cells responds by increasing the insulin output thus further inducing hyperinsulinemia. 

Over time, the pancreatic β-cells re unable to meet the increased demand for insulin. This 

is partly due to induction of pancreatic islet β-cell apoptosis by prolonged exposure to FFAs. 

Subsequently diabetes will occur31.  

Metabolic overload will either increase the number of adipocytes (hyperplasia) or induce 

adipocyte enlargement (hypertrophy). Adipocyte hypertrophy is associated with 

macrophage infiltration in adipose tissue and development of inflammation impairing 

triglyceride deposition and increasing lipolysis. When the circulating amounts of lipids 

exceeds the adipose tissue uptake capability, fatty acids accumulate in tissues with confined 

capacity for lipid storage32,33. Lipids accumulate in the liver as lipid droplets and excessive 

lipid droplet accumulation will lead to cellular dysfunction. This observation was the basis 

of the lipotoxicity concept. The mechanisms are not fully understood, albeit the inhibition 

of glycolysis and insulin signaling pathway together with lipid accumulation, increased 

ROS, and mitochondrial dysfunction is known to affect IR negatively29,34. 

 

The Metabolic Syndrome  
 

Nearly 30 years ago Gerald Reaven suggested the existence of syndrome X that described 

the co-occurrence of a number of metabolic disorders such as hypertriglyceridemia, 

hypertension, reduced HDL-cholesterol, and hyperglycemia35 and IR was thought as the 

link connecting these metabolic abnormalities, hence triggered the name, the insulin 

resistance syndrome. Later on, the term metabolic syndrome was applied as further 

knowledge was obtained regarding the disproportionate FFA flux from excess adipose 

tissue, which was now believed to be a central the development of the syndrome. MS is a 

tool to help identify subjects in risk of developing T2D and CVD. MS is defined as a cluster 

of risk factors including central obesity, hypertension, dyslipidemia  (elevated triglycerides 

and reduced high density lipids (HDL) cholesterol), and hyperglycemia (Figure 2), which 
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increases the risk of CVD and T2D and ultimately death36–39. Clinically, the presence of 

three of the clinical signs would signify the presence of MS36,40. The definition of MS was 

designed to be applicable in clinical practice – a simplified structure with no requirements 

of advanced testing such oral glucose tolerance test (OGTT) or IR measurement using a 

hyperinsulinemic-euglycemic clamp technique.   

 
 

 
 

Figure 2. Cut-off values for the five risk factors that constitutes the metabolic syndrome36,40. 

 

Interestingly, the waist circumference ratio is population specific, and it is speculated that 

the genetic variation among ethnic groups might be the reason for the increased risk of 

developing T2D at lower BMI in Asian people compared to Caucasians41,42. Of note, a heavily 

increased waist circumference is associated with increased visceral fat43, and central obesity 

and intra-abdominal adiposity – independent of BMI – are profound risk factors for CVD 

and metabolic derangements44.  

 

Type 2 Diabetes Mellitus 
 

Diabetes is currently affecting the lives of more than 400 million people. Numbers are 

increasing and have doubled globally the past 30 years45. There are several forms of 

Diabetes Mellitus: type 1 Diabetes Mellitus (T1D) and T2D, which account for 5-10% and 

90-95%, respectively. Moreover, a minority of diabetic patients have gestational diabetes, 

and other types caused by genetic defects of the β-cell and insulin secretion etc.46. T1D, 

gestational diabetes and other types of diabetes are not further discussed in this thesis.  

Type 2 diabetes is on the rise worldwide. Unfortunately, it is believed that around 50% of 

people with pre-diabetes or T2D are undiagnosed47. T2D was previously thought to be a 

disorder of the elderly population, albeit with the increasing prevalence of obese individuals 

in all age groups, T2D is today diagnosed in children and adolescents46. T2D is a major 

Metabolic Syndrome 

is diagnosed in patients with presence of 3 out of 5 risk factors 
 

• Increased waist circumference (population specific,  

European values are > 94 cm in men, > 80 cm in women)   

• Elevated triglycerides (> 1.7 mmol/L),  

• Reduced HDL cholesterol  

(> 1.03 mmol/L in men, > 1.29 mmol/L in women)  

• Elevated blood pressure (systolic ≥ 130 mm Hg, diastolic ≥ 85 mm Hg) 

• Elevated fasting plasma glucose (> 5.6 mmol/L) 
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cause of morbidity and mortality and is one of the most challenging public-health problems 

worldwide; as many as 50% of all T2D patients are affected by cardiovascular complications 

such as heart attack and stroke that ultimately can be fatal 45,48. Diagnosis is established 

by documentation of abnormal glycemia. Diabetic patients are characterized by having both 

fasting and postprandial hyperglycemia. Previously, the diagnosis of T2D was based on 

plasma glucose criteria; the two-hour value in an oral glucose tolerance test (OGTT) or 

fasting plasma glucose (FPG) measurement. These were replaced by glycated hemoglobin 

(HbA1c) as the gold standard49–51. Cut off values are found in figure 3. However, a 

combination of HbA1c, FPG and OGTT test values for diagnosing and monitoring of T2D is 

still recommended.  

 

 
 

Figure 3. Cut-off values for Type 2 Diabetes (T2D) diagnosis. The diagnosis of T2D was previously based on the 

two-hour value in an oral glucose tolerance test (OGTT) or fasting plasma glucose (FPG) measurement, albeit 
presently glycated hemoglobin (HbA1c) is the gold standard for diagnosis45. 

 

Pathogenesis of Type 2 Diabetes Mellitus 

T2D is a complex polygenic disorder characterized by hyperglycemia caused by IR, loss of 

pancreatic β-cell secretory function and elevated HGP52. Furthermore, T2D is highly 

associated with obesity, impaired insulin action, hyperglucagonemia, and abnormalities of 

lipoprotein metabolism34,53,54. Due to the slow progression of T2D, it can be divided into a 

pre-diabetic state and a diabetic state; the pre-diabetic state is characterized by glucose 

intolerance and hyperinsulinemia. The diabetic state occurs when the secretory capacity of 

pancreatic β-cells is unable to compensate for the IR resulting in hyperglycemia55. The 

impaired secretory function of the β-cells and massive IR in peripheral tissues, such as 

muscle, liver and adipose tissue, cause increased fasting and postprandial glycemia and 

glucose intolerance56. Furthermore, the hyperglucagonemia in T2D patients will further 

lower the rate of glucose clearance57,58. 

Two different versions of T2D pathophysiology are described. One includes the preliminary 

development of IR followed by compensatory hyperinsulinemia and then progressive loss of 

pancreatic β-cell mass and function, resulting in hypoinsulinemia and chronic 

hyperglycemia59. The second enrolls β-cell dysfunction and β-cell death as initiating factors 

of T2D28,60. Usually, the circulating levels of insulin are elevated prior to the diagnosis of 

Type 2 Diabetes Mellitus   
Diagnosis Criteria 
 

• Fasting blood glucose > 7.0 mmol/L (126 mg/dL) 

• 75 g oral glucose tolerance test, 2 hour blood glucose > 11.1 mmol (200mg/dL) 

• Glycated hemoglobin (HbA1c) > 6.5%  (48 mmol/mol) 
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T2D; however, insulin levels will eventually decline as chronic glucotoxicity will cause 

pancreatic β-cell dysfunction and death61.  

Chronic hyperglycemia is associated with long-term damage, dysfunction, and failure of 

different organs resulting in increasing disability, reduced life expectancy and enormous 

health costs. Pancreatic β-cell destruction, liver lesions, neuropathy, muscle atrophy, 

nephropathy,  damaged micro vasculature, and atherosclerosis are some of the 

complications56,62–64. 

 

Pancreatic hormones 

The human pancreas consists of both an endocrine and an exocrine gland. The exocrine 

secretes enzymes and bicarbonate, neutralizing gastric acid, into the duodenum aid 

digestion of consumed nutrients. The endocrine multi cellular mini-organs, islets of 

Langerhans, are highly vascularized and innervated and make up 1-2% of the pancreatic 

mass65. Each of the Islets of Langerhans includes at least five hormone secreting cell types: 

α-cells, β-cells, δ-cells, PP cells and ε-cells producing glucagon, insulin and amylin, 

somatostatin, pancreatic polypeptide, and ghrelin, respectively. These multi cellular 

structures are responsible for the regulation of glucose homeostasis, most dominantly 

insulin and glucagon (Table 1). Pancreatic islets are regulated by paracrine, autocrine, and 

endocrine signaling and by sympathetic, parasympathetic and sensory nerves placed deeply 

into the islets. Thus, multiple regulation factors determines hormone release from the islets 

of Langerhans60,66,67.  

Insulin is an anabolic hormone and the principle hormone capable of lowering glycemia68. 

Insulin synthesis and secretion from β-cells are mainly regulated by circulating 

concentrations of glucose – hyperglycemia stimulates insulin release69. Intracellular glucose 

enters glycolysis and glycogenesis and the produced adenosine triphosphate (ATP) from 

glycolysis blocks the ATP-sensitive potassium channels resulting in a decreased K+ efflux 

that will depolarize the membrane opening the voltage-dependent Ca2+ channels. The 

increased cytoplasmic Ca2+ triggers insulin secretion by exocytosis in a biphasic 

response70,71. Insulin contributes to the maintenance of glucose homeostasis by stimulating 

glucose uptake in peripheral tissues and by inducing glycolysis, glycogenesis and 

lipogenesis, while suppressing HGP72. 
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Hormone Cell Target tissue In response to Main effects in healthy subjects 
Insulin β-cells Skeletal muscle, 

adipose tissue,  

liver and kidney 

Hyperglycemia Anabolic effect, blood glucose ↓, glycolysis ↑, 

glycogenesis ↑, lipogenesis ↑  

Glucagon α-cells  Liver  Hypoglycemia Catabolic effect, blood glucose ↑,  

gluconeogenesis ↑, glycogenolysis ↑ 
Amylin  
  

β-cells  

(co-

secreted 

with 

insulin) 

Skeletal muscle, 

brain and kidney  
Hyperglycemia Gastric acid secretion and gastric 

emptying↓ 

Induces anorexia, glucose release and 

hepatic glucose production in the 

postprandial period ↓ 
 

Table 1. Overview of important pancreatic glucoregulatory hormones. References 67,73–76 

 

Glucagon is a catabolic hormone synthesized by the α-cells, which maintain glucose 

homeostasis during fasting and exercise72. α-cells are highly sensitive to glucose levels and 

hypoglycemia stimulates glucagon release67,69. As with insulin, the increased intracellular 

ATP blocks the ATP-sensitive potassium channels resulting in a decreased K+ efflux and 

depolarization of the membrane opening the voltage-dependent Ca2+ channels and glucagon 

is released69. Glucagon is suppressed by hyperglycemia hence per se inhibited by insulin67,77. 

Finally, glucagon inhibits glucose uptake, stimulates lipolysis and provokes the release of 

FFA from adipose tissue as well as increases gluconeogenesis and glycogenolysis are 

stimulated while glycolysis in liver is suppressed78.  

Amylin is synthesized in the β-cells and co-secreted with insulin in response to nutrients 

exerting complementary prandial actions to insulin79,80. Amylin contributes in the control 

of carbohydrate metabolism and has several biological effects and high affinity sites are 

located in the brain, kidney and skeletal muscle75.  The pharmacological and physiological 

actions of amylin are described in the section of target receptors and ligands. 

 

Nonalcoholic Fatty Liver Disease 
 

Nonalcoholic fatty liver disease (NAFLD) is believed to be the hepatic manifestation of MS81. 

NAFLD is characterized by excessive fat accumulation in the liver in the absence of 

excessive alcohol consumption or any other specific causes of hepatic steatosis82. A lipid 

accumulation of at 5-10% of the liver weight is classified as NAFLD83.  

NAFLD is closely related to IR, and thus frequently occurs at the initial part of MS84. The 

pathologic spectrum of NAFLD comprises four different stages: non-alcoholic fatty liver 

(NAFL), NASH, fatty fibrosis and cirrhosis (Figure 4).  

The mild NAFL is characterized by the presence of fat with or without mild local necrosis 

and inflammation. While this harmless first stage is not correlated with increased short-

term morbidity or mortality, it can progress into NASH dramatically increasing the risks of 
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cirrhosis, liver failure, and hepatocellular carcinoma82,85,86. Besides excessive liver steatosis, 

NASH is characterized by hepatocellular ballooning and inflammation, and may progress 

more rapidly to hepatic fibrosis including steatohepatitis and portal fibrosis. Finally, 

cirrhosis is described as steatohepatitis with fibrotic septum around regenerative nodules 

of parenchyma87.  

 
 

 

Figure 4. Spectrum of nonalcoholic fatty liver disease (NAFLD). Schematic illustration of the development of 

NAFLD. A healthy liver becomes steatotic when fat accumulates. When inflammation occurs the steatotic liver 

progresses to the next stage, steatohepatitis (NASH) that can progress into fatty fibrosis and ultimately cirrhosis and 

hepatocellular carcinoma (HCC). Figure from88. 
 

NAFLD and NASH are the number one cause of liver disease in the western countries89. 

The incidence of NAFLD has doubled during the last 20 years corresponding to the increase 

in obese individuals, while the prevalence of other chronic liver diseases has remained 

stable or even decreased90. 

 

Pathogenesis of Nonalcoholic Steatohepatitis  

When the balance between lipid uptake and utilization is impaired, lipids accumulate in 

the liver. NAFLD patients have an increased hepatic de novo lipogenesis and secretion of 

very low density lipoproteins from the liver resulting in dyslipidemia characterized by 

increased circulating levels of triglycerides and cholesterol91. Ectopic lipid accumulation in 

the liver is both a consequence of and a marker for systemic IR and MS92. Metabolic 

overload; however, is not the only cause of hepatic lipid accumulation. Since multiple 

metabolic pathways have limited capacity, intermediate lipid products can also cause lipid 

accumulation. The mechanisms include: reduced oxidation of FFAs secondary to decreased 

expression of peroxisome proliferators activated receptor (PPAR)-α; impaired mitochondrial 

β-oxidation; increased de novo lipogenesis mediated via PPAR-γ and sterol responsive 

element binding protein (SREBP)-1c; and increased hepatic lipolysis93–98. Nevertheless, 

when the limit of mitochondrial oxidative capacity is reached peroxisomal β-oxidation will 

increase, hence creating ROS. Peroxisomal β-oxidation does not degrade fatty acids 

completely but only acts chain-shortening creating toxic lipids99–101 and palmitate that are 

routed into other pathways e.g. ceramide synthesis.  
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IR, oxidative stress, hepatic stellate cell (HSC) activation, inflammation and genetics are 

key factors in the pathogenesis and development of NASH (Figure 5)102,103. ROS production 

causes apoptosis and combined with the accumulated lipid by-products, inflammation is 

induced and HSC are activated potentially leading to NASH and possibly fibrosis104. In a 

normal liver, Kupffer cells105, dendritic cells and regulatory T cells106 maintain the healthy 

non-inflamed phenotype of the liver. During NASH development macrophages and 

neutrophils107 are recruited to the liver and in conjunction with high lipid content dendritic 

cells among others these immune cells are contributing to the development of inflamed liver 

phenotype. IR coupled with oxidative stress may be the underlying mechanism responsible 

for lipid accumulation and disease progression. 

 

 

Figure 5. Fatty acids are delivered to the liver from adipose tissue and dietary sugars are turned into fatty acids in 

the liver. Excessive supply of dietary sugars and fatty acids are involved in the pathogenesis of nonalcoholic fatty 

liver disease. Insulin resistance, substrate overload, oxidative stress, hepatocellular injury, inflammation, and 

apoptosis produce the histological phenotype called nonalcoholic steatohepatitis that can evolve into fibrosis and 

possibly cancer. Figure from Neuschwander-Tetri, 2017108. ACC, acetyl-Coenzyme A carboxylase; DNL, de novo 

lipogenesis; FAS, fatty acid synthetase; HCC, hepatocellular carcinoma; OSA, obstructive sleep apnea; PNPLA3, 

patatin like phospholipase domain containing 3; SCD, stearoyl-Coenzyme A desaturase; SREBP1c, sterol response 
element binding protein-1c; VLDL, very low density lipoprotein. 

 

Previously, insulin-sensitizing agents such as Thiazolidinediones have therefore been the 

most promising drugs for NAFL and NASH as these therapeutics have shown convincing 

reductions in aminotransferase levels, hepatic steatosis and improved histology109–112. Both 

cytoprotective agents and antioxidants have been considered as treatments; however, they 
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exhibit limited efficacy. Furthermore, in selected patients, lipid lowering drugs and iron 

depletion may be appropriate options113. The fact remains that there is no optimal 

treatment for these diseases, and thus novel anti-steatotic treatments that relieves IR and 

reduces body weight are intensively sought.  

 

Current Treatment Possibilities 
 

The following section describes the current treatment possibilities for obesity, T2D and 

NAFLD. Treatment of obesity is in most cases limited to lifestyle interventions, which is 

also first line therapy for T2D and NAFLD/NASH. Currently, there are no 

pharmacotherapies available for NAFLD and the search for relevant anti-steatotic drugs 

with effects on hepatic fatty fibrosis is intense.  

 

Obesity 

Obesity is a prevalent health challenge irrespective of gender, ethnicity, and age, affecting 

millions worldwide. Treatment of obesity is in most cases limited to lifestyle interventions; 

the comprehensive lifestyle consists of hypocaloric dieting, exercise, and behavioral 

strategies114. Many different diets and exercise styles are suggested worldwide and humans 

are constantly reminded of the healthy lifestyle they are supposed to live. Actually, a 

Mediterranean diet has been shown to be a proper alternative to a western diet115 and 

furthermore, early studies suggest that weight loss is easier obtainable in groups116. Despite 

this, the fact remains that the number of obese people is increasing, and even though 

exercise and a healthy diet form the first line of therapy to prevent obesity and related 

morbidities, we need additional tools to fight obesity for obvious health and life quality 

reasons as well as economic reasons. The obesity epidemic has a marked impact on the 

global socioeconomic state that can be translated into enormous direct and indirect annual 

costs including sick days, and lack of productivity. Besides economy, there are social 

implications of obesity e.g. discrimination, inequality, and psychological burdens117.  

When lifestyle interventions fail, bariatric surgery and a few pharmacotherapies are 

available although these are only used in cases of severe obesity118. Table 2 summarizes the 

pharmacotherapies currently available. The obesity pandemic and the numerous co-

morbidities have turned the focus on more invasive and aggressive therapies. The most 

effective treatment of obesity and T2D is bariatric surgery119–121, hence this method is 

trending as a therapeutic option. However, considering the peri- and postoperative hazards, 

less invasive treatments could be favorable. 
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Class Agent Route of Administration Mechanism Of Action 
Lipase inhibitors orlistat Oral Lipid degradation and 

uptake ↓ 
Amphetamine 

derivative/ GABA 

inhibitor  

phentermine/ 

topiramate 
Oral Food intake ↓ 

Possibly energy 

expenditure ↑  
Dopamine reuptake 

inhibitors/ Opioid 

antagonists 

bupropion/ 

naltrexone 
Oral Food intake ↓ 

  

Subtype-selective 

serotonin receptor 

agonist  

lorcaserin Oral Food intake ↓ 
  

GLP-1 analogue liraglutide Subcutaneous injection Food intake ↓ 

gastric emptying rate ↓ 
 

Table 2. Current approved pharmaceutical treatments against obesity. Inspired by122. GABA, γ-aminobutyric acid; 

GLP-1, glucagon-like peptide-1. 

 

Anti-obesity pharmacotherapy has been disappointing in terms of safety, efficacy, and long-

term maintenance profile. Several promising drugs have been developed with pronounced 

efficacy in vitro, and in animal models and humans, albeit only a few of these are presently 

available on the market. Several candidates such as the serotonin releasers, fenfluramine 

and dexfenfluramine123, and the selective serotonin and norepinephrine reuptake inhibitor, 

sibutramine124, were associated with unacceptable side effects and withdrawn. 

Furthermore, cannabinoid receptor antagonist rimonabant was also removed as it was 

associated mood-related side effects125. Lorcaserin (Belviq)126,127 and phentermine/ 

topiramate combination (Qsymia)126,128 are both approved in US; however, they are not 

approved in Europe also due to safety concerns. As of current, orlistat, phentermine/ 

topiramate, bupropion/naltrexone, lorcaserin, and liraglutide are available in the United 

States, whereas only orlistat, bupropion/naltrexone, and liraglutide are available as anti-

obesity pharmacotherapies in Europe, hence novel drug targets with an improved safety 

profiled are sought. Ideally, an anti-obesity treatment should not only reduce body weight 

but preferably also target some of the other MS risk factors such as fasting and postprandial 

hyperglycemia, IR and dyslipidemia, hence making KBPs a potential candidate.  

 

Type 2 Diabetes Mellitus 

Table 3 summarizes the pharmacological treatment possibilities for T2D including drug 

class, route of administration, mechanisms of action, and the associated side effects. There 

are multiple insulin therapies available – short acting, long acting and rapid acting as well 

as various premixed combination, and not all the different agents are listed. First line 

therapy is focused on treating the underlying obesity and IR with life style changes 

including weight loss, dieting, and exercise as described for obesity above129–133. As life style 

interventions become insufficient, drug therapy is applied134,135. An ideal anti-diabetic 

therapeutic approach should not only improve fating and postprandial hyperglycemia, but 
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also reduce body weight and change eating behavior. Traditionally, anti-diabetic treatments 

have been focused on correcting insulin deficiency with exogenous insulin and stimulating 

the insulin secretion from the β-cells. Presently, several oral anti-diabetic agents are 

available, which are able to improve glycemic control136–138. The major classes of oral 

therapeutics include Sulfonylureas, Meglitinides, Biguanides, Thiazolidinedione, α-

glucosidase inhibitors, dipeptidyl peptidase-4 (DPP-4) inhibitors, and sodium-glucose co-

transporter (SGLT2) inhibitors. Sulfonylureas and Meglitinides enhance insulin 

secretion136,139,140, while both Thiazolidinediones and Metformin improve peripheral insulin 

sensitivity. Thiazolidinediones stimulate adipogenesis hence increasing the number of 

insulin sensitive cells and thus glucose transport activity138, and Metformin decreases the 

endogenous glucose production thus reducing hyperglycemia141. Additionally, SGLT2 

inhibitors provide an insulin-independent reduction in blood glucose by blocking renal 

reabsorption of glucose. Unfortunately, some of these oral agents are associated with 

unwanted side effects like hypoglycemia, weight gain and even heart failure142. 

Another approach for treating T2D is to resemble mechanisms of action of the gut-derived 

hormone, glucagon-like peptide-1 (GLP-1), and the pancreatic glucoregulatory hormone, 

amylin143–145. These agents control food intake and induce weight loss. Interestingly, amylin 

and mimetics are unable to improve FPG alone and are therefore administrated in 

combination with insulin analogs146–148. Finally, DPP-4 inhibitors indirectly upregulate the 

concentration of GLP-1 by inhibiting the breakdown of GLP-1 by DPP-4149. These agents 

have no markedly adverse effects such as hypoglycemia or weight gain; some even stimulate 

body weight loss150,151.  

  



              I. Introduction 

 

25 

Class Agents Mechanism of action Side effects  

Sulfonylureas 

(oral) 

Glyburide 

Glipizide  

Gliquidone  

Glyclopyramide  

Glimepiride  

Gliclazide  

Insulin secretion ↑ Risk of 

hypoglycemia, 

occasionally severe 

Meglitinides 

(oral) 

Repaglinide  

Nateglinide 

Insulin secretion ↑  

(more rapid onset and shorter 

duration of action than sulfonylureas)  

Lower risk of 

severe 

hypoglycemia than 

sulfonylureas  

Biguanide 

(oral) 

Metformin Counters insulin resistance, EGP ↓  Lactic acidosis 

(rare)  

Thiazolidinediones Rosiglitazone 

Pioglitazone 

Insulin sensitivity ↑  

(peripheral glucose utilization ↑)  

Edema, heart 

failure, weight 

gain,  

bladder cancer, 

fractures  

α-Glucosidase 

inhibitors  

(oral) 

Acabose 

Miglitol 

Carbohydrate digestion rate ↓  Gastrointestinal 

adverse effects 

DPP-4 inhibitors 

(oral) 

Sitagliptin 

Saxagliptin 

Vidagliptin 

Linagliptin 

Alogliptin 

Glucose-dependent insulin secretion 

↑, glucagon secretion ↓  

  

Nausea, drug 

interactions 

dependent on 

hepatic metabolism 

of individual 

agents 

SGLT-2 inhibitors 

(oral) 

Canagliflozin 

Dapagliflozin 

Empagliflozin 

Glucosuria ↑ 

blocking (90%) of renal glucose 

reabsorption 

Ketoacidosis (rare) 

Genital mycosis 

Bone fractures 

Insulin  

(injection)  

 

Short-Acting 

Long-Acting 

Rapid-Acting 

Pre-Mixed 

Combinations 

Peripheral glucose utilization ↑,  

hepatic glucose output and lipolysis ↓   

Risk of episodes of 

severe 

hypoglycemia, 

especially when 

achieving glycemic 

target, weight gain  

GLP-1 analogues  

(injection) 

  

Liraglutide 

Exenatide 

Dulaglutide 

Lixisenatide 

Glucose-dependent insulin secretion 

↑, glucagon secretion ↓, satiety ↑,  

gastric emptying rate ↓ body weight ↓ 

Nausea 

  

Amylin analogue 

(injection) 

  

  

Pramlintide Glucagon secretion ↓, satiety ↑,  

gastric emptying ↓, only approved 

with simultaneous insulin treatment,  

body weight ↓   

Possible reaction at 

injection site. Risk 

of hypoglycemia, 

nausea  
 

Table 3. Available anti-diabetic treatments. Route of administration are in brackets. DPP-4, dipeptidyl peptidase-4; 

SGLT2, sodium-glucose co-transporter; GLP-1, glucagon-like peptide-1; EGP, endogenous glucose production. 
Inspired by136–138.  
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Nonalcoholic Steatohepatitis  

NAFLD is increasingly becoming common in parallel with the prevalence of obesity and 

MS83,152. The harmless and often undetected NAFL progresses into NASH and further to 

fibrosis and possibly cirrhosis, and NAFLD is projected to be the leading cause of liver 

transplants in the future153. Lifestyle modifications focusing on healthy eating, weight loss 

and regular exercise is also the cornerstone of NAFLD therapy in adults154–156 and 

children157. Bariatric surgery has been shown to reverse NASH and even substantial 

fibrosis158,159; however, surgery is only performed in a minority of the patients and is 

associated with peri- and postoperative hazards, hence there is clearly a need for 

pharmacological therapies to treat NASH160,161. Recent trial results were reviewed by Brent 

Neuschwander-Tetri and figure 6 is an organized overview of the multiple potential points 

of attack in NASH treatment108.  
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Figure 6. A schematic model of potential therapy targets. The red arrows are inhibitory approaches; green arrows 

are possible advantageous redirection of metabolic substrates. Figure created by Neuschwander-Tetri, 2017108. ACC, 

acetyl-Coenzyme A carboxylase; CCR2/5, chemokine 2 and chemokine 5 receptors; DNL, de novo lipogenesis; FXR, 

farnesoid X receptor; GLP-1, glucagon-like peptide-1; PPAR, peroxisome proliferator-activated receptor; SREBP1c, 

sterol response element binding protein-1c; FAS, fatty acid synthetase; SCD, stearoyl-Coenzyme A desaturase. 

 

There are no approved pharmacotherapies for NASH. Clinical trials have addressed 

modulation of several pathways, and currently, there are anti-NASH candidates 

undergoing pivotal phase 3 clinical trials. Table 4 is a simple overview of drug candidates 

targeting NASH, which are most advanced in the clinical evaluation. As there are 

numerous candidates/drug classes under investigation, not all of them are described in 

detail in this thesis. 

The PPAR family senses present lipophilic molecules and regulate gene expression 

accordingly. PPARα upregulates hepatic oxidative metabolism and PPARδ does that in 

muscle. Elafibranor, a PPARα/δ ligand, was evaluated in a phase 2 clinical trial (GOLDEN) 
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and appeared to relieve NASH and fibrosis162, and these findings led to initiation of a phase 

3 trial. Further, PPAR-γ agonists pioglitazone109,110 and rosiglitazone111 have shown 

beneficial effects on the histologic features of livers in patients with NASH. 

A different approach to modulate metabolism was evaluated in the FLINT trial namely the 

farnesoid X receptor (FXR) ligand, obeticholic acid (OCA). The bile-acid-activated nuclear 

receptor, FXR, plays a pivotal role in the regulation of bile acid, lipid and glucose 

homeostasis as well as the regulation of inflammatory responses163. Recently, OCA was 

approved to treat primary biliary cholangitis164; however, at a lower dose compared to doses 

used in the FLINT trial where treated patients improved the composite NAFLD activity 

score (NAS) and their hepatic fibrosis165. This drug is also moved into phase 3. 

A phase 2 clinical trial evaluating the inhibitor of apoptosis signal-regulating kinase 1 

(ASK1), a protein that promotes inflammation, apoptosis and fibrosis during oxidative 

stress, selonsertib, was recently completed, and the preliminary analysis showed that 

patients receiving selonsertib demonstrated decreased hepatic steatosis and decreased 

fibrotic stage166–168 and the drug is initiating phase 3. 

GLP-1 analogue, liraglutide, is used to treat obesity and T2D but has also been evaluated 

in a small trial (LEAN) with NASH patients169 where they found histological resolution of 

NASH. The DPP-4 inhibitor, sitagliptin, is used in T2D management; however, it did not 

significantly improve liver histology or transaminase levels in NAFLD patients170. 

Preliminary studies investigating cenicriviroc – an antagonist of the chemokine 2 and 

chemokine 5 receptors – suggest improvements in fibrosis171,172 and other anti-

inflammatory agents have been under investigation173,174.  
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Class Agent Clinical trial advancement 

FXR agonist Obeticholic acid, Ocaliva Phase 3, recruiting, FDA fast track status  

FXR agonist GS-9679 Phase 2b, recruiting, FDA fast track status 

PPARα/δ agonist GFT-505, Elafibranor  Phase 3, recruiting, FDA fast track status 

CCR2/5 antagonist Cenicriviroc  Phase 3, initiating, FDA fast track status  

ASK1 inhibitor GS-4997, Selonsertib Phase 3, initiating 

Galectin inhibitor GR-MD-02 Phase 2b, ongoing, FDA fast track status 

FGF21 BMS-986036 Phase 2b, ongoing 

Fatty acid bile acid 

conjugate 

Aramchol Phase 2b, ongoing 

Caspase inhibitor IDN-6556, Emricasan Phase 2b, recruiting  

mTOT insulin sensitizer MSDC-0602 Phase 2b, recruiting 

ASBT inhibitor Volixibat Phase 2b, ongoing, FDA fast track status 

GLP-1 analogue Semaglutide Phase 2b, recruiting 

GLP-1 analogue Liraglutide Phase 2 

Anti-LPS antibody Imm124-E Phase 2b, recruiting  

PPARα/γ agonist Saroglitazar Phase 2b, initiating 

PPARα/δ/γ agonist IVA-337 Phase 2b, initiating 

Table 4: Schematic presentation of some of the drug candidates targeting nonalcoholic steatohepatitis (NASH). Only 

drugs in phase 2b or farther clinical trial are mentioned. ASBT, apical sodium-dependent bile acid transporter; ASK1, 

apoptosis signal-regulating kinase 1; CCR2/5, chemokine 2 and chemokine 5 receptors; FGF21, fibroblast growth 

factor-21; GLP-1, glucagon-like peptide-1; mTOT, mitochondrial target of thiazolidinedione insulin sensitizers; 
PPAR, peroxisome proliferator-activated receptor. References175,176,166 

 

Currently, therapies are focused on downstream events of liver injury such as inflammation 

and fibrogenesis. It perhaps would be of interest to target upstream events such as weight 

loss, control of satiety mechanisms, energy efficiency177,178, hence possibly preventing the 

prevalence of progression into fibrosis and cirrhosis and targeting the core of MS. This 

makes liraglutide and potentially KBPs relevant for the treatment of NASH. 

 

Target Receptors  
 

The Key Bioscience peptides (KBP) are dual agonists that activate both the calcitonin 

receptor (CTR) and the amylin receptors (AMY-R).  

The CTR receptor is located in various tissues. It is found in bone and has been 

demonstrated transcribed in rat brain, skeletal muscle, kidney and lung using RT-PCR 

technique179. The CTR is a seven transmembrane G-protein coupled receptor (GPCR) from 

the family B (Secretin family of 7 transmembrane receptors) of GPCRs. These receptors 

activate adenylyl cyclase and the phosphatidyl-inositol-calcium pathway180. In general, 

GPCRs sense extracellular ligands followed by an activation of the inside signaling 

pathways initiating a cellular response. When activated by an extracellular ligand, the 

GPCR undergoes a conformational change allowing the GPCR to act as a guanine nucleotide 

exchange factor, thus activating the G protein. The α-subunit dissociates from the β and γ-

subunits to further affect intracellular signaling. GPCRs are found only in eukaryotes181. 

The CTRs increase intracellular cyclic adenosine monophosphate (cAMP) concentration for 
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signaling, hence activating the adenylate cyclase182. Additionally, the CTR can induce 

intracellular Ca2+ levels activating phospholipase C for signaling180,182. Finally, the CTR can 

activate the mitogen-activated protein kinase pathway, which is important in the regulation 

of cellular differentiation, proliferation and transformation183.  

The AMY-R is formed when the receptor activating modifying proteins (RAMPs) associate 

with the CTR (Figure 7), and high affinity sites for amylin are localized in the brain, kidney 

and skeletal muscle75. The RAMP modifies the properties of the CTR to a high-affinity 

receptor for amylin184,185. The RAMP family consists of three members – three single 

transmembrane domains (RAMP1, RAMP2 and RAMP3)75,180,186. RAMPs form complexes 

with GPCRs altering their trafficking, ligand affinity, pharmacology, and/or signaling 

capabilities, and thereby, providing a mechanism diversity in the calcitonin peptide family 

receptors187–190. RAMP1 and RAMP3 creates a high-affinity AMY-R when associating with 

the CTR75,183,185. The CTR can associate with RAMP2; however, the physiological relevance 

of this complex is not that well described.  

 

 
 

Figure 7. A schematic illustration of the calcitonin and the amylin receptors, which are formed by the interaction of 

the calcitonin receptor with RAMP1, RAMP2, or RAMP3 to generate the AMY1, AMY2, or AMY3 receptors. AMY, 
amylin; RAMP, receptor activity-modifying protein. Figure from186. 
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The Calcitonin Peptide Family 

 

The calcitonin peptide family is a family of proteins, including amylin, adrenomedullin, 

calcitonin gene-related peptide (CGRP) and intermedin191,192. Table 5 is a schematic 

overview of the calcitonin peptide family. This family of peptides share some structural 

homology; however, only little amino acid sequence homology is shared180. Adrenomedullin, 

CGRP and intermedin that do not target the CTR/AMY-R are not discussed in detail in 

thesis.  

 

 

Peptide Length Secreted by Receptor Pharmacological effects in 

humans 

hCT 32 aa  C-cells in the thyroid 

gland 
CTR Bone resorption ↓  

sCT 32 aa  Ultimopharyngeal 

body 
CTR  
AMY-R 

Bone resorption ↓ gastric acid 

secretion ↓ gastric emptying↓ 

renin secretion, plasma lactate↑ 

Amylin 37 aa Co-secreted with 

insulin by the 

pancreatic β-cells 

AMY-R  
(CTR + 

RAMP1 or 

RAMP3) 

Gluconeogenesis in skeletal  

muscle ↓ renin secretion ↑  

glucagon secretion ↓ gastric 

emptying ↓ plasma lactate↑  
α-/β CGRP 37 aa Peripheral neurons, 

central neurons and  

C-cells in the thyroid 

gland  

CLR + 

RAMP1 
Vasodilatory, renin secretion ↑  

neuro-transmission, elevated 

during migraine  

Adrenomedullin 52 aa Adrenal medulla, 

vascular endothelial 

cells, smooth  

muscle cells, 

cardiomyocytes, 

fibroblasts, 

macrophages, 

neurons, glial cells and 

retinal pigment 

epithelial cells 

CLR + 
RAMP2 or 

RAMP3 

Vasodilatory, diuretic, 

bronchodilatory 

Intermedin  47 aa Pituitary gland and 

the  

digestive tract 

CLR + 
RAMP1 or 

RAMP3 

Food intake↓,  

gastric emptying ↓ 
 

Table 5. Schematic overview of the calcitonin peptide family. Inspired by following papers75,76,136,180,182,191–198.  hCT, 

human calcitonin; sCT, salmon calcitonin; aa, amino acids; AMY-R, amylin receptor; CTR, calcitonin receptor; RAMP, 
receptor activity-modeling protein; CGRP, calcitonin-gene related peptide; CLR, calcitonin like receptor. 

 

Calcitonin  

Calcitonin is a 32-amino acid linear polypeptide hormone that is produced in C-cells of the 

thyroid in response to increased plasma Ca2+ concentration199. Copp and colleagues first 

discovered calcitonin in 1961, and its effect in calcium homeostasis was elucidated one year 

later200. Calcitonin was classified as a hypocalcemia agent reducing Ca2+ concentrations in 
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the blood, opposing the parathyroid hormone effect199–201. Calcitonin has been discovered in 

fish, reptiles, birds and mammals; however, the physiologic role of calcitonin is not 

completely known194 – known pharmacological and physiological properties of calcitonin are 

presented in table 6.  

 

Body function Pharmacological effect Physiological effect in humans  
Calcium homeostasis Alleviate hypercalcemia Alleviate hypercalcemia 
Bone resorption Inhibition ? 
Pain  Analgesic ? 
Insulin secretion Insulinostatic ? 

Table 6. Overview of pharmacological and physiological effects of calcitonin. References 201–215 

 

Salmon calcitonin (sCT) – a teleost member of the calcitonin family – was isolated in 

1968216,217. The teleost/avian calcitonins are the class with most interest due to their high 

potencies and ability to induce a prolonged effect in contrast with mammal calcitonins. sCT 

was found to have superior potency compared to other known types of calcitonin218. The 

amino acid sequence similarity to human calcitonin (hCT) is approximately 50%. sCT and 

hCT share physical/chemical properties depending on the setup and the duration of the 

experiment.  Interestingly, the intrinsic potency of sCT is significantly higher compared to 

hCT219. Moreover, activation of the CTR by sCT induces a prolonged response able to persist 

for up to 72 hours in vitro220. 

Since its characterization, calcitonin has been implicated in a wide range of biological and 

pharmacological activities, and its pharmacological properties have been used in humans 

to treat osteoporosis since more than 40 years ago201,221,222 due to preservation of bone 

mineral density 194,223, and suppression of kidney calcium secretion179. Osteoporosis is a 

common disease in post-menopausal women caused by decreased estrogen levels causing 

altered bone remodeling and increased risk of fragility fractures. Bone remodeling is the 

equilibrium between resorption by osteoclasts and formation by osteoblasts224. 

Furthermore, sCT is used for treatment of Paget’s disease, phantom limb pain, and bone 

associated pain due to its powerful analgesic effect194,225, which has also been shown for 

human and porcine calcitonin211,212,226. 

In contrast to calcitonin pharmacology, determining calcitonin physiology has been more 

challenging. Several reviews have tried to elucidate the physiological role of calcitonin; 

however, with limited success. Using antagonist and knockout models have only yielded 

modest conclusions and perhaps the sparse knowledge of physiological roles is due to the 

fact that no syndromes, conditions or diseases occurs exclusively from excess calcitonin or 

deficiency227–229. What is suggested is that during pregnancy and following lactation period, 

calcitonin is elevated in rodent and human205,230, and thus a physiological role has been 

proposed231. Moreover, CTR knockout mice had increased calcium levels for a prolonged 

period following calcitriol induced hypercalcemia, hence suggesting a physiological role of 

calcitonin during calcium stress203,204. Hypercalcitoninemia has been associated with 
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thyroid carcinomas232, and further, calcitonin has been suggested to centrally regulate bone 

metabolism through as the CTR is highly expressed in the hypothalamus221.  

Amylin 

Amylin is a 37-amino acid hormone synthesized in the β-cells and co-secreted with insulin 

in response to nutrients exerting complementary prandial actions to insulin79,80. Amylin 

was initially identified with two different names: Insulinoma amyloid peptide (IAPP)233 and 

amylin234. Currently, IAPP is used to describe the fibrillous plaques formed in the β-cell 

during the pathogenesis of T2D, whereas amylin is the designation for the circulating 

peptide hormone. In contrast to rodent amylin, primate and feline amylin can aggregate 

and forms fibril-like structures known as amylin plaques235. These fibrils are believed to 

have an impact on islet death and T2D236. 

The physiological and pharmacological effects of amylin are not always easily distinguished. 

Table 7 is an overview of pharmacological and physiological properties of amylin. Most 

pharmacological effects of amylin are associated with the control of eating and influx of 

nutrients into circulation as amylin suppresses food intake, gastric acid secretion, delays 

gastric emptying and diminishes hyperglucagonemia and digestive enzyme secretion and 

thus controlling nutrient appearance and prandial glycemia237–240. Amylin actions are 

thought to be centrally mediated by receptors in the area postrema of the brain241,242, which 

appear to be responsible for the direct anorectic effect243, albeit also other brain areas are 

suggested to be facilitating the neuronal response of amylin240,244,245. Additionally, the 

amylin actions in the area postrema is modulated by glucose – increased glucose 

concentrations potentiate the neuronal response246 and decreased glucose concentrations 

suppressed amylin effect on gastric emptying247. Besides the high affinity sites in the brain, 

kidney and skeletal muscle also have high affinity sites for amylin75. In muscles, amylin 

opposes glycogen synthesis and activates glycogenolysis79. Furthermore, amylin likely 

stimulates lactate flux, and thus is suggested to have an effect of transposing carbon from 

peripheral stores to the liver, making it available for glucose, glycogen and lipid 

synthesis79,198.  

Acutely, amylin induces IR in skeletal muscle, but does not alter insulin action in fat and 

might favor energy deposition in adipose tissue79,248. Amylin inhibits insulin secretion from 

β-cells76,249 and this reduced insulin secretion in combination with IR in skeletal muscle, 

relatively preserved insulin sensitivity in adipose tissue, increased lactate turnover, and 

increased HGP are features in IR and early T2D79. Like fasting insulinemia, fasting plasma 

levels of amylin are elevated in obese individuals, and high plasma concentrations of amylin 

in early T2D might contribute to increasing IR76. In late T2D, amylin is comparatively 

deficient, depending on the severity of the β-cell dysfunction and as for insulin, resistance 

to amylin action has been suggested76,250.  
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Body function Pharmacological effect Physiological effect in humans  
Food intake Anorectic  Anorectic  
Gastric emptying rate Delayed  Delayed 
Energy expenditure Enhanced  ? 
Insulin secretion Insulinostatic Insulinostatic  
Glucagon secretion Glucagonostatic  Glucagonostatic  

 

Table 7. Overview of pharmacological and physiological effects of amylin and amylin analogues. References251–265 

 

The understanding of the physiological role of amylin has been evaluated using amylin 

antagonists. The physiologic role for amylin in glucose homeostasis via mechanisms that 

include regulation of food intake, glucagon secretion and gastric emptying was evaluated 

using amylin antagonist, AC 187. The inhibition of amylin signaling increased food intake, 

glucagon concentration and accelerated gastric emptying in rats262,266. In humans, amylin 

antagonist AC 253 increased glucose stimulated insulin secretion261 and in rats, AC 187 

increased plasma concentrations of glucagon262, hence indicating a physiological role of 

amylin in the regulation of insulin and glucagon secretion. Furthermore, using AC 187 it 

has been demonstrated that amylin is involved in regulation of energy expenditure (EE) in 

rats267; however, this amylin mediated increase in EE remains to be seen in man.  

The importance of amylin in energy homeostasis and food intake as well as the 

insulinostatic and glucagonostatic properties has led to an increased interest in research 

investigating amylinomimetics as potential treatments for obesity and T2D.  

 

Dual Amylin and Calcitonin Receptor Agonists 

The Key Bioscience peptides (KBP) are DACRAs. They are based on the peptide backbone 

of sCT and as sCT, KBPs are dual agonists targeting both the CTR and the AMY-R, albeit 

with no activation of the CGRP receptor (Figure 8). DACRAs have higher affinity for the 

two receptors than the native ligands, hCT and amylin, that target the CTR and AMY-R, 

respectively220,268. Thus, sCT and KBPs mimic the effects of both hCT and amylin, albeit 

considerably more potent. 
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Figure 8. Schematic illustration of the relative potencies of KBPs and the endogenous ligands on the amylin, 

calcitonin and calcitonin gene-related peptide (CGRP) receptor. KBPs potently activate the amylin and calcitonin 

receptor, albeit not the CGRP receptor268–270, which has been associated with undesirable side effects such as 

migraine193,271,272.  

 

 

This thesis addresses three different DACRAs, KBP-042, KBP-088 and KBP-089. The 

knowledge obtained in previous studies with sCT encouraged the development of novel dual 

agonists targeting both receptors. KBP-042 was the first peptide discovered and it was first 

presented in an oral form in 2014268. Later on, an injectable form of KBP-042 showed 

reduced variations on bioavailability273 and similar peptides like KBP-088269 and KBP-

089270,274 were developed. The sequences of the three KBPs as well as sCT, davalintide and 

the native ligands are schematically presented in table 8. 

 

 

 
 

Table 8. Amino acid sequence of human and rat amylin (hAMY and rAMY), human calcitonin (hCT), salmon 

calcitonin (sCT), KBP-042, KBP-088, KBP-089 and davalintide. Modifications in KBPs consist of an N-terminal acetyl 

group and a C-terminal amid group268–270,275. 

 
 

Interestingly, the natural DACRA, sCT, as well as the synthetic peptides have shown anti-

obesity and anti-diabetic potential in obese and diabetic animal models195,276,277. All the 

effects of the dual agonists are listed in figure 9.  
DACRAs activate the AMY-R, induce similar effects as amylin and are partly 

amylinomimetics. Amylin induces weight loss, delays gastric emptying rate and reduces 

hyperglucagonemia in T2D patients, thus improving postprandial glycemic control237,263,278. 

In preclinical models of obesity and T2D, KBPs have demonstrated beneficial effects on body 

weight, fasting and postprandial glucose control and HbA1c levels269,273,274,279, and 

interestingly, sCT was found to preserve pancreatic function and β-cell area in ZDF rats276. 
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Like amylin, KBPs delay the rate of gastric emptying and attenuate inappropriate 

hyperglucagonemia, thereby influencing postprandial plasma glucose (PPG) levels273,279. 

Interestingly, KBP treatment reduces obesity related hyperleptinemia279,280 improves 

insulin and leptin action273, which might be involved in the improved glucoregulation. The 

profound DACRA effect on gastric emptying and food intake is most like centrally mediated 

via AMY-R and/or CTRs located in area postrema in the brain, as it has been found with 

sCT treatment that prolong the excitation of these neurons compared to amylin243,266,281,282. 

 

 

Figure 9.  Schematic illustration of the treatment effects of dual amylin and calcitonin receptor agonists in rat 

models of obesity, type 2 diabetes and nonalcoholic steatohepatitis. FPG, fasting plasma glucose; PPG, postprandial 
plasma glucose. HbA1c, glycated hemoglobin. ↓ reduction, ↑ improvement. 

 

DACRAs induce an amylin attributable hyperglycemic response in healthy people and lean 

rats260,283,284. Neither insulin nor glucagon is the promoter, but lactate is the suggested 

candidate as it is elevated after acute dosing of DACRAs285. Lactate is substrate for hepatic 

gluconeogenesis and therefore increases EGP resulting in hyperglycemia in non-diabetic 

rats285. These hyperglycemic and diabetogenic effects were observed as result of a single 

injection of DACRAs. The difference in physiological outputs could lie in single dose 

administration or a chronic treatment, and state of disease, as no hyperglycemic effect of 

sCT or any of the synthetic DACRAs have been observed in obese and diabetic rat 

models269,274,276,279,286,287.  

In summary, both natural and synthetic DACRAs potently activate both the AMY-R and 

CTR with prolonged duration. They regulate appetite and induce a substantial weight loss, 

which is associated with various metabolic improvements. However, whether the prolonged 

receptor activation manifests in enhanced in vivo efficacy, and whether the metabolic 

changes and suggested increase in EE is solely due to weight loss remains to be elucidated.  
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CHAPTER II 

II. Hypothesis and Aim   
 

Amylin and/or calcitonin receptor agonists such as pramlintide and davalintide have shown 

promise on weight reduction in preclinical models and clinical settings, albeit with limited 

efficacy on glucose homeostasis. The overall aim of this Ph.D. project was to investigate the 

pharmacological effect of the KBP peptides focusing on the anti-obesity potential in 

preclinical animal models of obesity and related morbidities like type 2 diabetes and NASH.   

It was hypothesized that a prolonged receptor activation would improve the in vivo efficacy 

and that KBPs would show beneficial metabolic effects beyond caloric intake and simple 

diet-induced weight loss. 

The more specific objectives for these studies were: 

 

1) To explore whether the reduced food intake is the primary cause of weight loss, and 

whether the weight loss is the main reason for improved metabolic health. 

2) To elucidate the KBP effect on lipid accumulation in key tissues, such as liver and 

muscle, as well as other hepatic features of NASH like ballooning and inflammation, 

and fibrosis. 

3) To evaluate KBP tolerability using different dose escalation regimes and dosing 

frequencies. 

4) To compare the in vitro and in vivo efficacy of KBP to second-generation 

amylinomimetic, davalintide, and to investigate whether KBP works complementary 

with GLP-1 receptor agonist, liraglutide.  
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CHAPTER III 

III. The Major Findings 

 

Summary of Results 
 

Obesity and associated morbidities, such as diabetes, nonalcoholic fatty liver diseases and 

cardiovascular disease are consequences of the modern day lifestyle, and the number of 

obese people is increasing. Treatment of obesity is limited to lifestyle interventions; 

however, in severe cases, bariatric surgery and a few pharmacotherapies are available as 

tools against morbid obesity, hence novel candidates focusing on weight loss, insulin 

sensitivity and liver pathophysiology are intensely sought.  

In this series of studies, the focus was on the metabolic effects of the KBPs. Effects on body 

weight, adiposity and glucose metabolism were thoroughly explored in experimental models 

of obesity, T2D and NASH. To address whether the beneficial effects were solely due to 

suppression of food intake and the subsequent weight loss we included pair-fed and weight-

matched controls. As amylin agonism induces a well-known anorexic effect at dose 

initiation, these studies also focused on different dosing regimens including dose escalation 

and dosing frequency. Finally, we compared KBP to a second-generation amylinomimetic, 

davalintide, and investigated the combination of KBP and GLP-1 analogue, liraglutide.   

The findings show that KBPs potently activated both the amylin and calcitonin receptors 

in vitro, and not the CGRP receptor, and demonstrated a prolonged receptor activation in 

vitro and in vivo when compared to second-generation amylinomimetic, davalintide. Thus, 

KBPs elicit prolonged activation supporting the relevance of long-term in vivo 

investigations. 

The anti-obesity potential of KBPs was tested in high fat diet induced obese (HFD) rats. 

KBP transiently suppressed caloric intake, and induced and sustained a dose-dependent 

weight loss compared to vehicle rats and pair-fed rats. Concomitantly, the overall adiposity 

was decreased and obesity related adipocyte hypertrophy was reduced. The high fat feeding 

resulted in increased accumulation of ectopic lipids in liver and muscle tissue. Importantly, 

this inappropriate lipid accumulation was completely eliminated by KBP treatment even in 

an interventive setup. Plasma adiponectin was increased and plasma leptin levels were 

decreased following long-term treatment with KBP compared to vehicle rats. Interestingly, 

KBPs alleviated hyperinsulinemia and improved glucose tolerance even with significantly 

lower insulin levels. Insulin sensitivity was formally assessed in obese rats using the 
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hyperinsulinemic–euglycemic clamp. KBP increased the glucose infusion rate indicating 

enhanced insulin action. Importantly, KBP also improved glucose homeostasis and 

enhanced insulin action in Zucker Diabetic Fatty rats. To investigate beneficial effects 

beyond weight loss in HFD rats, a weight-matched group was included. Interestingly, 

weight matching led to improved glucose homeostasis through lowered plasma insulin; 

however, these effects were inferior to the effects of KBP. In a food preference test, KBP 

changed the food preference of normal diet rats. The rats that had ad libitum access to chow 

and chocolate obtained 74% of their calories from chocolate. Of interest, KBP administration 

reduced total caloric intake, and induced a relative increase in chow consumption while 

drastically lowering the chocolate compared to vehicle. Thus, KBPs have anti-obesity 

potential and beneficial effects on glucose metabolism and IR independent of food 

consumption and weight loss. 

KBP was introduced using various dosing regimens and frequencies. Dosing every day and 

every second day resulted in an equal weight loss at study end, albeit with an uneven 

reduction in both food intake and body weight in the HFD rats dosed every second day. In 

a 4-fold dose escalation, KBP induced a transient reduction in food intake at every 

escalation step – with reducing magnitude over time. Two-fold and linear escalations 

suppressed body weight evenly with no significant reduction in food intake at either 

escalation step. Thus, KBP is well tolerated in high concentrations when introduced by dose 

escalation, and importantly, similar weight loss is obtained. 

For the first time, a KBP and a GLP-1 receptor agonist were combined. Interestingly, when 

the two peptides were combined the effect on acute food intake was superior to the effect of 

either single-dosed peptide. Chronically, KBP-089 (1.25 µg/kg) and liraglutide (50 µg/kg) 

lowered body weight 8% and 2% in HFD rats, respectively, while the combination resulted 

in a 12% body weight reduction. Moreover, the combination improved glucose tolerance. 

Thus, KBP acts complementary with GLP-1, indicating the potential of an add-on therapy 

causing additional weight loss.  

The effects of KBP on metabolic and hepatic features were tested in a rat model resembling 

the phenotype of human NASH – an obese model with excessive steatosis, and inflammation 

and mild fibrosis. In line with aforementioned results, KBP lowered body weight, reduced 

overall adiposity and improved insulin action. Furthermore, KBP treatment led to a 

reduction of the high fat, high cholesterol and cholate diet induced increase in liver weight 

and circulating AST levels. Finally, KBP reduced hepatic steatosis, ballooning and 

inflammation, hence resulting in a reduced NAS score in combination with a lowered 

fibrosis stage supporting an anti-NASH potential of KBP. 

In summary, KBPs induce and sustain weight loss, leading to improved metabolic 

parameters including food preference, and these are beyond those observed simply by diet-

induced weight loss. Additionally, these peptides are well tolerated when introduced by dose 

escalation and equal weight loss is obtained. Finally, KBPs reduce liver steatosis in both 
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obese and NASH rats as well as inflammation and fibrosis scores, hence underscoring the 

potential as an anti-obesity agent with benefits on glucose control and liver health.  
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BACKGROUND AND PURPOSE
Obesity and associated co-morbidities, such as type 2 diabetes and non-alcoholic fatty liver disease, are major health challenges.
Hence, there is an important need to develop weight loss therapies with the ability to reduce the co-morbidities.

EXPERIMENTAL APPROACH
The effect of the dual amylin and calcitonin receptor agonist (DACRA), KBP-089, on body weight, glucose homeostasis and fatty
acid accumulation in liver and muscle tissue and on food preference was investigated. Furthermore, we elucidated weight-
independent effects of KBP-089 using a weight-matched group.

KEY RESULTS
Rats fed a high-fat diet were treated, s.c., with KBP-089 0.625, 1.25, 2.5 μg·kg�1 or vehicle. KB-089 induced in a dose-dependent
and sustained weight loss (~17% by 2.5 μg·kg�1). Moreover, KBP-089 reduced fat depot size and reduced lipid accumulation in
muscle and liver. In Zucker Diabetic Fatty rats, KBP-089 improved glucose homeostasis through improved insulin action. To ob-
tain a weight-matched group, significantly less food was offered (9% less than in the KBP-089 group). Weight matching led to
improved glucose homeostasis by reducing plasma insulin; however, these effect were inferior compared to those of KBP-089. In
the food preference test, rats fed a normal diet obtained 74% of their calories from chocolate. KBP-089 reduced total caloric intake
and induced a relative increase in chow consumption while drastically reducing chocolate consumption compared with vehicle.

CONCLUSIONS AND IMPLICATIONS
The novel DACRA, KBP-089, induces a sustained weight loss, leading to improved metabolic parameters including food prefer-
ence, and these are beyond those observed simply by diet-induced weight loss.

Abbreviations
DACRA, dual amylin and calcitonin receptor agonist; FPG, fasting plasma glucose; HbA1c, glycated haemoglobin; HFD,
high-fat diet; HOMA-IR, homeostatic model assessment for insulin resistance; IVGTT, i.v. glucose tolerance test; ND, nor-
mal diet; OGTT, p.o. glucose tolerance test; PW, pair weighed; ZDF, Zucker Diabetic Fatty ZDF-Leprfa/Crl
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Introduction
Obesity and associated morbidities, such as diabetes,
non-alcoholic fatty liver disease, cardiovascular disease and
cancer, are among this century’s greatest health challenges
(Pi-Sunyer, 1999; Cohen et al., 2008; Aballay et al., 2013).
The incidence is increasing and the treatment of obesity is
in most cases limited to lifestyle interventions. However,
when these fail, bariatric surgery and a few pharmacother-
apies are available, although these are only used in cases of
severe obesity (Fried et al., 2007). Furthermore, due to the
potential complications of surgery, novel therapies with an
improved efficacy in terms of weight loss and reduction
of co-morbidities are of great interest (Batterham and
Cummings, 2016).

The most recently developed therapy for obesity is high-
dose liraglutide, which leads to sustained weight loss at least
partially due to a reduction in appetite. Furthermore,
liraglutide reduces hyperglycaemia, albeit it is still somewhat
limited in terms of efficacy and has challenges on tolerability
(Kanoski et al., 2012; Lean et al., 2014). Anothermolecule that
induces weight loss or at least prevents weight gain is the
amylin receptor agonist pramlintide (Aronne et al., 2007).
Pramlintide, due to its appetite regulating capability, has
been shown to reduce insulin-induced weight gain, while
regulating post-prandial glucose excursions, and therefore
has been approved as adjunct therapy to insulin for the treat-
ment of type 2 diabetes (Weyer et al., 2001; Ryan et al., 2009).
However, pramlintide use is limited significantly by lack of
potency, and hence, more potent amylin receptor agonists
are being explored.

Dual amylin and calcitonin receptor agonists (DACRAs)
elicit activation not only of the amylin receptor but also of
the calcitonin receptor and have been shown to possess supe-
rior activity in terms of activation of the amylin receptor,
when compared with classical amylin receptor agonists
(Andreassen et al., 2014). Interestingly, they also activate the
receptors for an extended period of time, when compared
with the classical agonists, which appears to increase the
in vivo efficacy as well as reducing the dosing frequency
(Gydesen et al., 2016).

In vivo studies of DACRAs have recently demonstrated a
protection against diet-induced weight gain, a reduction in
overall adiposity, as well as adipocyte hypertrophy (Gydesen
et al., 2016). Furthermore, DACRAs have been shown to im-
prove glucose homeostasis in the diabetic Zucker Diabetic
Fatty ZDF-Leprfa/Crl (ZDF) rats, a phenomenon not observed

with selective and less potent amylin receptor agonists (Mack
et al., 2010, 2011; Andreassen et al., 2014; Hjuler et al., 2015),
while alleviating obesity-derived insulin resistance (Hjuler
et al., 2016). Hence, the DACRAs induce amylin receptor-
mediated responses in vivo – reduce food intake, results in
weight reduction and suppression of glucagon levels (Roth
et al., 2006), and also have additional beneficial effects on
fasting blood glucose and insulin sensitivity.With the limited
number of DACRAs available, the search for highly potent
molecules in this family has continued, resulting in the de-
velopment of KBP-089.

In this study, we characterized the effects of KBP-089 on
body weight, glucose homeostasis and fatty acid accumula-
tion in liver and muscle tissue. We then investigated whether
KBP-089 possesses beneficial effects in addition to inducing
substantial weight loss, using a weight-matched group. Fi-
nally, we explored the potential effect of KBP-089 on food
preference, by comparing the intake of a highly palatable
and energy dense diet (chocolate) with that of regular chow
in the presence or absence of KBP-089.

Methods

Peptide therapy
Synthetic KBP-089 (American Peptide Company, CA, USA)
was dissolved in saline for s.c. delivery. The doses chosen for
peptide administration in the current investigations were
based on previous comparable DACRA studies in animal
models of obesity using potent DACRAs, KBP-042 and KBP-
088 (Gydesen et al., 2016; Hjuler et al., 2016).

Animal experiments
All animal procedures were performed in accordance with
guidelines from the Animal Welfare Division of the Danish
Ministry of Justice under the institutional license issued to
Nordic Bioscience (2012-15-2934-00094). Male Sprague
Dawley rats (Harlan, Venray, The Netherlands) and ZDF
(Kingston, NY, USA) were obtained at 6 weeks of age and
housed (two rats per cage, standard wood chips enriched
with red-tinted huts, nest material and sticks) at the Nordic
Bioscience animal facility (21–23°C, 55–65% relative hu-
midity, 12 h light/dark cycle) with ad libitum access to food
and water. Animal studies are reported in compliance with
the ARRIVE guidelines (Kilkenny et al., 2010; McGrath &
Lilley, 2015).

Tables of Links

TARGETS

Amylin receptors

Calcitonin receptors

LIGANDS

Amylin Insulin

Calcitonin Pramlintide

These Tables list key protein targets and ligands in this article which are hyperlinked to corresponding entries in http://www.guidetopharmacology.org,
the common portal for data from the IUPHAR/BPS Guide to PHARMACOLOGY (Southan et al., 2016), and are permanently archived in the Concise
Guide to PHARMACOLOGY 2015/16 (Alexander et al., 2015).
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Animals
From arrival and throughout the study periods, the high-fat
diet (HFD) rats were fed a 60 kcal% fat diet (#58Y1, TestDiet,
London, UK), lean normal diet (ND) age-matched rats were
fed a standard pelleted chow (#5002, LabDiet, St. Louis,
MO, USA) and ZDF rats were fed a Purina Formulab diet
(#5008, LabDiet, St. Louis, MO, USA). The rats received food
and tap water ad libitum. The HFD and ND rats were non-
blindly assigned into experimental groups according to body
weight. ZDF rats were non-blindly assigned into experimen-
tal groups according to fasting plasma glucose (FPG), glycated
haemoglobin (HbA1c) and body weight, ensuring an equal
average value of body weight, FPG and HbA1c in the experi-
mental groups at the start of the study. Body weights are visu-
alized as percentage of initial body weight for comparison to
other drugs as previously described (Larsen et al., 2001; Mack
et al., 2010). Lean and fat mass data as well as the weight of
the different adipose tissues are normalized to the body
weight of the individual animal.

Chronic in vivo studies
KBP-089 in HFD rats. After 10 weeks on a high-fat diet, HFD
rats were assigned to treatment groups receiving either
vehicle (saline s.c.) or KBP-089 (0.625, 1.25 and 2.5 μg·kg�1,
s.c.) once daily in the afternoon with a food restricted pair-
fed control group for the highest concentration of peptide
(n = 10 rats per group in vehicle and KBP-089 treatment
groups; n = 9 rats in pair-fed group due to the loss of an
animal). Pair-fed animals received an average of the daily
intake of food of the 2.5 μg·kg�1 treatment group every day
in the afternoon. Food intake and body weight were
monitored daily during the initial 2 weeks and once weekly
throughout the entire study period. Following 6 and
7 weeks of treatment, p.o. and i.v. glucose tolerance tests
(OGTT and IVGTT respectively) were performed in
overnight-fasted (12 h) rats with blood glucose measured
and EDTA-plasma obtained for hormonal analysis. At the
end of the study, animals were killed by being anaesthetized
with isoflurane (administered by inhalation) followed by
exsanguination and dissection. Retroperitoneal, epididymal
and s.c. inguinal fat were surgically removed and weighed.
Overnight-fasted blood samples were collected for basal
plasma hormonal analyses.

KBP-089 in ZDF rats
The day prior to dosing initiation, 20 ZDF rats were
assigned to two groups (n = 10 rats per group) receiving ei-
ther vehicle (saline, s.c.) or KBP-089 (5 μg·kg�1 for 4 weeks,
20 μg·kg�1 for an additional 4 weeks, s.c.) once daily. The
p.o. glucose tolerance test (OGTT) was performed after
4 weeks and the i.p. insulin tolerance test was performed
after 7 weeks. At the end of the study end FPG, HbA1c
were measured, and the homeostasis model assessment of
insulin resistance (HOMA-IR) analysis was calculated using
the formula; HOMA-IR = fasting insulin (μU·mL�1) × fasting
blood glucose (mmol·L�1)/22.5 (Matthews et al., 1985).
HOMA-IR was developed for humans; however, it can be
used as a surrogate measurement for insulin resistance in
rodents (Cacho et al., 2008; Mather, 2009).

Weight-matched HFD rats. To address KBP-089 efficacy
independent of weight loss, we did a 6 week study in HFD
rats (n = 12) with a weight-matched group to the 2.5 μg·kg�1

KBP-089 group. Food intake and body weight were
monitored daily throughout the study period, and in order
to match the body weights, we estimated the food
restriction needed to achieve a comparable weight reduction
based on pilot studies (data not shown) and adjusted
estimations to body weight on a daily basis. The rats were
subjected to an OGTT after 3 weeks of treatment. The rats
were weighed and scanned for body composition (EchoMRI-
4in1; EchoMRI, Houston, TX, USA) at study end and killed
as for the chronic in vivo studies.

Food preference in ND rats. To assess the effect of KBP-089 on
the preference of diet, ND rats were offered normal chow or
chocolate (milk chocolate with hazelnuts) (Marabou,
Mondelez Danmark, Brøndby, Denmark). The animals were
allowed to accustom to the chocolate for 1 week before
injections with 2.5 μg·kg�1 KBP-809 were initiated.
Voluntary food and chocolate intake were monitored for
24 h after treatment for 7 days.

Glucose tolerance tests
HFD rats received glucose by oral gavage (2 g·kg�1) or i.v. in
the lateral tail vein (0.5 g·kg�1) and ZDF p.o. (1 g·kg�1). Blood
samples were collected from the tail vein before glucose chal-
lenge (0 min) in both tests and 5, 15, 30 and 60 min post-
glucose challenge in the IVGTT, and 15, 30, 60 and 120 min
post-glucose challenge in the OGTT.

Insulin tolerance test
ZDF rats (fasted for 6 h) were administered with KBP-089 at
t = �30 and received intraperitoneal insulin (1.0 U·kg�1) at
t = 0, and blood glucose was measured subsequently at t = 0,
30, 60 and 120 min after insulin injection. The data are visu-
alized as percentage of initial blood glucose for simplicity.

Fat accumulation in liver and muscle tissue
To address tissue fat accumulation, the liver and gastrocne-
mius muscle were surgically removed for optimal cutting
temperature compound embedding, snap frozen on
ice/ethanol, stored at �80°C until cryosectioning. Tissue sec-
tions were stained with oil red O stain, and images were cap-
tured with a light microscope (magnification of ×40 for
gastrocnemius and ×20 for liver, nine images per animal;
three pictures per depth) and quantified using ImageJ capable
of calculating the amount of red pixels in relation to μm2 as
previously described (Mehlem et al., 2013) and, for simplicity,
were visualized as the fold-induction from lean rats.

Biochemical analysis
Blood samples were collected in EDTA tubes and centrifuged
at 1850 × g for 10 min at 4°C. Blood glucose was monitored
by Accu-Check® Avia monitoring system (Roche Diagnos-
tics, Rotkreuz, Switzerland). HbA1c was measured using an
automatized DCA Vantage Analyzer (Siemens AG, Erlangen,
Germany). Plasma levels of insulin (Mercodia Rat Insulin
ELISA, Mercodia AB, Uppsala, Sweden) were analysed accord-
ing to the manufacturer’s instruction.
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Statistical analysis
All data are presented as means ± SEM. The statistical analysis
of various drug effects were conducted using one-way
ANOVA followed by Tukey’s post test for multiple compari-
son for parametric data and Kruskal–Wallis test with Dunn’s
post test for non-parametric data if F achieved the necessary
level of statistical significance (P < 0.05). Lean age-matched
controls are compared with HFD vehicle, and ZDF vehicle
with ZDF KBP-089, using Student’s t-test. All analyses were
performed using GraphPad Prism software (GraphPad Prism,
San Diego, CA, USA). A value of P < 0.05 was considered sta-
tistically significant. The data and statistical analysis comply
with the recommendations on experimental design and anal-
ysis in pharmacology (Curtis et al., 2015).

Results

KBP-089 potently reduces appetite, body weight
and fat depots
High-fat feeding resulted in a phenotype with significantly
increased body weight (596 ± 12 vs. 545 ± 8 g, P < 0.05),
hyperinsulinaemia (1.9 ± 0.1 vs. 0.9 ± 0.1 ng·mL�1,
P < 0.05), impaired glucose control without hyperglycaemia
(OGTT tAUC 1343 ± 18.1 vs. 1259 ± 17.1, P < 0.05) and im-
paired insulin sensitivity (HOMA-IR) (11.3 ± 0.3 vs.
4.3 ± 0.3, P < 0.05), compared with the lean age-matched
controls. Thus, the HFD rats resembled an obese and pre-
diabetic phenotype as expected from previous studies (Hjuler
et al., 2015; Gydesen et al., 2016).

To investigate the anti-obesity potential of KBP-089
in vivo, we treated HFD rats for 8 weeks. Previously, DACRAs
have been shown to induce hypophagia (Hjuler et al., 2015;
Gydesen et al., 2016); therefore, a pair-fed group to the
highest concentration of KBP-089 was included to explore
the impact of food restriction on body weight. KBP-089 was
s.c. administered in three doses (0.625, 1.25 and 2.5 μg·kg�1)
for 56 days. Food intake was transiently attenuated by
KBP-089 (Figure 1A), albeit cumulative food intake after the
initial 2 weeks of treatment was not significantly different
in 2.5 μg·kg�1 treated rats compared with vehicle rats
(504 ± 35 vs. 408 ± 19 g per animal). 8 weeks of KBP-089 treat-
ment resulted in a dose-dependent and sustained 17 ± 1.7 %
weight loss in the 2.5 μg·kg�1 group (Figure 1B), while pair-
feeding resulted in a 4 ± 2.0 % body weight reduction. Based
on food intake and body weight change, food efficiency was
calculated. Expectedly, treatment with KBP-089 markedly at-
tenuated the food efficiency compared with vehicle and the
pair-fed group (Figure 1C).

Epididymal, inguinal and perirenal fat pads were
weighed, and in conjunction with the significant body
weight reduction, the weight of the adipose tissues was signif-
icantly reduced after treatment with KBP-089 (Figure 1D–F).
This reduction was not observed in the pair-fed control rats.

KBP-089 enhances glucose tolerance and
potentially insulin sensitivity
An OGTT was performed after 6 weeks of treatment and
followed by an IVGTT allowing circumvention of the influ-
ence of the gastrointestinal tract and thereby assessment of

peripheral glucose tolerance after 7 weeks of treatment
(Figure 2). In contrast to previous DACRA studies (Hjuler et al.,
2015, 2016; Gydesen et al., 2016), the rats were not dosed
30 min prior to the glucose challenge to avoid the strong ef-
fect on gastric emptying. In both tests, all treatment groups
showed a trend towards lower blood glucose levels compared
with vehicle and pair-fed controls 5 min (IVGTT) and 15 min
(OGTT) after glucose administration (Figure 2A, D). However,
tAUCwas not significantly changed for either test when com-
pared with vehicle or pair-fed controls (Figure 2B, E). Interest-
ingly, the glucose-induced insulin hyper secretion observed
in vehicle and pair-fed groups was markedly and dose-
dependently suppressed by KBP-089 during both OGTT and
IVGTT, which resulted in significantly reduced insulin AUC
values in KBP-089 treated rats (Figure 2C, F). Pair feeding
did not improve glucose tolerance or hyperinsulinaemia in
either test.

KBP-089 reduces the accumulation of lipids in
both muscle and liver
After treatment with KBP-089 for 56 days, lipid accumula-
tion was assessed in liver and muscle tissue. As seen in
Figure 3, high-fat feeding led to increased lipid accumula-
tion in both liver and muscle compared with lean age-
matched controls. This inappropriate storage of lipids was
completely eliminated by treatment with 2.5 μg·kg�1 KBP-
089, despite the rats having been on HFD for 10 weeks
prior to initiation of therapy. Importantly, this effect was
not obtained by pair-feeding.

KBP-089 lowers glycaemia and increases
glucose tolerance and insulin action in ZDF
rats
We tested the anti-hyperglycaemic efficacy of KBP-089 in vivo
in ZDF rats for 8 weeks (5 μg·kg�1 for 4 weeks, 20 μg·kg�1 for
additional 4 weeks, s.c.). In ZDF rats, fasting blood glucose
levels were decreased significantly (6.9 ± 0.7 mM, P < 0.05)
over 7 weeks by KBP-089 treatment compared with vehicle,
resulting in HbA1c reduction by ~2.5 ± 0.2% compared with
vehicle at the end of the study (Figure 4A, B). Glucose toler-
ance was tested by an OGTT where treatment with KBP-089
resulted in a moderate glucose reduction compared with ve-
hicle. The tAUC was lowered significantly (~30%, P < 0.05).
Insulin action was assessed in an insulin tolerance test which
manifested in a significant larger drop in blood glucose in
response to insulin in KBP-089-treated rats compared with
vehicle (tAUC ~19%, P < 0.05), supporting increased insulin
sensitivity.

KBP-089 induces metabolic improvements in
addition to those induced by weight loss
through food restriction
In order to evaluate drug-induced metabolic improvements
beyond what a weight loss can do, we performed a study with
a weight-matched control in which weight reductions were
induced either by KBP-089 administration (‘KBP-089’) or by
food restriction alone (‘Pair weighed’/‘PW’). In order to
match the body weights, the pair-weighed rats received sig-
nificantly less food compared with the KBP-089-treated rats
(Figure 5A). As in the previous study, body weight was
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significantly reduced by KBP-089 administration, and this
was matched during the study in the pair-weighed group
(Figure 5B). There was no significant difference between the
groups in body weight at study start (vehicle: 409 ± 3 g,
KBP-089: 410 ± 3 g and PW: 408 ± 4 g). During the study,
the body weight was significantly reduced in KBP-089 and

pair-weighed rats, albeit there was no difference between
KBP-089-treated rats and the pair-weighed rats (vehicle:
462 ± 6 g, KBP-089: 398 ± 4 g and PW: 403 ± 6 g). Interestingly,
the epididymal and perirenal adipose tissues, which are di-
rectly associated with visceral adiposity and insulin resis-
tance (Gabriely et al., 2002), were significantly lower in the

Figure 1
KBP-089 potently reduces appetite, body weight and fat depots in HFD rats. (A) Caloric intake monitored daily initially, and then weekly in high-fat diet
fed rats. Expressed as daily intake per animal. (B) Body weight expressed as percentage from baseline. (C) Food efficiency day 1–56 in rats dosed with
KBP-089 (0.625, 1.25 and 2.5 μg·kg�1). Relative weight of (D) epididymal, (E) inguinal and (F) peritoneal adipose tissue at study end. (n = 10 rats per
group in vehicle and KBP-089 treatment groups; n = 9 rats in pair-fed group). AT, adipose tissue. Statistical analysis between groups was evaluated by
an ordinary one-way ANOVA with Tukey’s multiple comparisons test. *P < 0.05. compared with vehicle, ¤P<0.05 compared with pair-fed.
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KBP-089 and the pair-weighed group compared with vehicle
(Figure 5C). There was no significant difference between the
surgically removed adipose tissues in KBP-089-treated rats
and the pair-weighed rats; however, there was a trend towards
amore distinct reduction in adipose tissue in KBP-089-treated
rats compared with pair-weighed rats. Using MR, we found a
slight increase in lean body mass in KBP-089-treated rats
compared with vehicle rats, and a reduced amount of whole
body fat mass in KBP-089-treated and pair-weighed rats com-
pared with vehicle (Figure 5D), indicating that the weight loss

occurs primarily in fat tissue. As expected, KBP-089 again
caused improved glucose tolerance with significantly lowered
plasma insulin levels (Figure 5D, E, G, H) compared with ve-
hicle. Surprisingly, the pair-weighed group did not show a
marked improvement in glucose tolerance despite the
significant weight reduction. Food restriction alone had
significantly ameliorated hyperinsulinaemia during OGTT
(Figure 5H); however, it was still significantly higher
compared with KBP-089. Finally, KBP-089-treated rats had a
reduced rate of gastric emptying compared with vehicle and

Figure 2
KBP-089 enhances glucose tolerance and potentially insulin sensitivity in HFD rats. (A, D) Plasma glucose during OGTT and IVGTT in high-fat diet
fed rats treated with KBP-089 (0.625, 1.25 and 2.5 μg·kg�1) for 6 and 7 weeks respectively. Total AUC for (B, E) glucose and (C, F) plasma insulin
during OGTT and IVGTT after 6 and 7 weeks respectively (n = 10 rats per group in vehicle and KBP-089 treatment groups; n = 9 rats in pair-fed
group). Statistical analysis between groups was evaluated by (B, C, F) an ordinary one-way ANOVA with Tukey’s multiple comparisons test and
(E) Kruskal–Wallis test with Dunn’s multiple comparisons test. *P < 0.05 compared with vehicle, ¤P < 0.05compared with pair-fed.
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pair-weighed rats (data not shown) as previously observed
with DACRA treatment (Hjuler et al., 2016).

KBP-089 induces changes in food preference
To examine the effect of the reduced food intake in detail, a
food preference test was performed (Figure 6). When the rats
had access to ad libitum chow and chocolate (as compared
with chow alone), caloric intake was significantly increased.
Furthermore, chow intake was significantly reduced as the
rats preferred the chocolate and obtained 74%of their calories

from chocolate [caloric intake vehicle/chow: 143 ± 3.0 kcal,
caloric intake of vehicle/chow + chocolate: 173 ± 8.1 kcal
(chow = 46.1 ± 2.9 kcal and chocolate = 127.3 ± 9.8 kcal)].
KBP-089 administrationwas associatedwith a significantly re-
duced caloric intake, – 34% compared with vehicle treatment;
caloric intake of KBP-089/chow + chocolate: 115 ± 10.7 kcal
(chow =74 ± 6.6 kcal, chocolate =41.4 ± 9.4 kcal), accompa-
nied by a relative increase in chow consumption and a drastic
reduction in chocolate consumption (127.3 ± 9.8 kcal vs.
41.4 ± 9.4 kcal).

Figure 3
KBP-089 reduces the accumulation of lipids in both muscle and liver in HFD rats. Oil Red O stained frozen (A) liver sections and (B) gastrocnemius
muscle (magnification of ×20 for liver and ×40 for gastrocnemius, nine images per animal; three pictures per depth) in (1) ND rats, (2) vehicle HFD
rats, (3) 2.5 μg·kg�1 KBP-089, (4) pair-fed to 2.5 μg·kg�1 KBP-089 and (5) quantification of the results (n = 10 rats per group in vehicle and KBP-
089 treatment groups; n = 9 rats in pair-fed group). Data are expressed as fold of lean. Statistical analysis between groups was evaluated by a
Kruskal–Wallis test with Dunn’s multiple comparisons test. *P < 0.05 compared with vehicle, ¤P < 0.05 compared with pair-fed.
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Discussion
The present study describes a novel DACRA, called KBP-089,
which is able to induce and sustain a significant weight loss
irrespective of food intake. Importantly, KBP-089 possesses
the ability to improve glucose tolerance above what can be
obtained with weight loss alone.

Treatment with KBP-089 reduced food intake initially.
However, this effect was reduced during the course of the
study, and the effects obtained with KBP-089 treatment
on weight, glucose tolerance, adipose tissue reduction and
removal of ectopic lipid depositions in liver and muscle
were not achieved with pair-feeding, clearly demonstrating

effects of KBP-089 beyond appetite restriction. The weight
reducing effect and the effect on food intake can most
likely be attributed to central amylin receptor activation.
It has previously been demonstrated that amylin facilitates
a reduction in body weight that cannot only be attributed
to suppression of food intake (Isaksson et al., 2005; Roth
et al., 2006). An interesting aspect of the reduction in fatty
acid accumulation in the liver is the known relationship
between liver fat, insulin resistance and non-alcoholic
steatohepatitis (Cusi, 2009; Milić et al., 2014), and these
data indicate that KBP-089, at least due to its weight reduc-
ing capacity, could be a novel treatment candidate for liver
steatosis.

Figure 4
KBP-089 lowers glycaemia and increases glucose tolerance and insulin action in ZDF rats. (A, B) Fasting plasma glucose and HbA1c levels
respectively in ZDF treated with KBP-089 or saline (vehicle) for 8 weeks. (C) Plasma glucose during OGTT, (D) total AUC of the OGTT displayed
in (C). (E) Plasma glucose during insulin tolerance test displayed as % of initial blood glucose value. (F) Total AUC of the insulin tolerance test
displayed in (E). (n = 10 rats per group). Statistical analysis between groups was evaluated by t-test. P < 0.05.
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Figure 5
KBP-089 and weight-matched rats. (A) Cumulative caloric intake at study end. (B) Daily body weight and (C) relative weight of epididymal,
inguinal and retroperitoneal adipose tissue at study end in HFD rats treated with KBP-089 (2.5 μg·kg�1) and weight-matched rats. (E, G) Plasma
glucose and plasma insulin respectively and (F, H) total AUC of glucose and insulin respectively during OGTT after 3 weeks (n = 12 rats per group).
Statistical analysis between the groups was evaluated by an ordinary one-way ANOVA with Tukey’s multiple comparisons test (C, F, H) or (D)
Kruskal–Wallis with Dunn’s multiple comparisons test. *P < 0.05 compared with vehicle, #P < 0.05 compared with PW.
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The KBP-089-mediated changes in adiposity were con-
firmed in the pair-weight study where KBP-089-treated rats
had significantly lower epididymal, inguinal and perirenal
adipose tissues compared with vehicle-treated rats, and
trends towards lowered adiposity compared with pair-
weighed adipose tissues – despite the same body weight. This
could indicate that KBP-089 treatment results in a loss of fat
mass rather than lean body mass. Food restriction alone is
however not sufficient to obtain the same reduction in adi-
pose depots. As mentioned above, amylin agonism has long
been associated with an increase in respiratory quotient,
which is associated with a preferential oxidation of fat
(Wielinga et al., 2010). Moreover, other studies have also asso-
ciated activation of amylin receptors with a specific reduction
in fat mass rather than lean mass (Roth et al., 2006, 2007),
whereas inhibiting amylin signalling centrally increases fat
mass (Rushing et al., 2001), thus potentially explaining the
difference in fat depots in this study. This was tested using
MR scanning. There was no difference in whole body fat mass
between the KBP-089-treated and pair-weighed rats; however,
in support of the limited loss of lean mass, we found a slight –
albeit significant – increase in lean mass in KBP-089-treated
rats compared with vehicle rats, underscoring that the weight
loss is primarily mediated through a reduction in adipose tis-
sue weight. Furthermore, the slight increase in lean mass is a
positive effect, as heavy weight loss in many cases is associ-
ated with loss in lean body mass in humans (Garthe et al.,
2011; Weiss et al., 2016).

In terms of hyperglycaemia and insulin resistance, amylin
analogues have shown promise (Ratner et al., 2004; Mack
et al., 2011); however, they do not possess the intrinsic ability
to reduce fasting plasma glucose levels and insulin tolerance,
in contrast to KBP-089 as shown here in both ZDF and HFD
rats, or other DACRAs (Hjuler et al., 2015). These data are
further corroborated by the pair-weight study where

substantially lower glucose and insulin levels were observed
during glucose tolerance tests, in the KBP-089 treatment
group when compared with the weight-matched group. The
improvement in insulin levels also manifested as an improve-
ment in glucose control too; however, the possibility that the
PW animals had an ‘artificial’ increase in glucose intolerance
due to prolonged fasting (or significant food restriction) can-
not be out ruled, although they did not show any signs of
malnutrition or ill behaviour. The lowering of insulin levels
could be attributed to the lack of improvement in glucose tol-
erance when compared with the improvement observed in
KBP-089-treated rats, which would have been likely after a
significant weight loss (Horton and Hill, 2001; Lafontan and
Langin, 2009; Karpe et al., 2011). The KBP-089-induced im-
provement in glucose tolerance is partly mediated through
the lowering of gastric emptying rate, as previously observed
with amylin agonism (Young et al., 1995; Young, 2005). In an
p.o. glucose tolerance test without dosing prior to the glucose
challenge (data not shown), glucose tolerance was slightly
improved in KBP-089-treated rats, and insulin levels were sig-
nificantly lowered compared with vehicle rats, while PW ani-
mals mimic glucose tolerance and insulin levels as
demonstrated in the OGTT. These data further indicate the
strong insulinostatic effect of KBP-089.

Another important way to regulate body weight could
be to manipulate volunteer food intake/composition of
food in the brain. This was hypothesized to be relevant
for KBP-089 due to a known effect of amylin agonism on
the release of dopamine in the hypothalamus (Brunetti
et al., 2002) and alterations in the melanocortigenic sys-
tem, (Roth et al., 2012) both of which are mediators of
the reward/pleasure circuits known to affect feeding pat-
terns (Pandit et al., 2016). Normally, amylin does not pro-
duce conditioned taste aversion (Lutz et al., 1995;
Rushing et al., 2002); hence, this is not normally used to
explain the alterations in food intake. Alternatively, the re-
duced impulse to consume sugar instead of normal chow
could be explained in other ways. In humans, patients
treated with pramlintide also experience a voluntary shift
in eating behaviour and ‘binge eating’ (Smith et al.,
2007). A change of food intake towards a more healthy diet
(less energy dense and sweet) is also observed in patients
after surgical weight intervention (Mathes and Spector,
2012). The mechanisms behind this are not clear; however,
alterations in food reward or taste functions have been sug-
gested as possible explanations (Miras and le Roux, 2014).
From the food preference study presented here, it could
be speculated that dosing with KBP-089 offers some of
the effects obtained by surgical interventions, making
KBP-089 a relevant option for treating severely obese pa-
tients and thereby aiding a significant weight loss along
with a change in lifestyle, which might improve the results
even further.

In conclusion, the novel DACRA KBP-089 induces and
sustains a substantial weight loss in obese rats and reduces
overall adiposity and ectopic lipid accumulation in the liver.
In addition, KBP-089 improved glucose tolerance and indi-
rectly improved insulin action independent of food intake
and body weight, hence revealing the potential of KBP-089
as an anti-obesity agent with additional benefits on glucose
control and liver steatosis.

Figure 6
KBP-089 induces changes in food preference. Voluntary food
(chow) and chocolate intake was monitored for 24 h after 7 days
of 2.5 μg·kg�1 KBP-089 treatment. Statistical analysis between
groups and diets was evaluated by two-way ANOVA with Tukey’s
multiple comparisons test. *P < 0.05 treatment groups total caloric
comparison; aP < 0.05 compared with control (chow); bP < 0.05
compared with vehicle (chow); and cP < 0.05 compared with
vehicle (chocolate).
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The Dual Amylin- and Calcitonin-Receptor Agonist KBP-042
Increases Insulin Sensitivity and Induces Weight Loss
in Rats with Obesity
Sara Toftegaard Hjuler1, Sofie Gydesen1, Kim Vietz Andreassen1, Steffen Lund Kjær Pedersen1, Lars I. Hellgren2,
Morten Asser Karsdal1, and Kim Henriksen1

Objective: In this study, KBP-042, a dual amylin- and calcitonin-receptor agonist, was investigated as a

treatment of obesity and insulin resistance in five different doses (0.625 mg/kg–10 mg/kg) compared with

saline-treated and pair-fed controls.

Methods: Rats with obesity received daily s.c. administrations for 56 days, and glucose tolerance was

assessed after one acute injection, 3 weeks of treatment, and again after 7 weeks of treatment. To

assess the effect on insulin sensitivity, rats received 5 mg/kg KBP-042 for 21 days before hyperinsuline-

mic–euglycemic clamp.

Results: KBP-042 induced a sustained weight loss of up to 20% without any significant weight reduction

in the pair-fed groups. Decreases in adipose tissues and lipid deposition in the liver were observed, while

plasma adiponectin was increased and plasma leptin levels were decreased. Acute administration of

KBP-042 led to impaired glucose tolerance and increased plasma lactate, while this diabetogenic effect

was reversed by chronic treatment. Finally, assessment of insulin sensitivity using the hyperinsulinemic–

euglycemic clamp showed that KBP-042 increased the glucose infusion rate.

Conclusions: The study indicates that KBP-042 combines two highly relevant features, namely weight

loss and insulin sensitivity, and is thus an excellent candidate for chronic treatment of obesity and insulin

resistance.

Obesity (2016) 00, 00–00. doi:10.1002/oby.21563

Introduction
Obesity is one of the greatest public health challenges of the 21st

century (1). Obesity can lead to insulin resistance and type 2 diabe-

tes (2), which are associated with a range of metabolic dysfunctions

(3,4). Weight loss, improved glycemic control, and increased insulin

action to reduce strain on the b cells are key points for improving

disease status. This can be achieved by different interventions (exer-

cise, diet, medication, surgery) which all cause improvements in

metabolic profiles and increase of insulin sensitivity and b-cell func-

tion (5,6). However, as lifestyle changes often result in only minor

weight reductions followed by a rapid regain of weight (7), there is

a need for treatments targeting multiple factors of the obesity-related

diseases. These include insulin resistance and b-cell failure to avoid

development of type 2 diabetes, as well as diabetic complications.

Activation of amylin receptors has already been linked with reduc-

tion of food intake (8), increased responsiveness to leptin (9-11),

weight loss (12,13), and indications of increased energy expenditure

(11,13-16). However, amylin is a short-lasting agonist in vivo, and

there is a need for improved ligands. KBP-042 is a dual amylin- and

calcitonin-receptor agonist with highly potent antiobesity and anti-

diabetic effects (17), although a long-term chronic treatment has not

yet been tested.

In this study, KBP-042 was tested in a long-term treatment of predia-

betic rats with obesity, in order to evaluate KBP-042’s potential as a

chronic treatment of obesity. We further examined whether the bene-

ficial effects on glucose homeostasis were maintained throughout the

study, and finally we investigated whether treatment with KBP-042

could increase insulin sensitivity and reduce hepatic steatosis.
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Methods
Peptide therapy
Recombinant KBP-042 peptide (Unigene Laboratories, Boonton, NJ)

was dissolved in saline for subcutaneous (s.c.) delivery. The doses

for KBP-042 administration in the studies were based on previous

studies in animal models of obesity and type 2 diabetes and ranged

from 10 mg/kg to 0.625 mg/kg (�2.87–0.18 nmol/kg/day) (17,18).

Animal experiments
All animal procedures were performed in accordance with guidelines

from the Animal Welfare Division of the Danish Ministry of Justice

under the institutional license issued to Nordic Bioscience (2012-15-

2934-00094). All male Sprague Dawley rats were obtained at 6

weeks of age and housed under controlled temperature (208C 6 2)

on a normal 12-h light–dark cycle with ad libitum access to water

and food. Normal diet control rats (ND) were fed rodent chow

(5002, LabDiet, St. Louis, MO) and high-fat diet (HFD) rats a 60%

fat kcal diet (#D12495, Research Diets Inc., NJ). After 10 weeks of

high-fat feeding rats were assigned into groups (n 5 10) and con-

trolled for equal mean body weight.

Acute study. Food was removed in the afternoon (4 p.m.). After

16 to 18 h of fasting an oral glucose tolerance test (OGTT) was per-

formed. Rats received a single dose of saline (vehicle) or peptide

(10 mg/kg, 5 mg/kg, 2.5 mg/kg, 1.25 mg/kg, 0.625 mg/kg). After 30

min, a glucose bolus (2 g/kg, Sigma-Aldrich, Copenhagen, Den-

mark) was administered by oral gavage. Blood glucose was moni-

tored by Accu-CheckVR Avia monitoring system (Roche Diagnostics,

Rotkreuz, Switzerland) and EDTA-plasma was obtained from the

lateral tail vein at t 5 0, 15, 30, 60, and 120 min.

Pica test. Fasted animals were administered s.c. with 5, 10, or 50

mg/kg KBP-042 or vehicle (saline). After dosing, animals had free

access to normal chow or kaolin pellets (5TBP, Test diet, MO) and

food and kaolin intake was monitored after 4 and 24 h.

Chronic study. Each rat was dosed once daily with either saline

(vehicle, pair-fed 5 mg/kg, pair-fed 10 mg/kg) or KBP-042 (10 mg/kg,

5 mg/kg, 2.5 mg/kg, 1.25 mg/kg, 0.625 mg/kg) in the afternoon for 8

weeks. The two pair-fed groups were food restricted to match the daily

food intake of their corresponding treatment groups (5 mg/kg or 10 mg/

kg). Pair-fed animals received an average of the daily intake of their

treated paired group every day in the afternoon. Food intake and body

weight were monitored daily for the first 6 days, then weekly. OGTT,

performed as in the acute study and intravenous glucose tolerance tests

(IVGTT) were performed after 3 and 7 weeks of treatment. IVGTT

was performed in the morning after 18 h of fasting. Each rat received

a single dose of either saline (vehicle, pair-fed 5 mg/kg, pair-fed 10

mg/kg) or peptide (10 mg/kg, 5 mg/kg, 2.5 mg/kg, 1.25 mg/kg, 0.625 mg/

kg), after 30 min glucose (0.5 g/kg, Sigma-Aldrich, Copenhagen, Den-

mark) was administered in the lateral tail vein and blood glucose was

monitored and EDTA-plasma was obtained at t 5 0, 5, 15, 30, 60, and

120 min, as described above. To assess effect on gastric emptying,

overnight-fasted rats received s.c. KBP-042 injection, were adminis-

tered 40 mg/kg acetaminophen by oral gavage (4 mL/kg) after 30 min

and the appearance of acetaminophen in plasma was monitored (19).

Blood was collected 30 min after administration from the tail vein and

acetaminophen levels were measured in EDTA-plasma (Acetamino-

phen Direct ELISA Kit, Immuneanalysis, Pomona, CA). Gastric emp-

tying was calculated as % change relative to ND rats.

After 8 weeks, EDTA-Aprotinin plasma samples were collected for

hormonal analyses after 3 h fasting. Animals were euthanized under

isoflurane inhalation followed by exsanguination. Excised tissue was

snap-frozen in liquid nitrogen and stored at 2808C, and plasma was

stored at 2208C samples until further analysis.

Hyperinsulinemic–euglycemic clamp
Insulin-mediated whole body glucose uptake was estimated in rats fed

either HFD or ND (as described above). The HFD rats were stratified

into HFD vehicle or HFD-KBP-042 groups (n 5 5–7). ND vehicle

and HFD vehicle rats received saline injections while HFD-KBP-042

received 5 mg/kg of KBP-042 s.c. for 21 days. After the treatment

period, animals were subjected to a hyperinsulinemic–euglycemic

clamp experiment explained in details in the Supporting Information.

Plasma analysis
Plasma levels of lactate (L-lactate colorimetric assay, Abcam, Cam-

bridge, UK), insulin (Mercodia Rat Insulin ELISA, Mercodia AB,

Uppsala, Sweden), leptin (Rat Leptin ELISA, Millipore Corporation,

Billerica, MA), glucose-dependent insulinotropic peptide (GIP) (Rat/

Mouse GIP (Total) ELISA, Merck Millipore, Billerica, MA), and

adiponectin (Rat Adiponectin ELISA, Millipore Corporation, Biller-

ica, MA) were analyzed according to manufacturer�s instruction.

Tissue analysis
Lipids were extracted from liver samples with addition of internal

standards and triacylglycerol (TAG) was isolated from the total lipid

extract using aminopropyl solid-phase extraction cartridges, trans-

methylated, and quantified using Gas Chromatography–Flame Ioni-

zation Detector as previously described (20).

Statistical analysis
Data were statistically analyzed by one-way ANOVA multiple com-

parison followed by Tukey’s test. In Supporting Information Table

S1, ND controls were compared with HFD vehicle using Student’s

t-test. Values of P < 0.05 were considered to be significant.

Results
KBP-042 mediated substantial and sustained
reductions in body weight
The baseline characteristics of HFD rats and lean controls confirmed

the obese and prediabetic status of the HFD rats (Supporting Infor-

mation Table S1).

After treatment with KBP-042 for 8 weeks, a dose-dependent and sus-

tained reduction of body weight was observed. A large weight loss

was observed in the initial phase of the study (Figure 1A, B) in the

three highest treatment groups (2.5 mg/kg, 5 mg/kg, and 10 mg/kg), as

well as the two corresponding pair-fed groups (pair-fed 5 mg/kg and

pair-fed 10 mg/kg). This corresponds well with the large reduction in

food intake in the first 6 days of treatment (Figure 1D). Due to the

drastic reduction in food intake, pica behavior was tested as a surro-

gate for nausea in rats. The two highest doses, 5 and 10 mg/kg KBP-

042 did not give rise to kaolin intake whereas a high dose of KBP-

042 not used in this study (50 mg/kg) provoked pica behavior

Obesity KBP-042, a Weight Loss Drug and Insulin Sensitizer Hjuler et al.

2 Obesity | VOLUME 00 | NUMBER 00 | MONTH 2016 www.obesityjournal.org



Figure 1 (A) Body weight progression in % of initial body weight during the study from randomization at day 0 to last day of treatment, day 56. (B) Vehicle-
corrected body weights. (C) End point body weights. (D) Food intake of all treatment groups during the entire study. Food intake was monitored every day for
the first 6 days followed by weekly monitoring. Pair-fed groups were fed the same as the average for their corresponding treatment group (5 mg/kg or 10 mg/kg).
(E) Accumulated food intake for the entire duration of the study expressed in kcal/2 animals. (F) Calculated food efficiency. n 5 10 for all groups except vehicle
(n 5 12). Statistical analysis between groups for panels C, E, and F performed as a one-way ANOVA followed by Tukey’s post hoc test with the following annota-
tions: ###P< 0.001 vs. normal diet control (ND). *P< 0.05, ***P< 0.001 vs. high-fat diet (HFD) vehicle. ††P< 0.01, †††P< 0.001 vs. pair-fed 5 mg/kg.
‡‡P< 0.01, ‡‡‡P< 0.001 vs. pair-fed 10 mg/kg. Data are expressed as mean 6 SEM. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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(Supporting Information Figure S1). After the transient reduction in

feeding, food intake increased during the study. The pair-fed groups

gained weight again after feeding increased; inversely, treatment with

KBP-042 sustained the initial weight reduction throughout the 56 days,

with significant reductions in the 2.5 mg/kg, 5 mg/kg, and 10 mg/kg

groups compared with the HFD vehicle (Figure 1C). The accumulated

food intake corresponds well with the weight change for the three high-

est treatment groups (2.5 mg/kg, 5 mg/kg, and 10 mg/kg) (Figure 1E),

although the pair-fed groups which received the same amount of food as

their corresponding treatment group did not lose significant weight.

Accordingly, treatment with 2.5, 5, and 10 mg/kg KBP-042 resulted in

drastic and significant reduction in food efficiency compared with pair-

fed (Figure 1F), suggesting increased energy expenditure.

KBP-042 reduced adipose tissue and ectopic
lipid accumulation
After treatment three different adipose tissues were isolated and as

seen in Figure 2A–C, the weights of isolated epididymal and perire-

nal adipose tissues were significantly reduced after treatment with

10 mg/kg of KBP-042. The perirenal adipose tissue in the 2.5, 5, and

10 mg/kg groups was reduced significantly while inguinal fat was

not. The same reduction was not seen in the pair-fed controls.

Lipid accumulation in liver was assessed as hepatic TAG concentra-

tion (Figure 2D). As expected the HFD vehicle group had dramati-

cally higher TAG levels compared with ND group. This accumula-

tion was significantly reduced after treatment with KBP-042 (10 mg/

kg), while the corresponding pair-fed control group did not show a

significant reduction in liver TAG. In order to assess the treatment

effect on fatty acid metabolism in selective ways (e.g. metabolism

of saturated vs. monounsaturated vs. polyunsaturated), the fatty acid

composition of hepatic TAG was analyzed. The results showed that

there was no difference in the relative distribution, i.e., the treatment

caused a general reduction in TAG without effecting the metabolism

of specific fatty acid types (Supporting Information Table S2).

Finally, adiponectin and leptin levels were measured after 56 days of

treatment (Figure 2E, F). Adiponectin was significantly increased in

response to treatment with all doses of KBP-042 except 0.625 mg/kg.

For plasma leptin a statistically significant reduction was seen when

comparing 10 mg/kg KBP-042 with the corresponding pair-fed control.

In summary, fat depots, lipid, and adipokine data support a strongly

improved metabolic status as a function of treatment with KBP-042.

Chronic treatment with KBP-042 improved
glucose tolerance with reduced insulin levels
OGTT was performed after the first injection, as well as after 3 and

7 weeks of treatment.

The acute OGTT showed a slightly impaired glucose tolerance for

the 10 mg/kg group compared with HFD vehicle (Figure 3A, D). A

hyperglycemic effect was observed 30 min after s.c. administration

of KBP-042 at t 5 0 compared with vehicle (5.9 mM) for 5 mg/kg

(6.8 mM, P 5 0.033) and for 10 mg/kg (7.4 mM, P < 0.001)

groups. The total area under the curve (tAUC) was significantly

increased after injection of 10 mg/kg KBP-042 (Figure 3D). How-

ever, the insulin levels during the first 60 min after glucose adminis-

tration were reduced in animals dosed with KBP-042 (Figure 3G, J).

After 3 weeks of treatment with KBP-042 or saline, the three high-

est doses of KBP-042 resulted in a significantly lowered tAUC (Fig-

ure 3B, E). Insulin levels were lowered by KBP-042 except in the

0.625 mg/kg group (Figure 3H, K). Pair-fed 10 mg/kg group also had

a reduced insulin response (Figure 3K).

During OGTT after week 7 (Figure 3C) the two highest dose groups

had improved glucose tolerance when tAUC was considered (Figure

3F). The two highest dose groups showed increased glucose tolerance,

while drastically reduced insulin levels were observed within the first

60 min after glucose administration (Figure 3I, L). Pair-feeding did

not change glucose handling compared with HFD vehicle.

After administration of KBP-042, plasma lactate was dose-

dependently increased in treatment of naive animals (Supporting

Information Figure S2A) and resulted in a 1.5 mM increase in plasma

lactate 30 min after s.c. administration of 10 mg/kg KBP-042. Interest-

ingly, the KBP-042-provoked lactate response was completely blunted

by chronic treatment (Supporting Information Figure S2B, C).

KBP-042 reduced gastrointestinal mobility and
plasma levels of the gut hormone GIP
The rate of gastric emptying during OGTT was assessed in response

to acute dosing with KBP-042, after treatment for 3 weeks, or after

7 weeks (Figure 4A, C, E, respectively). Acute s.c. administration of

KBP-042 resulted in a significant reduction of gastric emptying 30

min after acetaminophen administration for the three highest treat-

ment groups (2.5 mg/kg, 5 mg/kg, and 10 mg/kg) (Figure 4A). In ani-

mals treated for 3 weeks with KBP-042, gastric emptying was

reduced for all treatment groups. The two pair-fed groups displayed

a slower rate of gastric emptying due to food restriction; however,

they still have significantly higher rates of gastric emptying com-

pared with 5 mg/kg and 10 mg/kg groups of KBP-042 (Figure 4C).

After 7 weeks of treatment the reduced gastric emptying was still

significant at most doses compared with HFD vehicle. The pair-fed

groups were no longer different from the HFD controls (Figure 4E).

GIP levels in plasma were quantified 0 to 30 min after acute glucose

administration, and after 3 and 7 weeks of treatment (Figure 4B, D,

F). After acute administration of KBP-042, GIP levels were signifi-

cantly lower in the groups treated with 2.5 to 10 mg/kg KBP-042

(Figure 4B). After treatment for 3 weeks, all groups displayed a

drastic reduction in plasma GIP. The two pair-fed groups demon-

strated significantly lowered GIP levels compared with HFD vehicle

probably due to food restriction. They were still significantly higher

than their corresponding treatment controls (5 mg/kg and 10 mg/kg)

(Figure 4D). After 7 weeks of treatment, plasma GIP levels were

reduced; however, the changes were only significant in the three

highest treatment groups. The reductions in pair-fed groups were no

longer present after 7 weeks of treatment (Figure 4F).

KBP-042 maintained peripheral glucose tolerance
with lower insulin levels irrespective of altered
gastric emptying
To circumvent the gastrointestinal tract and assess peripheral glu-

cose tolerance, IVGTTs were performed after 3 and 7 weeks of

treatment (Figure 5). In both tests, all KBP-042 groups showed a

trend towards lower blood glucose compared with vehicle and pair-
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Figure 2 (A–C) Weight of isolated epididymal, inguinal, and perirenal white adipose tissue (WAT), respectively, after 56 days of treatment. (D) Total tri-
acylglyceride content extracted from liver tissue after treatment with KBP-042 or saline for 56 days. (E,F) Plasma adiponectin and leptin levels,
respectively, after 56 days of treatment. n 5 10 for all groups except vehicle (n 5 12). Statistical analysis between groups performed as a one-way
ANOVA followed by Tukey’s post hoc test with the following annotations: ##P< 0.01, ###P< 0.001 vs. normal diet control (ND). *P< 0.05,
**P< 0.01, ***P< 0.001 vs. high-fat diet (HFD) vehicle. †P< 0.05, ††P< 0.01 vs. pair-fed 5 mg/kg. ‡P< 0.05 vs. pair-fed 10 mg/kg. Data are
expressed as mean 6 SEM.
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fed controls 5 and 10 min after glucose administration (Figure 5A,

B). This manifested in a lowered tAUC0–120 min for the 2.5 mg/kg

KBP-042 group only in the first test after 3 weeks and not after 7

weeks of treatment. No effect was observed for pair-fed groups.

Interestingly, when insulin levels were quantified, the tAUC for

insulin was significantly reduced in KBP-042 1.25-10 mg/kg groups

after 3 weeks of treatment (Figure 5G). After 7 weeks of treatment,

groups treated with 2.5 mg/kg and 5 mg/kg KBP-042 had

Figure 3 Blood glucose and insulin levels during oral glucose tolerance test (OGTT) performed in animals treated with KBP-042 or vehicle once (left), for 3
weeks (middle), or 7 weeks (right). Animals were challenged with an oral glucose bolus (2 g/kg) at time 5 0 and dosed with either KBP-042 or saline at
t 5 230. (A–C) Blood glucose levels during acute OGTT, OGTT after 3 weeks, and OGTT after 7 weeks, respectively. (D–F) Area under the curve (AUC) for
acute OGTT, OGTT after 3 weeks, and OGTT after 7 weeks, respectively. (G–I) Insulin levels during acute OGTT, OGTT after 3 weeks, and OGTT after 7
weeks, respectively. (J-L) Insulin levels during acute OGTT, OGTT after 3 weeks, and OGTT after 7 weeks, respectively, expressed as AUC. n 5 10 for all
groups except vehicle (n 5 12). Statistical analysis between groups performed as a one-way ANOVA followed by Tukey’s post hoc test with the following
annotations: *P< 0.05, **P< 0.01, ***P< 0.001 vs. high-fat diet (HFD) vehicle. ††P< 0.01, †††P<0.001 vs. pair-fed 5 mg/kg. ‡‡P< 0.01, ‡‡‡P< 0.001 vs.
pair-fed 10 mg/kg. Data are expressed as mean 6 SEM. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 4 (A) Relative rates of gastric emptying measured 30 min after glucose challenge in the oral glucose tolerance test (OGTT) performed in treat-
ment naive animals. (B) Area under the curve (AUC) of plasma levels of glucose-dependent insulinotropic peptide (GIP) during OGTT in treatment naive
animals up to 30 min after glucose challenge. (C) Relative rates of gastric emptying measured 30 min after glucose challenge in the OGTT performed
animals treated with KBP-042 for 3 weeks. (D) AUC of plasma levels of GIP during OGTT in animals treated for 3 weeks, up to 30 min after glucose
challenge. (E) Relative rates of gastric emptying measured 30 min after glucose challenge in the OGTT performed animals treated with KBP-042 for 7
weeks. (F) AUC of plasma levels of GIP during OGTT in animals treated for 7 weeks, up to 30 min after glucose challenge. n 5 10 for all groups
except high-fat diet (HFD) vehicle (n 5 12). Statistical analysis between groups performed as a one-way ANOVA followed by Tukey’s post hoc test
with the following annotations: *P< 0.05, **P< 0.01, ***P< 0.001 vs. HFD vehicle. ††P< 0.01, †††P< 0.001 vs. pair-fed 5 mg/kg. ‡‡P< 0.01,
‡‡‡P< 0.001 vs. pair-fed 10 mg/kg. Data are expressed as mean 6 SEM.
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significantly reduced insulin levels while maintaining glucose toler-

ance (Figure 5H).

KBP-042 improved whole body insulin sensitivity
in the hyperinsulinemic–euglycemic clamp
A hyperinsulinemic–euglycemic clamp study was performed to

address the effect of KBP-042 on insulin sensitivity. For this study,

ND rats were compared with insulin-resistant HFD rats and 5 mg/kg

KBP-042 treated HFD rats. Figure 6A shows GIR reduced by �30%

(P 5 0.057) in the HFD group compared with ND. The treatment

with KBP-042 led to a significant increase in GIR (82%, P <
0.001) compared with HFD vehicle. When KBP-042 treatment is

compared with ND, GIR is increased with 27% (P < 0.05). As

expected, body weight was increased after HFD for 10 weeks as

compared with ND (Figure 6B), but treatment with KBP-042 for 21

days reduced weight with �18%, and the body weight was not sig-

nificantly different from the ND rats at the end of the study.

Discussion
In this study, KBP-042 induced a significant weight loss over a

period of 8 weeks, albeit with dramatic reductions in food intake

initially. Kaolin consumption was, however, only stimulated in a

higher dose than used in this study, thus indicating the reduction in

food intake was not due to illness. However, minor nausea in the

rats cannot be excluded. The highest KBP-042 groups sustain the

weight loss (up to 20% compared with HFD vehicle) throughout the

study, a phenomenon not seen in the pair-fed groups. The decreased

food efficiency of the KBP-042-treated rats (2.5 mg/kg–10 mg/kg)

and the large weight difference between treated and pair-fed rats,

indicate increased energy expenditure. In general, amylin agonism

blunts the reduction of energy expenditure that is normally caused

by food restriction and weight loss, as well as changing RER

(11,21), an indicator of fat utilization. Interestingly, amylin only

increases energy expenditure when given as chronic infusion s.c. or

i.c.v. (15,16,22), a finding likely related to short-lived activity of

amylin (23). KBP-042 has a longer and more potent activation pro-

file (17), despite a fast disappearance from plasma (<120 min) (18).

However, energy expenditure, as well as potential fecal energy

losses have to be formally assessed in future studies.

KBP-042 was able to significantly reduce TAG accumulation in the

liver at both 2.5 mg/kg and 10 mg/kg. The reduction did not reach a

significant level at 1.25 mg/kg and 5.0 mg/kg due to the relatively

large individual variations in the hepatic TAG levels, but there is a

tendency towards reduced hepatic TAG in these groups. Since

ectopic deposition of lipids in the liver is related to increased insulin

resistance, reducing the hepatic lipid-load could improve hepatic

insulin sensitivity, hereby reducing gluconeogenesis in the fatty liver

and increasing glucose tolerance (24). As of today, weight loss is

the only remedy for ectopic lipid deposition, and KBP-042 serves as

an excellent drug candidate to mediate this in an efficient manner.

However, the extent to which a similar effect could be obtained by

matching the weight loss remains to be explored. Importantly, the

Figure 5 (A,B) Intravenous glucose tolerance test (IVGTT) performed in animals treated for 3 weeks and 7 weeks, respectively, with either KBP-042 or
saline. Animals were dosed s.c. at t 5 230 and received i.v. glucose challenge at t 5 0. (C) Area under the curve (AUC) 0 to 120 min for the IVGTT in
panel A performed after treatment with KBP-042 for 3 weeks. (D) AUC 0 to 120 min for the IVGTT in panel B performed after treatment with KBP-042 for
7 weeks. (E) Plasma insulin levels during the IVGTT performed after 3 weeks of treatment. (F) Plasma insulin levels during the IVGTT performed after 7
weeks of treatment (legends as for panel A). (G) AUC for plasma insulin levels 0 to 30 min after glucose challenge in the IVGTT in panel A performed after
treatment with KBP-042 for 3 weeks (legends as for panel B). (H) AUC for plasma insulin levels 0 to 30 min after glucose challenge in the IVGTT in panel
B performed after treatment with KBP-042 for 7 weeks. n 5 10 for all groups except high-fat diet (HFD) vehicle (n 5 12). Statistical analysis between
groups performed as a one-way ANOVA followed by Tukey’s post hoc test with the following annotations: *P< 0.05, ***P< 0.001 vs. HFD vehicle.
†P< 0.05, †††P< 0.001 vs. pair-fed 5 mg/kg. ‡P< 0.05, ‡‡P< 0.01 vs. pair-fed 10 mg/kg. Data are expressed as mean 6 SEM. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 6 (A) Glucose infusion rate (GIR) at steady state during hyperinsulinemic–euglycemic clamp when blood glucose was clamped
at basal levels after 21 days of treatment. (B) Body weight at hyperinsulinemic–euglycemic clamp experiment day after 21 days of
treatment. Statistical analysis between groups performed as a one-way ANOVA followed by Tukey’s post hoc test with the following
annotations: *P< 0.05, **P< 0.01, ***P< 0.001. Data are expressed as mean 6 SEM.
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analysis of the fatty acid composition of TAG further suggests that

the fatty acid metabolism in the liver is unaltered, and the changes

are an overall TAG reduction.

During acute OGTT, increases in plasma lactate and blood glucose

were seen 30 min after administration of KBP-042, corresponding to

previous studies showing acute hyperglycemia following acute admin-

istration of salmon calcitonin or rat amylin (25). This is likely

explained by inhibition of insulin secretion, but also increased plasma

lactate as seen in this study. This manifested as a tendency towards

impaired glucose tolerance. Interestingly, the increase in plasma lac-

tate was not present in animals treated chronically. In fact, chronic

treatment led to improved oral glucose tolerance compared with both

vehicle and pair-fed groups. Importantly, the improved glucose clear-

ance was achieved with significantly lower plasma insulin levels, indi-

cating improved insulin action. The improved glucose tolerance

together with reduced liver TAG supports a general improved metabo-

lism and insulin sensitivity. This is further supported by the reduction

in adiposity, as plasma adiponectin is reduced in subjects who have

obesity and related to for example, inflammation, insulin resistance,

and energy metabolism (26,27), as well as type of phenotype in differ-

ent fat depots (28). The observed increase in adiponectin is in align-

ment with the improvement in both glucose tolerance and insulin

action as well as fatty acid removal from liver that KBP-042 induces

(26,29-31). The reduced adiposity also manifested in lowering of

plasma leptin, which corresponds well with previous demonstrations

that KBP-042 increases the sensitivity towards leptin (18), a finding

also seen with amylin (14,32).

IVGTT was performed to assess peripheral glucose homeostasis

while circumventing the gastrointestinal system, which is obviously

very affected by amylin agonism such as KBP-042 (33,34). Rats

treated with KBP-042 maintained glucose tolerance with reduced

insulin levels hence implying improved insulin sensitivity, albeit
with an effect markedly lower than in the OGTT. This corroborates

that KBP-042 has gastric emptying-independent effects on glucose

tolerance. The reduced insulin levels both during IVGTT and OGTT

could be explained by a direct KBP-042-mediated inhibition of both

insulin and glucagon secretion directly in the islets of Langerhans

(17), but maintaining or improving glycemia, glucose disposal rate,

and insulin action after a significant weight loss is also well

described in humans (5).

Plasma GIP levels and gastric emptying was assessed during the

OGTT, and the rate of gastric emptying correlated to the GIP levels.

In summary, KBP-042 reduces plasma incretin levels during OGTT,

directly inhibits insulin and glucagon release from the islets of

Langerhans (17), and reduces gastric emptying. These effects can

also explain the reduced insulin levels in the OGTT, but not in the

IVGTT. The reduced gastric emptying can mediate a beneficial

effect on postprandial glucose levels, which along with fasting

plasma glucose levels are very important factors in the reduction of

risks related to hyperglycemia.

To formally assess the suggested increase in insulin action we per-

formed a hyperinsulinemic–euglycemic clamp study. The reduced

GIR seen in the HFD group compared with ND was expected since

obesity is negatively correlated to insulin sensitivity and GIR (2).

The large increase in GIR after treatment with KBP-042 illustrated

the increase in insulin sensitivity. The KBP-042-induced weight loss

could explain a large increase in GIR. However, here the rats treated

with KBP-042 had similar body weight to the ND, but with a signif-

icantly increased GIR. This could suggest that insulin sensitivity is

increased beyond what would be expected from weight loss,

although this has to be further tested in weight-matched animals

receiving the same diet.

In conclusion, KBP-042 induced a sustained weight loss over 8

weeks in obese prediabetic rats but not in pair-fed animals, leading

to reduction in adipose tissues, ectopic TAG deposition, improved

glucose tolerance, and improved insulin action. The combination of

a weight-reducing and insulin-sensitizing agent is to our knowledge

unique. KBP-042 thus shows great promise for the treatment of type

2 diabetes and obesity due to its multiple beneficial effects on sev-

eral aspects of the metabolic syndrome.O
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Gydesen S, Andreassen KV, Hjuler ST, Christensen JM, Karsdal
MA, Henriksen K. KBP-088, a novel DACRA with prolonged receptor
activation, is superior to davalintide in terms of efficacy on body weight.
Am J Physiol Endocrinol Metab 310: E821–E827, 2016. First published
February 16, 2016; doi:10.1152/ajpendo.00514.2015.—This study aims
to elucidate the mechanism behind the potent weight loss induced by
dual amylin and calcitonin receptor agonists (DACRA) through com-
parison of the novel DACRA KBP-088 with the amylinomimetic
davalintide with regard to in vitro receptor pharmacology and in vivo
efficacy on food intake and body weight. KBP-088 and davalintide
were tested for their ability to activate the amylin and calcitonin
receptors as function of dose and time. Two doses of KBP-088 (1.67
and 5.0 �g/kg) were compared with similar davalintide doses in
high-fat diet (HFD)-fed rats receiving subcutaneous dosing once daily
for 62 days. Glucose tolerance was assessed after 3 and 7 wk of
treatment. KBP-088 demonstrated activation of amylin and calcitonin
receptors and prolonged receptor activation compared with davalint-
ide as well as a potent reduction of acute food intake. KBP-088
transiently reduced food intake and induced and notably sustained a
significant �16% vehicle-corrected weight loss without significant
weight loss in the calorie-restricted control groups. Additionally,
KBP-088 reduced white adipose tissues and adipocyte hypertrophy.
Finally, KBP-088 alleviated hyperinsulinemia and improved oral
glucose tolerance even with significantly lower insulin levels after 3
and 7 wk of treatment. KBP-088 is a potent amylin and calcitonin
receptor agonist with prolonged receptor activation compared with
davalintide. Moreover, KBP-088 induced and sustained significant
weight loss and reduced overall adiposity and adipocyte hypertrophy
in HFD rats. Finally, KBP-088 improved oral glucose tolerance and
alleviated hyperinsulinemia, underscoring the potential of KBP-088 as
an antiobesity agent with benefits on glucose control.

obesity; amylin; DACRA; adiposity; treatment

OBESITY IS A CONSEQUENCE of the modern-day lifestyle, and the
number of obese people is increasing. Associated with obesity
is a number of comorbidities and reduced life expectancy. Of
these, type 2 diabetes, nonalcoholic fatty liver disease, osteo-
arthritis, and cardiovascular disease are prominent, and the
obesity-derived insulin resistance is considered a major detri-
mental event in terms of prognosis (21)(15)(6).

Treatments for obesity are few, and even with the recent
approval of high-dose liraglutide as a treatment for obesity in
the US, there is a very limited library of molecules leading to
weight loss.

Amylin and amylin analogs such as davalintide are associ-
ated with control of appetite and thereby weight loss; however,
they are significantly limited by a lack of efficacy especially in
humans (10). The amylin analog pramlintide is the only mol-

ecule approved as therapy, and it is only as adjunct therapy to
insulin for treatment of diabetes (12, 17), which underscores
the challenge in translating potent receptor activation to in vivo
efficacy. Dual amylin and calcitonin receptor agonists
(DACRAs) are separated from amylin, as they elicit activation
not only of the amylin receptor (AMY-R), but also of the
calcitonin receptor (CTR) (1), and interestingly they also
appear to activate the receptors for an extended period of time,
leading to markedly superior effects on classical amylin-
induced responses in vivo, such as food intake, weight reduc-
tion, and suppression of glucagon (1, 11, 16). However, the
extent to which these effects can be translated into long-term
efficacy on body weight and how they compare to previous
amylin analogs is presently not known.

In this study, we studied a novel, highly potent DACRA,
KBP-088, with a prolonged receptor activation profile in a
long-term in vivo study head to head with davalintide, a potent
AMY-R agonist, to clearly determine peptide properties pre-
dictive of in vivo efficacy on body weight.

RESEARCH DESIGN AND METHODS

Peptide therapy. Synthetic KBP-088 and davalintide (American
Peptide) were dissolved in saline for subcutaneous delivery. The 5
�g/kg dose chosen for peptide administration in the current investi-
gations was based on previous comparable DACRA studies in animal
models of obesity and type 2 diabetes (1, 5) using sCT and the potent
DACRA KBP-042.

In vitro receptor binding and activity. The receptor specificity and
potency at the amylin and calcitonin receptor were determined by the
ability of KBP-088 to induce �-arrestin and recruitment in cell lines
overexpressing the human calcitonin amylin and calcitonin gene-
related peptide receptors, respectively. U20S CALCR cells (Discov-
erX cat. no. 93-0566C3), CHO K1 CALCR RAMP3 (DiscoverX cat.
no. 93-0268C2) and CKO-K1 CALCRL RAMP1 (DiscoverX cat. no.
93-0269C2) cells were used to quantify �-arrestin by PathHunter
Detection Kit (DiscoverX 93-0001) according to the manufacturer’s
instructions. The responses were analyzed and plotted as previously
described (1, 2).

Animal experiments. All animal procedures were performed in
accordance with guidelines from the Animal Welfare Division of the
Danish Ministry of Justice under the institutional license issued to
Nordic Bioscience (2012-15-2934-00094). Male Sprague-Dawley rats
were obtained at 6 wk of age and housed at the Nordic Bioscience
animal facility (21–23°C, 55–65% relative humidity, 12:12-h light-
dark cycle) with ad libitum access to food and water.

Animals. Normal-diet age-matched lean rats (ND) were fed a
standard pelleted chow, and high-fat diet-fed rats (HFD) a 60 kcal%
fat diet (#58Y1; TestDiet, London, UK). At study start, HFD rats
received 10% fructose (#F0127, Sigma-Aldrich, Brøndby, Denmark)
in the drinking water, and, in order to avoid bacterial growth, citric
acid was added (pH 3.6) in fructose drinking water; ND rats received
tap water with an equal amount of citric acid.

Address for reprint requests and other correspondence: S. Gydesen, Nordic
Bioscience, Herlev Hovedgade 207, 2730 Herlev, Denmark (e-mail:
sgy@nordicbioscience.com).
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Acute food intake. Acute food intake was tested in overnight-fasted
HFD rats. The animals received vehicle, KBP-088 (5, 1.67 �g/kg sc),
or davalintide (5, 1.67 �g/kg sc), and food intake was monitored 4, 24,
48, and 72 h postinjection.

Chronic in vivo study. We compared two doses of KBP-088 (1.67
and 5.0 �g/kg) with similar davalintide doses in HFD rats. Following
10 wk of HFD feeding, the rats were randomly (body weight) assigned
to treatment groups (n � 8) receiving either vehicle (saline sc),
KBP-088 (5, 1.67 �g/kg sc), or davalintide (5, 1.67 �g/kg sc) once
daily. Pair-fed rats (saline sc) were food restricted to KBP-088 5
�g/kg and davalintide 5 �g/kg. Food intake and body weight were
monitored on days 1–20, 28, 35, 42, 49, 56, and 62. After 3 and 7 wk
of treatment, OGTT was performed in overnight-fasted (12 h) rats,
with blood glucose measured and EDTA-plasma obtained for hor-
monal analysis. Rats received glucose gavage (2 g/kg po). Blood
samples were collected from the tail vein before drug administration
(�30 min) and glucose challenge (0 min) and 15, 30, 60, and 120 min
post-glucose challenge.

At study end, the animals were euthanized, anesthetized by
inhalation (isoflurane) followed by exsanguation and dissection.
Epididymal fat pads were fixed in 4% formaldehyde and then
stained with hematoxylin. Sections were randomly and blindly
selected and viewed under a microscope (12 sections per group; 6
sections for ND control, �20 magnification). Pictures were taken
and adipocytes counted using Olympus cell imaging software, and
the average size of the adipocytes was calculated.

Blood samples were collected in EDTA tubes and centrifuged at
5,000 rpm for 10 min at 4°C. Blood glucose was monitored by
Accu-Check Avia monitoring system (Roche Diagnostics, Rot-

kreuz, Switzerland). Plasma levels of insulin (Mercodia Rat Insulin
ELISA; Mercodia, Uppsala, Sweden) was analyzed according to
manufacturer’s instruction.

Statistical analysis. All data are presented as means � SE. The
statistical analyses of various drug effects were conducted using
one-way ANOVA, followed by Tukey’s posttest for multiple com-
parison. ND controls and HFD rats as well as EC50 values weare
compared using Student’s t-test. All analyses were performed using
GraphPad Prism software (GraphPad Prism, San Diego, CA). A value
of P 	 0.05 was considered statistically significant.

RESULTS

KBP-088 induces prolonged receptor activation in vitro,
whereas davalintide does not. Table 1 shows the sequence of
KBP-088 and davalintide for comparison. In vitro analyses of
the potency of KBP-088 and davalintide on the calcitonin,
amylin and CGRP receptors showed that both KBP-088 and
davalintide are highly potent ligands for the calcitonin and
amylin receptors (Fig. 1). EC50 values for the CTR were
calculated to 4.5 � (1.4) � 10�9 M and 5.2 (� 1.2) � 10�9 M
for KBP-088 and davalintide (P � 0.68), respectively, whereas
the corresponding EC50 values for the AMY-R were 4.0 (�
1.7) � 10�10 M and 1.3 ( � 1.7) � 10�9 M for KBP-088 and
davalintide (P � 0.38), respectively. In contrast, on the
CGRP-R we only observed a response with davalintide,
whereas KBP-088 even at very high doses (10�7 M) did not
induce �-arrestin recruitment (Fig. 1C). However, the mag-

Fig. 1. Dose-range curves of KBP-088 and
davalintide on induction of �-arrestin in cal-
citonin receptor (CTR; A), amylin receptor
(AMY-R; B), and calcitonin gene-related
peptide receptor (CGRP-R; C) -expressing
cell lines. D: prolonged CT-R-specific �-ar-
restin response mediated by 100 nM KBP-
088 or 100 nM davalintide in CTR-express-
ing cells for 4–72 h. A–D are pooled data
from 3–4 independent experiments.

Table 1. Amino acid sequences of the dual amylin and calcitonin receptor agonists

Sequences

KBP-088 AC- C S N L S T C M L G R L S Q E L H R L Q T F P K T D V G A N A P -NH2

Davalintide K C N T A T C V L G R L S Q E L H R L Q T Y P R T N T G S N T Y -NH2

Amino acid sequence comparison of KBP-088 and davalintide. Differences in sequences are highlighted in boldface. KBP-088’s NH2-terminal cysteine has
an acetyl modification.
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nitude of the CGRP-R induction elicited by davalintide was
low compared with the endogenous CGRP-R agonist,

-CGRP. An important aspect of the DACRAs is their
prolonged interaction with the CTR (2) and while davalint-
ide has been reported to bind irreversibly to the AMY-R (9)
it is not clear to what extent this translates into functional
receptor activation over time. To address this, we compared
davalintide to KBP-088 with receptor to prolonged receptor
activation, and as seen in Fig. 1D, KBP-088 induces a potent
prolonged receptor activation with activation still observed
at 72 h, in line with other DACRAs (2). On the other hand,
despite the potent short term activation of the receptors (Fig.
1, A–C), davalintide did not lead to prolonged receptor
activation (Fig. 1D).

Both davalintide and KBP-088 attenuate short-term food
intake, albeit only KBP-088 shows a prolonged reduction. A
single dose of KBP-088 and davalintide resulted in signifi-
cantly (P 	 0.01) reduced food intake 4 h postinjection;
however, only KBP-088 significantly reduced food intake 24
(�95%) and 48 (�32%) hours postinjection (Fig. 2A).

KBP-088 potently reduces appetite, body weight, and fat
depots. Ten weeks of high-fat feeding resulted in a phenotype
with significantly (P 	 0.001, �30%) increased body weight
(HFD), hyperinsulinemia, impaired glucose control without
hyperglycemia, but impaired insulin sensitivity (HOMA-IR)
compared with the lean age-matched controls (ND) (Table 2)
resembling an obese and prediabetic phenotype.

To investigate the anti-obesity potential of KBP-088 in vivo
we treated HFD rats for 8 wk, and compared the metabolic
effects with equivalent davalintide dosing. Previously,
DACRAs have shown a hypophagic effect (5); therefore, we
included a pair-fed group to both KBP-088 and davalintide
treated rats exploring impact of food restriction regarding body
weight. KBP-088 and davalintide were subcutaneously admin-
istered (1.67 and 5 �g/kg sid) throughout 62 days. During the
study period food intake was transiently attenuated by KBP-088
(Fig. 2, B and C) treatment, although cumulative food intake after
the initial 2 wk of treatment was not significantly different

Fig. 2. A: short-term treatment effect on food intake (4–48 h) by 2 different concentrations of KBP-088 and davalintide in high-fat diet-fed (HFD) rats (n �
8 rats per group). Weekly food intake (B), cumulative food intake days 1–14 (C), and days 15–62 (D) in HFD rats dosed with davalintide and KBP-088 (1.67
and 5 �g/kg) for 62 days (n � 8 rats per group; KBP-088 5 �g/kg n � 4). *P 	 0.05, **P 	 0.01, ***P 	 0.001 vs. KBP-088 1.67 �g/kg; # vs. 1.67 �g/kg
davalintide, $ vs. 5 �g/k davalintide g, * vs. vehicle. Statistical analysis between groups was evaluated by one-way ANOVA post hoc analyses. All data are
means � SE.

Table 2. Model characterization

ND Control HFD

Body weight (g) 466 � 33 607 � 23***
Fasting plasma glucose (ng/ml) 6.2 � 0.1 5.6 � 0.1**
Fasting plasma insulin (ng/ml) 1.0 � 0.1 2.2 � 0.2***
HOMA-IR (mM x �U/ml) 6.3 � 0.6 14.8 � 1.1***
Glucose tAUC in OGTT after 7 wk of

treatment (mmol/l·min) 1,253 � 20 1,422 � 31***
Insulin tAUC in OGTT after 7 wk of

treatment (ng/ml·min) 260 � 17 358 � 33*

Values are means � SE; n � 8 rats per group. Model characterization of
normal-diet lean (ND Control) and high-fat diet-fed (HFD) rats. HOMA-IR,
homeostasis model assessment of insulin resistance; tAUC, total area under the
curve; OGTT, oral glucose tolerance test. Statistical tests performed with
Student’s t-test. *P 	 0.05, **P 	 0.01, ***P 	 0.001 vs. ND Control.
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compared with davalintide and vehicle treated rats (Fig. 2D). At
study end, body weight of KBP-088-treated animals was signifi-
cantly lowered compared with vehicle- and davalintide-treated
rats and associated pair-fed rats (Fig. 3B). The reduced food intake
in the initial phase of the study (Fig. 2A) corresponds well with the
significant weight loss observed in both KBP-088-treated groups
and the KBP-088-associated pair-fed group compared with vehi-
cle- and davalintide-treated rats (Fig. 3A).

Based on food intake and body weight change, food efficacy
was calculated. We used the total food intake from days 15–62,
as there were no significant difference in food consumption
between the groups in this period. Expectedly, KBP-088 treat-
ment (1.67 and 5 �g/kg) resulted in a marked attenuation of
food efficiency (Fig. 3C), which was significantly different
from vehicle- and davalintide-treated rats and the pair-fed
group associated with the KBP-088 5 �g/kg group.

At termination, we isolated epididymal, inguinal, and peri-
renal fat depots. Interestingly and in conjunction with the
significant body weight reduction, the weight of epididymal
white adipose tissue was significantly reduced after treatment
with 1.67 and 5 �g/kg KBP-088 (Fig. 4A). This reduction was
not observed in the pair-fed control or in davalintide-treated
rats. There was a trend toward reducing inguinal and perirenal
adipose tissue (Fig. 4, B and C). Furthermore, the size of the
adipocytes (Fig. 4D, 1–6, E) in KBP-088-treated HFD rats was
markedly reduced compared with vehicle- and davalintide-
treated rats and corresponding pair-fed controls.

KBP-088 enhances glucose tolerance and potentially insulin
sensitivity. As expected, the basal insulin levels were markedly
increased in HFD rats compared with ND rats; however,
hyperinsulinemia was significantly reduced in KBP-088
groups compared with vehicle (data not shown). To investigate
the effect of KBP-088 on glucose tolerance, we performed an
OGTT in weeks 3 and 7. Glucose tolerance was significantly
improved by KBP-088 (1.67 and 5 �g/kg) and davalintide (5
�g/kg) to a similar extent (Fig. 5, A and B), evidenced by the
�12% decreases in the blood glucose AUC values for both
treatment doses of 5 �g/kg (Fig. 5, C and D). Pair feeding did
not improve glucose tolerance in either test. The glucose-
induced insulin hypersecretion observed in vehicle- and pair-
fed groups was markedly suppressed during OGTT by the two
concentrations of KBP-088 and by davalintide at 5 �g/kg,

which resulted in significantly reduced insulin AUC values in
KBP-088- (1.67 and 5 �g/kg) and davalintide- (5 �g/kg)
treated rats (Fig. 5, E and F).

Overall, these findings suggest that KBP-088 exerts a pro-
nounced anorectic effect in HFD rats, a reduction of body weight,
and an improvement in energy homeostasis in conjunction with
alleviation of hyperinsulinemia, which is in line with previous
findings for injectable DACRAs (5), and illustrates the need for
prolonged receptor activation to induce these effects.

DISCUSSION

Amylin receptor agonists are highly interesting as candidates
for the treatment of type 2 diabetes and obesity (4). However,
despite the approval of the amylin receptor agonist pramlintide
for the treatment of diabetes as adjunct to mealtime insulin,
these ligands are notoriously limited in terms of efficacy both
on glucose homeostasis and on weight control. Recent studies
have indicated that DACRAs, dual amylin and calcitonin
receptor agonists, have potency extending far beyond classical
amylin agonists such as pramlintide, although the explanation
for this remained to be elucidated.

In this study, we compared a novel DACRA, called KBP-088,
to the amylin mimetic davalintide, an amylin, calcitonin, and
calcitonin gene-related peptide receptor agonist, using a series of
in vitro and in vivo tests to elucidate the mechanism underlying
the superior activity of the DACRAs. By use of short-term in vitro
assays, davalintide was roughly equipotent to KBP-088; however,
when their ability to elicit long-term receptor activation was
tested, davalintide did not induce this. On the other hand, KBP-
088 activated the receptor for up to 72 h, demonstrating a superior
receptor activation profile. Furthermore, these effects manifested
directly in a prolonged ability to control appetite by KBP-088,
which was not seen for davalintide. This was somewhat surpris-
ing, as davalintide previously had been shown to bind irreversibly
to the AMY-R (9); however, due to some yet to be identified
mechanism, this does not translate into prolonged receptor acti-
vation or prolonged suppression of appetite.

In this study, KBP-088 induced a marked weight loss. The
drastic reduction in body weight observed at study start could be
explained by the initial anorectic effect of KBP-088, as the
food-restricted pair-fed controls lowered their body weight simi-

Fig. 3. Weekly (A), study end body weight (B), and food efficacy (days 15-62; C) in HFD rats dosed with davalintide and KBP-088 (1.67 and 5 �g/kg) for 62
days and pair-fed (n � 8 rats per group; KBP-088 5 �g/kg n � 4). *P 	 0.05, **P 	 0.01, ***P 	 0.001; * vs. vehicle, # vs. 1.67 �g/kg davalintide, $ vs.
5 �g/kg davalintide, ¤ vs. pair-fed 5 �g/kg KBP-088.
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larly. Importantly, five animals were subtracted from the 5 �g/kg
group due to a too-large weight loss. The maximal dose of
KBP-088 was selected based on previous findings using salmon
calcitonin, an amylin and calcitonin receptor agonist, and
DACRAs (5); however, this peptide exerts a very potent anorectic
effect, and in future studies the maximal doses will be of lower
concentration. Interestingly, the food intake returned to normal
within 3 wk, and the pair-fed group regained lost body weight,
whereas the KBP-088-treated groups maintained the weight loss

achieved, 16% throughout the study in the highest-concentration
KBP-088 group. We speculate that the nonexisting prolonged
response of davalintide underlay the lack of ability to suppress
body weight at the doses chosen, although it transiently sup-
pressed food intake. These are consistent with the need for
infusion pumps and thereby continuous exposure to davalintide in
order for it to exert a weight-reducing effect (9).

Considering the fact that KBP-088 significantly suppresses
body weight compared with the pair-fed controls emphasizes

Fig. 4. Relative weight of epididymal (A), inguinal (B), and retroperitoneal (C) adipose tissue at study end. D 1–6: Hematoxylin-stained epididymal adipose tissue
at �10 magnification in 1) vehicle, 2) lean, 3) KBP-088, 4) davalintide, 5) pair-fed KBP-088, and 6) pair-fed davalintide, respectively (n � 8 rats per group;
KBP-088 5 �g/kg n � 4). E: quantified adipocyte size (12 sections per group; 6 sections for ND-control, �20 magnification, dimension: 2040 � 1536). *P 	
0.05, **P 	 0.01, ***P 	 0.001: * vs. vehicle, $ vs. 5 �g/kg davalintide, # vs. pair-fed 5 �g/kg davalintide, ¤ vs. pair-fed 5 �g/kg KBP-088. Statistical analysis
between groups was evaluated by one-way ANOVA post hoc analyses. All data are means � SE.
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that KBP-088 has some beneficial effect on the weight reduc-
tion besides suppressed food intake. Furthermore, the de-
creased food efficiency of the KBP-088-treated rats, and the
difference between treated and pair-fed rats, suggest an in-
creased energy expenditure. Davalintide has enhanced pharma-
cological properties over rat amylin (8), albeit a short-lasting
effect compared with KBP-088. Under normal conditions the

rats will lower energy expenditure during weight loss; how-
ever, continuous infusion of amylin prevents this reduction (11,
18), and similar effects were observed with davalintide (9).

Interestingly, amylin increases energy expenditure only when
given as a continuous infusion or icv (3, 7, 18), a finding likely
related to the short-lived activation of the AMY-R. However, the
energy expenditure needs to be formally assessed in the future.

Fig. 5. A and B: plasma glucose during oral glucose tolerance test (OGTT) in HFD rats dosed with davalintide and KBP-088 (1.67 and 5 �g/kg) after 3 and 7
wk, respectively. Total AUC for glucose (C and D) and insulin (E and F) during OGTT after 3 and 7 wk, respectively (n � 8 rats per group; KBP-088 5 �g/kg
n � 4). *P 	 0.05, **P 	 0.01, ***P 	 0.vs. pair-fed 5 �g/kg davalintide, ¤ vs. pair-fed 5 �g/kg KBP-088. Statistical analysis between groups was evaluated
by one-way ANOVA post hoc analyses. All data are means � SE.
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Additionally, KBP-088 reduced overall adiposity as well as
decreasing the size of adipocytes in the epididymal white
adipose tissue over the study period. Weight loss has on
multiple occasions been associated with beneficial effects on
adipocytokines (14) and leptin metabolism – leptin sensitivity,
which has previously been shown to be improved by DACRAs
(5). Furthermore, weight loss and reduction in adipose cell size
are involved in restoring plasma insulin concentration toward
normal, concomitant with the return of normal tissue insulin
sensitivity (13), and whether KBP-088 has a direct effect on
adipocyte hypertrophy needs further investigations.

Short- and long-term treatment with KBP-088 improved
glucose tolerance compared with both vehicle and pair-fed
groups in accord with previous studies performed with
DACRAs (5) and davalintide. The previously described effect
of davalintide on glucose tolerance was performed in rats
receiving a continuous infusion of davalintide (8). Notably,
glucose tolerance was also improved in davalintide-treated rats
even though there was a lack of prolonged receptor activation.
This was probably due to the predosing of the rats with the
peptides 30 min prior to an OGTT, which confirms the ability
of davalintide to improve glucose tolerance short-term, as
previously described. However, to evaluate the overall treat-
ment effect of KBP-088 and davalintide on glucose tolerance,
the OGTT must be performed without predosing. As KBP-088
has a prolonged response and reduces body weight, the gluco-
regulatory and insulinostatic effects would expectedly be pres-
ent; however, as davalintide did not elicit long-term receptor
activation, the glucose-lowering effect might have been lost.

In line with previous DACRA findings, albeit in contrast to
other glucose-lowering agents such as sulfonylureas and GLP-1
analogs, the enhanced glucose disposal was achieved with an
attenuated insulin secretion. This could imply an enhanced insulin
sensitivity; however, this needs further investigations addressing
insulin sensitivity and circumventing gastric emptying, as amylin
agonism lowers the gastric emptying rate (19, 20).

In conclusion, the novel DACRA KBP-088 has prolonged
receptor activation, and furthermore, KBP-088 induces and
sustains a marked weight loss over 62 days in obese rats, which
concomitantly leads to a reduced amount of adipose tissue. In
addition, KBP-088 improves glucose tolerance and implies im-
proved insulin action, underscoring the potential of KBP-088 as
an antiobesity agent with additional benefits on glucose control.
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Gydesen S, Andreassen KV, Hjuler ST, Hellgren LI, Karsdal
MA, Henriksen K. Optimization of tolerability and efficacy of the
novel dual amylin and calcitonin receptor agonist KBP-089 through
dose escalation and combination with a GLP-1 analog. Am J Physiol
Endocrinol Metab 312: E000–E000, 2017. First published March 14,
2017; doi:10.1152/ajpendo.00419.2016.—Amylin and GLP-1 ago-
nism induce a well-known anorexic effect at dose initiation, which is
managed by dose escalation. In this study we investigated how to
optimize tolerability while maintaining efficacy of a novel, highly
potent dual amylin and calcitonin receptor agonist (DACRA), KBP-
089. Furthermore, we tested the GLP-1 add-on potential of KBP-089
in high-fat diet (HFD)-fed rats. KBP-089 potently activated both the
amylin and calcitonin receptors in vitro and demonstrated a prolonged
receptor activation as well as a potent reduction of acute food intake.
HFD rats dosed every day or every second day obtained equal weight
loss at study end, albeit with an uneven reduction in both food intake
and body weight in rats dosed every second day. In a 4-fold dose
escalation, KBP-089 induced a transient reduction in food intake at
every escalation step, with reducing magnitude over time, and the
following treatment with 2.5, 10, and 40 �g/kg resulted in an ~15%
vehicle-corrected weight loss, a corresponding reduction in adipose
tissue (AT), and, in all treatment groups, improved oral glucose
tolerance (P � 0.01). Twofold and linear escalations suppressed body
weight evenly with no significant reduction in food intake at either
escalation step. KBP-089 (1.25 �g/kg) and liraglutide (50 �g/kg)
reduced 24-h food intake by 29% and 37% compared with vehicle,
respectively; however, when they were combined, 24-h food intake
was reduced by 87%. Chronically, KBP-089 (1.25 �g/kg) and lira-
glutide (50 �g/kg) lowered body weight 8% and 2% in HFD rats,
respectively, whereas the combination resulted in a 12% body weight
reduction. Moreover, the combination improved glucose tolerance
(P � 0.05). In conclusion, DACRAs act complementarily with GLP-1
on food intake and body weight. Furthermore, on escalation, KBP-089
was well tolerated and induced and sustained a significant weight loss
and a reduction in AT in lean and HFD rats, underscoring the potential
of KBP-089 as an anti-obesity agent.

obesity; amylin, DACRA; adiposity; treatment; tolerance; GLP-1;
insulin sensitivity

OBESITY IS THE RESULT of excessive caloric intake and a sedentary
lifestyle. Complications such as insulin resistance, type 2 diabetes
mellitus (T2DM), and nonalcoholic fatty liver disease, among

others, often coexist with obesity. Achieving weight loss through
low-energy diets, increased physical activity, and behavioral ther-
apy represent the core components of lifestyle intervention in
obesity management (31). Complementary therapies such as sur-
gery and pharmacotherapy are used in persons not achieving
sufficient weight loss with lifestyle interventions (8).

Amylin receptor agonists (pramlintide and davalintide) have
shown promise for weight reduction in preclinical models (19)
and clinical settings (3, 26), and in combination with leptin
(22) and small-molecule weight loss agents (4). Due to its
appetite-regulating capability, pramlintide has been shown to
reduce insulin-induced weight gain, in combination with reg-
ulation of postprandial glucose levels, and therefore has been
approved as adjunct therapy to mealtime insulin for the treat-
ment of T2DM (25, 32). In the context of T2DM, pramlintide
has been shown to cause small placebo-subtracted absolute
reductions in hemoglobin A1c (Hb A1c) of 0.2–0.4% and
weight loss of 2.1–2.3 kg in obese individuals (20). Side effects
include temporary nausea in T2DM (20, 34).

The most recent therapy for obesity is high-dose liraglutide,
which induces a reduction in body weight and sustains the
achieved weight loss partially due to a lowered appetite (7).
Furthermore, liraglutide also addresses elevated blood glucose
levels, albeit still with limitations in terms of efficacy and
challenges with tolerability (14, 17). Treatment with amylin
and GLP-1 analogs induces potent reductions in food intake.
Changes in satiety induced by activation of receptors in the
brain (e.g., by amylin and GLP-1) can lead to nausea (5, 10),
and to circumvent these tolerability issues, the peptides are
escalated in dose over time (3, 15, 17).

Dual amylin and calcitonin receptor agonists (DACRAs)
elicit activation not only of the amylin receptor (AMY3-R) but
also of the calcitonin receptor (CTR) (1). Notably, DACRAs
activate the receptors for an extended time period, leading to
superior effects on classical amylin-induced responses in vivo,
such as food intake, weight reduction, and suppression of
glucagon (1, 9, 24, 30).

In this study, we characterized a novel, highly potent
DACRA, KBP-089, in vitro as well as in vivo. We determined
the potency and receptor activation profile using cell lines
expressing the CTR and the AMY3-R. In vivo, we evaluated
the tolerability of KBP-089 using dose-escalation regimes,
assessed dosing frequency by comparing daily dosing with
dosing every second day, and examined KBP-089 as mono-
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therapy and in combination with the GLP-1 analog liraglutide
as treatment for obesity in high-fat diet-fed rats (HFD).

METHODS

Peptide Therapy

Synthetic KBP-089 (American Peptide Company, Vista, CA) and
liraglutide (Bachem, Bubendorf, Switzerland) were dissolved in saline
for subcutaneous delivery. The suboptimal doses chosen for KBP-089
administration in the current in vivo investigations were based on
previous comparable DACRA studies in animal models of obesity
using potent DACRA, KBP-042 (11), and KBP-088 (9) and on
previous studies using liraglutide (16).

In Vitro Receptor Binding and Activity

KBP-089 receptor specificity and potency were determined by
cAMP production and �-arrestin recruitment in cell lines with heter-
ologous overexpression of the human calcitonin (CTa), amylin
(CTa � RAMP3), and calcitonin gene-related peptide (CGRP) recep-
tors (U2OS CALCR cells, DiscoverX catalog no. 93-0566C3;
CHO-K1 CALCR-RAMP3, DiscoverX catalog no. 93-0268C2; and
CHO-K1 CALCRL-RAMP1, DiscoverX catalog no. 93-0269C2, re-
spectively). All in vitro cell experiments were conducted with 2,500
cells/well, incubated with ligands for 3 h at 37°C in a humidified
incubator with atmospheric air supplemented with 5% CO2 unless
otherwise specified. Quantification of the intracellular cAMP was
assayed using the cAMP femto Tb kit (no. 62AM7PEB; Cisbio
Bioassays) according to the manufacturer’s instructions. �-Arrestin
recruitment was quantified by using the PathHunter detection kit
(DiscoverX catalog no. 93-0001) according to the manufacturer’s
instructions. Data analysis was conducted as previously described (1,
2, 9).

Animal Experiments

All animal procedures were performed in accordance with guide-
lines from the Animal Welfare Division of the Danish Ministry of
Justice under the institutional license issued to Nordic Bioscience
(2012-15-2934-00094). Male Sprague-Dawley (SD) rats (Envigo,
Horst, The Netherlands) were obtained at 6 wk of age and housed at
the Nordic Bioscience animal facility (21–23°C, 55–65% relative
humidity, 12:12-h light-dark cycle) with ad libitum access to food and
water.

Animals

From arrival and throughout the study periods, normal-diet age-
matched lean rats (ND) were fed a standard pelleted chow (no. 5002;
LabDiet, St. Louis, MO) and high-fat diet-fed rats (HFD) a 60 kcal%
fat diet (no. 58Y1; TestDiet, London, UK) from arrival and a mini-
mum of 10 wk before study initiation.

Acute Food Intake

Acute food intake tests were performed in overnight-fasted HFD
rats (16 wk of age). The animals received either vehicle (saline) or

KBP-089 and/or liraglutide subcutaneously in multiple concentrations
and combinations, and food intake was monitored 4, 24, 48, and 72 h
postinjection.

Chronic In Vivo Studies

Dosing once daily vs. every other day. To assess daily dosing vs.
dosing every other day, male HFD rats (18 wk of age) were randomly
assigned into three treatment groups (n � 5–6) and received either
vehicle (saline) or KBP-089 (5 �g/kg) once daily (s.i.d.) or every
other day (q.a.d.) for 15 days. Food intake and body weight was daily
monitored. On days 0 and 16, a pharmacokinetic (PK) profile was
conducted. The rats received a single injection of KBP-089 (5 �g/kg),
and the amount of KBP was measured in plasma samples obtained 0,
10, 20, 40, 60, 120, and 240 min after dosing in an in-house ELISA
as previously described (12).

KBP-089 tolerability in HFD rats. One hundred age-matched male
SD rats (50 HFD and 50 ND, 18 wk of age) were assigned into
treatment groups and normalized according to body weight (n � 10),
and a four-step dose escalation of KBP-089 (0.625, 2.5, 10, and 40
�g/kg) was applied, followed by 6 wk of treatment with each group’s
final dose, as follows. All four treatment groups received 0.625 �g/kg
KBP-089 from study start; one group continued 0.625 �g/kg treat-
ment throughout the study. Three of the treatment groups receiving
0.625 �g/kg KBP-089 were escalated to 2.5 �g/kg at day 7; one group
continued 2.5 �g/kg treatment throughout the study. Two of the
treatment groups receiving 2.5 �g/kg KBP-089 were escalated to 10
�g/kg at day 21; one group continued 10 �g/kg treatment throughout
the study. One of the treatment groups receiving 10 �g/kg KBP-089
was escalated to 40 �g/kg at day 35 and continued 40 �g/kg treatment
throughout the study. Food intake and body weight were monitored
daily through the escalation period and once weekly during the
treatment period. An oral glucose tolerance test (OGTT) was per-
formed 3 wk into the treatment period.

In addition, we did a similar dose-escalation study with smaller
escalations of KBP-089 in male ND rats (n � 10 rats/treatment group,
16 wk of age). These rats were escalated either once weekly (0.625,
1.25, 2.5, 5, and 10 �g/kg; E1) at days 0, 7, 14, 21, and 28 or twice
weekly (0.625, 0.94, 1.25, 1.88, 2.5, 3.75, 5, 7.5, and 10 �g/kg; E2)
at days 0, 4, 7, 11, 14, 18, 21, 25, and 28 with daily monitoring of food
and body weight.

KBP-089 and liraglutide in HFD rats. Seventy HFD rats (18 wk of
age) were assigned into treatment groups according to body weight
(n � 9–10 rats/treatment group). The rats received suboptimal doses
of KBP-089 (0.625 and 1.25 �g/kg sc), liraglutide (25 and 50 �g/kg),
and their combinations (0.625 � 25 �g/kg and 1.25 � 50 �g/kg) and
vehicle for 10 wk. Body weight was monitored daily, and after 3 and
8 wk of treatment, OGTTs were performed. At study end, animals
were euthanized (anesthetized by inhalation of isoflurane), followed
by exsanguination and dissection. Epididymal, retroperitoneal, and
subcutaneous inguinal fat were surgically removed and weighed.

Glucose Tolerance Tests

The rats received glucose by oral gavage (2 g/kg). EDTA plasma
samples were collected from the tail vein before glucose challenge (0

Table 1. Amino acid sequence of hCT, sCT, KBP-089, davalintide, and rat amylin

Name
NH2-Term.

Mod. 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
COOH-Term.

Mod.

hCT C G N L S T C M L G T Y T Q D F N K F H T F P Q T A I G V G A P -NH2

sCT C S N L S T C V L G K L S Q E L H K L Q T Y P R T N T G S G T P -NH2

KBP-089 AC- C S N L S T C M L G R L S Q D L H R L Q T Y P K T D V G A N A P -NH2

Davalintide K C N T A T C V L G R L S Q E L H R L Q T Y P R T N T G S N T Y -NH2

rAMY K C N T A T C A T Q R L A N F L V R S S N N L G P V L P P T N V G S N T Y -NH2

Amino acid sequences of human calcitonin (hCT), salmon calcitonin (sCT), KBP-089, davalintide, and rat amylin (rAMY) are shown. Modifications in
KBP-089 consist of an NH2-terminal acetyl group and a COOH-terminal amide group.
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min) in both tests and at 15, 30, 60, and 120 min after glucose
challenge.

Biochemical Analysis

Blood samples were collected in EDTA tubes and centrifuged at
5,000 rpm for 10 min at 4°C. Blood glucose was monitored using the
Accu-Check Avia monitoring system (Roche Diagnostics, Rotkreuz,
Switzerland). Plasma levels of insulin (Mercodia rat insulin ELISA;
Mercodia, Uppsala, Sweden) were analyzed according to the manu-
facturer’s instructions.

Statistical Analysis

All figure data are means � SE. Group differences were as-
sessed using analysis of variance followed by post hoc Dunnet’s
(compared with vehicle) or Tukey’s multiple comparison test. Lean
age-matched controls were compared with HFD vehicle using
Student’s t-test. All analyses were performed using GraphPad
Prism (GraphPad Software, San Diego, CA). Concentration-re-
sponse curves were fitted in GraphPad Prism using the variable
slope (four parameter) setting with least-squares fit. EC50 values
were determined in individual experiments, and the average of

Fig. 1. A–D: Concentration-response curves
of KBP-089 for cAMP (A) and �-arrestin
induction (B) in calcitonin receptor (CTR)-
expressing cell line or cAMP (C) and �-ar-
restin induction (D) in amylin receptor
(AMY3-R)-expressing cell line. E: pro-
longed CTR-specific �-arrestin response
mediated by 100 nM KBP-089 in CTR-
expressing cells for 4–72 h. F: �-arrestin
induction in CGRP receptor-expressing cell
line. For A–F, pooled data are from 3–4
independent experiments. G: effect of a sin-
gle subcutaneous KBP-089 injection on ca-
loric intake (n � 6–8 rats per group). *P �
0.05; ***P � 0.001 compared with vehicle.
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means � SD was used to calculate the pEC50. A value of P � 0.05
was considered statistically significant.

RESULTS

KBP-089 Induces Prolonged Receptor Activation In Vitro

KBP-089 is a novel DACRA, and the sequence can be found in
Table 1 with the sequences of related peptides. The receptor
activation profile corresponds to that in previous publications,
with salmon calcitonin (sCT) being the most potent ligand on both
receptors and human calcitonin and amylin being selective for
their corresponding receptors (2, 9, 28). The ability of KBP-089 to
activate the calcitonin- and amylin receptors was assessed by
cAMP production and �-arrestin recruitment (Fig. 1, A–D), and
corresponding pEC50 values were determined (see Table 2).
pEC50 values for KBP-089 for �-arrestin on both CTa and
AMY3a were significantly higher compared with the sCT pEC50

value, and in addition, the KBP-089 pEC50 value for cAMP on
AMY3a was markedly higher than the sCT pEC50 value. Further-
more, an important aspect of the DACRAs is their prolonged

interaction with the CTa (2). To address this, we tested prolonged
receptor activation with KBP-089, and as shown in Fig. 1E,
KBP-089 induced a potent prolonged receptor activation with
activation still observed after 72 h, in line with other DACRAs (1,
9). Finally, we tested the response on the CGRP receptor, and
even at high concentrations, KBP-089 did not induce �-arrestin
recruitment (Fig. 1F).

KBP-089 Potently Attenuates Acute Food Intake

A single dose of KBP-089 dose-dependently reduced caloric
intake (Fig. 1G). Four hours postinjection, all concentrations of
KBP-089 significantly suppressed caloric intake, and at 24 h a
similar suppression, except from the KBP-089 0.625 �g/kg dose,
was observed. At 48 h postinjection, KBP-089 still suppressed
food intake with 5, 10, and 40 �g/kg doses (40 �g/kg ~28% of
vehicle intake, P � 0.001). Interestingly, a single injection of 10
and 40 �g/kg KBP-089 markedly suppressed caloric consumption
in rats. Furthermore, in terms of exposure, no difference between
first and last dose was observed.

Table 2. Amylin and calcitonin receptor pEC50 values for KBP-089 and sCT

Ligand

CTR AMY3-R

cAMP �-Arrestin cAMP �-Arrestin

pEC50 pEC50 pEC50 pEC50

Salmon calcitonin‡ 9.8 � 0.1 (3) 8.2 � 0.0 (3) 8.8 � 0.3 (3) 8.7 � 0.1 (3)
KBP-089 9.9 � 0.6 (3)ns 8.7 � 0.1 (3)† 9.9 � 0.4 (3)* 9.2 � 0.1 (3)†
Fold difference (EC50 KBP-089/EC50 sCT) 1.3 3.0 10.4 2.9

pEC50 values for cAMP production and �-arrestin recruitment were determined for each individual experiment, and data are means � SD of individual
experiments. Values in parentheses are the number of individual experiments performed in this study. All parameters were measured in cells expressing
human CTR or human AMY3-R. *P � 0.05; †P � 0.001, KBP-089 compared with sCT (ns, not significantly different). ‡Previously published (Andreassen
et al. 2014).

Fig. 2. A–C: daily caloric intake (A), body weight (B), and cumulative caloric intake (C) in high-fat diet-fed rats dosed with KBP-089 (5 �g/kg) s.i.d. or q.a.d.
for 15 days (n � 5–6 rats per group). D and E: corresponding PK profiles of KBP-089 (s.i.d. and q.a.d) at baseline (D) and at study end after 16 days (E). All
data are means � SE.
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KBP-089 Efficacy is Independent of Pharmacokinetic Profile

To assess KBP-089 tolerance, HFD rats were treated for 15
days with KBP-089 (5 �g/kg) either s.i.d. or q.a.d. Expectedly,
KBP-089 transiently suppressed food intake in the group dosed
once daily. The animals dosed every other day had a markedly
suppressed food intake on dosing days; however, the food
intake was increased on nondosing days (Fig. 2A). Concomi-
tantly, body weight was evenly reduced by KBP-089 s.i.d,
whereas KBP-089 q.a.d. had a more uneven weight loss, albeit

resulting in equal body weight reduction (Fig. 2B). Cumulative
food consumption was slightly reduced in s.i.d. dosed rats
compared with q.a.d. dosed rats (Fig. 2C).

To determine pharmacokinetics of KBP-089, we performed
a PK study before study start and after 15 days of KBP-089 (5
�g/kg) treatment (Fig. 2D). The plasma concentration of KBP-
089 increased immediately after dosing (Tmax was between 20
and 50 min), and KBP-089 was observed in plasma for 80 min.
T½ was ~1 h, and after 120 min, KBP-089 was cleared from

Fig. 3. A–D: daily caloric intake (A and B)
and body weight (C and D) during the esca-
lation period and the treatment period in
four-step dose-escalated lean and high-fat
diet-fed rats, respectively. E–H: correspond-
ing plasma glucose levels during oral glu-
cose tolerance test (E and F) and incremental
area under the curve (iAUC) values for glu-
cose (G and H) (n � 10 rats per group).
**P � 0.01; ***P � 0.001, compared with
vehicle. All data are means � SE.
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plasma. There was no difference between values for area under
the curve (AUC; Fig. 2E) on day 1 and day 15, indicating that
KBP-089 does not accumulate even with repeated exposure.

KBP-089 is Tolerable in High Concentrations After Dose
Escalation

Amylin receptor and GLP-1 receptor agonists are known to
evoke nausea and vomiting (5, 10), a phenomenon handled
clinically using dose escalation (15, 17). Furthermore, high
doses of DACRA therapy were shown to induce kaolin inges-
tion, an indication of an adverse gastrointestinal (GI) response
to therapy (11). In the current study, we determined whether
dose-escalating KBP-089 therapy led to weight loss with a
more “modest” suppression of food intake, i.e., a more toler-
able profile.

A 4-fold dose escalation followed by 6 wk of treatment
(0.625, 2.5, 10, and 40 �g/kg) in HFD and ND rats (565 � 7
vs. 488 � 11 g, P � 0.001) was applied. Dose escalation
induced a transient reduction in food intake at every escalation
step in ND (Fig. 3A) and HFD rats (Fig. 3B), but with
attenuated duration and magnitude over time compared with
those not escalated. The following 6 wk of treatment with 2.5,
10, and 40 �g/kg resulted in an ~15% vehicle-corrected weight
loss in ND (Fig. 3C) and HFD rats (Fig. 3D) and a correspond-
ing reduction in overall adipose tissue (data not shown). Food
efficiency was calculated on the basis of food intake and body
weight change, and as previously observed, food efficiency
was decreased by DACRA treatment (9, 11) (data not shown).
Moreover, all treatment groups showed improved oral glucose
tolerance (ND rats, Fig. 3E; HFD rats, Fig. 3F), resulting in
significantly lowered (P � 0.01) incremental AUC values (ND
rats, Fig. 3G; HFD rats, Fig. 3H).

As was evident from the previous study, fourfold concentration
increments still led to substantial suppression of food intake.
Accordingly, we switched to twofold escalations (0.625, 1.25, 2.5,

5, and 10 �g/kg; E1) once weekly and linear escalations (0.625,
0.94, 1.25, 1.88, 2.5, 3.75, 5, 7.5, and 10 �g/kg; E2) twice
weekly, and as shown in Fig. 4A, smaller dose escalations were
associated with a lower reduction in food intake at the indi-
cated increases in dose level. Furthermore, the cumulative
reduction in food intake was larger in the group without
escalation than in the two escalated groups (Fig. 4B). Impor-
tantly, weight loss following dose escalation reached the same
magnitude as that without escalation, albeit the time to get to
maximum weight loss was prolonged (Fig. 4C). Expectedly,
the food efficiency was lowered in all therapy groups (Fig. 4D).

KBP-089 Acts Complementarily with GLP-1 on Food Intake,
Body Weight, and Glucose Tolerance

To assess whether KBP-089 acts in combination with GLP-1
on food intake and body weight, we did acute food intake
studies with KBP-089 and GLP-1 analog, liraglutide, and a
long-term treatment study in HFD rats. The effect of a single
subcutaneous injection of KBP-089, liraglutide, and their com-
binations were tested on the cumulative 72-h caloric intake
using multiple concentrations (Fig. 5A). A single injection of
liraglutide (100, 200, and 400 �g/kg) significantly suppressed
the caloric consumption compared with vehicle, whereas the
lower concentrations of liraglutide (25 and 50 �g/kg) were not
able to change the intake. Concomitantly, the high concentra-
tions of KBP-089 (2.5, 5, and 10 �g/kg) were able to induce a
significant reduction in the 72-h caloric intake compared with
vehicle, whereas the low concentrations of KBP-089 (0.625
and 1.25 �g/kg) were unable to attenuate 72-h caloric intake.
Interestingly, all the combinations used were able to induce a
marked suppression in the amount of calories consumed over
72 h compared with intake by vehicle rats.

To assess whether KBP-089 acts complementarily with
liraglutide, low doses of liraglutide and KBP-089 were used
alone or in combination for 10 wk. On the basis of effects

Fig. 4. A and B: daily caloric intake (A) and
body weight (B) during the escalation period
in 2-fold escalations (0.625, 1.25, 2.5, 5, and
10 �g/kg; E1) once weekly at days 0, 7, 14,
21, and 28 and linear escalations (0.625,
0.94, 1.25, 1.88, 2.5, 3.75, 5, 7.5, and 10
�g/kg; E2) twice weekly at days 0, 4, 7, 11,
14, 18, 21, 25, and 28 in lean rats fed a
normal diet. C and D: cumulative caloric
intake (C) and food efficiency (D) during the
escalation period (n � 10 rats per group).
**P � 0.01; ***P � 0.001 compared with
vehicle. #P � 0.05 compared with E1.
$$P � 0.01 compared with E2. All data are
means � SE.
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observed in Fig. 5A, we chose the suboptimal doses for the
chronic study. Ten weeks of treatment with low-dose liraglu-
tide (50 �g/kg) and KBP-089 (1.25 �g/kg) resulted in a 2%
and 8% vehicle-corrected weight loss, respectively, whereas
the combination resulted in a 12% vehicle-corrected body
weight reduction (Fig. 5B). Concomitantly, only a combination
of liraglutide and KBP-089 (50 �g/kg liraglutide and 1.25

�g/kg KBP-089) was able to lower overall adiposity, resulting
in a significant reduction in epididymal, inguinal, and perirenal
adipose tissue (Fig. 5, C–E). Moreover, this combination im-
proved oral glucose tolerance after 3 (Fig. 6, A and C) and 8 wk
(Fig. 6, B and D) of treatment. Insulin levels were lowered in
rats treated with low concentrations of KBP-089 and slightly
potentiated in rats treated with low concentrations of liraglutide

Fig. 5. A: cumulative caloric intake (72 h)
after a single dose of liraglutide, KBP-089,
or combinations of liraglutide and KBP-089.
B: body weight during treatment period.
C–E: weight of epididymal (C), inguinal
(D), and perirenal adipose tissue (AT; E) at
study end (n � 8–10 rats per group). *P �
0.05; ***P � 0.001 compared with vehicle.
All data are means � SE.
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after 3 wk (Fig. 6E) of treatment, resulting in significantly
different AUC values in KBP-089- and liraglutide-treated rats
(Fig. 6G). The combination of the two insulin-opposing treat-
ments (50 �g/kg liraglutide and 1.25 �g/kg KBP-089) resulted
in an intermediate insulin level that was not significantly
different from that in vehicle-treated rats; however, it was
significantly lower compared with that in liraglutide-treated

rats (Fig. 6G). Insulin levels during the OGTT performed after
8 wk of treatment with KBP-089 showed a reducing trend (Fig.
6F), albeit AUC was not significantly different from vehicle
(Fig. 6H). A similar trend was observed in the combination (50
�g/kg liraglutide and 1.25 �g/kg KBP-089), whereas insulin
levels in obese rats treated with low-dose liraglutide were not
different from those in rats treated with vehicle.

Fig. 6. Plasma glucose (A and B) and insulin
levels (E and F) during oral glucose toler-
ance test (OGTT) after 3 and 8 wk, respec-
tively, in high-fat diet-fed rats dosed with
liraglutide (50 �g/kg), KBP-089 (1.25 �g/
kg), or a combination of liraglutide and
KBP-089 (50 and 1.25 �g/kg, respectively)
for 10 wk. Total area under the curve (AUC)
is shown for glucose (C and D) and insulin
levels (G and H) during OGTT after 3 and 8
wk, respectively, in all treatment groups (li-
raglutide, 25 and 50 �g/kg; KBP-089, 0.625
and 1.25 �g/kg; or combinations of liraglu-
tide and KBP-089, 25 � 0.625 �g/kg and
50 � 1.25 �g/kg, respectively; n � 8–10
rats per group). *P � 0.05 compared with
vehicle. #P � 0.05; ##P � 0.01 compared
with 25 �g/kg liraglutide. ¤P � 0.05; @P �
0.07 compared with 50 �g/kg liraglutide. All
data are means � SE.
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DISCUSSION

In this article we present data on the novel dual amylin and
calcitonin receptor agonist (DACRA) KBP-089. Our data show
that KBP-089 is a highly potent DACRA, based on activation
of the AMY3-R and the calcitonin receptor, with no activation
of the CGRP receptor, and importantly, KBP-089 possesses the
ability to induced prolonged receptor activation, a trait known
to be crucial for in vivo activity of other members of the
DACRA family (9).

The in vitro investigation was limited to AMY3-R, and
investigations into AMY1-R and AMY2-R activation are war-
ranted to provide important pharmacological information due
to differences in receptor subtype off-target activation by
CGRP (21). However, the in vivo data presented in this article
suggests that KBP-089 does not have an AMY1-R activation
profile that is significantly different from that for AMY3-R or
that such a difference is not important for the observed phar-
macological effect. A recent study of rodent area postrema
neurons suggests that the different subtypes are coexpressed in
the same individual neurons (18); hence, no AMY-R subtype
appears be to predominant, or tissue specific, and could be
indicative of amylin receptor expression in other AMY-R
relevant tissues.

The in vitro efficacy indeed translated to in vivo efficacy, as
shown by the massive suppression of food intake following a
single injection of KBP-089. Interestingly, on this parameter
KBP-089 was more potent than previously reported DACRAs
(9, 11), as well as other previously described amylin-receptor
agonists such as pramlintide and davalintide (19, 33), and the
suppression clearly exceeded a 24-h time frame, potentially
indicating that less frequent dosing could be feasible. To
address this question, we compared chronic dosing using 5
�g/kg s.i.d. or 5 �g/kg q.a.d. KBP-089, and importantly, both
dose regimens led to similar weight loss during the 15-day
study; however, in the q.a.d. arm, notable fluctuations in food
intake and body weight were observed, likely resulting in a
challenge in terms of tolerability.

Peptides with known anorectic effects, such as amylin and
GLP-1 analogs, are associated with GI tolerability problems (3,
13), and we speculate that the massive suppression of food
intake following initial dosing is indicative of adverse effects
on the GI tract, as also supported by kaolin intake at high doses
of KBP-042 (11). To investigate whether a similar weight loss,
albeit with a less pronounced suppression of appetite, could be
obtained, we mimicked the clinical situation for pramlintide
and GLP-1 analogs and used dose escalation (3, 17). In these
studies, we found that dose escalation resulted in a similar
magnitude of weight loss, with lower suppression of appetite;
however, the time before maximum weight loss was prolonged.
Importantly, the increments of the dose escalation are very
important, because over-large increments led to substantial
suppression of food intake. These data correlate well with what
was expected from the literature and the dose escalation of
anorectic peptides (3, 17). These data indicate that dose-
escalation strategies can be tested in rat models using appetite
suppression and weight regulation as the output, and clearly
indicate that dose escalation is a good option for increasing
tolerability of this type of molecule.

Finally, because GLP-1 analogs and amylin receptor ago-
nists are thought to work, at least on the appetite regulation,

through a similar mechanism of action (13), we studied the
potential combination of KBP-089 with liraglutide. Both
classes of molecules exhibit weight-lowering effects, and pre-
viously, combinations of GLP-1 and amylin agonism have
shown synergistic reductions in food intake in nonhuman
primates (6), and peptide hybrids composed of an exenatide
analog and davalintide have shown beneficial effects body
weight and glucose control in obese rats (27, 29). Hence, the
combination of GLP-1 and amylin therapies for the treatment
of metabolic disease has been intensively discussed (23),
because combination-based therapies are increasing in this area
of disorders. We found a good effect on appetite suppression
when combining the two peptides, resulting in efficacy ob-
served at doses considered virtually ineffective when given as
stand-alone doses. Importantly, this manifested in efficacy on
body weight, as well.

In conclusion, KBP-089 is a novel, promising DACRA with
a substantial potency for control of metabolic parameters, and
dose-escalation strategies are implemented, it is highly likely
that the expected GI events can be overcome. Finally, KBP-
089 acts complementarily with GLP-1, indicating the potential
for an add-on therapy causing additional weight loss.
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The Dual Amylin and Calcitonin Receptor Agonist (DACRA),  

KBP-089, Improves Metabolic and Hepatic Features of Nonalcoholic 

Steatohepatitis in High Fat, High Cholesterol Fed Rats.  

 

Sofie Gydesen1,2*, Samuel J. Daniels1, Anna T. Larsen1, Nina Sonne1, Morten A. 

Karsdal1,3, Kim Henriksen1 

 

1Nordic Bioscience, Herlev Hovedgade 207, Herlev, Denmark,  
2Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark,  
3 KeyBioscience AG, Stans, Switzerland 

 

Abstract  

Obesity and non-alcoholic fatty liver disease (NAFLD) are the most common causes of 

nonalcoholic steatohepatitis (NASH) and subsequently chronic liver disease, such as 

fibrosis. While no treatments are approved, weight loss and insulin sensitizers have shown 

promise on metabolic and hepatic parameters; hence, drugs causing weight loss and 

alleviating insulin resistance are highly interesting as candidates for treatment of NAFLD 

and NASH.  

We started rats on high fat diet (HFD) for 8 weeks to induce obesity followed by a high fat, 

high cholesterol and cholate diet (HFCC) for 56 days to induce NASH. After HFD, the rats 

were assigned into treatment groups receiving either vehicle (saline) or escalated to 0.625, 

1.25, 2.5 and 5.0 µg/kg KBP-089.  

KBP-089 induced and sustained a significant 16.5% vehicle-corrected weight loss, reduced 

overall adiposity and enhanced insulin action during and oral glucose tolerance test. 

Furthermore, KBP-089 dose-dependently reduced the HFCC diet induced hepatomegaly 

and reduced circulating levels of triglycerides and AST. At the histological level, KBP-089 

impressively reduced both the combined NAFLD activity score and HFCC induced fibrosis 

stage. 

In conclusion, KBP-089 is a weight reducing agent that is well tolerated when introduced 

by dose escalation. Importantly, KBP-089 improves metabolic and hepatic features of NASH 

in a human like NASH model system, hence revealing the potential of KBP-089 as a 

therapeutic target in the treatment of NASH.  
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Introduction 

Nonalcoholic fatty liver disease (NAFLD) is considered the hepatic manifestation of the 

metabolic syndrome and is increasingly becoming common in parallel with the increasing 

prevalence of obesity83,152. NAFLD is characterized by excessive fat accumulation in the 

liver in the absence of excessive alcohol consumption or any other specific causes of hepatic 

steatosis82 – a lipid accumulation above 5% of the liver weight is classified as NAFLD83. 

When the balance between lipid uptake and utilization is abrogated, lipids accumulate in 

the liver. NAFLD encompasses a variety of liver pathologies with different clinical 

manifestations, extending from simple lipid accumulation in the hepatocytes to nonalcoholic 

steatohepatitis (NASH) with intralobular inflammation, hepatocellular ballooning and 

fibrosis100,288,289, and is projected to be the leading cause of liver transplants in the future153. 

Presently, there are no approved pharmacological treatments for NASH.  

Lifestyle changes focusing on healthy eating, weight loss and regular exercise is a 

cornerstone in NAFLD therapy in adults154–156 and children157, and bariatric surgery has 

been shown to reverse NASH and even substantial fibrosis158,159. Surgery however is only 

performed in a minority of the patients and is associated with peri- and postoperative 

hazards, hence there is clearly a need for pharmacological therapies to treat NASH160,161. 

Consequently, insulin sensitizers such as the PPAR-γ agonists pioglitazone109,110 and 

rosiglitazone111 have been introduced as “off-label” treatments for NASH112,290,291, and while 

these agents have proven efficacious in patients with NASH – with regards to hepatic 

histology and glucose control – their use is limited by the conservative beneficial effects and 

the undesired side effects associated with their use, namely weight gain. Insulin sensitizers, 

which improve glucose control but also reduces body weight could potentially be a more 

efficacious treatment, as weight loss is the most important parameter for NASH and a 

significantly weight loss per se results in resolutions of disease156. 

The therapeutics currently under evaluation in clinical trials are focused on relatively 

downstream events of liver injury such as inflammation and fibrogenesis – it might be 

useful to target upstream events such as weight loss, insulin sensitivity, control of satiety 

and energy efficiency177,178, hence possibly preventing the prevalence of progression into 

fibrosis and cirrhosis and targeting the core of MS.  

KBP-089 is a dual amylin and calcitonin receptor agonist (DACRA) that activate both the 

amylin receptor and the calcitonin receptor, and possess superior activity in terms of 

receptor activation and duration of activation compared to classical amylin receptor 

agonists268,269. Notably, the extended activation of the receptors appears to increase the in 

vivo efficacy269, thus addressing a major limitation of amylin agonists.  

KBP-089 has along with another DACRA called KBP-042 shown anti-obesity potential as 

well as the ability to reduce liver steatosis in obese rats274,279. KBP-089 is associated with 

transient hypophagia at dosing initiation and activation of receptors in the brain (eg. by 
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amylin and GLP-1) that induce satiety changes can lead to nausea292,293; however, recently 

it was demonstrated that KBP-089 was well tolerated even in high concentrations when 

introduced by dose-escalation.  

In this study, we evaluate the effects of KBP-089 in a rat model with excessive hepatic lipid 

accumulations, inflammation and mild fibrosis including a characterization of the KBP-089 

effects on a series of metabolic parameters, such as bodyweight and glucose metabolism and 

importantly liver steatosis, inflammation and fibrosis.  

 

Materials and methods 

 

Peptide therapy 

Synthetic KBP-089 (American Peptide Company, CA, USA) was dissolved in saline for 

subcutaneous delivery (s.c.). The doses chosen for peptide administration in the current 

investigations were based on previous comparable DACRA studies in animal models of 

obesity using potent DACRAs269,270,274 

 

Animal experiments 

All animal procedures were performed in accordance with guidelines from the Animal 

Welfare Division of the Danish Ministry of Justice under the institutional license issued to 

Nordic Bioscience (2016-15-0201-00910). Male Sprague Dawley rats (Harlan, Venray, The 

Netherlands) were obtained at 6 weeks of age and housed (2 rats per cage, standard wood 

chips enriched with red-tinted huts, nest material and sticks) at the Nordic Bioscience 

animal facility (21-23 °C, 55-65% relative humidity, 12-h light/dark cycle) with ad libitum 

access to food and water. From arrival to study start, the rats were fed a 60 kcal% fat diet 

(5.1 kcal/g) (#58Y1, TestDiet, London, UK). 8 weeks post arrival and throughout the study, 

the rats were fed a 65 kcal% fat (mostly cocoa butter) with 2% cholesterol and 0.5% cholate 

added (HFCC) (5.30 kcal/g) (#D09052204, Research Diet, New Brunswick, NJ, USA). The 

rats received food and tap water ad libitum. 
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In vivo study 

KBP-089 in high fat, high cholesterol and cholate fed rats.  

After 8 weeks of high fat feeding, the rats were randomly assigned into experimental groups 

according to body weight, ensuring an equal average value of body weight at study start. 

The rats were dose escalated in four steps (0.625, 1.25, 2.5 and 5.0 µg/kg KBP-089) once 

weekly at day 1, 7, 14 and 21 followed by 4 weeks of treatment with either dose. All four 

treatment groups received 0.625 µg/kg from study start – one group continued 0.625 µg/kg 

treatment throughout the study. Three of the treatment groups receiving 0.625 µg/kg were 

escalated to 1.25 µg/kg at day 7 – one group continued 1.25 µg/kg treatment. Two of the 1.25 

µg/kg groups were escalated to 2.5 µg/kg at day 21 – one group continued 2.5 µg/kg 

treatment throughout the study and finally, one of the 2.5 µg/kg treatment groups was 

escalated to 5 µg/kg at day 35 and continued 5 µg/kg treatment throughout the study period. 

The vehicle group received saline (s.c.). Food intake and body weight were daily monitored 

through the escalation period and once weekly during the treatment period. We measured 

aspartate transaminase (AST), alanine transaminase (ALT), and triglyceride levels after 

the 8 weeks of high fat feeding and at study end, and performed an oral glucose tolerance 

test (OGTT) 2 weeks into the treatment period. 

 

Glucose tolerance tests  

The rats received glucose per oral gavage (p.o.) (2 g/kg) and blood samples were collected 

from the lateral tail vein prior to the glucose challenge (0 min) and 15, 30, 60, and 120 

minutes post glucose challenge in the OGTT. 

 

Liver histology  

To address tissue fat accumulation, potential inflammation and fibrosis, livers were 

surgically removed, fixed in 4% formaldehyde and paraffin embedded. 5µm sections from 

liver tissue were stained with Sirius Red and Masson’s Trichrome, slides were examined 

under a light microscope, and magnification for each picture is stated. Quantitatively image 

analysis of steatosis (% of area) was performed using Image J software. Further, the 

combined NAFLD activity score (NAS) (0-8) composed of a steatosis (0-3), ballooning (0-2) 

and inflammation (0-3) scores31 was performed. Two independent individuals  scored 

steatosis, ballooning, inflammation and fibrosis blindly (magnification x20, 8 images per 

animal; 4 pictures per depth; 5 animals per group).  

 

Biochemical analysis 

Blood samples were collected in Hep/Li tubes and centrifuged at 5000 rpm for 10 min at 4 

°C. Blood glucose was monitored by Accu-Check® Avia monitoring system (Roche 
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Diagnostics, Rotkreuz, Switzerland). Plasma levels of insulin (Mercodia Rat Insulin ELISA, 

Mercodia AB, Uppsala, Sweden) was analysed according to manufacturer's instruction. 

Alanine transaminase (ALT), aspartate transaminase (AST), and triglycerides (TG) levels 

were measured in-house (ADVIA® 1800, Siemens, Germany).  

 

Statistical analysis 

All data are presented as means ± SEM. The statistical analysis of various drug effects were 

conducted using one-way ANOVA followed by Dunnets's post test for multiple comparison 

for parametric data and Kruskal-Wallis test with Dunn’s post test for non-parametric data. 

Comparison between baseline and study end in vehicle rats as well as the difference 

between vehicle and KBP-089 (5 µg/kg) treated rats with regards to the parameters included 

in the NALFD activity score (NAS), and fibrosis score were evaluated by Student’s t-test. 

All analyses were performed using GraphPad Prism software (GraphPad Prism, San Diego, 

CA). A value of p<0.05 was considered statistically significant.  

 

Results 

KBP-089 potently reduced body weight and fat depot size 

After 8 weeks of high fat feeding, the rats were significantly obese compared to age-matched 

lean controls (data not shown). Post induction of experimental obesity, the diet was changed 

to HFCC and the rats assigned to the different treatment groups. KBP-089 treatment was 

subcutaneously administered and introduced by a four-step dose escalation once weekly 

followed by treatment with either dose (E0.625, E1.25, E2.5 and E5 µg/kg). Food intake was 

transiently attenuated by non-escalated 2.5 µg/kg KBP-089 (Figure 1A) as previously 

observed with DACRAs269,274,279. In the escalated groups, a transient reduction in food 

intake was observed when the rats were escalated to 2.5 µg/kg (Figure 1A), albeit 

cumulative caloric intake at study end was not significantly different in either of the 

escalation groups compered to vehicle rats (Figure 1B). 
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Figure 1: KBP-089 was well tolerated when introduced by dose escalation. KBP-089 treatment was 

introduced by a four-step dose escalation once weekly followed by treatment with either dose (E0.625, E1.25, E2.5 

and E5 µg/kg). (A) Caloric intake monitored daily initially, and then weekly in high fat, high cholesterol and cholate 

fed rats. Expressed as daily intake per animal. (B) Cumulative caloric intake in rats. (n = 10 rats per group). 

Statistical analysis between groups was evaluated by an ordinary one-way ANOVA with Dunnet’s multiple 

comparisons test (not significant). 

 

8 weeks of KBP-089 treatment – dose escalation from 0.625 µg/kg and the following 4 weeks 

of treatment with 1.25, 2.5 and 5 µg/kg KBP-089 (E1.25, E2.5 and E5 µg/kg) resulted in a 

~8%, 16% and 17% vehicle-corrected weight loss, respectively, hence significantly 

attenuating food efficiency (data not shown). At study end, epididymal, inguinal and 

perirenal fat pads were weighed and in line with the massive reduction in body weight, a 

corresponding reduction in epididymal (Figure 2B), inguinal (Figure 2C), and perirenal 

(Figure 2D) adipose tissue compared to vehicle was observed.  
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Figure 2: KBP-089 potently reduced body weight and fat depots in HFD rats. KBP-089 treatment was 

introduced by a four-step dose escalation once weekly followed by treatment with either dose (E0.625, E1.25, E2.5 

and E5 µg/kg). (A) Body weight monitored daily initially, and then weekly in high fat, high cholesterol and cholate 

fed rats. Relative weight of (B) epididymal, (C) inguinal and (D) peritoneal adipose tissue (AT) at study end. (n = 10 

rats per group). Statistical analysis between groups was evaluated by an ordinary one-way ANOVA with Dunnet’s 
multiple comparisons test, p<0.05. *compared to vehicle. 

 

KBP-089 enhances insulin action 

An OGTT was performed after 2 weeks of treatment (Figure 3). All treatment groups 

showed a trend towards lower blood glucose levels compared to vehicle 15 minutes post 

glucose challenge (Figure 3A); however, incremental area under the curve (iAUC) was only 

significantly reduced the highest treatment group when compared to vehicle (Figure 3C). 

Interestingly, the glucose stimulated insulin secretion observed in vehicle rats was dose-

dependently suppressed by KBP-089 during the OGTT (Figure 3B), hence resulting in 

significantly reduced insulin iAUC values in KBP-089 treated rats (Figure 3D).  
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Figure 3: KBP-089 enhances insulin action in HFCC rats. (A) Plasma glucose and (B) insulin during oral 

glucose tolerance test (OGTT) in high fat, high cholesterol and cholate fed (HFCC) rats treated with four-step dose 

escalated KBP-089. The rats were escalated once weekly followed by treatment with either dose (E0.625, E1.25, E2.5 

and E5 µg/kg). Incremental area under the curve (iAUC) values for (C) glucose and (D) plasma insulin during OGTT 

after 2 weeks of treatment. (n = 10 rats per group). Statistical analysis between groups was evaluated by an ordinary 
one-way ANOVA with Dunnet’s multiple comparisons test, p <0.05, * compared to vehicle. 

 

KBP-089 lowers circulating levels of aspartate transaminase and triglyceride  

Plasma for determination of ALT, AST, and TG levels was collected after 8 weeks of HFD 

(baseline) and at study end. 8 weeks of HFCC diet increased the circulating levels of AST, 

ALT, and TG levels in vehicle rats compared to baseline (Table 1).  

 

Biomarker Baseline   Study end P value 

AST 87.7 ±   2.1 U/L 141.8  ±   12.2 U/L p<0.001 

ALT 47.9   ±   1.5 U/L   146.3  ±   14.6 U/L p<0.001 

TG 0.84 ±   0.04 mmol/L  1.14  ±   0.07 mmol/L p<0.01 

 

Table 1: Baseline and study end values of alanine transaminase (ALT), aspartate transaminase (AST), triglycerides 

(TG), total cholesterol, high-density lipoproteins (HDL), and low-density lipoproteins (LDL) in untreated rats fed a 

high fat, high cholesterol and cholate diet. (n = 10 rats per group). The results are presented as mean ± SEM (n=10). 
Statistical analysis between baseline and study end was evaluated by Student’s t-test. 
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At study end, the level of aspartate transaminase (AST) in plasma was significantly reduced 

by KBP-089 treatment (E2.5 µg/kg, p<0.05; E5 µg/kg, p<0.01 and 2.5 µg/kg, p<0.05) (Figure 

4A). Similarly, ALT levels showed a lowering trend (Figure 4B), however, the values were 

not significantly reduced compared to vehicle at study end. The HFCC induced increase in 

circulation TG was lowered by KBP-089 – significantly in the E2.5 µg/kg group (Figure 4C).  
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Figure 4: The effect of KBP-089 on aspartate transaminases and triglyceride. Baseline and study end values 

of (A) aspartate transaminase (AST), (B) alanine transaminase (ALT), and (C) triglycerides (TG). (n = 10 rats per 

group). Statistical analysis between groups was evaluated by an ordinary one-way ANOVA with Dunnet’s multiple 

comparisons test and difference between baseline and study end by Student’s t-test, p<0.05. * compared to vehicle, 
#compared the groups baseline value, ¤p = 0.06. 

 

KBP-089 reduces accumulation of lipids in the liver 

At study end, hepatic steatosis and ballooning were assessed in liver (Figure 5). As seen in 

figure 5I, the HFCC diet led to a genuinely dramatic increase in lipid accumulation and 

ballooning. We calculated the fat content, which was ~23% in the vehicle rats. 

 
 

Figure 5: Masson’s Trichrome stained liver sections from HFCC rats. Representative pictures of Masson’s 
Trichrome stained livers from (I) vehicle and (II) rats escalated to 5 µg/kg KBP-089 (magnification of x10). 
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After 8 weeks of treatment, the HFCC diet induced hepatomegaly was dose-dependently 

reduced by KBP-089 (Figure 6A); however, this reduction in liver weights was equalized 

when normalized to the individual body weight (data not shown). We evaluated the livers 

using the NAFLD activity score (NAS). The blinded histological assessment of NAS was 

performed on Masson’s Trichrome and Sirius Red stained terminal hepatic tissue from 

vehicle and KBP-089 E5 µg/kg treated HFCC rats. HFCC feeding induced massive lipid 

accumulation, ballooning and mild inflammation in the vehicle livers. Notably, after 

treatment with KBP-089 for 8 weeks, this inappropriate storage of lipids was reduced by 

treatment with KBP-089 (Figure 6B) and concomitantly, NAS was significantly reduced 

(Figure 6C).  
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Figure 6: KBP-089 reduces diet induced hepatomegaly, liver steatosis and NAFLD activity score in HFCC 

rats.  (A) Liver weights at study end, (B) quantitatively image analysis of steatosis (% of area) using Image J software 

and (C) combined NAS score (0-8) composed of a steatosis (0-3), ballooning (0-2) and inflammation (0-3) scores31. 

Steatosis, ballooning and inflammation were scored blinded by two independent persons (magnification x20, 8 images 

per animal; 4 pictures per depth; 5 animals per group). Statistical analysis between groups was evaluated by (A) an 

ordinary one-way ANOVA with Dunnet’s multiple comparisons test, and (B, C) Student’s t-test, p <0.05, * compared 
to vehicle. 

 

KBP-089 reduces inflammation and fibrosis stage in HFCC rats 

We evaluated the terminal hepatic tissue from vehicle and KBP-089 E5 µg/kg treated HFCC 

rats. As seen in figure 7, 8 weeks of HFCC induced both marked hepatic steatosis, 

inflammation and mild fibrosis. The obese HFCC model had zone 3 perisinusoidal and 

periportal fibrosis – alone or with both traits present – and some of the livers even had 

bridging fibrosis.  
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Figure 7: Sirius red stained liver sections from HFCC rats. Representative pictures of Sirius Red stained livers 
from (I) vehicle, and (II) HFCC rats escalated to 5 µg/kg KBP-089 treatment (magnification x10).  

 

Furthermore, HFCC dieting profusely induced inflammation resulting in an inflammatory 

score of ~2, which was spectacularly reduced by approximately 60% by KBP-089 treatment 

(Figure 8A). Finally, the HFCC induced fibrotic traits were reduced in the hepatic sections 

from the KBP treated rats, resulting in an impressive ~45% reduction in fibrosis score 

compared to the vehicle HFCC rats (Figure 8B).  
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Figure 8: KBP-089 reduces inflammation and fibrosis scores in HFCC rats. (A) Lobular inflammation and 

(B) fibrosis score in vehicle and HFCC rats escalated to 5 µg/kg KBP-089 treatment. Two blinded independent persons 

(magnification x20 for inflammation, x10 for fibrosis, 8 images per animal; 4 pictures per depth 5 animals per group) 
scored inflammation and fibrosis31. 
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Discussion 

The present study describes the effects of the dual amylin and calcitonin agonist, KBP-089, 

in an experimental rat model of NASH. KBP-089 was able to induce and sustain significant 

weight loss, enhance insulin action and improve general liver health. In this study, we 

focused on the pathophysiology between diet induced obesity and insulin resistance, and 

the development of NASH. As previously reported, in rats, a diet high in fat and cholesterol 

leads to a phenotype resembling human NASH294–296, albeit without eliciting obesity. 

Therefore, we included fattening period so the rats were significantly obese when they 

started the HFCC diet. Notably, this model has metabolic and hepatic features of NASH 

including steatosis, ballooning and inflammation. Interestingly, this model also revealed 

features as zone 3 perisinusoidal and periportal fibrosis – alone or with both traits present 

– and bridging fibrosis, which is in line with fibrotic findings in female rats fed a high fat, 

high cholesterol diet for 16 weeks295.   

KBP-089 was in this study introduced by dose escalation, which has been shown effective 

when introducing high concentrations of KBP-089270, and was able to induce and sustain a 

significant weight loss equalling the weight loss previously described with standard 

dosing274. Importantly, KBP-089 possessed the ability to improve insulin action, consistent 

with other DACRAs269,274,279. 

An interesting aspect of the findings in the HFCC model regarding the reduction of fatty 

acid accumulation in the liver and enhanced insulin action is the known relation between 

liver fat, insulin resistance and NASH 297,298. Insulin sensitizers as rosiglitazone111 and 

pioglitazone109,110 have beneficial effects on the histologic features of livers in patients with 

NASH. Likewise, it has recently been found that the weight reducing agent, liraglutide, led 

to histological resolution in patients with NASH169. Hence, our findings suggest that KBP 

at least due to its weight reducing capacity and improvement of insulin action could be a 

potential treatment candidate for NASH. This is corroborated by the KBP-089 induced 

reduction in AST levels, hepatic inflammation and fibrosis in this severe model – 

inflammation and the fibrotic traits were significantly reduced. The protective effect of 

KBP-089 on the HFCC dietary model of NASH supports the hypothesis that therapies 

directed toward alleviation of insulin resistance and obesity could enhance the care of 

patients with NASH. 

In conclusion, the obese HFCC rat model reflects the human pathophysiology of NASH. 

KBP-089 is well tolerated when introduced by dose escalation and it induces a substantial 

weight loss. Importantly, KBP-089 improves metabolic and hepatic features of NASH, hence 

revealing the potential of KBP-089 as a therapeutic target that alleviates obesity and 

insulin resistance.  
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CHAPTER IV 

IV. Discussion   

 

This series of studies describes the metabolic effects of treatment with dual amylin- and 

calcitonin receptor agonists (DACRAs), called KBP-042, KBP-088 and KBP-089. These 

peptides activate both the amylin and the calcitonin receptor, and importantly, they possess 

the ability to induce prolonged receptor activation – a trait found to be crucial for potent in 

vivo activity. KBPs induce and sustain a pronounced weight loss in vivo, leading to 

markedly improved metabolic parameters including food preference, and these are beyond 

those observed simply by diet-induced weight loss. Furthermore, KBPs improve 

inflammatory status and fibrosis stage in a rat model of NASH. Finally, these peptides were 

well tolerated when introduced by dose escalation.  

Amylin receptor agonists such as pramlintide299 and davalintide300 have shown promise as 

pharmacological intervention in obesity and type 2 diabetes. Despite the approval of the 

amylin receptor agonist pramlintide for the treatment of diabetes as adjunct to mealtime 

insulin, these ligands are notoriously limited in terms of in vivo efficacy – both on glucose 

homeostasis and weight control. 

KBP-042, KBP-088 and KBP-089 are based on the peptide backbone of salmon calcitonin 

and selected on prolonged receptor activation, acute food intake and body weight reductions. 

The knowledge obtained in previous studies with salmon calcitonin encouraged a 

development of novel dual agonists targeting both the amylin- and calcitonin receptors. 

KBP-042 was the first peptide discovered and it was first presented in 2014268 followed by 

an injectable form showing that the use of injections reduced the variations on 

bioavailability273. Later other similar peptides like KBP-088 and KBP-089, also included in 

this thesis, were developed. KBP-042, KBP-088 and KBP-089 target the same receptors, 

albeit with slightly different potencies. This appears in vivo where KBP-088 induced a more 

pronounced hypophagic response in obese rats than KBP-042, which was tolerable at 10 

µg/kg. KBP-089 and KBP-088 have comparable receptor potencies and were therefore only 

used in 2.5 µg/kg when introduced without dose escalation. Nevertheless, these peptides 

have similar sequences and in vitro and in vivo properties, and have been used 

interchangeably in this thesis to address various parts of our metabolic questions as a part 

of the overall development plan for these. 

  



              IV. Discussion 

 

100 

Dual Amylin and Calcitonin Receptor Agonists Mediated Receptor Activation 

Our data shows that KBPs are highly potent in terms of activation of the amylin and the 

calcitonin receptor – with no activation of the CGRP receptor. Importantly, KBPs elicit 

prolonged receptor activation; a trait we prove to be crucial for potent in vivo activity as 

seen by the massive suppression of food intake following a single injection of KBP-089.  

When KBP-088 was compared to davalintide – an amylin, calcitonin and calcitonin gene-

related peptide receptor agonist – in vitro, davalintide was roughly equipotent to KBP-088 

concerning short-term activation of the amylin and the calcitonin receptor. Notably, when 

their ability to elicit long-term receptor activation was tested, davalintide did not match 

KBP-088, which activated the receptor for up to 72 hours demonstrating a superior receptor 

activation profile. Furthermore, these effects manifested directly into a prolonged ability to 

control appetite by KBP-088, which was not seen for davalintide. This was somewhat 

surprising, as davalintide previously has been shown to bind irreversibly to the amylin 

receptor300, albeit due to some yet to be identified mechanism this does not translate into 

prolonged receptor activation or prolonged suppression of appetite – a lack effect underlined 

in vivo when not using continuous infusion. 

Despite the potent in vivo efficacy, peptides are not detectable in plasma for long nor do 

they accumulate – not even with repeated exposure. Plasma concentrations of KBP increase 

immediately after dosing while after 120 minutes, the plasma is cleared. This could be due 

to the internalization of the activated receptor. Normally, an internalized receptor stops 

signaling; however, it has been shown that the CTR elicits continuous signaling from the 

early endosome, which could be part of the explanation for the prolonged in vivo efficacy 

observed220,301. Furthermore, sCT binds virtually irreversible to the CTR and has a slower 

receptor dissociation rate than amylin, which also prolongs the signaling220,301. This has not 

yet been investigated for KBP, albeit as KBP has a similar receptor activation profile as 

sCT it is reasonable to assume such similar properties in terms of lower dissociation rate 

compared to amylin as well as irreversible binding, which is supported by the short plasma 

half life yet long pharmacodynamic effects in vivo.   

 

The Anti-Obesity Effects of Dual Amylin and Calcitonin Receptor Agonists   

In all chronic studies, a potent weight reduction was observed initially. This drastic 

reduction in body weight could be explained by the initial anorexic effect of KBPs as the 

food restricted pair-fed controls lowered their body weight similarly. Interestingly, the 

caloric intake returned normalized within the first two weeks depending on the ligand, and 

when the food consumption normalized the pair-fed group regained lost body weight 

whereas the KBP treated rats maintained the weight loss achieved. This large difference in 

body weight and the decreased food efficiency of the KBP treated rats indicate an increased 

EE in the KBP treated rats. Previously, data showing a food independent weight reduction 
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when administering amylin or amylinomimetics have been published280,302, supporting our 

data. Considering the fact that KBPs significantly suppressed body weight compared to the 

pair-fed controls emphasizes that these peptides have some beneficial effects on body weight 

and composition besides suppressed food intake, likely increasing EE. Rats normally 

suppress EE during weight loss; however, continuous infusion of amylin prevents this253,258 

and there has been similar observations with davalintide275. Notably, amylin only increases 

EE when administered as continuous infusion or icv258,259,267, a finding likely related to the 

low amylin receptor potency. The KBP mediated effect on EE is to be formally assessed in 

the future. 

Throughout the studies, KBP induced a 15-20% vehicle-corrected weight loss with the 

highest concentrations. This body weight reduction extends far beyond what has previously 

been found with amylin agonism in rats. This is corroborated in the davalintide comparison 

study where KBP-088 treated rats lose significantly more weight than davalintide treated 

rats. We speculate that the absence of prolonged receptor activation by davalintide 

underlies the lack of ability suppress body weight at the doses chosen, although it 

transiently suppressed food intake, and these findings are supported by the need for 

infusion pump mediated delivery to ensure weight reduction275. 

In line with the reduction in body weight, KBP treatment reduced overall adiposity and 

decreased the adipocyte hypertrophy in the epididymal white adipose tissue, which is 

involved in restoring circulating insulin concentrations towards normal, concomitant with 

the return of normal tissue insulin sensitivity303. Whether these peptides have a direct effect 

on adipocyte hypertrophy needs further investigations; however, amylin has been 

demonstrated to directly stimulate adipocytes in vitro potentiating the effect of insulin and 

thereby may influence IR304. MR scans revealed a slight increase in lean mass in KBP 

treated rats compared to untreated rats. Previous studies have associated amylin receptor 

activation with a specific reduction in fat mass rather than lean mass253,305, while inhibiting 

amylin signaling centrally increases fat mass266, hence potentially explaining the difference 

in body composition. 

Another important aspect of body weight loss could be to manipulate volunteer food 

consumption and composition of food chosen. This hypothesis was thought to be relevant for 

KBPs as amylin agonism has effect on the release of dopamine in the hypothalamus306 and 

induce alterations in the melanocortigenic system307 both of which are mediators of the 

reward/pleasure circuits that are known to affect feeding patterns308. Interestingly, patients 

treated with amylin analog pramlintide also experience a voluntary change in eating 

patterns and reduce ‘binge eating’309. From the food preference study, it could be speculated 

that dosing with KBP offers some of the beneficial effects that the patients experience after 

surgical intervention. Patients who have had weight reducing surgical intervention 

experience a change of food consumption towards less energy dense and sweet diet310, hence 

making KBPs a relevant option for treating obese patients and thereby aiding a body weight 

reduction and in combination with a healthier lifestyle, this might improve the results even 
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further. The mechanisms of action behind these changes are not completely clear, albeit 

alterations in food reward or taste functions have been suggested as possible 

explanations311. Whether this is the case for KBP remains to be elucidated.  

 

The Glucoregulatory Effects of Dual Amylin and Calcitonin Receptor Agonists  

In terms of hyperglycemia and IR, amylin analogues have shown promise146,300; however, 

they do not possess the intrinsic ability to improve fasting plasma glucose levels and insulin 

tolerance. In contrast, these data reveals the ability of KBP to improve fasting plasma 

glucose levels and HbA1c in ZDF rats and improve glucose tolerance in both ZDF and HFD 

rats independent of the gastric emptying effect. The glucose tolerance was improved 

compared to both vehicle and pair-fed rats in line with previous findings for salmon 

calcitonin195 and KBP273 and also compared to davalintide. Notably, davalintide did improve 

glucose tolerance even though there was a lack of prolonged receptor activation. This is due 

to the pre-dosing of the rats with the peptides 30 minutes prior to OGTT, which confirms 

the ability of davalintide to improve glucose tolerance short-term as previously described300. 

Previous findings on davalintide also showed improved glucose tolerance during OGTT, 

however, the experiments were performed with continuous infusion of the peptide300. In 

contrast to other glucose lowering agents such as sulfonylureas and GLP-1 analogues, the 

enhanced glucose disposal was achieved with an attenuated insulin secretion. Of interest, 

it was previously found that KBP directly lowered glucose stimulated insulin secretion in 

isolated islets268. Thus, we speculate that KBPs directly relieve the β-cell stress in an insulin 

resistant environment by enhancing insulin action. An insulinostatic concept was also 

demonstrated for the insulin sensitizer, pioglitazone, which has a direct insulinostatic effect 

on the β-cell that may contribute to its capacity to lower insulinemia and anti-diabetic 

action312,313.    

The KBP-improved glucose tolerance is partly mediated through lowering of gastric 

emptying rate, which has previously been attributed an amylin agonism mechanism237,314, 

hence affected by KBP. To assess peripheral glucose homeostasis while circumventing this 

influence of gastric emptying, intravenous glucose tolerance tests were performed. Rats 

treated with KBP maintained glucose tolerance with reduced insulinemia implying an 

improved insulin sensitivity, hence corroborating that KBP has effects on glucose tolerance, 

which are independent of gastric emptying.  

The suggested improvement in insulin action was formally tested in a hyperinsulinemic–

euglycemic clamp set-up in obese hyperinsulinemic HFD rats. The glucose infusion rate 

(GIR) was expectedly lowered in the HFD vehicle rats compared the normal diet age-

matched rats since obesity is negatively correlated to insulin sensitivity and GIR27. KBP 

treatment induced a marked increase in GIR, hence supporting enhanced insulin 

sensitivity. The KBP-induced weight loss would explain a large increase in GIR; however, 

as mentioned above KBPs have effects beyond what weight loss provides and further, in 

this particular study, the rats treated with KBP had similar body weight to the ND rats, 
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albeit a significantly higher GIR. This supports the finding in the weight-matched study – 

namely that insulin sensitivity is increased beyond what would be expected from weight 

loss.  

To further investigate whether KBP had beneficial metabolic effects beyond what was 

achieved with weight loss, a weight-matched control group was implemented. The study 

supported this hypothesis as substantially lower glucose and insulin levels were observed 

during an oral glucose tolerance test in the KBP treated group when compared to weight-

matched controls. The improvement in insulin levels manifested in an improvement in 

glucose control too. It cannot be ruled out that the weight-matched animals had an 

‘artificial’ increase in glucose intolerance due to significant food restriction or prolonged 

fasting, although the rats did not show any signs of malnutrition or abnormal behavior. 

This mild lowering of insulin could be an explanation for the limited improvement in glucose 

tolerance when compared to the improvement observed in KBP treated rats. This would 

have been likely after a marked weight loss315–317.  

Adiponectin and leptin levels were measured after chronic treatment with KBP. 

Adiponectin was significantly increased by KBP treatment. In contrast, plasma leptin was 

reduced. Weight loss has on multiple occasions been associated with beneficial effects on 

adipocytokines318. The increased level of adiponectin supports an improved metabolic status 

as plasma adiponectin is reduced in obese people and related to inflammation, IR, and 

energy metabolism319,320, as well as the type of phenotype in the different fat depots321. The 

decreased overall adiposity is likewise reflected in lowering of plasma leptin that supports 

previous findings where KBP improves leptin sensitivity273 – leptin sensitivity which is also 

improved by amylin280,322. Furthermore, KBP treated rats drastically reduced GIP and GLP-

1 that were elevated in untreated rats following a glucose challenge. This pronounced 

suppression of these glucose dependent hormones could cause the reduced glucose 

stimulated insulin secretion in treated rats; however, since glucose homeostasis is 

maintained or even improved, we speculate that the reduction in incretin response is 

acceptable. Interestingly, it has been suggested that inhibition of GIP signaling actually 

prevents obesity in knockout mice on a calorie dense diet323; however, this is not the case in 

hyperphagic leptin deficient mice, where GIP knockout does not prevent excess weight 

gain324. The mechanism behind the suppression of GIP and GLP-1 is unclear, albeit a 

lowering of gastric emptying rate will naturally reduce the secretion of GIP and GLP-1. This 

is however not all there is to it. We measured GIP at different time points during the OGTT 

and the suppression of GIP was evident at all time points even when the glucose should 

have passed. This could indicate that KBP might have a direct effect on GIP; however, this 

needs further investigation.  
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Optimization of Tolerability  

KBPs induce hypophagia at dose initiation and peptides with known anorectic effects, such 

as amylin and GLP-1 analogues, are associated with gastrointestinal tolerability problems 

in humans325,326. The massive suppression of food consumption following initial dosing 

might be indicative of adverse effects on the GI tract, which is also supported by kaolin 

intake at high doses of KBP in the pica test. The kaolin consumption was only stimulated 

at a high concentration – a higher concentration than used in the chronic studies, thus 

indicating the reduction in food intake was not due to illness, albeit nausea cannot be 

excluded. 

To explore whether a similar weight loss was obtainable with a less pronounced induction 

of hypophagia, clinical setups for pramlintide and GLP-1 analogues using dose-escalation 

were mimicked325,327. Dose-escalation induced in a similar magnitude of weight loss with 

lower suppression of appetite; however, the time to reach maximum weight loss was 

prolonged. Notably, the increments of the dose-escalation steps are very important. Too 

large increments lead to substantial suppression of intake, possibly indicating an adverse 

response in the GI tract. These findings correlate well with what was expected from 

literature and dose-escalation of anorectic peptides325,327. These data support that dose-

escalation is an option for increasing tolerability of this type of molecule, and that dose-

escalation strategies can be tested in rat models using appetite suppression and weight 

regulation as the output. Moreover, in the acute settings, the suppression of food 

consumption clearly exceeded a 24-hour period; hence, potentially these peptides could be 

administered less frequently. To address this, different dosing regimens were investigated. 

Chronic dosing using 5 µg/kg once daily (s.i.d.) or 5 µg/kg every other day (q.a.d.) was 

compared, and importantly both dose regimens led to similar weight loss during the 15 day 

study. In the q.a.d. dosed rats, notable fluctuations in caloric intake and body weight were 

observed, likely resulting in a challenge in terms of tolerability. Surely, it is of interest to 

challenge these dosing regimens, and to test less frequent dosing as the peptides have the 

ability to suppress caloric intake up to 72 hours – perhaps escalation to an even higher dose 

that would allow less dosing.  

 

Dual Amylin and Calcitonin Receptor Agonist and GLP-1 Synergy 

As GLP-1 analogues and amylin receptor agonists are thought to work, at least on the 

appetite regulation, through a similar mechanism of action326, we studied the potential 

combination of KBP with liraglutide. Various combinations were tested and it was found 

that a combination of the two peptides had superior efficacy in terms of suppressing acute 

caloric intake than either of the peptides alone. Chronically, two suboptimal doses of KBP 

and liraglutide were investigated and we found a good effect when combining the two 

peptides, resulting in body weight efficacy observed at doses considered virtually ineffective 

when given as stand-alone doses. Both amylin and GLP-1 agonism exhibit weight-lowering 

effects and previously, the combination of GLP-1 and amylin have shown synergistic 
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reductions in food intake in non-human primates328. Furthermore, also peptide hybrids 

composed of an exenatide analogue and davalintide have shown reduction of body weight 

and improved glucose control in obese rats329,330. Hence, the combination of GLP-1 and 

amylin therapies could be of interest for the treatment of metabolic disease as combination-

based therapies are increasing in this area of disorders.  

 

The Effects of Dual Amylin and Calcitonin Receptor Agonists on Nonalcoholic 

Steatohepatitis  

The metabolic effects of KBPs were mostly tested in the hyperinsulinemic obese model. This 

high fat fed rat model is useful for highlighting the beginning IR along with obesity as they 

do mimic the status of the majority of insulin resistant/pre-diabetic patients331. Even though 

this model is heavily obese, insulin resistant, and has ectopic steatosis, there is no 

inflammation nor elevated liver markers in the plasma. Thus, to further explore the anti-

steatotic effect of KBP observed in HFD, the high fat, high cholesterol and cholate model 

(HFCC) was used.  

As previously reported, a diet high in fat and cholesterol develop a phenotype resembling 

human NASH294–296, albeit without eliciting obesity. As the focus in this model was the 

pathophysiology between diet-induced obesity, IR and the development of NASH, we 

included fattening period so the rats were significantly obese when they started the HFCC 

diet and KBP treatment. This obese HFCC model has metabolic and hepatic features of 

human NASH including steatosis, ballooning and inflammation. Interestingly, this model 

also revealed features such as zone 3 perisinusoidal and periportal fibrosis – alone or with 

both traits present – and bridging fibrosis, which is in line with fibrotic findings in female 

rats fed a high fat, high cholesterol diet for 16 weeks295.   

An interesting aspect of the findings in the HFD and the HFCC model regarding the 

reduction of fatty acid accumulation in the liver and enhanced insulin action is the known 

relation between liver fat, IR and NASH297,298. Insulin sensitizers as rosiglitazone111 and 

pioglitazone109,110 have beneficial effects on the histologic features of livers in patients with 

NASH. Likewise, it has recently been found that the weight reducing agent, liraglutide, led 

to histological resolution in patients with NASH169. Hence, our findings suggest that KBP 

at least due to its weight reducing capacity and improvement of insulin action could be a 

potential treatment candidate for NASH. This is corroborated by the KBP induced reduction 

in AST levels, hepatic inflammation and fibrosis in this severe model – inflammation and 

the fibrotic traits were not eliminated, albeit significantly reduced. The protective effect of 

KBP on the HFCC dietary model of NASH supports the hypothesis that therapies directed 

toward obesity and IR could enhance the care of patients with NASH. 

In summary, these studies have indicated that KBPs have potency extending far beyond 

classical amylin agonists. The peptides were well tolerated when introduced by dose 

escalation and improved metabolic and hepatic features markedly. These data clearly 
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reveals that KBPs at least due to the weight reducing capacity and beneficial effects on 

various metabolic features could be a novel treatment candidate for obesity and related 

morbidities as type 2 diabetes and NASH. 
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CHAPTER V 

V. Conclusion  

 

The overall conclusion to the hypothesis is that a prolonged receptor activation enhanced 

the in vivo efficacy and that KBPs induce metabolic improvement beyond what is observed 

with caloric restriction and simple diet induced weight loss. This underlines that KBPs have 

potential as novel treatments for obesity and related co-morbidities. 

 

More specifically the conclusions are as followed: 

1. KBPs are highly potent in terms of activation of the AMY-R and the CTR – without 

activating the CGRP-R, and have a superior ability to elicit prolonged receptor 

activation compared to davalintide 

2. KBPs decrease food intake and alter food preference in rats. 

3. KBPs induce and sustain substantial weight loss in obese rats independent of caloric 

consumption. 

4. KBPs improve glucose tolerance with lowered hyperinsulinemia independent of 

caloric consumption and weight loss in obese rats. 

5. KBPs improve insulin and leptin sensitivity in obese rats. 

6. KBPs attenuate fasting plasma glucose and HbA1c and enhance glucose tolerance 

and insulin action in ZDF rats. 

7. KBPs are well tolerated when introduced by dose escalation; however, with later 

onset of maximal weight loss. 

8. KBPs can be dosed every other day while still inducing similar weight loss.  

9. KBPs are superior to davalintide in terms of efficacy on body weight and work 

complementary with GLP-1 agonist, liraglutide. 

10. KBPs reduce lipid accumulation in liver and muscle in obese rats as well as liver 

steatosis, inflammation and fibrosis scores in NASH rats.  
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CHAPTER VI 

VI. Perspectives 

 

The prospect of the synthetic dual amylin and calcitonin receptor agonists as potential 

therapeutic agents in obesity and related co-morbidities is quite intriguing. Several aspects 

in terms of mode of action, and how the anti-obesity effects and improved metabolic health 

observed in rats translate into humans remain to be fully evaluated.  

 

Do DACRAs increase energy expenditure? 

The discrepancy between the KBP induced weight loss and the caloric restricted pair-fed 

group groups clearly suggests an increase in EE of the treated animals. Amylin 

administration has previously been demonstrated to maintain metabolic rate during energy 

restriction and enhance fat utilization253,332 perhaps by activation of brown adipose tissue267. 

To formally elucidate whether DACRAs modulates metabolic activity measures of e.g. EE, 

respiratory exchange ratio and physical activity are of great importance, and could be 

conducted using metabolic cages and activity wheels. 

The body composition (e.g. lean versus fat mass) was determined using a magnetic 

resonance scanner. KBP treated rats had significantly lower fat mass compared to 

untreated and interestingly, treated rats had a slightly increased lean mass. Lean mass is 

determined as muscle tissue mass equivalent of all the body parts containing water, 

excluding fat, bone minerals, and such substances, which do not contribute to the NMR 

signal (hair, claws, etc.). Nevertheless, it would be of great interest to image the body 

composition and thus determine the efficacy of muscle mass exclusively.  

 

Are DACRAs insulin sensitizers? And where does the glucose go?   

Another interesting finding is the improved glucose tolerance and enhanced insulin action, 

which is independent of body weight. KBP improved glucose tolerance and insulin action 

beyond what was observed with a regular diet induced weight loss. We used the 

hyperinsulinemic-euglycemic in the HFD rats; however, to formally assess insulin 

sensitivity in KBP treated rats compared to weight-matched rats the gold standard 

hyperinsulinemic-euglycemic clamp should be performed333 in combined with a radio-active 

labeled tracer (e.g. 14C-  or  3H-deoxyglocuse) glucose uptake/clearance of peripheral 

tissues334. Additionally, it would be of great interest to combine the radiolabelled clamp 

study with in vitro studies investigating glucose uptake in cultured peripheral tissues (e.g. 

muscle fibers335, adipocytes304, hepatocytes336 during normal or gluco- and lipotoxic 
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conditions to mimic diabetic conditions337. Furthermore, it would be interesting to further 

explore the direct effect DACRAs on pancreatic islets – also in a gluco- and lipotoxic 

environment.  

 

Could DACRAs be dosed once weekly? 

The peptides are dose once daily. In paper III, dosing every other day was tried and 

interestingly the rats reduced their body weight similarly. It would be interesting to explore 

more dosing regimens and frequencies, as dosing e.g. once weekly could be preferable for 

some patients.   

 

Does the calcitonin receptor have any relevance for obesity and associated morbidities? 

Another aspect in elucidating the mechanisms of action is to determine which of the two 

receptors targeted is responsible for the effects observed. The anti-obesity potential of these 

peptides has been established; however, it would be interesting to separate the 

contributions of the different receptors.  

Furthermore, obesity is associated with hyperamylinemia and it has been hypothesized that 

amylin sensitivity is reduced in the obese state. It could be of interest to test KBP as well 

as calcitonin and amylin treatment animals with diet or drug induced hyperamylinemia, 

hence possibly lowered sensitivity to amylin.  

 

 

Combination therapies 

Additionally, the combinational therapy with GLP-1 will be of outmost importance. In paper 

IV, suboptimal dosing was used to enlighten a potential KBP-GLP-1 synergy. In the future, 

this synergy as well as combination with e.g. insulin and leptin should be further explored 

as this could hold the key to improve metabolic and glycemic control in preclinical and 

clinical settings.  

 

 

Clinical perspectives  

Finally, it will be exhilarating to monitor the anti-obesity, anti-diabetic and anti-NASH 

effects of the KBPs in clinical development – after all, treating people is the main goal.   
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