Computational High-throughput Screening for Solar Energy Materials

Castelli, Ivano Eligio; Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel

Published in:
Theoretical Modeling of Organohalide Perovskites for Photovoltaic Applications

Publication date:
2017

Document Version
Peer reviewed version

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
You may not further distribute the material or use it for any profit-making activity or commercial gain
You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Computational High-throughput Screening for Solar Energy Materials

Ivano E. Castelli,*† Kristian S. Thygesen,* and Karsten W. Jacobsen*

December 22, 2015

The design and development of new materials is required to meet the challenge of sustainable and environmental friendly energy production and storage. Computer simulations in the form of atomic-scale electronic structure calculations can be expected to play an important role in this as demonstrated over the last decade. Most of such calculations are carried out in the framework of Density Functional Theory (DFT) [1, 2] which demonstrates a good compromise between computational speed and accuracy of the calculations. The ever-increasing computational power makes it possible today to study fairly complex structures with several hundreds or even thousands of atoms. A few examples of materials design studies include the search for novel materials for carbon capture and storage, [3] batteries, [4] stable binary and ternary alloys, [5] transparent conductors, [6] dye sensitized solar cells, [7] photovoltaics, [8, 9] and water splitting materials. [10, 11, 12]

The calculations usually address only a small part of the actual design problem and is nowhere near direct simulations of the functioning material. An important issue is therefore to determine a few simple parameters, so-called descriptors or design metrics, which describe key properties for the material func-
For example, the formation enthalpy is a possible descriptor for the stability of a compound, the band gap for its absorption properties, and the binding energies of reaction intermediates for the catalytic activity, and so on.

In this chapter, we first present some descriptors useful for identifying novel semiconductors for light harvesting in a photovoltaic or photoelectrochemical cell, and afterwards, we review the application of a screening procedure to more than 20000 inorganic perovskites in the cubic and layered phases. Furthermore, we study trends and propose a handful of materials for further investigation. Lastly, we report the trends for a smaller set of 300 hybrid halide perovskites. Our ab-initio quantum mechanics simulations have been performed in the framework of DFT, using the GPAW code. All our results are collected in the open source and open data Computational Materials Repository (CMR) database.

1 Identification of Descriptors

To harvest and convert solar light into electrical energy in photovoltaic (PV) cells or into chemical energy using photoelectrochemical (PEC) reactions require as the first step the absorption of light creating electron-ho

tion and which at the same time can be computed at the atomistic level. For example, the formation enthalpy is a possible descriptor for the stability of a compound, the band gap for its absorption properties, and the binding energies of reaction intermediates for the catalytic activity, and so on.

In this chapter, we first present some descriptors useful for identifying novel semiconductors for light harvesting in a photovoltaic or photoelectrochemical cell, and afterwards, we review the application of a screening procedure to more than 20000 inorganic perovskites in the cubic and layered phases. Furthermore, we study trends and propose a handful of materials for further investigation. Lastly, we report the trends for a smaller set of 300 hybrid halide perovskites. Our ab-initio quantum mechanics simulations have been performed in the framework of DFT, using the GPAW code. All our results are collected in the open source and open data Computational Materials Repository (CMR) database.

1 Identification of Descriptors

To harvest and convert solar light into electrical energy in photovoltaic (PV) cells or into chemical energy using photoelectrochemical (PEC) reactions require as the first step the absorption of light creating electron-hole pairs. The absorption is performed by a semiconducting material which has to be optimized for efficient absorption and which allows for further transformation of the energy in the electron-hole pairs.

A list of some – but certainly not all – properties that a semiconducting material has to fulfill to be used in a PEC cell might include (i) chemical and structural stability, (ii) good light absorption, (iii) photogenerated charges at the correct potentials and with good mobility, (iv) low cost and non-toxicity. Stability, good light absorption, and low cost are also among the desired prop-
erties for a materials to be used in a PV device. The PEC technology is more challenging than the one behind PV cells because the electron and hole transfer should induce chemical reactions. However, the benefit is that high energy storage capacity is available in the chemical bonds of the produced fuels.

There are many other issues that have to be dealt with in a working PEC device. One of the most important ones is the catalysis of the chemical processes happening at the material surfaces. The light absorbing materials should therefore either have good catalytic properties themselves or be able to interface both structurally and electronically to efficient catalysts. [18] However, none of these issues shall be addressed here.

In the following we shall discuss the computational descriptors that are used in the screening studies. The descriptor for the stability is the heat of formation for the material or more specifically the calculated total energy difference between the material and competing structures and materials at zero temperature. The simplest measure is the standard heat of formation which is calculated as the energy difference between the material at hand and its components in their standard states. However, we also go beyond this by not only considering phase separation into elemental materials but also into a pool of reference materials of varying compositions and structures. The pool includes more than 2000 structures from the ICSD [19] and the Materials Project database. [20] If the energy of the candidate material is above the calculated convex hull (plus a metastability region of 0.2 eV/atom) that define the stability frontier, the material under investigation is considered unstable. The total energies are calculated using the RPBE as exchange-correlation functional in the generalized gradient approximation (GGA). [21]

If the material is in contact with water, as, for example, in a PEC device without protection layers of the light absorber, the stability against dissolution
should also be considered. The stability in water can be calculated by means of Pourbaix diagrams. A Pourbaix diagram is a pH-potential phase diagram which contains both solid and dissolved species in the pool of reference systems. In our case, the energy of the solid phases are calculated by DFT as above and the dissolution energies are obtained from experimental results. [22, 23] Although Pourbaix diagrams give information about the bulk thermodynamical stability in water of a compound, they do not provide details about the reaction kinetics and the possible role of surfaces and their passivation.

The absorption properties of a material can be described, to a first approximation, by the band gap, assuming that photons with energies above the gap are absorbed while lower energy photons are not. Within DFT, the simplest estimate of the band gap would be the calculated gap in the single-particle Kohn-Sham spectrum. However, this leads to severe underestimation of the gap because of the so-called derivative discontinuity [24] and the self-interaction error for semi-local exchange-correlation functionals. [25] Several methods have been proposed to take these effects into account, usually at a significantly higher computational cost. Hybrid functionals like PBE0 or HSE06, which include a fraction of exact exchange, or many-body methods such as the GW approximation improve the estimation of the band gaps, but are considerably more computationally expensive than the semi-local functionals.

As a compromise we calculate the band gaps using an improved description of the so-called GLLB functional, [26] called GLLB-SC, [27] particularly suited for solids. This functional is an additional approximation to the KLI approximation [28, 29] to the exact exchange optimized effective potential (EXX-OEP). [30] As a rather unique feature, it includes an explicit evaluation of the derivative discontinuity.

We note that the gap discussed above is the so-called quasi-particle (QP)
or fundamental gap, which is the difference between the first ionization potentials (IP) and the electron affinity (EA). It can be directly measured by photo-emission and inverse photo-emission experiments and within DFT it is obtained computationally by adding the derivative discontinuity, Δ_{xc}, to the Kohn-Sham (KS) gap: $E_{gap}^{QP} = IP - EA = E_{gap}^{KS} + \Delta_{xc}$. QP gaps do not include excitonic effects which can result in a lower optical band gap. However, we shall not go any further into this issue here.

The GLLB-SC calculated band gaps show an error of the order 0.5 eV when tested against non-self-consistent G_0W_0 values and experiments for single metal oxides, [10] binary semiconductors, [31] and for oxo-perovskites with a band gap in the visible range. [32] More recently, we have benchmarked the GLLB-SC against different levels of the GW approximation (G_0W_0, GW_0, and GW) [33] and the hybrid HSE06 [34] for a set of 20 ternary and quaternary semiconductors. [35] Among the considered methods, the GLLB-SC gives the best approximation to the eigenvalue-self-consistent GW, with a mean relative error of around 15%. We therefore expect that the GLLB-SC is accurate enough for high-throughput calculations since it provides reliable results at only a slight increase in computational cost relative to standard GGA calculations even for large crystal structures.

An appropriate band gap is certainly a requirement for achieving efficient visible light absorption, however, it does not take into account the actual strength of the absorption at different photon energies. The absorption might for example be limited by symmetry or by lack of spatial overlap between electronic states in the valence and conduction bands. Therefore we in some cases perform explicit calculation of the absorption spectrum within time-dependent DFT where both the character of the band gap (direct/indirect) and the strengths of the dipole-transition matrix elements are included. [36] We note that in screening studies...
by Yu and Zunger \cite{37} the band gap characters and the absorption strengths have been combined into a single descriptor or metric.

In a PEC device, the photogenerated charges have to be at the right potential with respect to the red-ox levels of water to be able to induce the water oxidation and the proton reduction reactions. We use a simple empirical approach \cite{38, 39} where the positions of the electron and hole levels relative to vacuum for a material with \(N \) atoms in the unit cell is estimated by first calculating the center of the gap as the geometrical average of the electronegativities, \(X_i \), of the constituent elements, \(i \), with the Mulliken’s scale. \cite{40} The conduction and valence band edges with respect to the vacuum level, \(E_{VB} \) and \(E_{CB} \), are then obtained by adding and subtracting half of the gap, respectively:

\[
E_{CB, VB} = (\prod_i X_i)^{1/N} \pm \frac{E_{gap}}{2}
\]

More sophisticated models, which include the investigation of surface properties and of realistic electrochemical environments, can be also used but at increased computational cost. \cite{41, 42}

Low cost and non-toxicity of a material are also desirable properties and can at least to some extent be estimated based on the constituent elements. The cost can for example further be related to the abundance of the element. \cite{43} However, in the following screening studies we do not exclude elements based on their abundance or cost.

2 Inorganic Perovskites

In the following we consider compounds in the cubic perovskite structure with the formula \(\text{ABO}_3 \) (space group \(\text{Pm3m} \)). We select this structure because of the generally high stability and because of the large variety of properties and applications of materials with this structure. \cite{44} The unit cell of the cubic perovskite is formed of 5 atoms (two inequivalent metals, a large 12-coordinated cation (A-ion) and a small 6-coordinated cation (B-ion) and three non-metals)
Figure 1: Calculated heats of formation per atom and band gaps of perovskite binary metal oxides. In each square the formation energy (lower, left triangle) and the band gap (upper, right triangle) of an oxide are shown. The interesting combinations for water splitting are indicated with red squares. The chemicals are sorted for increasing electronegativity. Figure from Ref. [10]

and it can accommodate most of the elements in the periodic table.

First we consider all the possible cubic perovskites obtained by combining 52 non-radioactive metals of the periodic table in the A and B sites. As non-metals we start out with oxygen, because of the high stability of oxides.

Figure 1 shows the formation energies per atom and the band gaps for the 2704 oxides. Each square which corresponds to a particular oxide containing
two metals is divided into two triangles where the lower left one indicates the stability (from red to blue with decreasing stability) and the upper right one, the band gap. It is apparent from the figure that there is a clear trend in the heat of formation where low electronegativity of the constituent metal atoms favors stability. The band gap does not show such a clear trend, however, there is a certain tendency that the band gaps increase with a decrease of the B-ion electronegativity or with a decrease of the crystallographic symmetry by adjusting the size of the A-ion. [45]

The calculated data show that most of the semiconducting compounds have too large a band gap, and that the band edges are too deep with respect to the redox levels of water. We therefore also investigate other anions in particular nitrogen because the the N 2p levels are placed higher in energy than the O 2p levels and since the p-states dominate the valence band edge, smaller band gaps and in fact also a better matching with the redox levels of water can be obtained. However, the nitrides generally are less stable than the oxides.

Including nitrogen, sulfur and fluorine as possible anions in the cubic perovskite structure we have established a database of cubic perovskites with almost 19000 combinations of metal atoms and anions. [10, 11]

It is possible to “mine” the database to discover trends and correlations between the materials for example by applying clustering algorithms and construction of dendrograms. [46] The analysis shows what influence the stability of the compounds and their ability to form band gaps. Three fairly general rules is found to apply: (i) The number of electrons in the supercell has to be even. Without this a non-magnetic material will have an electronic band crossing the Fermi level and therefore be metallic. (ii) The sum of the possible oxidation numbers has to be zero. Again otherwise a band gap cannot be formed. (iii) The atom in the A-site should have a larger radius than the atom in the B-
Figure 2: Identified perovskites with potential for one-photon water splitting. The stability in water of each material is estimated as the energy difference between the material and the most stable phases (solid and aqueous) in which it can separate in a potential range between -1 and 2 V and at pH = 7. The color scale runs from green (stable) to red (unstable compounds). The indirect and direct positions of the valence and conduction band edges (BE) are indicated in black and red as well as the indirect and direct band gap (BG) and the levels for hydrogen and oxygen evolution.

site. This rule is in spirit similar to rules based on the Goldschmidt’s tolerance factor, but turns out to be much better fulfilled. Applying these rules to for example layered perovskites leads to a significant speed-up in the identification of relevant materials. [32]

Returning to the database of cubic perovskites, it can be taken as a starting point for identifying materials of relevance for water splitting by applying the following three screening criteria. (i) Heat of formation relative to the pool of reference systems of less than 0.2 eV/atom to ensure stability. (ii) Band gap in the visible range between 1.5 eV and 3.0 eV. The lower limit accounts for the bare energy to run the water-splitting reaction 1.23 eV plus ~ 0.25 eV to account for the electrochemical overpotentials of hydrogen and oxygen. [47] This
limit may be higher if the splitting of the quasi-Fermi levels is smaller than the gap when the SC is under illumination. [48] If the gap is above 3.0 eV too little of the solar spectrum is absorbed. Depending on construction of the device, the photoactive material in a cell may be thin or thick and we therefore perform the search for either the direct or the indirect gap. (iii) Without considering the overpotentials, the valence and conduction band edges should at least fulfill $VB_{\text{edge}} > 1.23 \, \text{V vs NHE}$ and $CB_{\text{edge}} < 0 \, \text{V vs NHE}$ for appropriate alignment of the band edges with the water redox levels.

Out of the 19000 compounds in the database only 20 fulfill these criteria: 10 oxides, 7 oxynitrides, and 3 oxyfluorides as shown in Figure 2. A further investigation of the crystal structure of these combinations show that SrSnO$_3$ and CaSnO$_3$ undergo lattice distortions and in their most stable structure, they have gaps beyond the visible light absorption limit. AgNbO$_3$ and BaSnO$_3$ as well as the oxynitride series (BaTaO$_2$N, SrTaO$_2$N, CaTaO$_2$N, LaTiO$_2$N, and LaTaON$_2$) have been tested as water splitting materials. Due to defect-assisted recombination, BaSnO$_3$ shows no activity, [49], while AgNbO$_3$ splits water in visible light in the presence of sacrificial reagents, [50] and the oxynitrides perform well for hydrogen evolution. [51] However, the oxynitrides may have stability issues in contact with water at high potentials as also seen in Figure 2. To our knowledge no other cubic perovskites that can split water in visible light have been identified. In addition to this set, we identify materials, like AgTaO$_3$ and SrTiO$_3$, who can split water under UV light.

As mentioned earlier the band gap is only a rough descriptor of the energy conversion efficiency. A more accurate estimation of the absorbed light can be obtained by considering the full absorption spectrum as calculated within time-dependent DFT. Details of the approach can be found in Ref. [36]. The results of such a calculation for the 20 perovskites identified above are shown in Fig. 3.
Figure 3: Light harvesting efficiency of the cubic perovskites of Figure 2. The markers indicate the efficiency of a 100 nm-thick material, while the vertical lines go up to the limit of infinite thickness. The green dashed line indicates the maximum theoretical efficiency as a function of the (possibly indirect) band gap. The materials marked with * have a direct transition at the band gap. Figure from Ref. [52]

The absorption efficiencies are estimated as the ratio between the absorbed and the total amount of photons from the sun at AM1.5. In Figure 3, the efficiencies are plotted as a function of the possibly indirect band gap for a material thickness of 100 nm. The vertical lines go up to the result for infinite thickness corresponding to absorption of all light above the direct band gap if the matrix element at the band edge is non-vanishing. All the oxides and oxyfluorides have small efficiencies due to at least two factors: they have indirect band gaps (from the R-point, with the wave functions usually located on the $2p$-levels of oxygen, to the Γ-point, with wave functions localized on the s- or d-levels of the B-ion) and the absorption of photons for thin films therefore start
at a higher energy corresponding to at least the indirect band gap. Also the
dipole transition matrix elements are rather small due to the lack of overlap
between the wave functions at the band edges. The absorption at the onset is
therefore not very intense. Only LiVO$_3$ has an efficiency which gets close to
15\% for a 100 nm-thick material. All the others are below 10\%, and in all these
cases, the band gap is also a fairly poor descriptor of the efficiencies.

The oxynitrides, instead, show a higher efficiency: most of them have di-
rect band gaps (at the Γ-point, with the states at the valence band maximum
dominated by the nitrogen $2p$ states with a small hybridization from the oxygen
$2p$-levels and the states at the conduction band minimum composed by
the d-levels of the B-ion) with a more intense absorption at the offset. Since
the transition at the band gap is allowed, these materials have the maximum
theoretical efficiency allowed by the gap, in the limit of infinite thickness. \[52\]

So in summary, the perovskite oxides and oxyfluorides are seen to possess
indirect band gaps with fairly low absorption while some of the oxynitrides have
both direct gap and more efficient absorption. The band edges of the oxynitrides
are also generally positioned better for the water splitting reaction. \[51\] However,
as also pointed out before, the oxynitrides are not so stable, which can be traced
to breaking of the symmetry of the octahedra. The stability is particularly
reduced in contact with water at high electron potential.

The computational approach discussed here has also been applied to the
screening of different lower symmetry perovskites like layered or double per-
ovskites aimed at one- and two-photon water splitting or at identification of
protecting shields against dissolution. \[32, 52, 53\]
3 Hybrid Halide Perovskites

Over the past few years new hybrid halide perovskites have attracted immense interest as PV light absorbers starting with studies of $\text{CH}_3\text{NH}_3\text{PbBr}_3$ and $\text{H}_3\text{NH}_3\text{PbI}_3$ [54] and followed by numerous other investigations of these and related systems. [55, 56, 57, 58]

The screening approach discussed in the previous section can also be applied to the class of hybrid halide perovskites. In the following we shall more specifically report investigations of perovskites obtained by combining cesium (Cs), methylammonium (MA, CH_3NH_3^+), or formamidinium (FA, $\text{HC(NH}_2)_2^+$) as A-ion, tin (Sn^{++}) or lead (Pb^{++}) as B-ion, and chlorine (Cl^-), bromine (Br^-), iodine (I^-), or their combinations as anions. We also allow for four differ-
ent symmetries (cubic, tetragonal, and two orthorhombic phases with space groups \(P_{m\bar{3}m}\), \(P_{4/m\bar{mbm}}\), \(P_{bnm}\), and \(P_{nma}\), respectively) for a total of 240 combinations [59] which have been fully relaxed using the PBEsol exchange-correlation functional. [60]

Figure 4 shows the light absorption efficiencies for a selection of hybrid halide perovskites analogous to Figure 3 for the oxides, oxynitrides, and oxyfluorides. The superior absorption properties of the halide perovskites are immediately apparent. They exhibit a direct band gap transition with the states at the valence band maximum located on the tin/lead \(s\)-states and the conduction band minimum on the tin/lead \(p\)-states. This leads to a strong overlap with a large dipole matrix elements.

The stability of the perovskites in the four different phases have been investigated in Ref. [59] At low temperatures for all materials, the cubic phase is less stable than the lower symmetry phases (tetragonal and both of the orthorhombic phases) which come into play depending on the detailed composition. However, the energy difference between the different phases turns out to be small typically below 0.1 eV per formula unit. Mixing the halide atoms typically cost energy, except for the compound FA\(\text{SnBr}_2\)\(\text{I}\), which turn out to be marginally more stable than the corresponding bromide and iodide. However, again the energy differences are small and the combined system can be expected to be metastable considering also that the entropy of mixing entropy is not taken into account. [61] In fact, both Cs and MA mixed compounds have already been synthesized. [58, 62]

The high absorption efficiency with direct gaps and strong dipole matrix elements independent of the detailed composition (Figure 4) makes it of interest to study the variation of the band gap in the whole database of 240 compounds. Due to the orbitals involved in the transition at the band gap, the spin-orbit
Figure 5: The 240 calculated gaps. Each square corresponds to a different phase and composition. The phase and the A-ion are indicated by the labels on the left vertical axis. The B-ion and the anion composition are shown on the top and bottom of the horizontal axis, respectively. The anion combinations are sorted according to increased geometrical mean of the electronegativity. The increase of the gaps with respect to a change in the phase and composition is followed by red arrows. Figure from Ref. [59]

effect plays an important role in the calculation of the band gaps, in particular in the lead-based perovskites for which the effect is larger. [63, 64] Test calculations on a limited set of systems show that the spin-orbit correction, Δ_{soc}, is rather independent of the A-ion and anion configuration but depends sensitively on the character of the B-ion. Based on the calculations on the test systems we therefore introduce an ad-hoc reduction of the band gap of 0.25 ± 0.05 eV for the Sn perovskites and of 1.02 ± 0.06 eV for the Pb systems. Focusing on the optical band gap we also need to take into account the exciton energies which based on calculations using the Bethe-Salpeter Equation are found to lead to a
reduction of the gap in a range from 0.11 to 0.15 eV for all the cubic systems formed by Cs with I₃, Br₃, or Cl₃. We thus reduce the calculated gaps by Δₓ₋ₙ = 0.13 eV to take this effect into account. Summarizing, the optical gap is therefore obtained starting from the GLLB-SC Kohn-Sham band gap and adding the derivative discontinuity contribution, which depends on the composition and phase considered, and subtracting the spin-orbit and electron-hole interaction corrections. The agreement between the calculated and measured gaps for the cases where experimental studies have been carried out is very good, with a mean absolute error of 0.2 eV. [59]

In Figure 5, we report the calculated optical band gaps of the 240 systems. Each colored square represents a particular phase and composition. The band gaps span over a region between 0.5 and 5 eV. We can identify several trends, summarized in the figure by red arrows, which can be helpful to design novel materials with gaps in a desired region. We note: (i) The band gaps increase as the size of the A-cation is decreased. The FA molecule is larger than MA which is again larger than the Cs ion. The reason behind this effect is that a larger cation leads to a larger lattice constant which again leads to a down-shift of the Sn or Pb s-states at the valence band maximum. [65, 66] (ii) The Pb systems have a larger gap than the Sn systems. (iii) The band gaps increase with increased electronegativity of the anions. This is clearly seen in Figure 5 where the anions are listed according to this parameter. This effect is probably caused by the more electronegative anions pulling down the extended Sn or Pb s-states more than the more localized p-states. (iv) Symmetry breaking leads generally to increased band gaps so that the cubic phase exhibit smaller gaps than the other phases. In particular the orthorhombic₂ phase exhibit higher gaps than the other phases.

The character of the A-cation may play an important role for the function-
<table>
<thead>
<tr>
<th>Ammonium (A)</th>
<th>Hydroxylammonium (HA)</th>
<th>Methylammonium (MA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH$_4^+$</td>
<td>H$_3$NOH$^+$</td>
<td>(CH$_3$)NH_3^+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hydrazinium (HZ)</th>
<th>Azetidinium (AZ)</th>
<th>Formamidinium (FA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_3$N–NH$_2^+$</td>
<td>(CH$_2$)$_3$NH$_2^+$</td>
<td>NH$_2$(CH)NH$_2^+$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Imidazolium (IA)</th>
<th>Dimethylammonium (DMA)</th>
<th>Ethylammonium (EA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C$_3$N$_2$H$_5^+$</td>
<td>(CH$_3$)$_2$NH$_2^+$</td>
<td>(C$_2$H$_5$)NH_3^+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Guanidinium (GA)</th>
<th>Tetramethylammonium (TMA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(NH$_2$)$_3^+$</td>
<td>(CH$_3$)$_4$N$^+$</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Organic molecules investigated as A-cation. [67]
ality of a hybrid halide perovskite as PV material. It has for example been suggested that the spontaneous electric polarization of A-cation molecules is of key importance. [68] We therefore in the following investigate the properties of perovskites with different common nitrogen based cations (Table 1) together with Sn (or Pb) and I$_3$ in the cubic phase. For each structure we generate 10 different configurations where the molecule is randomly rotated. Each structure is then allowed to relax, in both lattice and atomic positions, in the 5 atoms unit cell. Even though, the 5 atom unit cell is not large enough to encompass all the possible distortions, it gives an estimate of the coupling between the molecule orientation, volume and lattice distortions, and their effects on the magnitude of the band gap.

In Figure 6, the calculated band gaps for the systems MSnI$_3$ (or MPbI$_3$, where M is one of the organic molecules) are plotted as a function of the pseudo-cubic lattice parameter, defined as the cubic root of the unit cell volume. The error bars along the x-axis indicate the average non-cubicity, defined as the average of $\frac{1}{3} \sum_{i=x,y,z} |a_i - a_{pc}|$, where a_i is the lattice parameter along the i'th direction and a_{pc} is the pseudo-cubic lattice parameter. The error bars on the gap axis represent the variation of the gap depending on the orientation of the molecules.

The Sn-based systems show an almost linear relation between the pseudo-cubic lattice parameter and the band gap, and the molecules are clearly ordered according to size. This confirms the gap-volume trend discussed earlier, and opens up for significant band gap modification by molecular replacement. The correlation is less clear for the Pb-based systems but again the molecules are roughly ordered by size.

For the smaller molecules the lattice distortions are seen to be less pronounced than for the larger ones pointing to a – maybe not unexpected –
Figure 6: Calculated band gaps as a function of the pseudo-cubic lattice parameters for the set of organic molecules of Table 1. The error bars indicate the average non-cubicity (x-axis) and the variation in the gap (y-axis) depending on the different orientations of the organic molecules.

stronger coupling between lattice and molecular orientation for the large molecules.
Molecular replacements can therefore be expected to not only affect the band gap but also to play a major role for the stabilization of the different symmetry-breaking phases.

4 Conclusions and Perspectives

The identification and design of new light absorbing materials for use in photovoltaic or photoelectrochemical devices is traditionally based on a combination of trial and error and of sophisticated chemical/physical intuition by its practitioners. In this chapter we have tried to illustrate how screening with \textit{ab-initio}
quantum mechanical calculations can be used as a supplementary tool in this endeavor.

The screenings necessarily have to be based on computable descriptors which address key issues in the material performance. Even though such descriptors may be quite simple and only address part of the problem they can still be useful in reducing the number of possible candidate materials for a particular application. As an example take the database discussed earlier with 19000 perovskite oxides, oxynitrides, and oxyfluorides. Considering only the band gap, heat of formation, and level alignment, the number of candidate materials for one-photon water splitting was reduced to only 20 – a much more reasonable number of materials for further investigation. Explicit calculation of the absorption efficiency could then reveal that the oxynitrides had superior absorption properties compared to the oxides.

The calculations can also be used to discover or quantify trends. For example the band gaps of the hybrid halide perovskites showed a clear correlation with the electronegativity of the anions underpinning the possibility of band gap tuning by anion substitution. Likewise the band gaps are seen to increase systematically with the size of the molecules used as A-cations, opening up for enlargement of the band gaps of Sn-based perovskites bringing them into a range of higher relevance to water splitting.

The computational exploration of perovskites as PV or PEC materials is far from complete. Both with respect to composition, crystal phases, and derived structures much territory is unexplored. Furthermore the descriptors discussed here only address very basic issues while many interesting and possibly relevant properties like electric polarization and magnetic behavior has not been addressed.
5 Acknowledgements

The authors acknowledge support from the Catalysis for Sustainable Energy (CASE) initiative funded by the Danish Ministry of Science, Technology and Innovation and from the Center on Nanostructuring for the Efficient Energy Conversion (CNEEC) at Stanford University, an Energy Frontier Research Center founded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DE-SC0001060. KST acknowledges the Danish Council for Independent Research’s DFF-Sapere Aude program (grant no. 11-1051390) for financial support.

References

