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INTRODUCTION

Previously the mental activity of a process operator per-
forming the task of analysing the operating condition of a plant
and planning the appropriate actions has been described as a
sequence of "states of knowledge" at different levels of abstrac-
tion. The "states of knowledge" are connected by data trans-
formation processes and it has been proposed to describe the
mental activity of the operator - what he does - in terms of the
basic features of the data process which are taken to be;

- The data, i.e., the representations of the state of the variables
of the physical system considered

- The model, i.e. the explicit representation of system structure
and properties which constrain or control the interrela-
tionship between system variables

- The procedures or rules which are used to control the data
processes. Depending upon the complexity of the model
available or used the procedures may be general, i.e '
system independent, or specific, implicitly representing
system properties and structure.

When the mental activity has been described in this way,
the choice of the operator, - why he performs in a specific way -
has to be analysed by correlating features of the typical data
processes to the available mental mechanisms and their facili-
ties and limitations.



DATA PROCESSING TASKS

The "states of knowledge" used in the "ladder og abstrac-
tion to describe the steps in the operator's mental activity
during a subtask should be considered to be the operators
conclusive statements regarding his knowledge of the state
of the external physical system and of the appropriate plans
and procedures for manipulating the system.

The data processes needed to connect these "states of
knowledge" vary fundamentally depending upon the skill of
the operator in the specific task. In very familiar tasks
states can be connected by a one-step associative leap. In
infrequent or unfamiliar situations,the data process needed
to connect two of the states of knowledge included in the
"ladder of abstraction" can be a complex sequence of ele-
mentary data processes connecting "substates" of knowledge
regarding intermediate results or regarding states and pro-
cedures related to the operators internal data processes.

The basic features of the processes vary widely depending
upon the purpose or goal, e.g., whether it is part of an ana-
lytical or a planning phase of the task. Some of these basic
features are different roles of data, models and procedures
during the processes.

Different types of processes are illustrated by the follow-
ing classes of transformations:

Data-data transformation

- Deduction; derivation of dependent data from other data;
e.g. causal forward transformation to predict output
response of system to given input or to derive not-
observable information from observations.

- Abduction; reverse transformation, determining input data
to system as possible causes of observed output set,
e.g., interpretation of instrument readings in terms of
internal process variables, explain system output data
in terms of unobservable disturbances.
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Data-model transformation

- Induction; derivation of information on system structure
and properties from data; e.g. find system properties
which satisfy a specified input-output relation during
planning or diagnosis.

Model-model transformation

- Model transfer; e.g. to transfer to a domain or type of
model for which standard procedures or solutions are
known; e.g. transfer to known, analogic systems, to
standard engineering "equivalent diagrams" or to
mathematical representations.

Model-rule transformation

Planning, determination of a sequence of operations, i.e. inter-
nal data processes or external actions, for a specific task.

These transformations are only examples of processes re-
lated to the discussion of models & procedures. Other mental
processes related to values,'90als & criteria such as choices

and judgements are of course of great importance.
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DATA PROCESSING MODELS

A physical system is a set. of interacting physical elements,
which act as carriers of sources emitting information. The in-
terrelationships in the information from the different sources
are constrained by the physical interaction of the elements. In
data processing such physical constraints, determined by the
structure of the system and the properties of the elements, can
be explicitly represented by a model of the system.

The data processes are controlled by rules or procedures,
which may implicitly represent system properties and struc-
ture.

System structure and properties can be modelled by differ-
ent means:

- Physical models; identifying potential data sources and their
spatial relations.

The mapping preserves the physical structure of the
system, i.e. information-sources can be aggregated into
sets representing physical objects, i.e., objects are sets of
information sources frequently met in different contexts.
Objects are formed in the model domain by closed, non-
overlapping boundaries. Level of aggregation can be
changed by rearranging such boundaries according to
the need in the specific data process.

Examples: Scale models, topographic maps, anatomical
diagrams.

- Functional model; identifying potential sources of information
together with rules specifying the relations between data
available from the sources.

The rules can be related to the system, e.g. the rules can
be causal physical laws, or to the data process, e-g., they
can be calculating algorithms.

The functional model can be unstructured, monolithic,
specifying relation between variables at the source level,
i.e. the system is considered one integrated whole, one
component, a black box.

However, generally a functional model is structured;

- into objects and rules for their behaviour and in-
teraction, e.g. burners, boilers, pumps.

- or into functions; i.e. the data sources are aggre-
gated into sets according to frequently useful rela-
tions between information from the sources, e.g.
heat balance, mass transport, feed-back loops.




- State model; re-presenting the potential sources of informa-
tion together with consistent sets of possible values of
the variables related to the sources. System properties
are implicitly represented by sets of "snap-shots" of vari-
ables.

State models represent frequently used system states
and are typically used to identify or verify such states.
Therefore, the models are generally labelled by verbal
statements referring to:

- specified operational states:
"air system normal"
"its burning well"

- or to intended operations
"boiler ready for start”

- Behavioural model - dynamic representation of system be-
haviour; animate state models. The model is formed by
storing dynamic representation of input-output relations.
Structured in typical objects and their generic patterns of
behaviour.

This model is an "active" model only possible in a parallel
processor.

Data processing models can be of a very different nature,
depending upon the level of generalization, the selection of
properties needed and modelled etc.

The following figures illustrate the content of different types
of models. They are in a way models of data processing mod-
els, and should only be taken as illustrative examples of possi-
ble model content, not as direct representations of the models
illustrated.

DATA

In mental data processing the "data" are representations' of
the variables characterizing the actual state of the physical
system considered. The "variables" of a physical system are
here taken to be the measurable, unidimensional magnitudes
which generally are used to characterize the state of a physical
system in a more strict engineering treatment, and which typi-
cally are the primary magnitudes measured in process plants
by the instrumentation, such as position, temperature, pres-
sure, velocity, etc.

The physical variables of a System are represented in men-
tal processes in different typical ways:



Individual representation of variables:

- continous, 'analog', representation found e.g., in pulse-
density coding in basic neural processes underlying per-
ception and subconscious sensorymotoric functions.
Animate imagery in "visual thinking".

- digitized representation, used in calculating algorithms.

- discrete representation, factual statements in natural lan-
guage reasoning, e.g., high, low, hot.

Collective representations of sets of variables related to ob-
jects or functions, states or actions etc. This representation
implies "chunking"," a change in level of abstraction based on a
stored state model.

A close relation between the type of model underlying a data
process, and the type of data used in the process can be ex-
pected.

Use of collective representations typical for common sense
or natural language reasoning is probably related to functional
models structured in components. The variables are attributes
of the components or objects, which interact or are means for
action.

In formal reasoning based on individual representations of
variables a functional model structured in relations is used.
Objects or components are means for transforming variables
and they dissolve into relations between variables - which be-
come the "objects" or elements of the model.

Following Bugelsky, one could suspect in both cases un-
supported verbal reasoning to be a verbal control and/or a
verbal expression of the response of an internal, dynamic be-
havioural model. This model may simulate the behaviour of a
system of interacting real objects, as well as of a system of ar-
tificial objects, i.e., signs & symbols.

PROCEDURES

The procedures, decision rules, which are used to control
the data processes, depend in type and complexity upon the
task and the model used for the task.

If a complex active model is used in parallel processing, e.g.
analog simulation by a behavioral model, the process is com-
pletely specified by the model, if properly initialized and acti-
vated. The problem is transferred to another physical system
and process control left to nature.

Data processing by a single channel processor implies se-
quential processes controlled by a procedure, a set of rules,
and a stationary model. The content of the rules depend upon
the task and the model available. If a complex, structured
model is used, the rules can be very general; if only a rudi-
mentary model is used, the rules will reflect implicitly the
structure and properties of the system:



- general rules related to system properties, i.e. physical laws,
are used in deductions by causal functional models.

- general rules related to the type of task are found as heuristic
rules e.g. in search sequences.

- rules may be related to the structure of the model, e.g., con-
ventions for manipulation of sets of equations

- rules may be related to a specific task and system as it is the
case for instructions, cook book recipes based on physi-
cal system models only.

CRITERIA & CONSTRAINTS

As a specific task can be solved by the use of different' mod-
els & procedures the choice of the process used in the task
must be controlled by performance criteria related to the proc-
ess itself. The performance criteria used will vary with the
specific work situation, and can be related to personal emo-
tions and needs, to internal constraints such as mental capac-
ity limitations or to external constraints such as amount of
information or time available.
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Fig. 5. Distribution of scu-level pressure (in millibars) simulated for ice-age (18.000 B.P.) July condi-
tions (see Fig. 1), calculuted with respect to the ice-age sea level (85 m lower than today’s). !
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conversion — .

4’21,0 —> /0/0/02 ; 4(7/0 — 00111y

CONVERSION OF DECIMAIL. TO BINARY

There are two commonly used methods for converting decimal num-
bers to binary equivalents. The reader muy choose whichever method
he finds easier to use.

1. Subiraction of Powers Method-—To convert any decimal number
to its binary equivalent by the subtraction of powers method, proceed
as follows.

Subtract the highest possible power of two from the decimal number,
and placc a “1” in the appropriate weighting position of the partially
completed binary number, Continue this procedure until the decimal
number is reduced to 0. If, aficr the tirst subtraction, the pext fower
power of 2 cannot be subtructed, place a 0 in the appropriate weight-
ing position. Example:

42, = ? binary
42 10 2
—32 - 8 -2
10 2 1]
© 25 21 A 2: 21 20 Power
32 116 8 4 2 i Value
1 0 1 0 1 0 Binary

Thevefore, 42, = 101010..

2. Division Method-=To couvert a decimal number to binary by
the division method, proceed as follows.

Divide the decimal number by 2. 1f there is a remainder, put a |in the
LSD of the partially formed binary number; if there is no remainder,
put a 0 in the LSD of the binary numiber, Divide the guotient from the
first division by 2, and repeat the process. If there is a remainder,
record a 1; if there is no remainder, record a 0. Continue until the
quotient has been reduced to 0. Example:

47, == ? Binary

Quotient Remuainder
2 yar = 23 | e
2 3% = 11 [ —
2 )T = 5 ]
2 33 = 2 | —
2 .37 =z 1 [ pe—
2 5T = 0 1-1

1 0 1 t 1 1
Therefore, 47,, = 101111..
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Figure 4-3.  Maunually Loading a Program
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Iia. 20-138. Flow-graph interpretation of the model of Fig. 20-12.

Proceavre | roles for mode! 1ahns formalkon:

; relart
Step-by-step Reduction.  Before presenting the reduction formula for the f/ﬂ e o ma/&/

evalualion of w transmittance of a graph by inspection, it is useful to consider some .
reduction techniquies which can be applied step by step.  Algebraic reductions (such wnven ﬁaﬂj ”07‘
as the elimination of dependent variables, for example) have their flow-graph counter-

parts, and several clementary siuplifications supgest themselves as a result of the fﬂsé‘ sp&’?’.é
propertics of the uodes and the assumption that the graphs are lincar.

In general it is useful to think of graphb reduction or simplification as involving the
ahsorphion of nodes or the elimination of loops or both. We shall first consider the
reduction. of sigle loops and then present o comprehensive step-by-step procedure
for the absorption of auy Jdesiced group of dependent nodes, with the end result, if
desired, the reduction of the graph to a single branch. The transmittance of this
finnl branch is. of course, the groph trensmittance or transfer function being sought.

An clementary single-loop graph may be reduced to a single branch by dividing the
forward path transmittance by one minus the loop transmittance, 'This simple rule,
which iy illustrated in Fig. 20-15, may ecasily be derived by reconstructing the set of
equations which the graph represents and solving these for 7. Thus, for zy =1,

. 1 | T, 2
Te=5=pPry (20-24) o—-t——0
’ : i T

"This simple rule for & single loop is applied to any paths which share nodes in Ito. 29-15. Reduction of a stngle loop.

common (i.¢., touch) the loop.
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ANALYSIS OF MENTAL ACTIVITY

Due to the subjective formulation of performance criteria
and goals and the large repertoire of different subroutines for a
specific task available to a skilled person, the sequence of data
processes performed in a specific situation will have a detailed
structure and content controlled by very person- and situa-
tion-dependent features.

Even when it is possible to obtain detailed verbal protocols
from a single task sequence, it will be very difficult to identify
general features of the data processes due to frequent sponta-
neous shifts between different basic process strategies initiated
by minute details in the situation. The trees obscure the sight
of the forest.

A simultaneous analysis of several process descriptions (e.g.
from verbal protocols) at the level of types of data, models and
procedural rules support a more efficient identification of con-
sistent strategies. This leads to a description in terms of in-
formation transformations between different states of knowl-
edge, in the form of an information flow map rather than a se-
quence description.

When this analysis has led to the fundamental structure of
different strategies used in a mental subtask it may be possible
logically and rationally to complete the description of a strat-
egy and to generate a full set of possible strategies. In this
way a description, what the operator can do is obtained.

The strategy maps enable the formulation of precise ques-
tions to be used for an analysis of the sequence in a specific
protocol in terms of the information extracted from observa-
tions, the type of models and operations used. Thus a detailed
analysis can lead to identification of leaps between formal
strategies.

A description of what the operator will do in a specific
situation can only be obtained in terms of a description of cues
in a situation which may lead to leaps between operations be-
longing to different strategies. Hopefully, these can be con-
nected with some indication of the transition probability.

If data processing is based upon simulation by an active
behavioural model, the data process can not be described by a
linear sequence, but only in terms of the structure of the model
and the properties of the element. Semantic linguistic analysis
of the expressions used in verbal descriptions can possibly
serve this purpose.






AN ILLUSTRATIVE EXAMPLE

To test this analytical approach the task of trouble shooting
in an electronic maintenance shop has been chosen. The rea-
sons were primarily due to the availability of detailed verbal
protocols and to the well specified task.

In a diagnostic task aiming only at repair of a system, the
task is primarily to identify the location of a faulty component
in the system. This task does not necessarily include consid-
erations of the functional consequences of the fault which, fx,
typically will be the case in process plant diagnosis where pro-
tection of the system is of primary importance.

Thus the task is to derive in some way a topographic refer-
ence to the location of the faulty component. This can be done
in several ways leading to different formal search strategies.
Basically, the task is an inductive one but, as the system is
known to have been operating satisfactorily, the task is solved
by a search for a change from normal conditions.

Three different classes of strategies can be used. The in-
formation extracted from observations giving a reference to the
location of the faully component is different in these strategies,
as is the use of different types of models. This is illustrated by
the schematic information flow maps.

In a specific diagnostic task, frequent leaps between the
different strategies will take place. All different strategies are
latently present and available, and difficulties during a current
activity and/Qr indications that another strategy may be more
promising will initiate a leap, which is controlled by very per-
son- and situation-dependent features.

Furthermore, the sequence in which the different subactivi-
ties of a strategy are performed is very dependent on details in
the specific case.

Rather than a linear sequential description of the sequence
of activities during specific cases, the analysis should aim at a
description of the activities and their role in a set of formal
strategies, together with a listing of typical cues and heuristic
rules controlling the leaps between strategies.
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