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Summary
The global effort towards a decarbonised energy sector led to an increased share of re-
newable energies in the energy mix of most industrialised countries. Production from
renewable resources as wind and solar is intrinsically intermittent, and often installed
at medium and low voltage grid. This, together with the growing urbanisation, the in-
creasing popularity of electricity-based climate control systems and electricity-based
private transportation, challenges the distribution systems operators to run the low
voltage grids with small safety margins.

Depending on the customer and the specific application, a portion of the elec-
tricity demand (or production) is flexible, and can eventually be used to support
the system stability. Such practice is called Demand-side Management (DSM), and
flexible units are called Distributed Energy Resources (DERs), if they only produce
energy, or Demand Side Resources (DSRs), in the case they can also (or only) con-
sume. This research investigates a specific control approach to DSM, called Direct
Load Control (DLC). DLC is based on the assumption that the controlled units react
in a predictable way to received control signals, and notify a failure if their operation
is compromised.

In this research DLC is investigated at unit level and at aggregation level by
means of model-based predictive control and model-free online control. Predictive
control allows maintaining the flexibility of DSRs longer than online control, and
allows pursuing quality of service (QoS) objectives towards both customers and SOs.
However, it needs a model of the controlled units to optimise their operation over
time, and field data to monitor the units’ operation. On the other hand, the online
control here investigated takes myopic decision based on field data, without the need
of unit model. Therefore it does not guarantee optimality in the long run.

Two approaches are investigated within predictive control: the first is based on
grey-box modelling and quadratic Model Predictive Control (MPC), while the second
is based on Artificial Intelligence modelling and gradient-free optimisation. This re-
search contributes to the first approach with a novel coordination scheme for a cluster
of DSRs, which innovates with respect to other solutions proposed in literature by
allowing independent design of the units local controllers and the use of heteroge-
neous control signals, such as continuous, integer or binary. The second approach
foresees the application of self-learning models to predictive control. In this context,
the contribution of this research is twofold: first it proposes the application of en-
semble methods and decision trees to modelling of climate control systems, then it
provides experimental validation of a combined Reinforcement Learning/in-domain
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knowledge approach for DSM application.
The second approach to DSM in based on model-free online control. The proposed

controller uses only field measurements and a generic domain knowledge to abstract
the unit flexibility for DSM applications. It allows real-time control of power flow in
single DSRs and, since there is no operation planning involved, decisions are taken on-
line on the basis of field measurements. In this context, a novel approach is proposed
to control thermostatically-controlled loads (TCLs) within a framework for control
of micro grids by means of explicit power set points.
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Resumé
Den globale indsats for en kuldstoffri energisektor har ført til en øget andel af ved-
varende energi i energimixet hos størstedelen af de industrialiserede lande. Vanske-
lighederne ved at balancere forbrug og produktion samt ved at overholde transmissions
og distributionsnettets effektbegrænsninger tvinger driften af elnettet ud i kritiske
områder for at bevare en pålidelig elforsyning af høj kvalitet.

For at imødekomme balanceringen og for at afhjælpe eventuelle flaskehalse i
transmission- eller distributionsnettet kan fleksibelt forbrug- og produktion forsky-
des tidsmæssigt eller geografisk. Dette koncept kaldes for Demand-side Management
(DSM). Dette forskningsprojekt undersøger en specifik reguleringstilgang til DSM
kaldet Direct Load Control (DLC) som metode til at aktivere forbrugsfleksibilitet
(Demand-side ressources, DSRs, på engelsk). Reguleringstilgangen består af to forskn-
ingsakser: prædiktiv styring og online styring.

To tilgange undersøges indenfor prædiktiv regulering: den første er baseret på grey-
boks modellering og kvadratisk modelprædiktiv regulering (model predictive control,
MPC, på engelsk), mens den anden er baseret på kunstig intelligens modellering og
gradient-fri optimering. Denne forskning bidrager til den første tilgang med en ny ko-
ordineringsmetode for en klynge af DSR, som innoverer på andre løsninger analyseret
i litteraturen ved at tillade den uafhængige design af de lokale enheders styringsal-
goritmer, og kan håndtere heterogene typer af styringssignaler: kontinuert, diskret
og binært. Den anden tilgang omhandler anvendelsen af selv-lærende modeller for
prædiktiv regulering, med anvendelse af ensemble metoder og beslutningstræer af
termisk modellering af bygninger. En viderbygning til sidstenævnte er også præsen-
teret, denne bruger Extreme Learning Machines (ELMs) for regressioner, sammen
med Batch Reinforcement Learning (BRL) for beregning af styringsbeslutninger.

Den anden forskningsakse handler om model-fri online regulering, som kun har
behov for feltmålinger og en generelt domæneviden for at abstrahere enhedens fleksi-
bilitet og anvende den til DSM. Da der ikke er nogen operationsplanlægning involveret,
og fleksibiliteten afhænger af enhedernes tilstand og modtagne effektsetpunkter, er
beslutninger taget i reel tid og den opdaterer fleksibilitetsinformation og effektset-
punkter beregnet til hver tidsskridt. I den forstand bidrager denne forskning med ab-
strahering af fleksibiliteten af termostatstyrede enheder (thermostatically-controlled
loads, TCLs, på engelsk) og brugen af denne abstrahering indenfor et framework for
mikro-grid regulering ved brug af eksplicite effektsetpunkter.
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CHAPTER1
Introduction

“Research is to transform money into knowledge. Innovation is to
transform knowledge into money.”

Geoff Nicholson, 3M, the father of post-it notes.

In the past twenty years the costs of wind and solar energy has been sensibly
decreasing, allowing these two technologies to play a major role in the decarbonisation
of the electricity sector. This goal has gained increasing importance on governments’
agendas in order to reduce the environmental impact of human activities. At the
same time, technologies as electric climate control systems (heat pumps, HVACS, and
resistive space heating) and electric vehicles have gained popularity in many countries,
especially in northern Europe. As result, increased uncertainty in energy production
and energy consumption puts the System Operators (SOs) to face already challenges
in order to maintain the electricity provision stable and of appropriate quality. In this
context the Smart Grids, as the evolution of the actual electricity networks, promise
to help tacking a number of these challenges.

The Smart Grid concept comes from the merge of an IT and control infrastructure
with a traditional electric network, which functionality and reliability is enhanced by
diverse data analysis and control techniques. Among the different applications of
Smart Grids, this research focuses on intelligent energy consumption, and spans from
modelling of demand-side resources (DSRs), design of control strategies for flexibility
aggregation and operation, to field implementation and demonstration.

As it will emerge in the following chapter, DSRs are so diverse in type and capa-
bilities that controlling their flexibility brings value to the System Operators and the
end users. However, depending on the resources location, type, Demand Side Man-
agement scheme, and the required Quality of Service (QoS), some control schemes
emerge to be more convenient than others. This research explores the main advan-
tages and disadvantages of different techniques proposed in literature and aims at
putting forward new perspectives and solutions to overcome some of the technical
challenges that were found open.
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Research scopes and thesis structure

This research explores three directions: classical model-based predictive control using
grey-box physical modelling, Machine Learning model-based and model-free predic-
tive control, and model-free real-time control of DSRs.

Chapter 2 provides an introduction to the topic of Smart Grids, from the political
effort to reduce the CO2 emissions, to the technical challenges associated to high
share of renewable energies in the power mix. Being this research mainly focused on
Direct Load Control, Chapter 3 provides an insight on such scheme and provides the
reader more specific references.

Chapter 4 is dedicated to model-based predictive control, and starts with intro-
ducing the DSRs modelling approach. In this context, the first contribution consists
in the thermal modelling of residential refrigerators. The second part of the chapter
presents two predictive control schemes for DLC: Centralised Model Predictive Con-
trol (CMPC) and Distributed Model Predictive Control (DMPC). While the main
advantage of CMPC is the high quality of service provided to the end users and
the SO, this approach scales very bad for increasing number of controlled units and
it requires centralised knowledge of units models. DMPC algorithms, on the other
hand, scale much better since they are based on distributed and parallel optimisa-
tion. Two famous implementations of distributed optimisation require the local units
controller to respect a specific mathematical formalism. In this context, this research
introduces an innovative approach for distributed model predictive control, called Se-
quential DMPC (SDMPC), which allows an independent design of units controllers
to the specific units’ needs. This algorithm achieves units coordination by means
of central information sharing without the need of an intelligent or mathematically
complex coordination; it can be applied to heterogeneous types of units, and it han-
dles continuous and discrete control signals. Performances of SDMPC and CMPC
architectures are compared and assessed with respect to the quality of service for end
users and SOs. However, grey-box system modelling often requires significant time
and effort, on top of in-domain system knowledge.

Chapter 5 presents an application of Artificial Intelligence to system modelling in
the view of limiting as much as possible the modelling effort and cost. In this context,
the innovation brought by this research consists in applying Extremely Randomized
Trees (ERT) as AI technique to building thermal modelling and the use of Dynamic
Programming for computing the optimal closed-loop control policy. Even though
ERT benefits of high simplicity, experimental tests enlighten some limits of this tech-
nique, such as poor scalability, moderate regression performances, and relatively long
training period. To overcome these issues, in the second part of Ch. 5 we introduce the
Model-assisted Batch Reinforcement Learning (MABRL). This alternative approach
aims at tackling the problem of regression performance and scalability by substituting
the ERT with Extreme Learning Machines (ELMs), and the problem of large learning
time by combining standard Fitted Q-iteration (FQi) with the support of ELMs.

In Chapter 6 we finally focus on model-free real-time control of DSRs. A system
for real-time control of active distribution networks by means of explicit direct power
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references, called COMMELEC [Ber+14a], is presented. This system, developed
during a visiting research period at EPFL (Switzerland), generated promising results
in simulations, and contributes in the same direction by abstracting the flexibility of
a generic thermal load and enabling it to control within COMMELEC.

Chapter 7 summarises the topics presented and the contributions, it outlines the
final considerations and presents a perspective on future research. Finally, the two
appendices include the papers collection and some insights on selected topics.
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CHAPTER2
Background

This chapter outlines the background information relevant to this re-
search. We start by presenting the main drivers to the international
effort in reducing CO2 emissions and decarbonising the power sector;
then, our focus shifts towards the challenges of a decarbonised electricity
sector. These challenges can be tackled with the help of Smart Grids
which, among a number of advanced services, offer the control of a part
of the energy consumption. This technology is called Demand Side Man-
agement (DSM), and it is the core topic of this research. This chapter
includes a classification of control architectures for DSM programs, and
introduces some relevant DSM research projects.

2.1 Governmental strategic plans and main drivers for clean
energy

United Nations. On September 23, 2014, leaders from more than 40 countries, 30
cities and several corporations met at United Nations in New York for the Climate
Summit 2014 in order to agree on a large-scale joint effort to cut the greenhouse
gas emissions and transversally improve the efficiency in sectors as: transportation,
lighting, appliances, buildings and district energy systems. As outcome, the Global
Energy Efficiency Accelerator Platform was launched in order to double the global
rate of increase in energy efficiency by 2030. Indeed, the main driver to such in-
terest in efficiency is the increasing energy demand in both developing and already
industrialised countries.

United States of America. In the United States, the energy efficiency became
somehow popular in the political agenda in 1975 with the Energy Policy and Con-
servation Act, which focused more on security of energy supply rather than energy
efficiency. The Act was signed into law by President Gerald Ford on December 22nd,
1975, and stated diverse provisions among which: the institution of the strategic
petroleum reserve, the issue of the Corporate Average Fuel Reduction (CAFE) regu-
lations, and the Energy Conservation Program for Consumer Products Other Than
Automobiles.

After refusing to ratify the Kyoto Protocol in 1997, United States took a step
forward to energy efficiency with the Energy Independence and Security Act of 2007.
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This Act innovated the US energy policy in many areas, including: vehicle fuel econ-
omy, production of biofuels, and improved energy saving standards for appliances
and private and public buildings. Few years later, in 2009, the first aggressive step in
favour of clean energy was taken, and on June 26th the American Clean Energy and
Security Act was passed by the U.S. House of Representatives.

European Union The beginning of a common European energy policy was moti-
vated as well by energy security issues. S. Lansdorf reports that initially the energy
policies were exclusively defined at national level [Sus11], until September 17th, 1974,
when the Council of European Communities adopted the Resolution concerning a
new energy policy strategy for the Community, which recognised the urgent need for
a common energy policy and prepared joint targets for energy producers, consumers
and markets [The75]. The international commitment for climate protection expressed
in the Earth Summit in Rio, 1992, and in the ratification of the Kyoto protocol in 1997
was followed by the EU with the Treaty of Amsterdam, 1999, and the Treaty of Nice,
2003, which prepared the background for the first properly-called EU Energy Action
Plan, issued in March 2007. This plan laid down three core points: sustainability,
security of supply, and competitiveness, together with quantifiable objectives for re-
duction of emissions, renewable energies, and energy efficiency: the 20/20/20 targets
(20% reduction of greenhouse gas emissions below 1990 levels, 20% of EU consumption
matched by renewable resources, and 20% reduction of primary energy use compared
with projected values). In December 2013 the European Climate Foundation (ECF)
published the report Roadmap 2050 [Eur13], which points out two considerations: 1)
in order to reduce the greenhouse gas emissions from 80% to 95% by 2050 the actual
trend has to be maintained at similar peace at least until 2030, and 2) a low-carbon
power sector is economically affordable provided an effective and collaborative shar-
ing of cross-border resources enabled by: cross-border infrastructures, active demand
response, disinvestment in high carbon assets and investment in low carbon assets.

Denmark A European pioneer in the decarbonisation of human activities is Den-
mark, which requires all non ETS1sectors to participate in the total reduction of
GHGs emissions and intends to become independent from fossil fuels by 2050. As
part of this, oil for heating applications and coal are to be phased out by 2030, and
electricity and heating supply must be entirely covered by renewables by 2035 [The13].
The recent Energy Agreement, published on March 22nd, 2012, secures a broad polit-
ical commitment to energy savings and promotion of renewables: wind, biogas and
biomass. Particularly relevant to this research is the commitment of the Danish gov-
ernment to ensure a share of around 70% of renewables in the energy mix by the year
2020, 70% of which being wind power.

1Emissions Trading System (EU ETS), such as transport (except aviation and international
maritime shipping), buildings, agriculture and waste.
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2.2 Increase of energy demand and decarbonisation of the
power sector

In the report World Energy Outlook 2011, the International Energy Association (IEA)
estimates an annual growth of world energy demand of 2.4% between 2009 and 2035,
mainly driven by economic and population growth [IEA11]; China and India would
cover half of this increase (Fig. 2.1). According to that, the energy production will
also increase and the energy mix in the coming decades will be heavily influenced by
technology development and deployment.

In the same report, IEA prepared three scenarios for the deployment of new tech-
nologies, which reflect three different levels of effort in the decarbonisation of the
energy sector. The New Policies Scenario foresees a limited deployment of modern
technologies (e.g. electric vehicles, and carbon capture and storage), while the other
two scenarios, 450 Scenario and Current Policies Scenario, relate respectively to: sig-
nificant measures towards clean energy, and no additional measures with respect to
2010. Figure 2.2 shows the projection of the average global energy mix in 2035 with
respect to the three scenarios, while Fig. 2.3 shows the foreseen share of different
renewable resources for the new policies scenario.

Figure 2.1: World Energy Demand in the New Policies Scenario.2

2Based on IEA data from World Energy Outlook 2011 © OECD/IEA 2011, IEA Publishing;
modified by G.T. Costanzo. Licence: http://www.iea.org/t&c/termsandconditions/
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Figure 2.2: Share of energy sources in world primary energy demand by scenario,
2035.3

Figure 2.3: Incremental global renewable-based electricity generation relative to 2009
by technology in the New Policies Scenario.2

2.3 Challenges related to a decarbonised electric energy
sector

Due to the an increased share of renewable energies in the power mix, wind and
solar in particular, Transmission System Operators (TSOs) and Distribution System
Operators (DSOs) are already facing the following challenges [Nor13]:

3Based on IEA data from World Energy Outlook 2011 © OECD/IEA 2011, IEA Publishing;
modified by G.T. Costanzo. Licence: http://www.iea.org/t&c/termsandconditions/
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• angle stability: high fluctuating production from renewables mines the ability of
TSOs to maintain system synchronism and balance the torque of synchronous
machines. System frequency has to be maintained between ±1% of the nominal
value, which in Europe is 50Hz;

• voltage stability: high penetration of PV in the distribution grid mines the
ability of the DSOs to maintain the line voltage around ±10% the nominal
value;

• congestion management: the activation of balancing resources in some parts of
the network, as well as excess of consumption due to high amount of Electric
Vehicles being charged, may cause grid overload, with consequent blackouts or
brownouts.

Yet, grid reinforcements can’t be disregarded since the best production sites may
be far from the centres of demand. Therefore, costs related to grid reinforcements are
highly dependent on the region, and in Europe they account approximately for the
25% of the total transmission investments in the period between 2011 and 2035. Inte-
gration costs vary also according to the nature of the renewable source (e.g. biomass
plants can be built closer to the consumption sites, with lower integration costs), see
Fig. 2.4.

Figure 2.4: Renewables grid integration costs as a share of global transmission and
distribution investment costs in the New Policies Scenario by integration cost, 2011-
2035. 4

Wind and solar provide, by nature, fluctuating production. Given that the balance
between production, consumption, import and export of energy must be guaranteed

4Based on IEA data from World Energy Outlook 2011 © OECD/IEA 2011, IEA Publishing;
modified by G.T. Costanzo. Licence: http://www.iea.org/t&c/termsandconditions/
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at any time in a power grid, the increase of wind and solar share beyond a certain
limit requires the shut down of traditional power plants and the increase of balancing
reserves (which consist of plants that are enabled to rump up or down the electricity
production very fast). Also curtailing PV and wind production may be necessary,
with a consequent increased costs of balancing reserves. Furthermore, high penetra-
tion of renewables has profound impact on energy markets, which have to integrate
new stakeholders (from large wind farms owners to small PV installations owners).
The Smart Energy Demand Coalition (SEDC) points out that government legislation
has major role in the market context, by facilitating the integration between energy
markets and ancillary services markets [Coa14], and by reducing the market barriers
to small players.

2.4 The Smart Grid and Demand Response

Active interaction between electricity producers and consumers improves efficiency,
system reliability and lowers the cost of electricity supply. This and many others are
the promises of the Smart Grid, an electricity grid that “integrates all the branched
customers’ and producers’ actions to distribute electric energy efficiently, sustainably,
at low operating costs and safely” [Bel09], and to do so it “uses the information
network to enhance the functioning of the electricity grid.” [PM09].

Demand Side Management (DSM) and Demand Response (DR) are two leading
applications of Smart Grid technologies and are two sides of the same coin. DSM
refers to the practice of modifying the energy consumption at demand side, typically
low voltage grid, upon different contingencies in the power system, e.g. production
volatility and grid congestion. On the other hand, DR refers to the change of users
electric consumption in response to external incentives, e.g. energy price volatility,
contracted payments, or low-carbon performance.

This research focuses on the control perspective of energy distribution, therefore
on Demand Side Management. In this context, the System Operator can benefit from
flexible consumption or production from Demand Side Resources (DSRs). DSRs are
devices connected to the distribution grig that consume or produce energy, and which
operation can be controlled in different ways. Note the difference between DSRs and
Distributed Energy Resources (DERs); these latter refer exclusively to units that
produce energy.

DSRs are crucial to the Smart Grid, because they provide services to both the
end customers and the power system operators (SO): the customer perceives a value
from the operation of a DSR (e.g. the dishwasher) which, at the same time, offers
a service to the SO by shifting the washing cycle off from peak hours. PV installa-
tions equipped with an inverter enabled for curtailing the power production, HVACs
equipped with a controller that schedules the building heating on a price basis, EVs
that can compensate voltage drops in LV feeders by adjusting the charging schedule,
all of these are examples of DSRs. End users can be flexible in the required service
level, and DSRs can be flexible in the operation modes. All considered, DSM can
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Figure 2.5: Demand Side Management without aggregation (left) and with aggrega-
tion services (right)

create considerable value to both SOs and end customers.
Note that, depending on the regulatory barriers, many DSRs may not be large

enough to provide ancillary services directly to the System Operator. Therefore
aggregators are needed between the DSRs and the SO. Each aggregator represents
one or several pools of DSRs upon the SO and it manages the DSRs’ flexibility.

Aggregators are therefore crucial to large scale deployment of DSM. The DSRs
can activate their flexibility either occasionally or on regular basis depending on
the contract with the aggregator and the type of DSM program, they can react to
changes of electricity price, associated CO2 emissions, or alternative signals and forms
of compensation.

System Operators can benefit from flexible demand, whether they are vertically-
integrated or not. In the case of vertically-integrated SO the interest in DSM is
concentrated in one entity, whereas in liberalised energy markets the value of DR is
perceived differently by different actors:

• Transmission System Operators (TSO): energy reserves of various type (primary,
secondary);

• Distribution System Operators (DSO): congestion management, feed-in man-
agement, voltage support;

• Balance Responsible Parties (BRP): arbitrage, energy costs and penalties min-
imisation (portfolio optimisation);

• Aggregators: local DR management (deal with customers comfort), flexibility
trade in markets (portfolio optimisation);

• Markets: intra-day balancing services, day-ahead capacity allocation (bulk en-
ergy consumption/production).

The first DR programs were investigated in 1979, when the interest was on the
communication infrastructure for Automated Meter Reading (AMR), Automated Dis-
tribution Systems (ADS), and communication networks for direct load management
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[Rus80]. In 1984 appeared the first field tests of DR based on dynamic electricity
pricing, in which customers were billed for their consumption depending on the Time
of Use (TOU) [HN84].

Today’s research mainstream within DR is toward the automation of Demand
Response, so to enable DERs to react in real-time to external signals issued by the
SO or the aggregator. The interaction between DERs and other entities in the Smart
Grid, e.g. other controllers, utilities or energy traders, can be characterised in terms
of communication type and information exchange [Kos+13]. In this context, the DR
can be classified by external behaviour (i.e. reaction to external signals) [Kos+13]:
Indirect Load Control (ILC), Direct Load Control (DLC), Transactional Load Control
(TLC), Autonomous Load Control (ALC) (Fig. 2.6).

autonomous 
control

indirect 
control

transactional 
control

direct control

no 
communication

one-way 
communication

two-way 
communication

local
decision
making

central
decision
making

Figure 2.6: DER control matrix for demand side management. 5

This classification can be used for comparing different DR systems, it can help
in the definition of controller specifications, and it puts forward a point of view for
controllers standardisation.

Direct Load Control (DLC). It is a technique based on issuing specific com-
mands to controllable DSRs. The decision on each DSR operation is taken by an
external controller that embeds the main intelligence and has a knowledge of the
DSR status. A direct controller uses two-way or one-way communication to exchange
information with a DSR . In case of one-way communication a DSR is obliged to fol-
low control commands. The only deviation from expected behaviour can occur due
to safety issues or unit failure. Vice versa, with bidirectional communication each
DSR is obliged to acknowledge the received command. A DSR informs the external
controller whether the control command can be executed or not, communicating also
its status. Commands sent by the direct controller may vary depending on the DSR
type and the communication protocol.

Indirect Load Control (ILC). It is a scheme for managing DSRs by issuing
signals which may or may not affect the units operation. Indirect Load Control uses
one-way communication, and the interested DSRs are not obliged to react to the

5Authorised reproduction from [Kos+13].
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control signal or send any feedback. Thanks to that, this scheme is easily scalable
and cheap to deploy. However, an aggregated model of the response of the DSR
population is needed in order to appropriately design the ILC control strategy. In
fact, it has been shown that price-based indirect control can cause consumption kick-
back effects (e.g. see [SBN14]).

Transactional Load Control (TLC). This scheme is also called market-based
control [KVM10], and it refers to a control strategy based on negotiations in a bid-
based market. In transactional control DSRs are competing for one or more resources
on an equilibrium market with the use of bids. After the end of the transaction
DSRs can optimise their production or consumption with use of the equilibrium value
determined by the market. The main goal of the transactional control is to distribute
resources efficiently by taking into account correlated needs of different DSRs [Cle96].
A DER independently decides about the bidding amount and autonomously plan the
control accordingly to the winning bid.

Autonomous Load Control (ALC). This scheme is based on measurements of
frequency and/or voltage that are performed at unit level, in a way that each single
unit can participate in frequency or voltage regulation independently. Due to the use
of local measurements, this kind of control is characterised by a fast response and it
does not need a communication infrastructure or higher-level control entities. DSR
participating to DSM via Autonomous Load Control do not need any supervision, they
work autonomously, and they can provide valuable services to the power system.

Demand Response allows reducing investments for grid reinforcements and peak
generation by controlling the consumption as balancing resource for wind and solar
generation, it reduces the need for spinning reserves (plants that are continuously
running in order to supply power on short notice), bringing therefore financial and
environmental benefits to the society.

Yet, benefits of DR are not limited to the system level. The Smart Energy Demand
Coalition (SEDC) estimates that in 2013 business and private customers in U.S.A.
earned over 2.2 billions of Dollars in direct revenues from trading flexibility in Demand
Response programs [Coa14]. In the same report, SEDC concludes that comparable
benefits could be achieved also in Europe, with consequent beneficial impact on local
economies.

2.5 Some leading Demand Response research project

The European Commission, in its directive 2012/27/EU, grants strong support to DR
by issuing specific directives 6:

• Integration with the markets: “Member States shall ensure that national en-
ergy regulatory authorities encourage demand side resources, such as demand

6Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012, Art.
15.8
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response, to participate alongside supply in wholesale and retail markets.”

• Non discriminatory treatment: “Subject to technical constraints inherent in
managing networks, Member States shall ensure that transmission system oper-
ators and distribution system operators, in meeting requirements for balancing
and ancillary services, treat demand response providers, including aggregators,
in a non-discriminatory manner, on the basis of their technical capabilities.”

On the same line, the U.S. Federal Energy Regulatory Commission (FERC) issued on
March 15, 2011 a final rule addressing the compensation for Demand Response in the
organised wholesale energy markets, i.e. day-ahead and real-time energy markets.7
Then, FERC and the Department of Energy (DOE) have jointly submitted in July
2011 to the Congress the “Implementation Proposal for The National Action Plan
on Demand Response”, which objective is to “implement the National Action Plan to
achieve the nation’s demand response potential.” 8

As a result of joint effort from public and private players to study and understand
the consequences of the evolution of power systems into Smart Grids, several research
project have been granted in both E.U. and U.S.A., among which we find:

• DISPOWER (E.U.-2001/2005). This was the first project at E.U. level (2001-
2005). Its main focus was on studying and supporting the transition of the
European power system to a more market-based structure with efficient and safe
integration of Renewable Energy Resources. The DISPOWER project produced
a series of tools for planning, operating and forecasting distributed generation,
as well as recommendations for European interconnection standards [DSS06].

• INTELLIGRID (U.S.-2004). Interoperability is a primary research theme within
the IntelliGrid program. Directed by the Electric Power Research Institute
(EPRI), this project is highly focused on integrating electronic devices and
smart control together with the latest communication technologies in the oper-
ation and management of the distribution network [Ins13].

• FENIX (E.U.-2005/2009). The scope of this project is to conceptualise, design,
and demonstrate a technical architecture and commercial framework to enable
DER-based systems become the solution for the future cost efficient, secure and
sustainable EU electricity supply system [Wel+09]. Being its main application
toward Virtual Power Plants (VPPs)9, FENIX defines de-facto an architecture

7U.S. Federal Energy Regulatory Commission, Docket No. RM10-17-000; Order No. 745; March
15, 2011.

8Report to Congress prepared by the staff of the Federal Energy Regulatory Commission (FERC)
and the Department of Energy: Implementation Proposal for the National Action Plan on Demand
Response; July, 2011.

9A VPP is a flexible representation of a portfolio of smaller generators and demands. It creates
a single operation profile from a cluster of units and it is characterised by a set of parameters usually
associated with a traditional transmission connected generator, such as scheduled output, ramp rates,
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for aggregators, which are based on Direct Load Control toward DERs, but that
operate with Transactional Load Control toward markets.

• ADDRESS (E.U.-2008/2012). Being focused mainly on active demand, this
project aims at providing technical solutions to participation of small customers
in energy retail and in services markets. The ADDRESS architecture is inspired
by FENIX, and customers participation can be on voluntary basis or upon
contract [Pee+09]. Between ADDRESS aggregators and customers there is an
ILC scheme, whereas at customer level the control scheme is DLC.

• Grid4EU (E.U.-2011/2015). This project is led by a group of European DSOs,
and aims at testing innovative system concepts and technologies to help remov-
ing some of the barriers to the smart grids deployment: technical, economic,
social, environmental or regulatory barriers. It focuses on how DSOs can dy-
namically manage electricity supply and demand, which is crucial for integra-
tion of large amounts of renewable energy, and empowers consumers to become
active participants in their energy choices.

• EcoGridEU (D.K.-2011/2015). This project’s approach is based on real-time
energy market, where DSRs respond to variable electricity prices. It extends
the current electricity market to a shorter time horizon and to smaller assets,
allowing small-scale DSRs to directly participate in the market. This approach
improves the system operation by enabling to DR resources that would other-
wise have been left unused.

• iPower (D.K.-2011/2015). This project studies different challenges related to the
Smart Grid, from residential and industrial demand response to grid stability,
user acceptance, and energy markets. The control schemes mainly investigated
are DLC, ILC, and TLC, with focus on modelling, control, and proof of concept
via demonstrations. Being a broad project, its main goals are : 1) describe
the flexibility potential for relevant DSRs and propose control and aggregation
schemes from small to large size units; 2) assess the value of flexibility for DSOs
and TSOs, and the entity of investments to access flexibility; 3) demonstrate
the investigated solutions and promote innovation; 4) develop and demonstrate
flexibility services and products for TSOs and DSOs; 5) provide an in-depth
evaluation of social and market value of mobilising flexibility.

The presented projects have in common a traversal approach to Smart Grids,
which includes socio-economic evaluations and analysis of regulations. It seems that
regulatory barriers are among the most difficult to overcome, and they are perceived as
first-priority non-technical difficulty to overcome [Coa14]. For an extensive survey on
European Smart Grid projects, the interested reader can refer to [Gio+12; THL10],

voltage regulation capability and reserves. Furthermore, as the VPP also incorporates controllable
demands, parameters such as demand price elasticity and load recovery patterns are also used for
characterisation of the VPP [SML08].
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whereas for an insight on Demand Response projects and potentials in the United
States, [Ele09; CGK10] are good starting points. Below, some projects are presented
and classified according to the control schemes: DLC, ILC, TLC, ALC.

Projects within Direct Load Control
DLC can often, but not exclusively, be related to a Virtual Power Plant (VPP), which
is a flexible representation of a group of responsive DERs [SML08], and represents a
pool of flexible units in a single portfolio of services to the power system. An example
of a VPP using direct control is Power Hub [Vin11; AS], a research project developed
and implemented by Dong Energy10. PowerHub is a VPP that controls consumption
and production units using load and flexibility prediction tools, and it provides an
interface to use the VPP in connection to commercial ancillary services and energy
markets. In the United States, numerous successful DR programs have been deployed
using Direct Load Control. At glance, Pacific Gas&Energy and Lawrence Berkeley
National Laboratory launched in California the SmartAC Ancillary Services Pilot
project, designed to assess the feasibility of providing spinning and non-spinning re-
serves to the California Independent System Operator’s (CAISO’s) Ancillary Services
(AS) market [SBM09] by controlling air conditioners.

Projects within Indirect Load Control
Price-responsive controllers for power systems were proposed in [Sch+80], and have
been a subject of different research and demonstration projects: [Ham+07], [NSN11],
[LA05], EcoGrid EU [Jor+11]. An overview of the challenges of indirect control
and related technical considerations is presented in [Pin+12], while state of the art
solutions for ILC are presented in [SBN14], together with model-based price signal
evaluations, forecast and hardware-in-the-loop simulations.

Projects within Transactional Load Control
PowerMatcher [Bli+10b] is an example of a demand response architecture using price-
based transactional control scheme. A multi-agent platform is used to integrate and
manage small and medium-sized DERs in the low voltage grid [Bli+10b], which is
clustered into logical trees. Within each cluster runs a local energy pool-market, on
which the DSRs can place their bids. After all bids are collected, the market respon-
sible agent (Auctioneer agent) searches the equilibrium price. This is broadcasted to
the DSRs, who allocate their production or consumption according to their bid. The
PowerMatcher concept was demonstrated in the PowerMatching City, consisting in
22 Dutch homes located in a suburb of Hoogkerk (Netherlands) [Bli+10a]. Another
example of the price-based transactional control architecture is investigated in the
Olympic Peninsula Project [Ham+07], designed, implemented and conducted by The

10www.dongenergy.dk
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Pacific Northwest National Lab [Ham+07]. An experimental testbed consisting of
residential, commercial and municipal loads, and distributed generators was designed
to deal with transmission and distribution congestion, load shifting, and peak shaving.
The set-up for bidding was a local 5 minutes-based market.

Projects within Autonomous Load Control
Autonomously-controlled power system services, such as frequency and voltage sup-
port, have been a subject of research in various scientific papers, among which we find:
[PL06], which presents an autonomous frequency controller for microgrids, [KGB12],
which introduces a combined frequency and voltage approach, and [Dou+11], which
investigates autonomous frequency control using refrigerators. ALC controllers differ
from each others depending on the units for which they have been designed; however
they have shown to suffer from system inflexibility, e.g. the 50.2Hz problem with PVs
in the German grid, and unforeseen units emerging behaviour.

Open issues
Each control scheme has its advantages and drawbacks. However, from this review
emerges that the characteristic of controllers and aggregators that mostly affects the
QoS is the predictive behaviour. A controller able to predict units reaction to specific
signals and forecasted external conditions, can perform optimal resource allocation
and ensure better QoS. However, predictive controllers and aggregation schemes are
sensible to model accuracy and quality of forecasted external contingencies, so that
they tend to be expensive to deploy. Predictive DSRs controllers and aggregators
can be based on DLC, ILC, or TLC. On the other hand, non-predictive controllers
are cheaper and do not require units modelling. However, they suffer from non-
predictable units behaviour, and kick-back effects upon flexibility activation have
been shown in [SBN14]. In this study, Sossan showed that the consumption of a
cluster of TCLs can increase beyond a safety level after a load shading period. Where
ALC schemes also suffer from kick-back effect [Dou+11], they are even cheaper than
ILC solutions and proved to be provide valuable ancillary services to the SOs, in
particular voltage support.
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CHAPTER3
Direct Load Control

This chapter aims at providing an introduction to Direct Load Control, a
technique based on issuing specific commands to controllable Distributed
Energy Resources. First, a taxonomy for DER flexibility, called BBB
(Buckets, Batteries and Bakeries), is introduced to classify the technical
aspects of units flexibility: power, energy, and running time, then quanti-
tative considerations about flexibility are outlined on the basis of previous
work found in literature. Therefore, an overview on DSO services that
flexible DSRs can provide, with a particular focus on DLC-controlled
units and DLC-based aggregators closes the chapter.

3.1 A taxonomy for flexibility: the BBB model

As the real-time balance between production and consumption has become increas-
ingly challenging due to high penetration of renewables, the concept of flexibility has
been gaining importance and popularity. Yet, no formal definition of flexibility exists.
Petersen et al. introduced in [Pet+13] a way to define flexibility with respect to the
unit ability to deviate its controlled operation from normal (non-controlled) opera-
tion. The BBB (Buckets, Batteries and Bakeries) taxonomy, depicted in Fig. 3.1, is
based on the following operation constraints, which can be found in most of practical
systems: 1) power capacity, 2) energy capacity, 3) energy level at specific deadline,
4) minimum runtime.

Figure 3.1: Buckets, Batteries and Bakeries (BBB) is a taxonomy for modelling
flexibility in Smart Grids.1

1Authorised reproduction from [Pet+13].
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The Bucket, being a power-constrained integrator, is an energy storage described
by the following model [Ped+14]:

xk+1 = adxk + Tsuk (3.1)
Emin ≤ xk ≤ Emax (3.2)
Pmin ≤ uk ≤ Pmax (3.3)

where k is the time step, Ts is the discretisation step, x is the energy level, u is the
power, and ad is the drain rate. Therefore, the Bucket is suitable to describe thermal
loads whose temperature must be managed within a given comfort range, and whose
dominant dynamics can be approximated with a first-order model.

The Battery model is analogous to Eq. 3.1-3.3, with the additional constraint that
the energy level at a specified time has to have a specified level [Pet+13]:

xN = EN , (3.4)

i.e. the battery needs to be charged or, depending on the application, discharged to a
specific energy level EN by a given time N . The Battery model is therefore suitable
to describe Electric Vehicles and, in general, electrical storage.

Finally, according to [Pet+13], the Bakery model extends the Battery with the
constraint that the process has to run in one continuous stretch at constant power
consumption. Here we extend this concept by characterising the process power con-
sumption with a predefined profile:

uk = Pk , Pk ∈ P (3.5)

in a way that the Bakery model is suitable to describe the operation of some household
appliances, such as dishwashers, washing machines, tumble dryers, microwave ovens,
etc. This taxonomy gives a qualitative classification of flexible loads, from the most
flexible type, the Bucket, to the least flexible, the Bakery. According to the BBB
taxonomy, one can directly relate the load types described in [Cos+12b] as: Regular,
Burst and Baseline, to respectively: Bucket, Bakery, and Bakery.

3.2 Flexibility potential

In [SBN14], Sossan proposes a quantitative study on flexibility contribution to up-
regulating and down-regulating power of a population of DSRs via montecarlo simula-
tion. Up-regulating power is provided when the production increases or consumption
decreases, vice-versa down-regulating power implies a decrease in power production
or an increase in power consumption. The units considered in [SBN14] are: electric
space heating systems, fridges, freezers, water heaters, liquid vanadium batteries, EV
lithium-ion batteries and EV lead batteries. This study analyses the units energy
that can be shifted with respect to their baseline consumption.

Figure 3.2 shows the energy and the power that units can provide for up-regulation
and down-regulation. As expected, it is shown that electric space heating systems are
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the Thermostatic-Controlled Loads (TCLs) that have the highest power and energy
flexibility, since the thermal capacity of buildings is usually higher than the one of
refrigerators or water boilers.

 

 

Car Pb battery 50%

Peugeout Ion 50%

SYSLAB Va battery 50%

Water heater

Freezer

Fridge

Space heater

TCLs vs storage (up-regulating power)

lo
g
1
0

(

P
o
w
e
r
D
e
n
si
ty

[k
W

/
u
n
it
])

log10

(

Energy Density [kWh/unit]

)

−4 −3 −2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

((a))

 

 

Car Pb battery 50%

Peugeout Ion 50%

SYSLAB Va battery 50%

Water heater

Freezer

Fridge

Space heater

TCLs vs storage (down-regulating power)

lo
g
1
0

(

P
o
w
e
r
D
e
n
si
ty

[k
W

/
u
n
it
])

log10

(

Energy Density [kWh/unit]

)

−4 −3 −2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

((b))

Figure 3.2: Different DSRs flexibility in case of up-regulating (a) and down-regulating
(b) power provision. 2

Interesting facts are reported in [SBN14]: first, TCLs energy flexibility is compa-
rable to the one of EV Li-ion batteries, but it is dramatically affected by external
conditions, e.g. by temperature. Seasonal effects on heating systems are quite strong.
Second, batteries can contribute with power surge or power injection, whereas TCLs
can only contribute with power surge or no-consumption. Third, TCLs whose thermo-
static cycle is significantly asymmetric (e.g. electric water heaters) have consistently
lower contribution to up regulation than to down regulation. This is due to the fact
that these loads are most the time in off state. Figure 3.2 shows that the flexibil-
ity of fridges and freezers is one order of magnitude smaller than the flexibility of
lead-acid batteries. Moreover, activating TCLs flexibility causes a synchronisation of
their state, so that a kick back effect can be expected after activating their flexibility.
Having explored a way to classify flexibility in this section, we present in the next
section different modes of activating flexibility.

3.3 Flexibilitx operation modes

A direct controller can use two-way or one-way unicast communication to exchange
information with DSRs. In case of one-way communication a DSR is obliged to fol-
low the control commands and the only deviation from expected behaviour can occur
due to violation of operational limits or failures. Conversely, in case of bidirectional

2Authorised reproduction from [SBN14].
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communication each DER is obliged to acknowledge the received command and in-
form the external controller whether the received command can be executed or not.
Commands sent by the external controller may vary depending on the DER type and
communication protocol. Gehrke et. al. presented in [GI10] four direct load control
schemes: deferred consumption, delta consumption, scheduled operation and direct
power control (Fig. 3.3).

Figure 3.3: Operation schemes for DER direct control: (A) Deferred operation, (B)
Delta operation, (C) Scheduled operation, (D) Direct power control.3

Load control schemes can be extended to cover both consumption and production,
and they are defined as follows:

Deferred operation The consumption or production of a certain amount of energy
is shifted in time (Fig. 3.3 (A)). Neither the amount of consumed or produced power,
nor the duration of the operation is modified. The signal that is received by the DSR
is of type ∆t, which represents a required delay of operation.

Delta operation The amount of energy consumed or produced by the controlled
DSR is decreased or increased by an offset of ∆P , called power difference (Fig.
3.3 (B)). Decrease in consumption might result in an increased operation time, e.g.
thermal loads.

Scheduled operation The DSR is provided with an operation schedule s, consist-
ing of time series of power set points and time stamps, where s = {(ti, Pi)}, i ∈ N ,
(Fig. 3.3 (C)).

Direct power control At run-time the DSR is provided with a power set point,
P (Fig. 3.3 (D)).

Each DSR is equipped with a local controller for low-level hardware control, which
is responsible of performing the necessary actions in order to meet the requirements
set by the external DR controller, i.e. the operation modes. Then, an aggregator, by
using an optimised mix of the direct control schemes presented above, can operate a

3Authorised reproduction from [GI10].
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unit or a cluster of units in order to provide services to the DSO[Nor+13], which are
presented in the next section.

3.4 Use of flexibility: DR services to the SOs

DSOs’ needs for flexibility are different from TSOs’ ones. The TSO, being in general
a monopoly, has the responsibility of maintaining the balance between production
and consumption (frequency regulation), and to do so, it runs several markets for
ancillary services. These services are generally provided by central and decentralised
power plants (typically coal, oil or gas fired). As some plants are being shut down
to accommodate more energy from renewables, ancillary services are predicted to in-
crease in cost in the near future, so that TSOs may be interested in flexible loads
as cheap ancillary services providers. On the other hand, DSOs have two duties:
first guarantee power supply to customers, and second within ±10% of the nominal
voltage. Therefore, DSOs have to avoid Blackouts (disconnection of feeders due to
line overload) and Brownouts (voltage instability due to high local consumption or
production). With this respect, DSOs may be interested in buying flexibility if it
represents a cheaper alternative to grid reinforcements (install larger MV/LV trans-
formers and higher-capacity cables); clearly, the break even point changes from feeder
to feeder depending on the specific average load. As most of the electricity demand
occurs at distribution level, DR has larger potential for DSO services.

This section emphasises the technical motivations for this research. An overview is
provided on specific technical solutions for DSO services using DR, and their market
implementation, which are more extensively presented in [Nor13]. First we introduce
the major problems related to increased consumption and production that are affect-
ing DSOs, and which services are needed to cope with them. Then, we introduce
some Demand Response products that can be used to deliver the needed services.

Note the distinction between DR services and DR products: a DR service
is intended as the way the flexibility is provided from one or multiple DSRs to the
system operator, while a DR product is the way the flexibility is requested to DSRs
in order to implement a service. For example: a service consists in limiting the load
on a HV/MV transformer serving a 10kV feeder for a given time window, while a
product allowing such service consists in shifting the consumed power of controllable
loads served by that feeder. In this context, we see that a service is chosen depending
on the specific DSO contingency, while the product is chosen depending on the specific
type of unit (some units can be either off or operating at full power, while some others
allow regulating the consumed power). Furthermore, recalling Ch. 3.3, a specific
product requested to a unit or to a cluster of units can be implemented using a
specific operation mode, or a combination of them.

3.4.1 DSO contingencies
DSOs manage the distribution grid, which is composed by: 10kV feeders, MV/LV sub-
stations, and 0.4kV feeders. Increased load in 0.4kV feeders reflects to an increased
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load in 10kV feeders, and both phenomena, even though can be managed separately,
influence each other. The critical contingencies presented below are analysed with
respect to the 10kV distribution grid; same considerations can be extended to the
0.4kV feeders. Nordentoft in [Nor13] presents contingencies and services for DSOs
related to load, and voltage.

1) Regular growth of electricity consumption. This case describes the
increase of electricity consumption from regular appliances, as air conditioners and
standard household appliances, and new appliances, as electric vehicles, and heat
pumps or electric space heaters, above the capacity limit of 70% (Fig. 3.4).

Figure 3.4: Increased load above the capacity limit.4

Considering that, as rule of thumb, the 70% capacity limit is used to determine
whether a feeder needs upgrades or not, the number of hours in which the capacity
limit is violated determines the viability of DR with respect to grid reinforcements.
As usually the limit is passed only in few hours a day (Fig. 3.5), and not in all seasons,
the DSO is likely to request flexibility to shift some load away from peak hours.

Figure 3.5: EVs and HPs load in peak hours.4

4Authorised reproduction from [Nor+13].
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2) Active use of reserve capacity. This case occurs when a feeder uses its 30%
safety capacity to supply another feeder that gets disconnected from the MV after a
fault (Fig. 3.6).

Figure 3.6: Example of a cable error close to the main station on feeder B. The sub
grid of feeder B is split in two sub grids, which are supplied from neighbour sub grids
A and C.5

The DSO may buy flexibility from interruptible customers in order to make sure
that backup lines don’t get overloaded in this emergency operation (Fig. 3.7). If this
load reduction is absolutely reliable, DSOs can use the reserve capacity even up to
100% of line capacities.

Figure 3.7: Example of load reduction in case of emergency operation.5

3) Congestion due to activation of regulating power. In some occasions,
10kV feeders may face congestions due to the activation of regulating power from the
TSOs even if the regular load in the feeder was below the capacity limit (Fig. 3.8).
If regulating power is needed to balance the power system, then such reserve should
be activated.

5Authorised reproduction from [Nor+13].
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Figure 3.8: Example of congestion due to activation of regulating power by the TSO.6

This situation is likely to happen in high wind penetration scenario: instead of
selling power at negative price to nearby countries, large water boilers in district heat-
ing systems are activated. Here the DSO is interested in coordinating the activation
of regulating power in several feeders in order to keep the total load with respect to
the TSO unchanged. This is an application of Virtual Power Plants.

4) High power flow caused by low energy prices. In a scenario where some
large customers are allowed to bid in the day-ahead market, it may happen that the
total load in a feeder exceeds the operational limits due to low energy prices. In fact,
nowadays day-ahead markets rarely take into account grid constraints using nodal
prices. Therefore, the DSO may be interested in limiting the total load in some
feeders by activating the available flexibility.

Figure 3.9: Line congestion due to low electricity price.6

6Authorised reproduction from [Nor+13].
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5) Other LV contingencies: voltage instability and VAR compensation.
The increasing penetration of distributed generation can put DSOs to face challenges
related to voltage level at the 0.4kV distribution feeders. Abnormal power surge due
to EV charging or power injection from PVs causes the voltage to drop or rise outside
the predefined ±10% limits.

Figure 3.10: Line congestion and voltage instability.7

Note that voltage instability and grid congestion may also occur independently:
with high consumption only at one end of the feeder the line voltage experiences a
drop, while the MV-LV substation is not overloaded. Vice-versa, with high consump-
tion at the beginning of the feeder the voltage is stable but the substation transformer
may be overloaded. Demand Response can help the SO to cope with such challenges
by offering the services discussed below, regardless of the value associated to trading
flexible consumption in energy markets.

Reactive power compensation at national level could also become an issue due to
increased local generation and its associated power converters. Daily variations of ac-
tive consumption can cause variations on the consumed reactive power, so that DSOs
may be interested in DR services for VAR compensation that are cheap than classic
VAR compensation means (shunt reactors and capacitors, synchronous compensator
(STATCOM) or Static Var Compensator (SVC)), e.g. using decentralised plants and
DFIG turbines which, by controlling the magnetisation of the generators, can provide
or absorb reactive power to the grid.

3.4.2 Demand Response products
This section presents some Demand Response products that can be combined in order
to deliver the services presented in the previous section. Recall the DR product is
the way the flexibility is requested to DSRs in order to implement a service. Then
the DSRs can operate in different modes (Ch. 3.3).

1) Powercut Planned and Powercut Urgent. Powercut planned is a product
used for handling predictable load peaks by sending a request to specific units to
switch off during the peak hours. Even though this product does not ensure that

7Authorised reproduction from [Nor+13].
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the capacity limit is respected at all time, if the non-controllable load is somehow
predictable and the amount of flexible power is sufficient the DSO should be able to
operate within the safe power band.

Figure 3.11: DR product: Powercut.8

In a similar way, the Powercut urgent is delivered on event basis instead of schedule
basis, when the DSO requests it as a critical situation arises unexpectedly.

2) Power Reserve. This service consists in shutting down a portion of the load in
a feeder on request, enabling the DSO to use the reserve capacity, normally used for
supporting faulted feeders, for normal everyday operation. However, the DSO would
rarely request this product, as it is needed only when the feeder load is above the
capacity limit and a neighbour feeder has to be supplied after a fault.

Figure 3.12: DR product: Power Reserve.8

8Authorised reproduction from [Nor+13].
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The difference with the Powercut product stays in the duration of the activation.
In Power Reserve there is no predefined activation time.

3) Powercap. This product guarantees that the power flow in the contracted feeder
stays within a given limit. The aggregator or a single DSR is notified by the DSO with
the maximum load allowed in the feeder and, by using power measurements at the
substation, it regulates the consumed power in order to respect the given limit. This
product helps in compensating also the consumption of non-controllable loads and, in
the case that multiple aggregators jointly deliver this product, an outer control loop
can be used to assign the share among the different parties.

Figure 3.13: DR product: Powermax.9

4) Powermax. This product is somehow similar to Powercap, but the DSO does
not have any guarantee that the feeder load stay within the capacity limit.

Figure 3.14: DR product: Powermax.9

9Authorised reproduction from [Nor+13].
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With Powermax the aggregator only ensures that his DSR portfolio respects the
contracted consumption (or production) limit, therefore no feedback loop with power
measurements at the feeder substation is needed. Powermax has similar technical
interest as Powercut, and also in this case the DSO should carefully compute the
amount of load to ask the Aggregator(s) to shed. However, Powermax can probably
be cheaper for the Aggregator since this last can dynamically (and optimally) allocate
the load shed among the resources in its portfolio.

3.5 Conclusions

In this chapter we introduced the Direct Load Control as control scheme for Demand
Response. The BBB (Bucket, Battery, Bakery) model has been presented as mean
to classify flexibility of Demand Side Resources, after which a procedure to quantify
flexibility of different types of loads has been reported from literature. Therefore
we presented how the DSR can operate under Direct Load Control, by examining
different operation modes. Finally the reader, after having been guided through the
concept of flexibility, its quantification, and how it can be provided, is introduced to
the contingencies of distribution networks for which DR services are valuable, and
how these services are requested to DSRs or aggregators.

The next three chapters contain the background information for the respective
attached papers, which present in details the control schemes and algorithms that are
at the basis of DLC operation modes (deferred operation, delta operation, scheduled
consumption, direct power control).



CHAPTER4
Grey-box modelling of DSRs
and Model Predictive Control

“When dealing with scientific or technical problems, it is always possible
to distinguish, more or less well, three moments: the first is the sum-
marisation of facts or phenomena under study and the formalisation of
the problem with equations; the second phase consists in the manipu-
lation of equations in order to obtain the elements that are accessible
in experimental trials; the third phase, finally, is the one in which the
elements deducted from theory are compared with experimental results.”

Ercole Bottani 1

This chapter presents an approach to Direct Load Control based on grey-
box modelling and Model Predictive Control (MPC). The original con-
tribution of this chapter is twofold: on the modelling side, a grey-box
modelling approach is introduced for thermostatically-controlled loads as
household refrigerators (Paper A), while on the control side an innovative
coordination scheme for distributed MPC, called Sequential Distributed
Model Predictive Control (SDMPC), is introduced (Paper B).

1Ercole Bottani (1897-1978), professor at Politecnico di Milano. Thanks to his intuition and
formation as technician, he taught electrotechnics with a different approach, especially from his
colleagues from the physics department. He started from the voltage and current measurements,
and from the most simple electric circuits to arrive to the complicated laws of physics. He used to
say: “The Duomo must not be built from the Madonnina!” (The Madonnina is the statue of the
Virgin Mary at the top of Milan Cathedral, in Italy.)
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4.1 Modelling of Demand Side Resources

Modelling is a procedure that brings together the understanding of a system nature
and behaviour with a suitable mathematical treatment. The obtained model should
describe the system at the most convenient level of precision, which depends on the
purpose for which the model is designed, and suppress unnecessary details when
appropriate. Even if it is not possible to define the best tradeoff between accuracy
and complexity in universal sense, appropriate mathematical tools, can help in taking
the right choices. This latter is known as model validation.

A deep and extensive knowledge of the system allows setting directly the values
of the model parameters, procedure known as white-box modelling. However, for
the majority of real systems, white-box modelling is too expensive, if not virtually im-
possible. A different approach, known as black-box modelling uses general function
approximators to capture the system dynamics and confirm the system behaviour
from experimental evidence. Yet this procedure leads to models which structure is
hardly related to the structure of the real system, and which parameters often have
no physical meaning. Black-box models can be used to analyse the system behaviour
in numerical simulation, and often cannot be scaled up or down.

A mixed approach between white-box and black-box modelling, called grey-box
modelling, allows using prior knowledge to model known aspects of the system, while
unknown or less-known parts of the system are identified using empirical data. This
chapter introduces the grey-box model identification and its application to certain
classes of systems. Recalling the taxonomy for load flexibility presented in section
3.1, systems that are characterised by a thermal process (climate control and refrig-
erators) are buckets, EVs are batteries, and white good appliances (e.g. dishwasher,
tumble dryer) are bakeries. All non-controllable and/or non directly-observable loads
represent a disturbance to the system.

Grey-box modelling In general, a grey-box model can consist of sets of coupled
first-order linear Stochastic Differential Equations (SDEs) with the following struc-
ture:

dxt = (A (θ)xt +B (θ)ut) dt+ σ (θ) dωt ,

where A (·), B(·), and σ (·) are linear functions of θ, which is the set of parameters
to be identified, and ω is a standard Wiener process. xt and ut are the system state
and the control input, which are both function of time, while the system output at
the sampling time k is given by:

yk = C (θ)xk +D (θ)uk + ηk .

If experimental data is available, parameters identification strives at finding the
optimal θ so that the model outputs match the observed data. In this research, the
method used for parameters identification is the Maximum Likelihood Estimation
(MLE), which is introduced in Appendix B.1.
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Thermostatically-controlled Loads (TCLs)
This section presents the modelling of TCLs (bucket model in the BBB taxonomy),
using Equivalent Thermal Parameters (ETP) models [Zha+12]:

Figure 4.1: ETP model.

dTi

dt = 1
Ci

[
1

Rai
(Ta − Ti) +

1
Rim

(Tm − Ti) +Qi

]
dTm

dt = 1
Cm

[
1

Rim
(Ti − Tm) +Qm

] , (4.1)

where Ta is the TCL external temperature, Ti is the TCL internal temperature
(e.g. air temperature for refrigerators or building, and water temperature for wa-
ter heaters), Tm is the TCL mass temperature (e.g. envelope temperature), and Qi

and Qm are heat gains of various nature. In the following we present the application
of ETP to grey-box modelling of household refrigerators and electric space heating
systems.

Household refrigerators
System modelling and parameters identification of a domestic refrigerator is presented
in [Cos+13b] (Paper A), which constitutes the contribution of this research in ap-
pliances grey-box modelling. The motivation to this study is to provide a simple,
ready-to-use and validated lumped parameters model of household refrigerator. The
approach consists of forward model selection and validation based on experimental
data and statistical testing.

The experimental setup consists of: one household refrigerator of 60 litres ca-
pacity with freezer bay and single compressor, one power meter DEIF-MIC2, one
ADAM-6024 ADC card, four calibrated temperature sensors TI-LM35, one remotely
controlled power outlet. Every second we sample the refrigerator internal tempera-
ture in two points, the ambient temperature in two points, and the refrigerator active
power consumption. Given the stratification of temperatures in the refrigeration
chamber, two sensors are used in order to provide the average internal temperature,
analogously it is determined the external ambient temperature. Figure 4.2 shows a
schematic representation of a common refrigeration system for household applications,
which simplified model is expressed in Eq. 4.2.
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Figure 4.2: Single stage vapour-compression refrigeration system.

dQcs(t)

dt
= Q̇load(t)− Q̇e(t) , (4.2)

where:
dQcs = mcsccsdTcs

Q̇load = UAcs (Ta − Tcs)

Q̇e = ṁr [ho (pe)− hc (pc)] ≈ COP · Φc

ṁr = Ncαρr (pe)

(4.3)

In Eq. 4.3 mcs is the cold storage mass, and ccs is its specific heat capacity.
ho and hc are the evaporation and condensation enthalpies at the evaporation and
condensation pressures, respectively pe and pc. UAcs is the overall transmittance
coefficient from the refrigeration chamber to the ambient, and ṁr is the refrigerant
mass flow rate. COP is the overall coefficient of performance, here defined as the ratio
between Q̇e, the thermal power extracted at evaporator side, and Φc, the refrigerator
electrical consumption.

Three different models of increasing complexity are designed, identified and val-
idated under the hypotheses of: homogeneous materials, linear cooling cycle with
constant COP, and neglecting the freezer compartment. System identification is per-
formed using CTSM [Dan13], which is based on maximum likelihood estimation, and
forward model selection and validation is based on experimental data (Figure 4.3)
and statistical testing.

Model Ti. Here the refrigeration chamber is represented with a thermal mass, Ci,
while the envelope (insulation) is modelled as a pure thermal resistance, Ria. The
compressor has a direct refrigeration effect, so that it is modelled as a current gener-
ator. This model is a single state stochastic state space model:

dTi =
[

1
CiRia

(Ta − Ti)− 1
Ci
AcΦc

]
dt+ σ1dw

ytk = Ti,tk + etk , etk ∼ N(0, σ2
e)

, (4.4)
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((b)) Validation data set.

Figure 4.3: Refrigerator operation: ambient temperature, internal temperature and
electrical power consumption.

where Ac is the cycle COP and w is a standard Wiener process independent from
the residual etk . Ta is the ambient temperature, Ti is the refrigeration chamber
temperature and Φc is the compressor active power consumption.

Figure 4.4: Refrigerator preliminary model (electrical equivalent): Ti.

Performing system identification, the parameters in Table 4.5 are obtained. One
can observe that, for some of them the estimated variance has the same order of
magnitude of the estimated value, which tells us that the uncertainty of this model is
very high. Note that a prior estimation of the parameters has to be provided, in order
to avoid the estimate to converge to local minima. An overall estimate of parameters
is carried in [Cos+13b], based on engineering considerations and calculations, to
initialise the MLE estimation in CTSM.

Model Ti is simulated and the one-step prediction error is computed on both
identification and validation datasets, as depicted in Fig. 4.6. The one-step prediction
is obtained by initialising the model with the experimental data and predicting the
internal temperature for the next time step. Then the prediction error is evaluated
by comparing the prediction with the actual measured temperature.

If the prediction error resembles to a white noise, the model is adequate and
cannot further improved. The residual (error) analysis consists in testing whether
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Table 4.5: Identified parameters: Ti model

PARAMETER VALUE STD. DEV.
Ria

[ oC
W

]
1.4749 2.5617

Ci

[
J
K

]
8.9374 · 103 1.5481 · 104

Ti(0) [
oC] 14.774 2.9795 · 10−2

Ac 0.58092 1.0075
exp(σ1) −5.4552 1.2511 · 10−2

exp(σe) −24.332 75.437
Loglikelihood 7995.168
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Figure 4.6: Model Ti one step prediction.

the one-step prediction error can be assumed as white noise [Mad08]. Observing the
prediction error in Fig. 4.6(a) it is possible to depict non-stationarities and identify
outliers due to erroneous measurements. The autocorrelation of residuals tells us how
each error is correlated to the other errors. Figure 4.7 shows the residuals analysis
with respect the identification data set. The first graph on the left presents the auto
correlation function (ACF) of residuals, the graph in the middle the periodogram,
and the graph on the right the cumulated periodogram. The bands in the ACF and
cumulated periodogram represent the 2σ intervals, which represent 95% confidence
interval.

High correlation of residuals at low values of lags indicates that the model is not
correct at low frequencies, and slow dynamics are not well caught. Moreover, the
confidence bands in the cumulated periodogram are largely violated, hence model Ti
is discarded.
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Figure 4.7: Model residuals analysis: Ti, identification data set.

Model TiTevap. This model extends the previous one by accounting for the heat
transfer between the refrigeration chamber and the evaporator with an additional
state for the evaporator temperature, Te:

dTi =
[

1
CiRia

(Ta − Ti) +
1

CiRei
(Te − Ti)

]
dt+ σ1dw1

dTe =
[

1
CevapRei

(Ti − Te)− 1
Cevap

AcΦc

]
dt+ σ2dw2

ytk = Ti,tk + etk , etk ∼ N(0, σ2
e)

, (4.5)

where w1, w2 and etk are independent stochastic processes. Figure 4.8 shows the ETP
circuit associated to model 4.5:

Figure 4.8: Refrigerator model (electrical equivalent): TiTevap.

System identification leads to the parameters in Table 4.9, while the residual
analysis in Fig. 4.10 shows a clear improvement of model TiTevap compared to Ti
and the cumulative periodogram is almost inside the confidence bands. The one-step
prediction is no longer presented as it is not possible to appreciate relevant differences
with respect to Fig. 4.6. A further extension of model TiTevap is presented in the next
subsection, where the parameters of the refrigerator envelope are accounted.
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Table 4.9: Identified parameters: TiTevap model.

PARAMETER VALUE STD. DEV.
Ria

[ oC
W

]
9.0188 · 10−1 3.5460 · 10−2

Rei

[ oC
W

]
9.0348 · 10−1 2.5121 · 10−1

Ci

[
J
K

]
1.1600 · 104 1.6529 · 102

Ce

[
J
K

]
3.4342 · 102 9.9157 · 101

Ti(0) [
oC] 14.774 1.0263 · 10−2

Tevap(0) [
oC] 16.181 3.6991

Ac 0.8383 2.6217 · 10−2

exp(σ1) −1.7406 · 101 5.6451 · 10−2

exp(σ2) −8.9551 · 10−1 2.6646 · 10−1

exp(σe) −1.2246 · 101 1.1364 · 10−1

Loglikelihood 12096.4351
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Figure 4.10: Model residuals analysis: TiTevap, identification data set.

Model TiTevapTe. Here the TiTevap model is extended by adding a state to the
envelope and separating the envelope thermal resistance in inner resistance, Rie, and
outer resistance, Rea:

dTevap =
[

1
CevapRevi

(Ti − Tevap)− 1
Cevap

AcΦc

]
dt+ σ1dw1

dTi =
[

1
CiRevi

(Tevap − Ti) +
1

CiRie
(Te − Ti)

]
dt+ σ2dw2

dTe =
[

1
CeRie

(Ti − Te) +
1

CeRea
(Ta − Te)

]
dt+ σ3dw3

ytk = Ti,tk + etk , etk ∼ N(0, σ2
e)

, (4.6)

where w1, w2, w3 and etk are independent. Follows the electric equivalent model:
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Figure 4.11: Refrigerator model (electrical equivalent): TiTevapTe.

Table 4.12: Identified parameters: TiTevapTe model

PARAMETER VALUE STD. DEV.
Rea

[ oC
W

]
7.2869 · 10−2 1.8571 · 10−2

Revi

[ oC
W

]
2.2431 5.1971 · 10−1

Rie

[ oC
W

]
3.7394 1.9380

Ci

[
J
K

]
4.4245 · 103 2.2810 · 103

Ce

[
J
K

]
1.0755 · 104 2.4514 · 103

Cevap

[
J
K

]
1.9177 · 101 4.8643

Ti(0) [
oC] 14.774 8.6339 · 10−3

Te(0) [
oC] 14.38 6.1042

Tevap(0) [
oC] 18.568 5.5536

Ac 2.1808 · 10−1 1.1258 · 10−1

exp(σ1) −1.7661 · 101 1.2498 · 101
exp(σ2) −2.0051 · 101 2.4919
exp(σ3) −6.2477 · 10−1 1.0131 · 10−1

exp(σe) −1.1766 · 101 7.9326 · 10−2

Loglikelihood 12306.517

Figure 4.13 presents the residuals analysis using the identification data set, where
it is depicted that model TiTevapTe outperforms in data fitting, and the cumulative
periodogram stays almost at all times within the confidence bands. However, per-
forming the residual analysis with respect to the validation data set (Fig.4.14), we
see that TiTevapTe has poorer fit than TiTevap, denoting an overfitting. The more com-
plex model has better fit on the training data, but does not generalise well enough
with respect to other data sets. Moreover, model TiTevap has also good residuals
properties, a comparable loglikelihood value (12096), and its parameters are closer to
the prior estimates (see [Cos+13b]). Hence, model TiTevap is selected.
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Figure 4.13: Model residuals analysis: TiTevapTe, identification data set.

0 50 100   150

0.
0

0.
4

0.
8

Lag

AC
F

Series  X$residuals

0.0 0.2 0.4

1e
−0

6
1e

−0
3

frequency

sp
ec

tru
m

Series: X$residuals
Raw Periodogram

bandwidth = 6.68e−05

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

frequency

Series:  X$residuals

((a)) Model TiTevap.
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Figure 4.14: Residual analysis, validation dataset.

This study showed an application of grey-box stochastic modelling for household
refrigeration systems. Identified models are simple, reliable and, since they are SDE-
based, they can be used for forecasting, linear MPC, and simulation. Thanks to
the diffusion terms, model uncertainties are also provided. Being aware of the non-
linearities in either the refrigeration process and the thermal exchanges, the proposed
model has been extended and revised in [Sos+15], where a non-linear model of the
COP of the refrigeration cycle is proposed.
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Sossan presents also in [Sos+13] a first order dynamic model of a domestic water
heater, which accounts only for the global thermal energy content of the water, and
does not describe the thermal stratification of the water inside the tank, as it is
instead investigated in [Van+12].

Electric space heating in Power FlexHouse

PowerFlexHouse is a test facility organised as an office building connected to SYSLAB,
part of PowerLabDK, a research facility for intelligent, active and distributed power
systems at DTU. PowerFlexHouse is electrically heated with 10 space heaters and
cooled by 5 air conditioners. Tap water comes from a hot water storage tank and the
space is illuminated by 24 fluorescent lamps. There is a small kitchen consisting of a
fridge and a coffee machine. Devices in PowerFlexHouse are remotely controlled. The
state of the building and appliances is read from various sensors. PowerFlexHouse
layout diagram is shown in Fig. 4.15, note that the air conditioning is available only
in five rooms out of eight: Room 1, Room 2, Room 3, Room 4 and Room 8 (main
hall).

Figure 4.15: PowerFlexHouse layout.

Single-room model. Here the Power FlexHouse is modelled as one large room
exchanging heat with the external environment [Tha08]. This crude approximation
is convenient to catch the dominant heat dynamics of the building, which allows
estimating and predicting its overall heat demand. With such approach, the space
heating and cooling is modelled as a single appliance, so that it is not possible to con-
trol directly the temperature in rooms individually but control the building average
temperature and consumption. Three states are used to describe the building heat
dynamics: the first state is the indoor air temperature, Ti, the second state is the
temperature of the building envelope, Tom, and the third state is the temperature
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of the inner walls layers and floor, Tim. Assuming that the energy flow due to solar
radiation is not absorbed by the outer walls layer, the energy is distributed between
the inner walls layer and the indoor air. Therefore the differential equation for the
inner wall layer temperature is:

Cim
dTim
dt

= hA (Ti − Tim) + Q̇im =
1

Ri
(Ti − Tim) +AwpΦs + R̂11,1dω1 , (4.7)

where Cim is the total heat capacity of the inner walls, Φs is the solar radiation, Ri

is the total thermal resistance between the inner walls and the indoor air, Aw is the
total windows surface, and R̂11,1 is the diffusion term, which gives information for
pinpointing model deficiencies [Baa+97]. The noise therm, ω1 is a Markov process
representing the uncertainty in the model.

The house envelope exchanges heat by convection to both the inside and the
outside of the building:

Com
dTom
dt

=
1

Rim
(Ti − Tom) +

1

Ram
(Ta − Tom) + R̂22,1dω2 , (4.8)

where Tom is the outer walls layer temperature, Com is the thermal capacity of the
outer walls, Rim and Ram are the thermal resistances from outer wall layer towards
the indoor and outdoor, and R̂22,1 is the diffusion term. Finally, the indoor air
also receives thermal energy from solar radiation and the electrical space heaters,
accounted in the terms Φs and Φh, so that the equation for the heat balance of the
indoor air is:

Ci
dTi
dt

=
1

Ra
(Ta − Ti)+

1

Ri
(Tim − Ti)+

1

Rim
(Tom − Ti)+Aw (1− p)Φs+Φh+R̂33,1dω3 ,

(4.9)
where Ci is the total heat capacity of the indoor air, Ra is the total resistance against
heat flow to the outside, through windows and due to ventilation, and is the energy
input from the electrical heaters. Also this equation presents the diffusion term R̂33,1.
Finally, the measured temperature, Tr, is given by:

Tr = Ti + R̂2dω4 . (4.10)

The model parameters are estimated using CTSM [Juh+13], and their values are
found in [Tha08].

Multi-room model. Bonby and Parvizi in [BP12] describe the Power FlexHouse
individual rooms’ heat dynamics, including the influence of the heaters, the solar
radiation and the outside temperature. The cooling effect due to wind is modelled as
unknown noise, and each room is represented as an element exchanging heat not only
with the outside environment but also with the surrounding rooms. This approach
creates cross-correlation terms in the model, which describe the behaviour of the room
heat heat gain from the adjacent rooms. The known disturbances are solar irradiance
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and outside temperature, whereas the thermal power generated by the heaters is the
controllable input. Following the grey-box physical modelling, the air temperature in
room j is Tr,j :

dTr,j
dt

=
1

Cr,j

∑
k∈Sj

1

Rr,kj
(Tr,k − Tr,j) +Aw,jΦs +Φh,j + σr,j

dW

dt

 , (4.11)

where Cr,j is the air thermal capacity of room j, Rr,kj is the thermal resistance
between room j and room k, Aw is the window area, Φs is the solar radiance, Φh,j is
the heating power in room j, σr,j is the diffusion therm, and Sj is the set of rooms
adjacent to room j.

The innovations brought by the multi-room model are: cross-correlation terms
between rooms, which provide a more precise model of the building; quasi-diagonal
system, which allows to use the same identification approach as in [BM11]. The
parameters of the continuous time model in Eq. 4.11 are identified via CTSM and
presented in [BP12]. An analogous approach is followed by Oldewurtel et al. in
[Old+10], to which the interested reader can refer for a stochastic MPC formulation
of building climate control.

Batteries and Electric Vehicles
Electric Vehicles are intended as energy buffers, which state of charge must be main-
tained within a given range. Thus, the correspondent model in the BBB taxonomy
is the Battery. In the context of this research, the EVs are modelled as integrators
with an efficiency parameter, and the energy consumption related to driving patterns
is considered and simulated as disturbance to the MPC. A detailed model of electric
storage units is presented in [Mar+12], from which it emerges that, in order to extend
the lifetime, batteries should be operated between 20% and 90% of the state of charge
(SOC). Moreover, when operating in this band, the batteries can be charged and dis-
charged at controlled current, therefore can be reasonably modelled as integrators of
rated efficiency.

Support batteries differ from the EVs by capacity and rated power, therefore a
generic state space model for this type of units is presented below:

ẋ (t) = Ax+Bu
SOC (t) = Cx

, (4.12)

where u is the power flow at the inverter in kW , x is the battery state of charge
in kWh and SOC is the battery state of charge normalised between 0 and 1. Note
that the state and the input vector have both dimension 2. This is in order to take
into account different efficiency for charging and discharging, therefore the system
matrices are:

A =

[
0 0
0 0

]
, B =

[
−ηc
−η−1

d

]
, C =

[
rc−1 rc−1

]
, u =

[
ucharge
udischarge

]
,
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where ηc and ηd are the inverter efficiencies for charging and discharging (usually
they have the same value), and rc is the battery rated capacity. Note that ucharge is
negative and udischarge is positive, therefore the negative signs in the B matrix, and
that model 4.12 is in continuous time.

The approach used for EV modelling is white-box, since the necessary parameters
(e.g. rated capacity, power and efficiency of inverters) are known from the devices
datasheets.

Other appliances
Here we present the modelling approach for such appliances as washing machines or
tumble dryers. This type of devices have a consumption profile that depends almost
entirely on the operation mode, and therefore they correspond to the Bakery in the
BBB taxonomy, which model is:

xk+1 = adxk + Tsuk
xN = EN

uk = Pk , Pk ∈ P
(4.13)

We can assume that some of them have flexible starting time, such as washing
machines or dishwashers, while others don’t (e.g. microwave ovens). In both cases
the modelling approach used here can be either white-box or grey-box. White-box is
used if the consumption profile is known a-priori, otherwise a grey-box identification
is performed by measuring the consumption profile in the different operation modes.
In any case the appliance operation is determined by the interaction with users.

Conclusion
This section presented some linear models of common household units, which flex-
ibility can be used to provide ancillary services to the power system. The next
section and Appendix B.2 introduce the reader to the subject of Model Predictive
Control (MPC), with an overall overview of linear and quadratic MPC, centralised
and distributed MPC, and serves as preamble to Sec. 4.3, which presents the original
contribution of this research in DLC for DR applications.

4.2 Model Predictive Control for Demand Side Management

A model predictive controller (MPC) uses a model of the system under control to
predict the process behaviour over a specified prediction horizon. In this way, it
can optimise the sequence of control inputs with respect to a specified performance
criterion. Consider a time-invariant linear model, or a linear approximation for a
determined operating point, in discrete-time state space form:

S :

{
xk+1 = Adxk +Bduk + Eddk
yk = Cdxk +Dduk

, (4.14)
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where k is the current time step, x is the system state space, y is the system output,
Ad, Bd, Ed, Cd, Dd are the state space matrices, u is the control input, and d is the
process disturbance. The cost function of an MPC controller can be designed to
pursue different objectives, e.g. follow a reference signal, limit the control effort, and
the cost of control action:

V (k) =
k+N∑
j=k

∥∥yk+j|k − rk+j|k
∥∥2
Q(j)

+
N−1∑
j=0

∥∥∆uk+j|k
∥∥2
R(j)

+
N−1∑
j=0

ρk+juk+j|k . (4.15)

Following the procedure presented in Appendix B.2, it is possible to formulate the
MPC problem as least-squares optimisation:

min
x
ϕ : 1

2x
THx+ fTx

s.t. : Ax ≤ b
, (4.16)

which can be efficiently solved using commercially available and open-source optimisa-
tion libraries for Quadratic Programming (e.g. CPLEX, MOSEK, OjAlgo, Quadprog
(Matlab), and many others).

Flexibility aggregation is crucial as single units often cannot provide valuable
ancillary services to the System Operator due to their small size and market and
regulation barriers. Therefore, aggregation is a way to allow residential units to
participate in DR. An aggregator can control the overall power consumption of a
portfolio of residential DSRs in order to follows a desired pattern, respects a set
of constraints, or even react to price signals. On first instance, one can think of
centralised MPC (CMPC) as a suitable control option for a cluster of DSRs, in this
case the CMPC-based aggregator must embed the models of the physical resources
in the control cluster.

Centralised MPC. Consider the case of geographical aggregation, the DSRs are
branched to the same feeder and participate in the same control cluster. The aggre-
gated power at the point of common coupling (PCC) is controlled to provide ancillary
services to the SO (Fig. 4.16).

Figure 4.16: Centralised MPC architecture for Demand Response.
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Recall the DSRs models in their discrete-time state space representation, e.g.
Eq. 4.14, the CMPC is easily designed by assembling together the DSRs models
as shown below:

xc =

[
x1
xj

]
, uc =

[
u1
uj

]
, dc =

[
d1
dj

]
, yc =

[
y1
yj

]

Ac =

[
A1 0
0 Aj

]
, Bc =

[
B1 0
0 Bj

]
, Cc =

[
C1 0
0 Cj

]

Dc =

[
D1 0
0 Dj

]
, Ec =

[
E1 0
0 Ej

]
(4.17)

where the index j ∈ S indicates a specific subsystem. The CMPC problem is for-
malised in Eq. 4.18 for the PowerMax service and, since the units are connected to
the same point of common coupling (PCC), their aggregated power consumption is
explicitly taken into account in constraint 4.18f:

min
uc,t;ϑc,t;γc,t

V :
1

2

[
N∑
t=1

∥yc,t − rc,t∥2Q +
N−1∑
t=0

∥∆uc,t∥2R +
N−1∑
t=0

ρtuc,t +
N∑
t=1

ηtϑc,t +
N∑
t=1

ψtγc,t

]
(4.18a)

s.t : xc,t+1 = Acxc,t +Bcuc,t + Ecdc,t (4.18b)
yc,t = Ccxc,t +Dcuc,t (4.18c)
uc min,t ≤ uc,t ≤ uc max,t (4.18d)
yc min,t − γc,t ≤ yc,t ≤ yc max,t + γc,t (4.18e)
PCCmin,t − ϑc,t ≤ uc,t ≤ PCCmax,t + ϑc,t (4.18f)
ϑt ≥ 0 (4.18g)
γt ≥ 0 (4.18h)

(4.18i)

In Eq. 4.18 ρt is the energy price, while ϑc,t and γc,t are the soft constraints
for the power flow at the PCC and the systems outputs. Being this a centralised
optimisation, the solution of Problem 4.18 is considered as benchmark for the global
optimum. Note that Problem 4.18 can be adapted to the direct power control service
by simply setting PCCmin and PCCmax to the same value, which is the cluster
desired power.

Two problems arise from this approach: the necessity of a central repository
of DSRs models, and the explosion of the computation time with the problem
size. The necessity of resource models makes CMPC problematic to implement and
deploy for cluster of DSRs of heterogeneous type, produced by different manufacturers,
and placed in different parts of the grid. Furthermore, the computational effort for



4.2 Model Predictive Control for Demand Side Management 47

solving MPC problems generally grows at a super-linear rate with the number of state
variables involved. The simulation study presented below shows the growth of the
CMPC computation time with respect to increasing number of units and different
discretisation steps.
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Figure 4.17: Estimated cluster time of centralised MPC for different cluster sizes.

This study does not account for the communication overheads, which depend on
the specific network technology. Figure 4.17 reports the estimated cluster time with
respect to different discretisation steps and cluster sizes. The prediction horizon is 24
hours. The cluster time is defined as the time needed to compute the control input
(solve the optimisation problem) plus the time to retrieve units status and dispatch
the control signal (communication delay, for which an educated guess is 100ms):

ECT = TMPC +Nunits ∗ 100ms ,

where it is assumed that the communication between the units and the CMPC occurs
in sequence. Table 4.18 compares the cluster time for different problem sizes and
discretisation steps.

An increase of the sampling time to 15 minutes makes the problem much faster to
solve. However, 15 minutes is a rather large interval to schedule EVs charging if the
aggregator has to cope with unforeseen vehicle departures and arrivals. A resource be-
coming unexpectedly unavailable causes an imbalance in the consumption/production
schedule, which cannot be resolved before the next MPC computation. Therefore the
interest in having 5 minutes discretisation, or even lower. Note that in this study all
the control variables are continuous, and in case some resources have binary control
variables the computation time is dramatically affected, as shown in Fig. 4.19.
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Table 4.18: CMPC: problem size and cluster time (CPU: Intel Core i5, 2.6 Ghz; RAM:
8 GB, 1.6 Ghz DDR3; OS X 10.9.5; Matlab R2011b with Mosek 7).

Pred. horizon: 24h CLUSTER SIZE (# OF UNITS)
4 12 28 40

DISCRETISATION STEP PROBLEM SIZE (# VAR.)
5 minutes 2208 6072 13800 19596
15 minutes 736 2024 4600 6532
DISCRETISATION STEP ESTIMATED CLUSTER TIME [sec.]
5 minutes 1.36 8.74 84.44 230.75
15 minutes 0.56 1.80 6.46 12.71
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Figure 4.19: Computation time for CMPC: continuous quadratic programming (QP)
(a) and mixed-integer quadratic programming (MIQP) (b).

Figure 4.19 compares the CMPC computation time, measured in several simu-
lations, for a QP formulation and MIQP formulation in a cluster of 15 units. The
discretisation step is 15 minutes, the prediction horizon is 24h and the units running
on integer control variables are 6. The setup is a shared workstation equipped with
Intel Xeon 3Ghz (8 cores), 16 GB ram, Windows Server 2008 64bit, Matlab R2012a
with YALMIP toolbox and MOSEK optimisation libraries for QP and MIQP.

From this preliminary assessment, we conclude that managing multiple DERs
with a single, feeder-wide MPC controller not only requires a large amount of DER
state information to be shared with the central controller, but also the computational
effort scales badly with the number of DERs.

Distributed MPC. An established approach for solving the curse of dimensionality
relies on the decomposition of the MPC problem into smaller subproblems which can
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be solved independently and locally. Convergence towards the overall goal is then
achieved through a coordination mechanism, i.e. by communication between the
individual solvers (Fig. 4.20).

Figure 4.20: Distributed MPC architecture with coordination.

DMPC is based on information exchange between units’ controllers, typically con-
sisting of the future predicted control inputs or state variables computed locally at
resource level. Scattolini presents in [Sca09] a survey on architectures for distributed
and hierarchical MPCs, the state of the art technology, and a classification of DMPC
schemes based on the information exchange between controllers, the type of connec-
tion between controllers, and the controllers objective function. According to this
classification, DMPC schemes can be based on fully connected algorithms, in which
every clonal controller communicates with all the other controllers in the cluster,
or on partially connected algorithms, where each controller communicates only with
neighbour controllers. Controllers can exchange information several times within
each time step, in case of iterative algorithms, or only once per time step in case of
non-iterative algorithms. Finally, controllers optimise a local performance index in
independent algorithms, or they can optimise a global cost function in cooperative
algorithms.

Different methods for distributed and parallel optimisation have been explored
and proposed in order to overcome large scale tasks. We are particularly interested in
those methods that use convex optimisation and, with this respect, our main reference
is [Boy+11]. Here the reader can find the method of Dual Decomposition (DD) and
Alternating Direction Method of Multipliers (ADMM), which are both based on the
assumption that the objective function is separable with respect to a partition of the
variable into sub vectors [Boy+11]:

f (x) =
N∑
i=1

fi (xi) ,

where x = (x1 . . . xN ), and xi is a sub vector of x. In Appendix B.3 and B.4 we
briefly introduce the DD and ADMM methods, with the aim of providing the reader
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with a brief presentation, while for an exhaustive review of both methods and a rich
list of references, the interested reader can refer to [Boy+11].

While DD and ADMM offer the means to solve the MPC problems in parallel at
units level, they present the following specific characteristics:

DD: needs continuous variables, convex objective functions (primal and dual
problem), and accurate choice of the update parameter for the dual variable;

ADMM: needs central coordination with optimisation, and presents slow con-
vergence (often, at least few tens of iterations are needed).

Moreover, both methods assume, together with the decomposability of the master
problem, a specific formulation of the optimisation problem at units level. These
characteristics of DD and ADMM inspired the development of the SDMPC algorithm,
presented in the next section.

4.3 Sequential Distributed Model Predictive Control

This section presents an innovative coordination scheme for distributed MPC, called
Sequential Distributed Model Predictive Control (SDMPC), that is based on in-
formation sharing through a blackboard. According to the classification presented
in [Sca09], SDMPC is an iterative, cooperative, and partially-connected algorithm.
As it is further explained in Paper B, the controllers coordinate in sequential mode,
from which the name sequential. Note that the therm SDMPC is introduced here and
not in the paper, as an outcome of further discussions between the paper coauthors. A
second paper integrates this chapter, Paper C, where the performance of the SDMPC
is assessed with respect to a centralised MPC control algorithm. This latter study
was conducted by D.E. Bondy and supported by G. T. Costanzo, in which a novel
performance index for aggregators is introduced and the two MPC architectures are
evaluated for the PowerMax service.

SDMPC is designed to solve a general consensus problem in a resource sharing set-
ting, with centralised information sharing among agents [Cos+13a]. Consider again
the case introduced in Sec. 4.2, where DSRs are aggregated basing on their geographi-
cal location, and the service provided is PowerMax. Instead of looking at the problem
in its entire, one can identify two subproblems: 1) a global problem, called master
problem, which consists in assigning a share of a determined resource (power flow at
the PCC) to all clients (DSRs) avoiding overusing the resource, and 2) a local prob-
lem at client level, which consists in requesting a convenient amount of the shared
resource (power consumption) to provide a service to the end user (Fig. 4.21).

This is the setting: each DSR has a local controller, hereafter called agent, that
features MPC and shares information with a central repository, called blackboard. The
blackboard does not perform any optimisation task but stores the information the
agents put in it, so it can be thought of a marketplace. All the DSRs connected to
the same PCC coordinate their operation through the same blackboard, thus they
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belong to the same control cluster. Each agent in the cluster accesses the blackboard,
reads the global power schedule, which is the cumulative schedule obtained from the
other agents’ power schedules, computes its local power schedule, and publishes it
in the blackboard. We refer to power schedule as the time plan of power withdraws
(positive) or injections (negative).

Together with the local power schedule the agents publish in the blackboard their
local consensus flag, which is a boolean value that is true if the agent finds that the
global power schedule plus its own one does not exceed the power limits at the PCC
at any time, false otherwise. Each agent determines its local consensus flag, while
the blackboard determines the global consensus flag, which is true if all the local
consensuses are true or a maximum number of negotiations has been reached, false
otherwise. This algorithm can also be used for the direct power control service.

Figure 4.21: SMPC architecture with the central data repository, the blackboard.

The agents keep calling the blackboard until they find true for the global consensus,
and publish their ideal (unconstrained) schedule to maximise the local comfort until
the shared resource is not overexploited. If the shared resource is overused, between
the agents starts a collaborative game with the following elements [Ras06]:

1. Players

a) the DSR controllers (agents);
b) the Blackboard (arbitrator);

2. Information

a) cluster global power schedule and global consensus flag;
b) DERs local power schedules and local consensus flags;

3. Actions

a) Agents
• retrieve cluster global power schedule, global consensus flag, and re-

source usage threshold;
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• compute the local power schedule and local consensus flag;
• publish the local power schedule and consensus flag in the Blackboard;

b) Arbitrator
• compute the global consensus flag;

4. Payoffs (only DERs)

a) maximise the local comfort and guarantee a minimum level of service;
b) reduce the global resource overuse;

In order to avoid overusing the shared resource, each agent modifies its own request
as long as its minimum local comfort level is met. In the worst case, i.e. the available
resource is not enough to meet all agents’ minimal requirements, each agent publishes
its minimal request, or minimal power schedule, which is the power schedule that
is enough to satisfy the DSR minimum comfort requirements. This updated plan
contributes reducing the L1 norm deviation of the global power schedule from the
constraints. This last rule makes the SDMPC a best-effort algorithm, in the sense
that if a feasible solution exists with respect to the constraints on the PCC, it is
found. However, there is no guarantee that such solution corresponds to the best
global welfare. Conversely, if no feasible solution exists, a sub optimal and best-effort
solution is found to reduce the violations of the global power schedule on the PCC
power constraints.

Figure 4.22: Agents behaviour with respect to total resource usage.

The global consensus flag, when set to true, determines the agents to close the
negotiation round and proceed with dispatching the respective power schedules. A
negotiation round is completed when all the agents have posted, or updated, their
schedule to the blackboard. If the global consensus is not reached after a certain
number of negotiation rounds, the blackboard forces the global consensus to true
in order to close the negotiations and avoid deadlocks. Note that this is just one
stopping criterion that is compatible with SDMPC, another one could be related to
the resource overexploitation. After a certain number of negotiation rounds in which
the resource is being overused, if the resource over exploitation does not decrease, the
negotiation rounds are stopped.

Note that the structure, objective function and optimisation algorithm of the MPC
controller in each agent can be independent from the other agents. Furthermore,
each agent is able to: 1) read from the blackboard the global power schedule, the
resource usage threshold, and the global consensus flag; 2) compute the forecasted
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resource usage and publish the schedule in the blackboard, together with the local
consensus; and 3) be cooperative, which implies to update the local schedule in order
to compensate for other agent’s needs.

Such structure makes the SDMPC algorithm more versatile for some applications
than ADMM or DD, since each agent is not bounded to a specific optimisation formal-
ism. Moreover, this scheme suits mixed-integer optimisation problems. Furthermore
the size and complexity of MPC problems depends only on the resource models and
not on the control cluster size.

Follows a study on the convergence and the computational complexity of the
SDMPC algorithm based on simulations. Starting with presenting the benefits of the
SDMPC algorithm in reducing the peak load, Fig .4.23 shows a comparison of the
coordinated DSRs operation with respect to the non-coordinated operation (refer to
Paper B for more details on the simulation setting), in a case in which the power
constraints are not over stringent.

Figure 4.23: Power flow at the point of common coupling: units coordination versus
units non-coordination.

Note that the units’ power schedules in periods far from the load shedding is
very similar to the uncoordinated behaviour, confirming that the SDMPC algorithm
leaves units free to operate if the constraints on the total power are not attained.
Immediately after a load shedding, there is a settling time for the coordinated schedule
to match the non-coordinated schedule. Figure 4.24 shows how the agents reach a
global consensus in rather few negotiation rounds, if the constraints on the PCC power
are not over stringent. The lines of different colour show the maximum deviation of
global schedule from the PCC limit. Different levels of the PCC limit correspond to
different colours.

One can depict that, if the PCC limit is below a certain value, all the units publish
the minimal schedule and the violation such constraint is not further reduced with
the negotiation rounds (best effort solution). One can depict that 3 or 4 negotiation
rounds are sufficient to settle all the power schedules. Note that the convergence
time, thereafter called cluster time of the SDMPC algorithm is related to three fac-
tors: 1) the solution of the local MPC problems, which are fairly small size, 2) the
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Figure 4.24: Study of algorithm convergence, exceeding power at PCC versus number
of negotiation rounds.

amount of units in the cluster, and 3) the communication time and overheads, which
are implementation-dependent. Therefore, first we discuss the main implementation
details of SDMPC before proceeding with the estimation of the cluster time.

The blackboard is contacted by an agent, which reads the operational plans that
the other agents have published and the PCC power limit. Basing on this information,
the agent computes an optimal plan, that is published in the blackboard, together
with the local consensus flag. Note that this is an iterative algorithm in which the
access to the blackboard is sequential, motivated by the fact that every time an agent
computes the power plan, it needs the most updated information regarding the other
units plans. Coordination between agents, thereafter called clients, is performed in
successive negotiation rounds, and the duration of the rounds is a lower bound for
the achievable time granularity of the system. Figure 4.25 shows the sequence of
information exchanges between a coordinator and a client during a regular bidding
transaction; each round is divided into two time slots, a join slot and a negotiation
slot.
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Figure 4.25: Joining and negotiation sequences for two clients. Client 1 is already
synchronised to the blackboard slot timing while client 2 attempts to join during a
negotiation slot and gets rejected.

The duration of the rounds, as well as the beginning and end of the two slots,
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are defined by the blackboard with a Time Division Multiple Access (TDMA) policy.
This allows several agents to take part to different negotiation rounds thanks to the
time slots division 2. In order for the coordination scheme to work, clients must be
synchronised to the timing of the coordinator, i.e. the blackboard, and clients must
have a similar notion of the beginnings and ends of negotiation rounds, and time slots.
Some amount of synchronisation error ∆t is tolerated by the algorithm as long as,
for negotiation rounds of duration tR, the condition ∆t << tR is met. During the
join slot, clients can announce their willingness to participate in the subsequent nego-
tiation period, and those who fail to make this announcement are assumed inactive.
This ensures that unresponsive controllers do not disturb the negotiations beyond
that round.

In Fig 4.25 a client (agent) initially calls the coordinator (blackboard) to ask
for a lock, after the confirm of which the client asks for the existing bids. The
coordinator sends the bids, so the client can perform MPC-based optimisation of
its power schedule based on the PCC constraints and the existing bids. Then, the
client submits the result (bid) to the coordinator. If the coordinator acknowledges
the validity of the bid, the client releases the lock on the blackboard. If the bid is
not valid, the coordinator cancels the transaction, which implies removing the lock
as well. A bid is deemed not valid if the data consistency check fails. If another
client attempts to call while the blackboard is locked, it receives a sync signal (used
to synchronise with the blackboard and interpreted as a rejection) and it waits for a
random time before trying again. This feature enhances in the long run the fairness
of the algorithm. In fact, although the units that access the blackboard earlier get a
higher share of the power resource, if the first unit to get the bid is somehow random,
then all the agents in the long run have equal probability to get the first bid.

Notice that, differently from the division of negotiation periods (join slot plus
negotiation slot), the mere blackboard access is managed with a Carrier Sense Mul-
tiple Access With Collision Detection (CSMA/CD) policy 3. Although the length of
negotiation periods determines the upper bound of the cluster time (total time to
settle the power schedules), its expected value is related to the number of participat-
ing agents. Furthermore, the random waiting time of the CSMA/CD-based access to
the blackboard affects the maximum number of DSRs per cluster. In this context,
consider the estimation of the cluster time:

ECT = 3 ∗

Nunits∑
j=1

TMPCj +Nunits ∗ 100ms

 , (4.19)

which, since the MPC time of the various controllers (TMPC) does not depend on the
cluster size, denotes a linear growth with the cluster size, Nunits (the random waiting

2TDMA is used in communication networks as channel access method for shared medium net-
works. In our case, the agents access to the blackboard is performed with another technique, and
only the negotiation periods are divided with a TDMA policy.

3In this implementation there are not jam signals being sent by the agents, as the agents do not
communicate with each others, but only with the blackboard.
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time is not taken into account here).

Table 4.26: SDMPC: problem size and cluster time (CPU: Intel Core i5, 2.6 Ghz;
RAM: 8 GB, 1.6 Ghz DDR3; OS X 10.9.5; Matlab R2011b with Mosek 7).

Pred. horizon: 24h CLUSTER SIZE (# OF UNITS)
4 12 28 40

DISCRETISATION STEP PROBLEM SIZE (# VAR.)-BUILD/BATT
5 minutes 1152/864 1152/864 1152/864 1152/864
15 minutes 384/288 384/288 384/288 384/288
DISCRETISATION STEP ESTIMATED CLUSTER TIME [sec.]
5 minutes 7.55 22.60 51.58 73.86
15 minutes 2.22 5.44 12.70 18.12
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Figure 4.27: Estimated cluster time of centralised SDMPC for different cluster sizes.
The waiting time related to CSMA/CD access to the blackboard is not accounted.

In order to determine the upper bound of the cluster size, consider the average
transaction time per unit from Table 4.26 (cluster time divided by number of units): a
conservative estimation is 1.84 seconds (5 min. discretisation), excluding the waiting
time. In [ML83], Meditch proposes an analytical evaluation of the delay characteris-
tics of CSMA/CD policies. It is found that the maximum channel throughput, which
in our case represents the maximum cluster size achievable, is reached at 50% of the
channel theoretical throughput, with an average waiting time of 10% of the trans-
mission time. In our case, being the negotiation slot 240 seconds long and the unit
transaction time 1.84 seconds, the estimated maximum cluster size in this setting
is: 65 units with an optimal waiting time uniformly distributed on 10% ±5% of the
unit time. Although these represent quite conservative estimates, the acquired tim-
ing margin may help in coping with unexpected system delays, such as Java garbage
collection procedures at agent and blackboard level.
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We refer the reader to Paper B and Paper C for more details on the SDMPC
algorithm and a performance assessment with respect to the service delivery to the
final user and the System Operator. Regarding the CSMA protocol and networks
delays analysis, [ML83] and [BC88] provide a valuable insight on this topic.

4.4 Conclusions

This chapter presents a standard approach DSRs grey-box modelling and two ap-
proaches to Direct Load Control based on MPC towards the application of a DSR
portfolio management for the provision of ancillary services. This problem shows an
intrinsic complexity in both modelling and control, which we aim at simplifying.

Although the CMPC architecture provides the optimal DSRs power scheduling,
it has shown to scale badly with the cluster size and discretisation time. With this
respect, distributed control represents an attractive approach. Two analysed algo-
rithms in literature, Dual Decomposition and ADMM, guarantee convergence and
optimality of the solution under more or less strict hypotheses; however they both
are restricted by two facts: the local controller must be designed with a specific math-
ematical formalism, and the central coordinating agent must solve and optimisation
problem.

The proposed solution, called Sequential DMPC, tackles both restricting aspects
at the price of sub-optimal/best-effort solution and less scalability with respect to
the cluster size with respect to DD or ADMM due to the sequential and exclusive
communication between the agents and the blackboard. The advantages brought by
SDMPC consist not only in an independent design of controller and a simple coordi-
nation system, but also in the capability of handling heterogeneous control variables.
Moreover, SDMPC exhibits a collaborative behaviour under resource overuse to pro-
vide the highest quality of service to both end users and System Operators. SDMPC
features higher robustness with respect to system failures if compared to the CMPC,
which has a single point of failure that is the centralised controller, since the units
can work in auto mode if the blackboard is down, and it allows an increase of ap-
proximately 63% of the maximum cluster size, from 40 units (CMPC) to 65 units
(SDMPC) for the considered setting.
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CHAPTER5
Data-driven modelling

and predictive control of DSRs

“In God we trust; all others must bring data.”

William Edwards Deming 1

This chapter presents two approaches based on artificial intelligence (AI)
to demand side management. The first approach consists of two sepa-
rate steps: system modelling via decision trees, and optimal control via
Dynamic Programming, so it is denoted thereafter as model-assisted Dy-
namic Programming (MADP). Although the presented MADP benefits
from a simple design, the time required to system modelling is large and
the generalisation of the learned model is limited. Therefore a second ap-
proach is introduced, which uses online learning and interaction with the
system to directly determine the optimal control policy. This approach
is based on Model-assisted Batch Reinforcement Learning, since it com-
bines in-domain knowledge to boost the convergence and generalisation
of the pure Reinforcement Learning-based controllers.

1Dr. William Edwards Deming (14/10/1900 - 20/12/1993). He was an American engineer,
statistician, professor, author, lecturer, and management consultant. Japanese economic renaissance
after the second world war got large benefit from Deming ideas: better products design, high level
of uniform product quality, improvement of product testing in the workplace and in research centres,
and greater sales through markets.
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5.1 Introduction

Grey-box physical modelling has been widely used for Model Predictive Control of
TCLs, it is based on the system thermo-physical properties, and it relies on consis-
tent prior knowledge of governing first principles. Bacher et al. applied Maximum
Likelihood Estimation (MLE) to fit four different linear models of eight-room office
building [BM11]. Yet, in that study the system was modelled in its whole, as a
single-room office. Bondy and Parvizi presented instead a multi-room model for the
same building following the same identification procedure [BP12]. In this latter study
stability and accuracy issues were enlightened in relation to MIMO identification, as
well as the fact that quality of data turned to be critical for convergence of estima-
tion. Similar studies use thermal circuits as well [Old+12; Ma+12; Prı́+11; Old+10;
SBN14], all of them putting emphasis on the physical interpretation of the model,
and the need of a pre-acquired understanding of the process to be modelled.

In this context, completely data-driven approaches are deemed interesting, sacri-
ficing performance for practicality. Machine learning techniques have been gaining
increasing attention in the past twenty years, since the availability of powerful com-
puters and cheap memory allowed the pervasive use of artificial intelligence in a
variety of applications that span from speech recognition to automated disease diag-
nosis, from image processing to data mining and intrusion detection in cyber-security
applications [Bis+06; Has+05]. Zhao and al. provide in [ZM12] a review on mod-
elling techniques, from engineering methods, to physical models, statistical models,
and Machine Learning models.

Having all of these approaches specific pros and cons, it is difficult to state which
one is the best in absolute sense. Hernandez Neto et al. in [NF08] compare the pre-
dicted building energy consumption between two approaches: detailed model-based,
EnergyPlus, and Artificial Neural Networks (ANNs). It results that ANNs perform in
average 3% better than Energy Plus with respect to the prediction error, due to the
fact that ANNs can learn dynamics that stay unmodeled in EnergyPlus. However,
EnergyPlus can provide building administrators with detailed information on how
to improve building energy performance. An early application of ANNs to efficient
building climate control is found in Neurobat [Mor+01], where ANNs are used to
predict weather conditions and learn how that influences the internal temperature in
a residential building, and Dynamic Programming [Ber+95] is used for optimal policy
search.

This chapter presents two approaches based on artificial intelligence to building
thermal modelling and control for DSM applications. The first method is the Model-
assisted Dynamic Programming (MADP), which is detailed in Sec. 5.2 and consists
of two phases: learning of system model via Extremely Randomized Trees (ERT),
and policy computation via Dynamic Programming. In the optimisation enter also
the forecasted disturbances on the system (solar radiation and external temperature)
and dynamic energy pricing. A quick insight on ERTs and DP is presented in Ap-
pendix B.5 and B.6.

The second approach, presented in Sec. 5.3, is based on Model-assisted Batch
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Reinforcement Learning (MABRL), and it is characterised by one main phase: con-
current model learning and computation of control policy. The optimal control policy
is determined by jointly using data from the field and synthetic data from the sup-
port model, which is also obtained from the field data. As more data comes available
from the field, the control policy produced by the MABRL algorithm converges to
the optimum.

5.2 Model-assisted Dynamic Programming

The problem of building thermal modelling is here formalised as a supervised learning
task of the function f :

Ti (t+ 1) = f (T (t) , P (t) , ϕ (t) , Te (t)) , (5.1)

where the function input is called feature space, and the function output target value.
In this setting the target value is a scalar, i.e. the room temperature Ti at the next
time step, and the input is a multidimensional space that includes measurements of
internal temperature, solar radiation on the roof, ϕ, external air temperature, Te, and
power consumption of the air conditioners P (t).

The experimental data is gathered in order to have a training set of twenty days
and a test set of a couple of days. The one-second resolution data coming from VITO
HomeLab is averaged over five minutes for the learning task in order to reduce the
memory size (as detailed in Appendix B.5, the memory required by ERT is propor-
tional to the size of the train data set). In Fig. 5.1 it is depicted the train dataset,
where top graph reports the evolution of Ti, the second reports P , the third reports
ϕ, and the fourth the Te. The time step is 5 minutes.
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Figure 5.1: Train set for system identification via ERT.
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The supervised learning task in Eq. 5.1 is carried using an ensemble of 100 ERTs
trained on 5 minutes-discretised data with nmin = 7. 2

The AC units are kept off for four days in order to be able to learn the uncontrolled
system dynamics. In order to improve the model generalisation, in the learning phase
the physical system should visits as many states as possible. Therefore, the AC units
are controlled with a thermostatic control logic enhanced by ε-greedy exploration
[SB98]:

uk =

{
u ∼ Bernoulli (0.5) if γ ≤ εj
u from thermostatic logic if γ > εj

, (5.2)

where γ ∼ U (0, 1). In this study the exploration factor εj reduces by half every four
days:

εj =
ε0ς

ς + j − 1
, (5.3)

where the decay factor ς is 4, the initial probability ε0 is 0.4, and the the day index is
j ∈ {1, 2, 3, . . .}. In this way the temperature comfort bounds are always guaranteed
and, thanks to the random actions, the controller has nonzero probability of selecting
any control action in every encountered state. This technique improves the ERT
regression performance, as the power consumed by AC units is in the feature space.

The regression performance of the ERT ensemble is depicted in Fig. 5.2 on a test
data set (i.e. data that is not used in the learning phase), where the first graph shows
the experimental data, in green, versus the model prediction, in blue.
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Figure 5.2: ERT forward prediction performance on a test set.

Figure 5.2 shows the model one-step prediction, while Fig. 5.3 presents the analysis
of features importance and ACF of one-step prediction error.

2nmin is the minimum number of data points for which a node is not further split but it becomes
a leaf. [Zho12] reports that a convenient choice of nmin for deterministic problems is 5, whereas for
stochastic problems is 7.The choice of nmin = 7 is motivated by the noise affecting the measurements.
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Figure 5.3: ACF of model residuals (a), and features importance of Model 5.1 (b).

The residuals analysis via the ACF clearly shows that the ERT ensemble is not
able to catch properly the slow dynamics. The analysis of features importance tells
us that the temperature at a given time step is the most influencing feature for
the prediction of the temperature at the following time step, while the second most
important information is the power consumed by the air conditioners.

Denoting by xt the feature space (Ti (t) , P (t) , ϕ (t) , Te (t)), it is plausible to
extend the proposed model with additional features from previous time lags (e.g.
xt−1, xt−2, etc...). Fig. 5.4 shows the bias-variance analysis [Has+05] of the extended
feature space, for time lags that go from 0 (reference case) up to 6. Increasing the
feature space by one time lag allows reducing the RMS prediction error with respect
to the reference case, yet further extensions of the model do not bring significant
improvements.
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Figure 5.4: Bias-variance tradeoff for increasing lags of input features.
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After performing the following model extension,

Ti (t+ 1) = f (Ti (t) , P (t) , ϕ (t) , Te (t) , Ti (t− 1) , P (t− 1) , ϕ (t− 1) , Te (t− 1)) ,
(5.4)

figures 5.5 and 5.6 show the one step prediction and residuals analysis.
The ACf in Fig. 5.6 (a) shows a slight improvement in the errors correlation, which

has to be traded off with extending the DP optimisation problem by one additional
dimension. As it will be clarified below, Dynamic Programming is a practical ap-
proach when the dimension of the state space is small (maximum three); therefore
Model 5.4 is discarded in favour of Model 5.4.
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Figure 5.5: Train set for system identification via ERT. Extended feature space.
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Figure 5.6: ACF of model residuals (a), and features importance of Model 5.4 (b).
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Once obtained the regressor, the optimal control policy is computed via Dynamic
Programming, an optimisation technique that comes from Bellman’s ingenious idea
to cast an optimisation problem in terms of a multi-stage Markov Decision Process
(MDP). In the DP setting the controller interacts with the system by means of three
signals (Fig. 5.7): the state, which describes the state of the process under control;
the control action, which leads the process to another state; the reward, which embeds
information regarding the immediate performance of the control action and it can be
seen as a design parameter that allows to specify the control objectives of the DP
optimiser.

CONTROLLER PROCESS

REWARD 
FUNCTION

CONTROL ACTION

STATE

REWARD

Figure 5.7: Flow of interaction in the DP setting.

DP is suitable for small-sized problems that exhibit the following properties [Bus+10]:

• overlapping subproblems - the problem can be broken down into subproblems;

• optimal substructure - the optimal solution to the original problem can be
constructed efficiently from the optimal solutions to the subproblems.

The solution to a DP problem leads to the optimal control policy, called h∗ (·)
that, for any initial state x0, maximises the total return:

uk = h∗ (xk) , (5.5)

where (·)∗ denotes optimality. Notice the difference with the MPC, where a time-
dependent open-loop control law was obtained. The total return associated to a
generic policy h is given by the so-called Q-function [Bus+10], which corresponds to
the sum of the rewards associated to the state transitions that occur starting from
any initial state x0 and following h (·) thereafter:

Qh (x0, u0) = ρ (x0, u0) +

∞∑
k=1

γkρ (xk, uk) , (5.6)

where γ ∈ (0, 1] is a discount factor used to penalise rewards obtained after a large
number of steps (it determines how far-sighted is the controller). Indeed γ allows
trading-off the quality of the solution with the convergence rate of the DP algorithm.

The Markov property, which is at the basis of the theoretical guarantees of Dy-
namic Programming, allows DP to determine the next state and the reward by using
only the current state and the current action together with:
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1. the state transition function f , which determines the next state of the process
given a specific control action:

xk+1 = f (xk, uk) ,

2. and the reward function ρ, which determines the reward associated to a specific
control action taken at a specific state:

rk = ρ (xk, uk) .

It is worth to point out two facts about DP: 1) it does not need the analytical
descriptions of f and ρ (they can be AI-learned regressors), and 2) it addresses the
challenge of obtaining a long-term optimal control policy by using a reward function
that gives only information about the immediate performance of a control action
[Bus+10]. Buşoniu et al. in [Bus+10] present three classes of DP algorithms: Value
Iteration, Policy Iteration, and Policy Search. Value Iteration uses the Bellman opti-
mality equation to iteratively compute an optimal value function Q, from which an
optimal policy is derived. Policy Iteration evaluates policies by constructing their
value functions, and uses these value functions to compute new, improved, policies.
Policy Search uses gradient-free optimisation to directly search for an optimal policy
which maximises the return from any initial state.

The MADP controller proposed in this study is based on Value-iteration DP,
which is further detailed in Appendix B.6, and validated in the HomeLab at the
Flemish Institute for Technological Research (VITO). The setup consists of two air
conditioners (Fig. 5.8), one temperature sensor to measure the room temperature
in one point, one pyranometer to measure the solar irradiation on the roof, one
temperature sensor to measure the external air temperature, and one power meter to
measure the air conditioners power consumption. Note that, being the experiments
carried during two different seasons, summer for MADP and winter for MABRL,
cooling is considered for MADP and heating for MABRL.

As the experiments were carried in June, 2014, the targeted application is cooling.
The time series of external disturbances is taken from the test set, depicted in Fig. 5.2,
to produce the policy shown in the second chart of Fig. 5.9. The x axis represents
the time, while the y axis the internal temperature discretised in 300 steps between
19.5 to 22.5 degree Celsius. This policy has been tested in VITO HomeLab, and the
room air temperature is depicted in the top chart of Fig. 5.9.

The policy in Fig. 5.9 is a matrix where the columns represent the time, which is
discretised by 5 minutes, and the rows represent the measured internal temperature.
The air conditioners controller is operated by a script that dispatches the policy
by reading it as a lookup table, where a 1 (red colour) corresponds to the control
action on, and 0 (in blue) to off. The white dots represent a temperature reading
corresponding to an activation of the AC units. Note that policy granularities are
due to the fact that ERTs are discrete regressors, and the price profile is intentionally
constructed in order to exhibit some variations in the envisaged time horizon.
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Figure 5.8: Experimental setup at Vlaamse Instelling voor Technologisch Onderzoek
(VITO). Dimensions: 7.9m (L), 7.8m (W), 5m (H).

Figure 5.9: Test of optimal policy. The upper chart shows the room temperature, the
one in the middle the policy map, while the lower one the energy price profile.
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Summarising, the MADP approach here presented is characterised by an intrin-
sic simplicity in both modelling and optimisation. Modelling via ERT is a crucial
procedure, since the regression performance is highly influenced by the choice of fea-
ture space, for which a feeling of the physical process is needed. Moreover, suitable
discretisation time is chosen to trade off learning time, accuracy and use of memory.
Concerning the optimisation, the used DP algorithm does not approximate the Q-
function. Due to this, it is not practical to extend the state space, neither to further
reduce the discretisation time. The policy produced exhibits granularities, as the
ERTs provide a piece-wise linear model of the data, and the experience showed that
twenty days of experimental data are needed for training.

In the next section we present an approach in which a policy-learning mechanism
is designed instead of model-learning. Such algorithm is based on fitted Q-iteration
Reinforcement Learning, and brings the novelty of using a support model to generate
artificial trajectories of the physical system in support of the policy learning pro-
cess. For that, this approach is called Model-assisted Batch Reinforcement Learning
(MABRL).

5.3 Model-assisted Batch Reinforcement Learning

In general any learning task, supervised or non-supervised, benefits from large learn-
ing sets and extensive exploration of the system states. However, this is sometimes
not possible due to learning time constraints and external contingencies that prevent
the system under control to visit exhaustively its state space. In Sec. 5.2 we intro-
duced how supervised learning can been used to obtain the process model, which is
used afterwards to compute an optimal control policy.

An alternative approach is Reinforcement Learning (RL), a model-free control
technique where an agent learns a control policy by interacting with the environ-
ment. Here the training information is obtained by evaluating the success or failure
of different control actions on the system [Bar98] and, based on this information, the
Q-function is constructed (Q-learning). Very similar to RL is Batch Reinforcement
Learning (BRL), where the only difference with RL is that the policy is calculated
offline using a batch of historical data. RL approach has been applied to HVAC
systems in [HR11], and to heat pumps in [US13].

In order to reduce the convergence time of Q-learning, Model-assisted Batch Re-
inforcement Learning (BRL) has been proposed by Lampe and Riedmiller in [LR14]
and by Ruelens et al. in [Rue+15]. MABRL uses expert knowledge, i.e. a sup-
port model, to generate trajectories outside the training set, improving the quality
of control policies and, in general, speed up the convergence of RL. The basis of the
presented approach is MABRL with fitted Q-iteration (FQI) [EGW05], which is used
to obtain an approximation of the state-action function Q∗ (Eq. B.24).

This section presents the original contribution of this thesis to AI-based control
of DSRs for DSM. As previously stated, the target application is climate control,
and Paper D presents an experimental analysis of data-driven control for building
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heating system. Building upon [Rue+14; Bus+10; LR14], this work has the following
contributions:

• BRL in the form of FQI [Ern+09] in combination with virtual trajectories [LR14]
and policy shaping is applied to a HVAC system for a typical objective of
dynamic pricing [FS10]. This effectively results in a data-driven solution for
building climate control systems, combining state of the art BRL with domain
knowledge;

• Quantitative and qualitative performance assessment of MABRL in a simulated
and experimental environment, where the operation of an air conditioner is
subject to dynamic energy pricing.

Figure 5.10: Overview of the information flow in this implementation of MABRL
using FQI and policy repair.

Figure 5.10 shows the schematics of the proposed MABRL controller, where an
offline phase and an online phase are depicted. The FQI algorithm is trained on the
batch FL, which is a combination of experimentally observed tuples FE and virtual
tuples generated by a model FM:

FL = FE ∪ FM . (5.7)

The batch FE is used to update or re-train the support model, which is used to
generate random data points. These are joined to the batch if the nearest experi-
mental tuple in FE falls outside a predefined radius r, following a distance metric ∆.
Then, the FQI algorithm generates a control policy using the batch FL. The control
policy is finally filtered to reduce the granularity before being dispatched to the air
conditioners.

In this work, following the approach presented in [LR14], an ANN is used to repre-
sent a support model consisting of single-layer, single-output Extreme Learning Ma-
chines (ELMs) trained to predict the change of the internal temperature ∆T . ELMs



70 5 Data-driven modelling and predictive control of DSRs

are used as they allow for fast training of the weights of the network at the expense
of reduced regression performance. The latter is partially mitigated by combining
multiple ELMs in an ensemble [Zho12].

The output of an ANN with p input neurons and n hidden neurons can be formu-
lated as:

y(x) =
n∑

i=1

βigi(wi · x, bi) = G(x)β , (5.8)

where x ∈ Rp is the input vector, wi ∈ Rp ∼ i.i.d. U (−1, 1) is the weight vector
connecting the input nodes with the i-th hidden node, bi ∈ R ∼ U (0, 1) is the
bias of the i-th hidden node, and βi ∈ R is the output weight of i-th hidden node.
β = [β1 . . . βn]

T is the output weight matrix, while G(x) is the output matrix of
the hidden nodes, where the nodes activation function g is a sigmoid.

Since the parameters of the hidden nodes are randomly generated, training an
ELM corresponds to determining the output weight matrix β based on the regu-
larised least-squares solution of Gβ = Y. As the training process is fast, finding the
appropriate number of hidden nodes is done using cross-validation. Finally, the en-
semble model output is given by a weighted average of the individual ELMs outputs.
For a deeper insight on ELMs, we refer to [Cam+13], while the support model is fully
detailed in Paper D.

In MABRL the problem of building climate control is formalised as a stochastic
Markov decision process (MDP). This formulation is chosen with respect to the deter-
ministic case in Sec.5.2 in order to account uncertainty on the prediction of system
disturbances. Leaving the details on the MDP formulation to Paper D, it is worth
remarking that an optimal control policy, here denoted by h∗, satisfies the Bellman
equation:

Jh∗
(x) = min

u
E

w∼Pw(.|x)
{ρ(x, h(x),w) + Jh∗

(f(x, h(x),w))} , (5.9)

which in this case is characterised by an expectation of the T-stage return. As for DP,
typical techniques to find policies in an MDP framework are value iteration, policy
iteration, and policy search [Bus+10]. In this work, value-iteration is considered.

Below a qualitative and quantitative assessment of the MABRL controller is pre-
sented. As the experimental setup is a living lab, exact external conditions cannot be
reproduced from day to day. Thus, a model of the air conditioner and the lab room is
used instead of the living lab for a quantitative assessment, and the thermal schedul-
ing obtained using MPC is taken as benchmark. Figure 5.11 presents the economic
performance of MABRL with respect to the standard thermostatic control (Default),
the BRL, and the reference benchmark, MPC. One can depict that MABRL is able
to find near optimal control policies in a learning time of approximately 20 days,
after which the performance relative to a mathematical optimum is stable. However,
adding virtual samples has limited contribution, with a slight economic advantage of
the MABRL approach over the BRL.

In order to validate the MABRL convergence and performance with experimental
data, the policy computation with respect to different training sets is performed and
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Figure 5.11: Cost performance of the different controllers: BRL (no virtual tuples),
MABRL, Optimal (MPC), and Default (hysteresis). Top plot: cumulative electricity
cost. Bottom plot: daily electricity cost.

shown in Figure 5.12. Here policies are organised in a matrix for different predicted
profiles of the external temperature (from left to right) and increasing size of the
learning batch (from top to bottom). No virtual tuples have been added. Starting
from the top row, policies are computed using experimental batches of: two days,
eight days, and sixteen days. The black areas in the policies correspond to the
control action switch on. Consider Figure 5.12, from left to right only the profile
of external temperature is changed. One can observe that the policies are highly
influenced by the weather conditions: as soon as the external temperature is low, the
policies correspond to basic thermostatic control (i.e. heat only when it is necessary).
Thus MABRL effectively takes into account the forecast of exogenous information.
Finally, note that the policies in the first row resemble each others, regardless of the
different forecast of the external temperature, due to the fact that the training tuples
are few.

Figure 5.13 shows the effect of shaping the policy, as discussed in Paper D. Here
triangular membership functions [Bus+10] have been used with the constraint that
the policy needs to be strictly decreasing with increasing indoor temperature. This is
a direct consequence from the physical understanding that a room at a higher temper-
ature is subjected to higher losses to the environment. The results depicted in Figure
5.13 show that the policies are smoothed following the monotonicity constraints.

Figure 5.14 shows the impact of virtual tuples on the convergence of the policy.
The policy is computed using experimental data and virtual tuples in three different
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Figure 5.12: Policies projections obtained from experimental data for different forecast
of the outside temperature, depicted in the lower row. From top to bottom data from
2, 8 and 16 days has been used. The lowest row indicates the forecasts of outside
temperature for which the policies have been calculated.

proportions. The left chart in Figure 5.14 shows the computed policy with only few
experimental data points (2 days) and no virtual tuples in support, called early policy.
The right chart shows the policy computed using a larger set of experimental data
(20 days), without virtual tuples, called regime policy. The middle chart shows the
computed policy using few field data (2 days) and a large share of virtual tuples (400
samples) from the support model, which is trained on the basis of the experimental
data available. This latter is called model-assisted policy. One can recognise that the
model-assisted policy is much more similar to the regime policy than the early policy,
concluding that the support model enhances the policy convergence. Furthermore,
adding virtual tuples results in more smooth policies.

Figure 5.15 shows the implementation of a policy obtained after 12 days of training.
The bottom chart depicts the internal temperature and the control policy, where the
black areas correspond to the control action switch on. Note that, in order to avoid
frequent switching of the air conditioners, the heating is kept on until the temperature
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Figure 5.13: regime policies. Original form (row n. 3 from Figure 5.12), in the upper
row, versus repaired policies, in the lower row.

Figure 5.14: Computation of the closed-loop policies for different shares of virtual
tuples over experimental data.

upper bound is reached. The middle chart reports the power consumption of the air
conditioning units and the intraday balancing price. The second and first chart shows
the external air temperature.

Figure 5.16 shows the implementation of a regime policy on a warmer day. In this
case, since the thermal losses are moderate with respect to a cold day, the optimiser
allows longer pre-heating in order to avoid high price zones. This doesn’t occur in
cold days, where the policy is much more similar to a simple thermostatic logic.

Summarising, the analysis based on simulations and experimental data showed
that the policy convergence time for MABRL is approximately five times smaller
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Figure 5.15: Experimental results 1. Top plot: outside temperature. Middle plot:
consumed power by the HVAC and electricity price. Bottom plot: control policy
obtained with MABRL and the resulting indoor air temperature.

than the one of BRL. Both techniques reach a performance within 90% of a math-
ematical optimum in approximately 20 days without grey-box system identification,
and both controllers are immediately deployable. The MABRL technique, already
introduced in literature, is here adapted and validated in a living lab for a climate
control application, which constitutes the original contribution presented in Paper D.

5.4 Conclusions

This chapter presented two techniques for building climate control, Model-assisted
Dynamic Programming and Model-assisted Batch Reinforcement Learning. MADP
consists of two separate procedures that are both carried offline, model learning, and
policy computation. Differently to BRL, MABRL learns directly the control policy
using experimental data and virtual data coming from a support model. This allows
faster policy convergence and controller deployment time.

Some time was spent for gathering the experimental data and troubleshoot all the
practical problems that arose when coupling the air conditioners control software (sys-
tem excitation and policy dispatch) with the physical setup. MADP shows reasonable
overall performance, at the price of a learning period comparable to grey-box physical
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Figure 5.16: Experimental results 2. Top plot: outside temperature. Middle plot:
consumed power by the HVAC and electricity price. Bottom plot: control policy
obtained with MABRL and the resulting indoor air temperature.

modelling. However, the model baed on ERT requires a sufficient understanding of
the system in order to properly define the learning task.

Therefore Model-assisted Batch Reinforcement Learning is investigated, which
features faster learning as no accurate model has to be trained in advance. Simulation
studies and experimental tests show that the control policies obtained with MABRL
converge to a configuration that is very similar to the policies obtained with BRL, in
a fifth of the time. However, even if both BRL and MABRL offer significant savings
with respect to the default thermostatic control, no significant economic gain has
been observed in this setting between BRL and MABRL.

Finally, the policies obtained from both BRL and MABRL showed that the ther-
mal inertia of a relatively-small lab may be sufficient to respond to imbalance prices,
but not to day-ahead prices. A similar study on larger buildings would definitely be
an interesting continuation of this research.
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CHAPTER6
A model-free approach
to Direct Load Control

“Design is not just what it looks like and feels like.
Design is how it works.”

Steve Jobs

This chapter presents an approach for abstracting the flexibility of ther-
mostatically controlled loads and using it in a model-free aggregation
framework for DLC, called COMMELEC, that was developed at Ecole
Polytechnique Federale de Lausanne, outside the context of this research.
After introducing the the basics of COMMELEC, the original contribu-
tion of this research is presented, which consists in an innovative algo-
rithm for Load Admission Control that allows abstracting the flexibility
of thermostatically controlled loads and using it within COMMELEC. A
simulation study concludes this chapter, providing a proof of concept of
the presented approach and algorithm.
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6.1 Introduction

Two approaches based on predictive control for DSM via DLC have been presented so
far; the first uses standard grey-box approach for modelling and quadratic program-
ming for predictive control, while the second uses AI techniques for modelling and
gradient-free optimisation for predictive control.

This chapter is dedicated to the design of a model-free control strategy for interfac-
ing thermostatically-controlled loads (TCLs) with a framework for real-time control
of active distribution networks by means of explicit power set points. This framework,
called COMMELEC, offers a composable approach to frequency and voltage control
in medium and low voltage grids with a large penetration of controllable loads and
distributed and stochastic production [Ber+14b].

The algorithm introduced here, called Load Admission Control (LAC), allows
electric space heating scheduling for Direct Power Control (DPC) applications, and
it can be directly extended to any TCL. Being it model-free and based on online
scheduling, LAC is of easier scalability and deployment compared to MPC-based
schemes. The comfort of the end customer is prioritised with respect to the DR
service provision, which allows exploiting the TCLs only within their local comfort
settings.

After a brief introduction to COMMELEC in Sec. 6.2, the main concepts for
abstracting TCLs flexibility and the LAC algorithm are presented in Sec. 6.3 and
further detailed in Paper E (Appendix A). Section 6.4 outlines the final conclusions.

6.2 An introduction to COMMELEC

This framework, called COMMELEC [Ber+14b], is based on request/response com-
munication protocol between the devices controllers (Resource Agents, RAs) and the
grid controller (Grid Agent, GA). The RAs export generic and standardised informa-
tion about devices status to the GA that computes, in real-time, the optimal power
injections at the grid nodes that the various RAs are requested to realise. Thus, the
design of a Resource Agent is specific to device type, whereas the GA is totally generic
and can be adapted to any network. Thanks to this standardised interface between
the agents, it is possible to completely disregard devices details in the overall network
control and easily upscale (or downscale) the entire architecture. Each agent speaks
for and controls the subsystem under its responsibility, which can consist of other
electrical grids or resources (loads, generators and storage devices), by using explicit
power set points. An agent can be assigned the role of leader of one or more other
agents, which we term the followers of that leader.

The agents communicate with each other by using a simple Advertisement/Re-
quest protocol, and using some simplified quantitative information about their de-
vices capabilities and internal states. In particular, the follower agents periodically
advertise to their leader the following three elements: (i) PQt profile, that is a region
in PQt space of setpoints that the subsystem is willing to implement; (ii) Virtual
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cost function, that acts as proxy for the internal state of the system, the preferred
setpoints, and how close the subsystem is close to its operational constraints; and (iii)
Belief function, representing all the possible values of (P;Q) that the subsystem may
implement in practice when it receives a certain setpoint.
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Figure 6.1: Reference distribution network. The LV part of the grid is composed by
the CIGRE LV microgrid benchmark proposed by TF C6.04.02 [P+05]. The MVGA
is the leader of one or more LVGA, which themselves are leaders of one or more RAs
(dotted arrows).

Observe the difference between PQt profile and belief function: the former in-
dicates the setpoints that this subsystem is willing to receive, whereas the latter
indicates all the possible operating conditions that may result from applying a re-
ceived setpoint. The PQt profile is used by the grid agent to compute an “optimal”
setpoint, whereas the belief function is used to determine the region of the safe opera-
tion of the grid. All agents monitor in real time the state of the grid device(s) and/or
the agents (the GAs) under their responsibility and compute the general messages to
send to their leader agent. When receiving a new request, each agent projects the
power setpoint to the current updated PQt boundaries in order to ensure its individ-
ual safety. We refer the reader to [Ber+14b] for further details on the protocol and
the computation of the setpoints of the GA.
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6.3 Space heating scheduling for real-time explicit power
control

The algorithm here developed for DLC is based on a modified version of the Load
Admission Control (LAC) algorithm presented in [Cos+12b]. The LAC algorithm has
been previously tested in experimental trials for the PowerMax service with Power
FlexHouse [Cos+12a], and it has been here modified and extended in order to: 1)
abstract from the resource state the information needed in the COMMELEC protocol,
and 2) perform Direct Power Control service, since the RAs in COMMELEC have to
implement specific power set points rather than limit the power to a maximum level.

In the following, we refer to the agent for TCLs as Load Agent (LA), which gen-
erality and model-independent design this section is intended to enlighten. The TCL
considered in this study is a building with its space heating system. However, the
presented LA can be adapted to TCLs of any size and kind, provided that the thermal
control system allows controlling the temperature independently in each control vol-
ume, where at least one measurement of internal temperature is available. Note that
this approach is model-free in the sense that no model of the TCL thermal inertia
and insulation is needed; however a model of the actuator is necessary, even a trivial
one. In the case considered here, being the heating modules resistive electric heaters,
the actuators are accounted in the control algorithm as controllable constant-power
loads.

The LA advertises three information to the GA: PQt profile, Belief function, and
Virtual Cost function; then it receives back the power set point from the GA to be
implemented. The computation of the load PQt profile is directly related to the
notion of flexibility, which a property of the load that allows it to be interrupted and
re-started again without causing user discomfort or device failure. Specifically, the
flexibility of a single room is determined by its internal air temperature: if it is within
the comfort bounds, the heater can be switched on or off without compromising the
user comfort. Instead, if the room temperature is below the lower comfort bound
(TLB) the heater must run, and if the temperature is above the upper comfort bound
(TUB) the heater must not run (Fig. 6.2)
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Figure 6.2: The flexibility of operation of a heating system is related to the system state itself.
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The flexibility of the whole system (building) is determined by its subsystems
(rooms) flexibilities. The rooms whose temperature is below TLB determine the
building minimum power consumption, while the maximum consumption is limited by
those rooms whose temperature is above TUB . The (P,Q) flexible region is determined
by those rooms which temperature is within the comfort requirements [TLB , TUB ].
One can immediately see the potential scalability of this computation.

The belief function, henceforth denoted by B, describes the ability of the Load
Agent to map a requested power setpoint, u, coming from the Grid Agent, to actual
load consumption. In this study, the building is composed by eight rooms with one
electric space heater of each. The heaters can be either switched on or off, therefore
the load can implement only discrete active power setpoints from 0kW to 8kW in
steps of 1kW . Hence the belief function simplifies to the nearest integer function:

B (u) = {nint (u)} , (6.1)

where u is a power setpoint received from the GA. Note that, thanks to the LAC
algorithm, the LA achieves tracking a power setpoint from the GA with an accuracy
of ±0.5kW (Fig.6.3).
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Figure 6.3: Example of belief function for discrete load steps of 1kW

The Virtual Cost function serves as a proxy for load internal conditions and it
associates a cost to every operating point inside the PQt profile. The cost is computed
per every single subsystem (room) with respect the possible control actions: heat, and
not heat. Since the LA responds to a received power setpoint by switching on the
heaters in some rooms and switching off the heaters in the remaining rooms, we
compute the total cost of a received power setpoint as the cost associated to heating
the selected rooms, plus the cost associated to not heating the remaining rooms.

In each room the cost of heating is zero when the room temperature is in the
middle of the comfort band, TM , positive when it is above, and negative when it is
below. This design choice is based on the consideration that the building, or any
TCL, exhibits flexibility for longer time if the temperature in all control volumes, in
this case the rooms, is the middle of the comfort zone(s). Equation 6.2 shows the
cost of heating a specific room j given the internal temperature Tj :
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ch (Tj) :


1 +

(
Tj − TUBj

)2
: Tj ≥ TUBj

Tj − TMj

TUBj − TMj

: TLBj < Tj < TUBj

−1− (TLB − Tj)
2
: Tj ≤ TLBj

, (6.2)

while the cost of not heating the same room is given by −ch (Tj).
Note that in this case study only active power operating points are considered,

and the LA does not need any information about the building model to compute the
cost function. The Load Agent uses the temperature readings to compute the terms
ch, then it calls the LAC algorithm (presented in Paper E) to compute the control
vectors U for one admissible power setpoints x ∈ PQt. To each x corresponds the
cost C (x):

C (x) =
∑
j∈R

[U (j) ch (Tj)− (1− U (j)) ch (Tj)] , (6.3)

where j is a generic control volume belonging to the set of control volumes R, and
U (j) is the component of the control vector corresponding to room j. The entire
Virtual Cost function for the load is obtained by computing the control vector U for
all setpoints in the PQt profile and iterating Eq. 6.3 over the obtained control vectors.

The proposed algorithm is tested in the COMMELEC simulator, developed at
EPFL, which grid configuration is depicted in Fig 6.1. Two case studies are presented
below, and the DSRs on which we shall focus are: the building (UL2), the water boiler
(WB2) and the PV (PV3), depicted in Fig. 6.1. From the simulation it emerges that
the LV Grid Agent dispatches the power setpoints in order to avoid congestions in
Line 16, which connects the considered DSRs with the rest of the network.

In the first simulation, the PQt profile of the LA is initially between −6kW and
−8kW , as six rooms out of eight are below the comfort zone (Fig. 6.4). The LA is
able to track the explicit power setpoint coming from the LVGA and the building
flexibility increases as soon as all the rooms enter the comfort zone (upper chart). At
this time, the LVGA fully exploits the load flexibility when dealing with local resource
contingencies and line constraints.

In the second simulation, due to the initialisation of the internal temperature in
all the rooms within the comfort zone, the PQt profile is constrained between 0kW
and −8kW (Fig. 6.5), in a way that the building exhibits the maximal flexibility to
the LVGA from the beginning. Figure 6.5 shows also that only the rooms in the
lower part of the comfort zone are heated, while the LVGA operates the water boiler
WB2 in advance with respect to the previous simulation. When WB2 is switched on,
the LA is requested to reduce the building consumption in order to not overload the
feeder. At about 1200s, the decreased PV production brings the LVGA to reduce the
WB2 power and restore the building heating so that all the rooms steer toward the
middle of the comfort zone (i.e. to the minimum virtual cost).

Since the PQt profile reports the admissible operating power of the resource, as-
suming that only power set points within this region are implemented, the user com-
fort is always guaranteed, and the flexibility information upon the GA is updated
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Figure 6.4: Simulation with LA - rooms initialized below the comfort zone. From the top chart:
temperature of building rooms, building power consumption, WB2 consumption and PV3 production,
building and connecting line (Line 16) currents.

Figure 6.5: Simulation with LA - rooms initialised within the comfort zone. From the top chart:
temperature of building rooms, building power consumption, WB2 consumption and PV3 production,
building and connecting line (Line 16).
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at every advertisement/request iteration cycle which, in the case of COMMELEC, is
100ms. Please refer to Paper E for further details on the control algorithm and the
entire Load Agent, and to [Ber+14b] for further details on COMMELEC.

6.4 Conclusions

This chapter presented a systematic approach to abstract the flexibility of a building
heating system and interface it with the composable framework for real-time grid
control, COMMELEC, i.e. to be able to use a building’s thermal inertia for real-time
control. The presented simulations show the efficacy of the LA to operate the load
within the user comfort requirements and communicate generic information to the
GA to perform explicit power control.

The main benefit brought by this approach consists in the simplicity on the Load
Agent side, and the accomplishment of a variety of tasks, such as voltage and fre-
quency control, thanks to the design of the control framework and the Grid Agent.
However, it remains open the question on how to assess the cluster available flexibility
in terms of shiftable energy. This latter topic is certainly of relevant importance and
interest, and it is under investigation of the COMMELEC developing team at EPFL.



CHAPTER7
Conclusions

Through this thesis the reader is introduced to the concepts of Smart Grids, Demand
Side Management, and Direct Load Control. As discussed in Ch. 2, political, eco-
nomical and strategical reasons brought energy independency and sustainability high
on the agendas of many governments. Together with an increase of non dispatchable
production, not only grid stability and power quality issues arise, but also energy
markets and regulations are affected. Smart Grids enhance the functionality of the
power networks by using information technology, data analysis and control theory,
in any possible fashion to countless applications. In this thesis Demand Side Manage-
ment is further investigated towards residential applications, with a mainly focus on
Direct Load Control. Three mainstreams are investigated: physical grey-box mod-
elling with model predictive control, machine learning-based modelling and predictive
control, and model-free real-time control.

Chapter 4 presents physical modelling via grey-box system identification. Such
approach is very intuitive if the system governing principles are known, and it can
be used with efficient optimisation techniques for predictive control. However, carry-
ing out proper identification is time and resource demanding, and when it comes to
aggregation, the size of MPC problems grows rapidly, especially in centralised con-
trol solutions. For this reasons distributed control architectures, which scale better,
are deemed interesting. A novel algorithm for distributed predictive control, called
DSMPC, is introduced. It offers the possibility of independent controller design, pro-
vided that few requirements are satisfied, it can handle binary, integer and continuous
control variables, it does not rely on a central coordinating optimiser, and it provides
a best-effort solution in few iterations. Yet, the main drawback of this algorithm
stays in the scalability which, although being better than the centralised solution, is
connected to the sequential and iterative communication between units.

Chapter 5 introduces an alternative modelling approach that aims at tackling
the issues of long identification time and necessity of grey-box physical modelling by
means of artificial intelligence. Two techniques are investigated and presented: Model-
assisted Dynamic Programming (MADP), and Model-assisted Batch Reinforcement
Learning (MABRL). MADP consists of a preliminary modelling phase and a succes-
sive optimisation phase. System modelling is carried with Extremely Randomized
Trees, which features simplicity and intuitively, but generalise less than finely-tined
tray-box models and are highly memory demanding. Based on ERT model, Dynamic
Programming is used to compute the optimal closed-loop control policy with respect
to dynamic energy pricing. A DLC scheme in this context, which is not truly in-
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vestigated here, may be implementable by means of simulation-based optimisation.
The second solution investigated is MABRL, which allows computing directly an op-
timal policy from a learning data set in a fifth of the time with respect to Batch
Reinforcement Learning (BRL).

Chapter 6 presents the third and last approach analysed in this research: model-
free real-time control. This approach offers a systematic way to abstract the flexibility
of thermal loads and use it in a framework for control of active distribution networks.
The unit controller uses information on the internal temperature and the comfort set-
tings in order to compute the load flexibility. Yet, the model-free approach cannot be
readily used for predictive control, and the estimation of cluster flexibility constitutes
an interesting further development.

From the results presented in this research it is evident that, depending on the en-
visaged application and in-domain knowledge, some techniques result more applicable
and viable than others. As seen, MPC can be preferable in case the DSR model or a
deep in-domain knowledge is available. Alternatively, techniques based on artificial
intelligence offer an attractive alternative for large-scale deployments. The question
whether or not a generic and universally-applicable approach to DSM can be found
remains open after this research. However, it is conviction of the author that good
knowledge of different techniques and their applicability can lead to innovative and
brilliant results on system integration.
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Abstract—This paper presents the grey-box modeling of a
vapor-compression refrigeration system for residential applica-
tions based on maximum likelihood estimation of parameters
in stochastic differential equations. Models obtained are useful
in the view of controlling refrigerators as flexible consumption
units, which operation can be shifted within temperature and
operational constraints. Even if the refrigerators are not intended
to be used as smart loads, validated models are useful in
predicting units consumption. This information can increase the
optimality of the management of other flexible units, such as
heat pumps for space heating, in order to smooth the load factor
during peak hours, enhance reliability and efficiency in power
networks and reduce operational costs.
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I. INTRODUCTION

The World Business Council for Sustainable Development
estimates that in most countries buildings account approxi-
mately for the 30-40% of total energy consumption [1]. Energy
consumption in a building can be related to such applications
as space heating and building automation (including security
systems and ICT infrastructures) or to human activities. It
emerges that controlling loads with building automation sys-
tems can enhance the overall demand flexibility and enable a
win-win situation, where customers adjust their consumption
upon economic inducements and utilities avoid grid overloads
by spreading the demand during off-peak periods [2]. In this
context, validated models of appliances are necessary in the de-
sign of systems for residential demand side management and in
testing and benchmarking controllers for energy consumption
in Smart Buildings.

Devices or processes associated to thermal storage present
intrinsic flexibility in consumption as long as their operation
is managed within certain comfort bounds. One example is
space heating, which can be used for peak shaving [3], but
also other types of thermal storages (such as refrigerators or
water chillers) offer flexibility in consumption.

This paper presents the grey-box modeling of a vapor-
compression refrigeration system for residential applications
using stochastic differential equations (SDEs). The grey-box
approach offers the possibility of providing a combined phys-
ical and statistical description of the system. The identified
models are useful in the view of controlling refrigerators as

flexible consumption units, which operation can be shifted
within temperature and operational constraints. Even if the
refrigerators are not intended to be used as smart loads,
validated models are useful in predicting units consumption.
This information can increase the optimality of the manage-
ment of other flexible units, such as heat pumps for space
heating, in order to smooth the load factor during peak
hours, enhance reliability and efficiency in power networks
and reduce operational costs. Household refrigerator modeling
and performance assessment has been previously addressed
with such approaches as dynamic simulation [4], steady state
simulation [5], or CFD models [6].

The motivation to this study is to provide simple, ready-
to-use and validated lumped parameter (stochastic state space)
models for household refrigerators. The approach used is
formed by forward model selection and validation based on
experimental data and statistical testing. The software used is
CTSM [7], which is based on maximum likelihood estimation.
Parameters as thermal masses, evaporator thermal resistance,
U-value of insulation and refrigeration cycle Coefficient of
Performance (COP) are identified for each model in terms of
expected value and variance. Convergence of estimation is also
troubleshot.

II. EXPERIMENTAL SETUP

The experimental setup consists of: household refrigera-
tor of capacity 60 liters with freezer bay and single com-
pressor, power meter DEIF-MIC2, ADAM-6024 ADC card,
four calibrated temperature sensors TI-LM35, one remotely
controlled power outlet. Every second the refrigerator internal
temperatures, ambient temperatures and refrigerator active
power consumption are synchronously measured. Given the
stratification of temperatures in the refrigeration chamber, two
sensors are used in order to provide the average internal
temperature. The same approach is used for determining the
ambient temperature.

The refrigerator thermostat is set to supply the minimum
temperature such that it is possible, within a temperature range,
to enable or disable the compressor operation directly via the
controlled power outlet.

III. MODEL OF REFRIGERATION CYCLE

This section presents a simple model for vapor-
compression refrigeration system based on steady state one-



dimensional heat transfer equations. It is deemed valid to
develop a static model of the vapor-compression cycle since it
has faster dynamics if compared to the cold storage. Figure 1
shows a schematic representation of common refrigeration
system for household applications.

Fig. 1. Single stage vapor-compression refrigeration system.

A simple model of the system is:

dQcs(t)

dt
= Q̇load(t)− Q̇e(t) , (1)

where:

dQcs = mcsccsdTcs
Q̇load = UAcs (Ta − Tcs)
Q̇e = ṁr [ho (pe)− hc (pc)] ≈ COP · Φc
ṁr = Ncαρr (pe)

(2)

In Eq.2, mcs is the cold storage mass and ccs is its specific
heat capacity. ho and hc are the evaporation and condensa-
tion enthalpies at the evaporation and condensation pressures,
respectively pe and pc. UAcs is the overall transmittance
coefficient from the refrigeration chamber to the ambient and
ṁr is the refrigerant mass flow rate. COP is the overall
coefficient of performance, here defined as the ratio between
Q̇e, the thermal power extracted at evaporator side, and Φc,
the refrigerator electrical consumption.

IV. GREY BOX MODELING

Grey-box modeling is a framework for identifying a system
description that combines prior physical knowledge of the
system with information obtained from experimental data. For
parameters estimation and system control it is convenient to
use stochastic state space models [8], where the dynamical part
of the model, the state, is described by Stochastic Differential
Equations (SDEs) and the output is given by a discrete time
algebraic equation describing how the observations are linked
to the state. The parameters estimation and uncertainty as-
sessment is obtained with statistical methods [9]. A stochastic
differential equation (SDE) is a differential equation where one
or more terms are stochastic processes, so that the solution is
a stochastic process itself.

This section presents three different models of increasing
complexity, all of which are developed under the hypotheses
of: homogeneous materials, linear cooling cycle with constant
COP and neglect of freezer compartment.

It is convenient to use electric thermal equivalent models
in order to easily depict the models’ structure and relate the
identified parameters to physical quantities such as thermal
transmittances and efficiency coefficients.

A. Model Ti
Here the refrigeration chamber is represented with a ther-

mal mass, Ci, while the envelope (insulation) is modeled with
a pure thermal resistance, Ria (Fig. 2):

Fig. 2. Refrigerator preliminary model (electrical equivalent): Ti.

The compressor has a direct refrigeration effect, so that it
is modeled as a current generator. This model is a single state
stochastic state space model:

dTi =
[

1
CiRia

(Ta − Ti)− 1
Ci
AcΦc

]
dt+ σ1dw

ytk = Ti,tk + etk , etk ∼ N(0, σ2
e)

, (3)

where Ac is the cycle COP and w is a standard Wiener
process independent from the residual etk . Ta is the ambient
temperature, Ti is the refrigeration chamber temperature and
Φc is the compressor active power consumption. Parameters’
units are:

Ti = [oC] , Ri =
[ oC
W

]
, C =

[
J
K

]
,

Ac = [scalar] , Φc =
[
kJ
s

]
.

B. Model TiTevap
This model extends the previous one by accounting for

the heat transfer between the refrigeration chamber and the
evaporator. This leads to an additional state for the evaporator
temperature, Te:

dTi =
[

1
CiRia

(Ta − Ti) + 1
CiRei

(Te − Ti)
]
dt+ σ1dw1

dTe =
[

1
CevapRei

(Ti − Te)− 1
Cevap

AcΦc

]
dt+ σ2dw2

ytk = Ti,tk + etk , etk ∼ N(0, σ2
e)

,

(4)
where w1, w2 and etk are independent.

Fig. 3. Refrigerator model (electrical equivalent): TiTevap.

C. Model TiTevapTe
Here the TiTe model is extended by adding a state to

the envelope and separating the envelope thermal resistance
in inner resistance, Rie, and outer resistance, Rea:

dTevap =
[

1
CevapRevi

(Ti − Tevap)− 1
Cevap

AcΦc

]
dt+ σ1dw1

dTi =
[

1
CiRevi

(Tevap − Ti) + 1
CiRie

(Te − Ti)
]
dt+ σ2dw2

dTe =
[

1
CeRie

(Ti − Te) + 1
CeRea

(Ta − Te)
]
dt+ σ3dw3

ytk = Ti,tk + etk , etk ∼ N(0, σ2
e)

,

(5)



where w1, w2, w3 and etk are independent. Follows the electric
equivalent model:

Fig. 4. Refrigerator model (electrical equivalent): TiTevapTe.

V. A-PRIORI PARAMETERS

Grey-box modeling can benefit from calculated or judged
value of parameters to be used as initial value for the esti-
mation process. This section presents an initial estimation of
physical parameters for the refrigeration chamber, including
the glass shelves and the plastic drawer. The refrigerator insula-
tion is assumed to be made by extruded expanded polystyrene
(XPS).

A. Refrigeration chamber (thermal mass)

a) Air (0◦C, sea level, dry air):

cv−air = 1297 J
m3K , Vair = 0.111456m3

Cair = cv−airVair ' 145 JK .
(6)

b) Glass (tempered glass):

Vshelf(1,2) = 8.25 · 10−4m3, Vshelf(3) = 4.41 · 10−4m3

ρglass = 2500 kg
m3 , cm−glass = 0.84 J

gK

mglass = ρglass
(
2 · Vshelf(1,2) + Vshelf(3)

)
= 5.232 kg

Cglass = cm−glassmglass ' 4395 JK .
(7)

c) Plastic (a rough estimation for the drawer):

ρpolyetylene = 910 kg
m3 , Vdrawer ' 7.096 · 10−4m3

mdrawer = ρpolyetyleneVdrawer ' 0.65 kg
cm−polyetylene = 1.67 J

gK

Cplastic = mdrawercpolyetylene ' 1086 JK .

(8)

d) Total thermal mass of refrigeration chamber:

Ci = Cair + Cglass + Cplastic = 5626
J

K
(9)

B. Envelope: thermal mass and resistance

It is reasonable to assume that the insulation layer has size:
44cm depth (D), 55cm height (H), 48cm width (L), and 3.5cm
thickness (d):

ρpoly = 50 kg
m3 , cm−poly = 1.3 J

gK , λpoly = 0.033 W
mK

Senvelope = 1.4344m2, Venvelope = d · Senvelope ' 0.043m3

menvelope = ρpolyVenvelope = 2.15 kg

e) Total thermal mass and resistance of the envelope:

Ce = menvelopecm−poly = 2797 JK
Re = ( 1

λpoly
· dS ) ' 0.74KW

(10)
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Fig. 5. Refrigerator operation: thermal power at refrigeration chamber v.s.
temperature drop.

C. Refrigeration cycle (COP)

Figure 5 shows the total thermal power acting on the
refrigeration chamber versus the temperature drop. When
the compressor is not operating, the thermal power coming
from the ambient accounts for approximately 8W, whereas
during the refrigeration cycle the total thermal power at the
refrigeration chamber is approximately -30W. Therefore the
compressor generates approximately -38 thermal watts with an
average electrical consumption of 50 watts, so that an initial
value of the COP is:

COP ' 0.76. (11)

The COP could seem low, but notice that here it is approx-
imated by the ratio between thermal power extracted from the
refrigeration chamber and the electrical power consumed by
the compressor and hence it includes also the mechanical and
electrical efficiency.

VI. SYSTEM IDENTIFICATION

Parameter estimation is carried out using CTSM, which
provides a tool for semi-physical modeling and identification
of dynamic systems based on stochastic differential equations
[10]. CTSM provides methods for estimating unknown pa-
rameters of the model from data, including parameters in the
diffusion term, using either the maximum likelihood (ML)
method [11] or the maximum a posteriori (MAP) method. Both
methods allow for several independent data sets to be used and
are both sound statistically based estimation methods, which
means that once the parameters have been estimated, statistical
methods can be applied to investigate the quality of the model
[12].

Figure 6 shows the process of model identification and
validation. A first set of data, called identification data (see
Fig. 7), is used for estimating model parameters and initial
values of the states. Then the model, using the power input
and room temperature from the same identification data, is
used to calculate the one-step ahead predictions of the output.
These predictions are subtracted from the measured output to
form the residuals, which are analyzed for their white noise
properties. If the model prediction residual is statistically close
to white noise, the model is good [9]; therefore the auto
correlation function is used to analyze the residuals (see, eg.,
Fig. 9). This procedure is called model validation.

A model can also be validated with another data set (see,
eg., Fig. 14). If the results are good, this procedure gives a good
indication of model robustness and correct identification.
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Fig. 6. Process of parameters identification and model validation.

Fri Sat Sun Mon

12
14

16
R

oo
m

 T
em

p.
 [ 

ͦ C
 ]

2012/10/05

Fri Sat Sun Mon

0
5

10
R

ef
r. 

Te
m

p.
 [ 

ͦ C
 ]

Fri Sat Sun Mon

0
40

80
Po

w
er

 [W
]

Time stamp
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Fig. 8. Refrigerator operation: ambient temperature, internal temperature and
electrical power consumption - validation data set.

A. Parameters of the Ti model

TABLE I. IDENTIFIED PARAMETERS: Ti MODEL

PARAMETER VALUE STD. DEV.
Ria 1.4749 2.5617

Ci 8.9374 · 103 1.5481 · 104

Ti(0) 14.774 2.9795 · 10−2

Ac 0.58092 1.0075

exp(σ1) −5.4552 1.2511 · 10−2

exp(e) −24.332 75.437
Loglikelihood 7995.168

Figure 9 shows the residuals analysis of the model de-
scribed by (3) with respect the identification data set. The
first graph on the left presents the auto correlation function
(ACF) of residuals, the graph in the middle the periodogram
and the graph on the right the cumulated periodogram. High
correlation of residuals at low values of lags indicates that the
dynamics are not well modeled, and hence it is concluded that
the model is too simple to describe the dynamics.
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Fig. 9. Model residuals analysis: Ti.
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Fig. 10. Residuals, input and output of Model: Ti.

Figure 10 presents the residuals (top chart), the power input
(mid chart) and the predicted and measured temperature in
the refrigerator. From these plots it is possible to depict that
model residuals are higher at the beginning of refrigeration
cycle. Such situation was expected, since the non-linearities
and complexity of the refrigeration cycle are not considered
in the model. When the compressor is off, the prediction error
is low and residuals are similar to white noise. Due to its
inaccuracies and the identified missing dynamics from Fig. 9,
this model is not further validated. In the next subsections, the
second group of charts (eg., Fig. 10) is omitted for brevity.

B. Parameters of the TiTevap model

TABLE II. IDENTIFIED PARAMETERS: TiTevap MODEL.

PARAMETER VALUE STD. DEV.
Ria 9.0188 · 10−1 3.5460 · 10−2

Rei 9.0348 · 10−1 2.5121 · 10−1

Ci 1.1600 · 104 1.6529 · 102

Ce 3.4342 · 102 9.9157 · 101

Ti(0) 14.774 1.0263 · 10−2

Tevap(0) 16.181 3.6991

Ac 0.8383 2.6217 · 10−2

exp(σ1) −1.7406 · 101 5.6451 · 10−2

exp(σ2) −8.9551 · 10−1 2.6646 · 10−1

exp(e) −1.2246 · 101 1.1364 · 10−1

Loglikelihood 12096.4351

The residual analysis in Fig. 11 shows a clear improve-
ment of model TiTevap compared to Ti and the cumulative
periodogram is almost inside the confidence bands.

C. Parameters of TiTevapTe model

Model TiTevapTe outperforms in data fitting and the cumu-
lative periodogram stays in the confidence bands. Figures 13
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Fig. 11. Model residuals analysis: TiTevap.
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Fig. 12. Model residuals analysis: TiTevap - validation data set.

TABLE III. IDENTIFIED PARAMETERS: TiTevapTe MODEL

PARAMETER VALUE STD. DEV.
Rea 7.2869 · 10−2 1.8571 · 10−2

Revi 2.2431 5.1971 · 10−1

Rie 3.7394 1.9380

Ci 4.4245 · 103 2.2810 · 103

Ce 1.0755 · 104 2.4514 · 103

Cevap 1.9177 · 101 4.8643

Ti(0) 14.774 8.6339 · 10−3

Te(0) 14.38 6.1042
Tevap(0) 18.568 5.5536

Ac 2.1808 · 10−1 1.1258 · 10−1

exp(σ1) −1.7661 · 101 1.2498 · 101

exp(σ2) −2.0051 · 101 2.4919

exp(σ3) −6.2477 · 10−1 1.0131 · 10−1

exp(e) −1.1766 · 101 7.9326 · 10−2

Loglikelihood 12306.517
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Fig. 13. Model residuals analysis: TiTevapTe.

and 14 present the residuals analysis using respectively the
identification data set and the validation data set. Hence it
is concluded that this model seems capable of describing the
observed dynamics of the refrigerator.

D. Model selection

Previous estimation trials have shown that model
TiTevapTe leads to the highest likelihood value (12306) and
best residuals properties. However, model TiTevap has good
residuals properties and a high likelihood value (12096).
Moreover, identified parameters of model TiTevap are closer to
the prior estimates, compared to the parameters of TiTevapTe
model, and using the validation data set it is found that TiTevap
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Fig. 14. Model residuals analysis: TiTevapTe - validation data set.

has the best performance. Therefore the choice of model
TiTevap as reference model for the given setup.

VII. CONCLUSION

This study showed an application of grey-box stochastic
modeling for household refrigeration systems. Identified mod-
els are simple, reliable and, since they are SDE-based, they
can be used for forecasting, control and simulation. Thanks
to the diffusion terms, model uncertainties are also provided.
This study represents for the authors a starting point for the
development of intelligent control of such systems as thermal
storages for providing power balancing services to the utility
in a Smart Grid context.
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Abstract—This paper presents a control scheme based on
distributed model predictive control (DMPC) for coordinating
flexible distributed energy resources (DER) of heterogeneous type
in the Smart Grid with minimum system integration effort. This
approach can be used for reducing the peak power exchange
between the grid and a cluster of units in the same feeder in price-
driven demand response applications. Preliminary simulations
prove that the proposed coordination scheme for DMPC succeeds
in coordinating flexible DER unit, achieving significant peak
shaving when required. The rationale of this approach consists
in coordinating independent units equipped with local MPC
controller via simple information passing and hiding in the local
controllers the units’ dynamics.

Keywords—Model Predictive Control, Smart Buildings, Smart
Grid, demand response, DER integration, distributed control.

I. INTRODUCTION

In the last two decades, factors such as increased global
energy demand, speculation on fossil fuels and global warming
have generated a high interest in renewable energy sources.
The increase in electricity production from distributed renew-
able energy resources (RES), creates the need for new ways
of providing ancillary services. This is important in order to
maintain safe and reliable operation of the power system, both
at transmission and distribution levels. Electricity production
stemming from wind and solar energy can help to significantly
reduce the carbon footprint of human activities and, due
to favorable legislation, the installation of environmentally
friendly production units in low voltage (LV) feeders has
increased in the past decade. However, if corrective actions
are not taken, an increased share of distributed production from
renewable resources can threaten the grid stability. Therefore
the integration of DERs in the distribution grid has to be
operated judiciously.

It is foreseen in the near future an increase of distributed
storage, provided by electric vehicles (EVs), and flexible
consumption enabled by demand-side management (DSM)
in buildings. This technology leads to higher flexibility and
predictability of energy demand, allowing such services as
peak shaving, valley filling, load shifting and real-time grid
congestion management in the Smart Grid. For an insight on
DSM practice, we refer to [1], [2], [3] and the references
therein.

This paper presents a coordination scheme for a control
architecture based on DMPC for the aggregation and coor-
dination of multiple DER units that are connected behind a
single Point of Common Coupling (PCC) in the LV grid. These
units could be EVs, HVAC systems, electric water heaters and
refrigerators, whose consumption is intrinsically flexible. The
coordinated operation of these units allows the provision of
aggregated services to the Distribution System Operator (DSO)
such as peak shaving or voltage support [4], [5]. The presented
approach may allow for the connection of several units with
a potential high peak consumption on the same feeder while
ensuring that existing flow constraints for lines, circuit breakers
or transformers are respected. The main motivations for a
distributed solution are computational scalability, modularity,
and easy system integration.

This paper is organized as follows: Section II presents the
case study and Section III the DERs models, whereas the
proposed architecture for DMPC is presented in Section IV.
Preliminary simulation results are presented in Section V.

II. CASE STUDY

This case study presents the coordination of multiple flexi-
ble DERs that may be installed in the same distribution feeder.
The goal of coordinating units is to constrain the aggregated
consumption/production of a cluster (group of units) to a fixed
value or to a specific schedule provided by a higher-level entity
in the Smart Grid, such as an aggregator or the DSO. Such
service is called PowerMax and it is presented in [4]. Although
the case study presented in this work considers three types
of unit: building space heating and air conditioning (climate
control), photovoltaic array (PV) and electric energy storage
(EVs and local batteries), this coordination scheme is also
suitable for other types of unit and allows units to join and
leave the cluster dynamically. Figure 1 shows the configuration
for this case study.

Each unit is equipped with a local model predictive
controller (MPC), which optimizes the unit operation with
respect to a local objective and it complies with local and
global constraints. Controllers’ local objective can range from
minimizing operating costs to maximizing comfort, while local
constraints ensure minimal comfort requirements and safe unit
operation. The units in the cluster have also to respect a global
constraint which relates to the power flow at the point of



Fig. 1. Case study setup.

connection between the cluster and the main grid. Each unit,
by retrieving information about other units consumption and
the PCC power limit from the cluster blackboard, computes
the local power plan by solving a constrained optimization
problem. The next section presents, for each unit type, the
model and the operational requirements (local constraints).

III. MODELS OF DERS

1) Building and space heating: the model for building
heating demand is taken from [6] (model TiTeTh), where a
single room-equivalent model is used for an office building
of eight rooms equipped with electric space heating and air
conditioning units. Model 1, which has three states, represents
the dynamics of the (equivalent) room internal temperature,
the (equivalent) heater temperature and the envelope (building
insulation) temperature:

dTi =
1

Ci

[
1

Rie
(Te − Ti) dt+

1

Rih
(Thc − Ti) dt+AwΦsdt

]
+ σidwi

(1a)

dTe =
1

Ce

[
1

Rie
(Ti − Te) dt+

1

Rea
(Ta − Te) dt

]
+ σedwe (1b)

dThc =
1

Ch

[
1

Rih
(Ti − Thc) dt+ Φindt

]
+ σhdwh (1c)

where Φin and Φs are respectively the electric power con-
sumed for climate control and the solar irradiation. Although
Model 1 does not include the air conditioning units, in this
study, as a simplifying assumption, the air conditioner dynam-
ics is assumed equivalent to the heater dynamics. The fact
that the heater dynamics is about two orders of magnitude
faster than the room dynamics justifies the choice of assuming
the AC unit ”fast enough”, as the heater is, with respect
to the room heat dynamics. Therefore the cooling effect of
air conditioning is accounted with a negative sign on Φin

and a multiplicative factor of 3 (average COP from AC
units datasheet). Finally Ti, Te and Thc are, respectively, the
room internal temperature, the envelope temperature and the
heating/cooling module temperature.

2) Batteries and EVs: in this work the EVs are modeled
as batteries and driving patterns are considered and simulated
as disturbances to the MPC. A detailed model of electric
storage units is presented in [7], from which it emerges
that, for lifetime purposes, the batteries should be operated
between 20% and 90% of the state of charge (SOC). Moreover,
when operating in this band, the batteries can be charged and
discharged at constant current and can be reasonably modeled
as integrators of rated efficiency. The support batteries differ
from the EVs by capacity and rated power, therefore a generic
state space model for this type of units is presented below:

dx = Asx dt + Bsu dt (2a)
SOC = Csx (2b)

where u is the power flow at the inverter in kW , x is the
battery state of charge in kWh and SOC is the battery state
of charge normalized between 0 and 1 and it is related to the
battery rated capacity.

3) PV array: this unit is supposed to operate at maximum
power point (MPP) and the unit local controller, using the fore-
cast of solar radiance, wind speed and external temperature,
publishes in the blackboard the expected power production
using the model presented in [8], [9]. Every time the weather
forecast is updated the PV controller accordingly updates
the PV production plan in the blackboard. In this study,
as simplification, the PV unit publishes a production plan
which consists in the actual produced power from a real PV
plant with added a normally distributed noise of 10% of the
power measured at each instant. Then, at simulation time,
the effective power produced by the unit is given by the
real measurements decurted of the noise. This approach is
considered in order to simulate inaccuracies on PV modeling
and weather forecasts.

IV. CONTROL ARCHITECTURE

The computational effort for solving MPC problems gen-
erally grows at a superlinear rate with the number of state
variables involved. The exact order is problem specific and
depends on the coupling between the state variables as well
as the chosen solving method. Managing multiple DERs with
a single, feeder-wide MPC controller would not only require
a large amount of DER state information to be shared with
the central controller. The computational effort of such a
setup would also scale badly for larger numbers of units. An
established approach for solving the curse of dimensionality
relies on the decomposition of the MPC problem into smaller
subproblems which can be solved independently and locally.
Convergence towards the overall goal is then achieved through
a coordination mechanism, i.e. by communication between
the individual solvers. An overview and categorization of
distributed MPC variants is given in [10], [11]. In the presented
approach, the MPC computations are carried out at unit level
by the local unit controller. In order to meet the system
constraint of limited power flow at the PCC, controllers have to
coordinate because the fulfillment of the system constraint may
not be derived only by measuring physical variables observable
by the individual units.

Coordination between autonomous entities in a distributed
system has been an active area of research for many years
[12]. Many different ways of achieving such coordination
have been proposed; however, as with many engineering
problems, no one-size-fits-all solution exists and the specific
trade-offs of a particular method have to be weighed against
the needs of the distributed system in question. These needs
may include scalability of the solution, synchronization speed,
access concurrency, fault tolerance, level of trust between
entities, convergence speed and others. The communication
effort of the distributed MPC system presented in this paper
needs to be scalable to a certain degree, but the speed of
synchronization is not critical. A common approach for this



type of system is the use of a tuple space for information
exchange, typically implemented as a blackboard [13] , i.e.
a central data repository whose content all processes can
retrieve and to which all processes can write. For this type of
solution, the communication effort – as defined by the message
count – for each iteration scales linearly with the number of
units. A notable drawback is that a single point of failure is
introduced at the blackboard itself which could be partially
mitigated by adding a replication and failover mechanism for
the blackboard.

A. Algorithm for MPCs coordination

In the presented scheme all units access the blackboard
asynchronously, retrieve the power plans of the other units,
compute their own plan accordingly and publish it in the
blackboard. Units have exclusive access to the blackboard,
which is a resource that is blocked by one unit at the time
during the processes of data retrieving, power plan computing
and data publishing. As soon as the available power at the
PCC decreases, units tend to reduce their consumption (or
production). However, if the operating or comfort requirements
of a unit cause a violation on the constraint on the PCC power
flow, a minimal power plan that minimizes the exceeding
power at the PCC, called power over max, is published in
the blackboard and the consensus flag related to that plan is
set to false. Units keep calling the blackboard if they need
to update their operation plan until the consensus flag is set
to true or the iterations of such process reach a predefined
limit, L, which is set equal to all units and serves to avoid
deadlocks. When those conditions hold, the units are entitled
to operate according to the local power plan for the next
time frame. Thanks to such mechanism the minimal operation
and comfort requirements of units are always satisfied by the
local controllers, at the price of occasional violations of the
limits on the PCC power flow in the case of over stringent
constraint. Algorithm 1 presents the coordination scheme for
DMPC, while the following subsections present the unit local
MPC formulation for the building climate control and control
of electric storage.

B. Building controller
The building controller uses a discretized version of

Model 1 (∆t = 30min) and keeps the internal temperature
at time t, Ti,t, within the comfort bounds [Tmin,t, Tmax,t] and
trades off energy expenses with user comfort by solving the
following optimization problem:

min
Φh,t,Φc,t,ϑt

J =
N∑
t=1

[
‖Ti,t −Rt‖2Q + pt

(
Φh,t + Φc,t

)
+ ρϑt

]
(3a)

subject to :

xt+1 = Abxt +BbΦh,t + FbΦc,t + EbTa,t + SbΦs,t (3b)
Ti,t = Cxt (3c)
0 ≤ Φh,t ≤ Umax,t (3d)
0 ≤ Φc,t ≤ Cmax,t (3e)
Tmin,t ≤ Ti,t ≤ Tmax,t (3f)
ϑt ≥ 0 (3g)
PCCmin,t − ϑt ≤ Ψt + Φh,t + Φc,t ≤ PCCmax,t + ϑt (3h)

The objective function in Eq. 3a is composed by three
terms. The first term penalizes the deviation of Ti,t from the
setpoint, Rt; the energy expense is minimized in the second

Algorithm 1 Coordination of MPCs
Variables:
• N : prediction horizon
• Ψ: aggregated units operation plan
• Pmax, Pmin: bounds on contracted power at PCC
• Uj : operation plan of unit j, Uj

∆
= {uj,t}

• L: iteration limit for consensus
Require: Initialize Uj = 0, ∀j

consensus = FALSE
i = 0
while (not(consensus) OR i ≤ L) do

for all j do
Ψ =

∑
k

Uk , k 6= j

Uj = compute MPCj(statej , Ψ)
if Pmin(t) < Ψ(t) + Uj(t) < Pmax(t) , ∀t then

consensus = TRUE
else

consensus = FALSE
end if
push Uj to the blackboard

end for
i = i + 1

end while
dispatch uj,1, ∀j

term, where pt is the energy price over the prediction horizon
N taken from the Nordpool Elspot market; finally power over
max, ϑt, is minimized in the third term with the parameter ρ.

The MPC operates the heater and the air conditioner
independently, so that the control input Φin in Eq. 1c is divided
in: Φh,t for heating and Φc,t for cooling. In this way the
discretized model in Eq. 3b presents two control inputs (Φh,t

and Φc,t) and two disturbances (Ta,t and Φs,t). Equations 3b
and 3c represent the building thermal dynamics for the MPC,
Eq. 3d and 3e set the bounds on control inputs, whereas the
comfort bounds for the building internal temperature are stated
in Eq. 3f. Finally, violations of limits on the PCC power
flow are allowed by the soft constraints in Eq.3g and 3h. The
optimization problem defined in Eq. 3 is reformulated as a least
squares problem, which is solved via quadratic programming
algorithm as presented in [14].

C. Battery and EV controller

The controller for the electric storage strives at minimizing
the energy cost while keeping the SOC within given bounds.
The MPC problem is formulated as follows:

min J =
N∑
t=1

[ptut + ρϑt] (4a)

subject to :

xt+1 = Asxt +Bsut (4b)
SOCt = Csxt (4c)
Umin,t ≤ ut ≤ Umax,t (4d)
SOCmin,t ≤ SOCt ≤ SOCmax,t (4e)
PCCmin,t − ϑt ≤ Ψt + ut ≤ PCCmax,t + ϑt (4f)

The cost function is expressed in Eq. 4a, which consists
in a term for minimizing the energy cost (pt is the Nord-
pool Elspot price) and a term, ρ, for minimizing the power
over max. Constraints in Eq. 4b, 4c implement the energy



storage dynamics, while Eq. 4d accounts for inverter power
capabilities. Constraints in Eq. 4e allow the MPC controller
to keep the battery state of charge between given operational
bounds. This constraint can be used to bring the SOC to a
convenient level, accounting for the users driving patterns and
the unit’s availability. If the controlled unit is a battery, the
SOC is not time dependent. Finally, Eq. 4f penalizes the excess
of power flow at the PCC. A similar MPC formulation for
vehicle charging is presented in [15].

In the control scheme proposed in this work no computa-
tion is carried out at the data repository level, which can be as
simple as an html page. In this way the devices optimization
is entirely distributed to a local level. Using a blackboard with
asynchronous units access and negotiation allows to keep both
system and information exchange simple; moreover there is
no need for hierarchical coordination, since this is achieved
by means of coupling constraints in the local MPCs. All of
these factors enhance the system interoperability, allowing to
integrate and coordinate devices of heterogeneous type and
with totally different operation requirements and constraints.
Ultimately, if a data repository is not available, each controller
can broadcast its plan to the other controllers. In this case the
number of messages exchanged considerably grows with the
number of units per group.

V. SIMULATION STUDY

The simulation study shows the effectiveness of the pro-
posed algorithm in limiting the aggregated power flow of a
cluster of units composed by 100 buildings, 10 local bat-
teries, 20 large EVs, 20 small EVs and 20 PV modules.
This population of units is created by using the models from
literature with parameters that are normally distributed with a
10% variance around the nominal value. Figure 2 presents the
aggregated power flow at the PCC without units coordination
(black line, with peaks up to +420kW and -320kW) and
with units coordination (green line). It is shown that the
proposed algorithm successfully limits the aggregated power
flow between the given bounds of ±200 kW .

Fig. 2. Power flow at the PCC: units coordination v.s. units non-coordination.

Note that the coordination scheme has no effect when
the units’ aggregated consumption is spontaneously below the
given limit of ±200 kW , eg. the green and black line are
superposed in the time frame between 30h and 40h (Fig. 2).
Figure 3 shows the power exceeding the PCC limit versus
the number of coordination iterations, for different maximum
power requirements. It emerges that the algorithm converges
in two iterations if the available power at the PCC is sufficient

Fig. 3. study of algorithm convergence: exceeding power flow at the PCC
v.s. number of iterations.

to satisfy the units minimum requirements. Conversely, if the
available power is not sufficient, the units controllers keep
trying to coordinate without success and the consensus is not
reached. Such limit for the given setup is between 86 and 84
kilowatts. Focusing now on single units’ operation, Fig. 4 and
Fig. 5 show the range of all buildings’ internal temperature and
power consumption, respectively for the cases of units non-
coordination and units coordination. By inspecting Fig. 4 and

Fig. 4. Building thermal management without units coordination.

Fig. 5. Building thermal management with units coordination.

Fig. 5 it emerges that the buildings contribute in few occasions
to shape the cluster consumption.

Figures 6 and 7 show the operation of the energy storages:
batteries, small and big EVs. The range of units’ SOC and
power flow are shown for the cases of units non-coordination
and coordination. It is observed in Fig. 6 that, when units
are not coordinated, the control inputs lay in a narrow range.
This behavior is due to the economic formulation of the
MPCs: all units tend to charge when the price of energy is
low and discharge when the price is high, causing peaks in
the power flow at the PCC. When units are coordinated via
DMPC, the trajectories of control inputs and SOC stay within
a wider range, showing the units flexible operation (Fig. 7).



Fig. 6. Battery operation without units coordination: range of units’ SOC
and power flow.

Fig. 7. Battery operation with units coordination: range of units’ SOC and
power flow.

Fig. 8 shows the predicted and realized PV production, and
the NordPool Elspot price.

Fig. 8. Energy price and PV production.

The simulation study shows that the proposed architecture
is capable of coordinating units in a cluster so as to shave the
peak demand. However, although the algorithm convergence
and optimality of the solution have not been formally proven,
simulation trials show that given sufficient available power
at the PCC to serve the units minimum requirements, the
coordination scheme is successful and units flexibility is fully
exploited. Moreover, it has been observed in simulation with
smaller clusters that the speed of convergence does not depend
by the cluster size.

VI. CONCLUSIONS

This paper presents an approach for the integration of
flexible DERs in the Smart Grid based on DMPC coordination

via coupling constraints. In the presented study, this control
scheme allows minimizing the impact of PV plants and EVs
in the distribution grid and the advantages brought from the
blackboard-based coordination include scalability and easy
system integration. It is planned as future study to investigate
fairness of resource allocation among units, assess reliability
problems in case of downtime of the blackboard and compar-
ison with other DMPC algorithms.
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Abstract—Much effort has been put into creating aggregation
algorithms that will provide services to the grid. In comparison,
little attention has been given to performance assessment under
the service delivery perspective. This paper formulates a per-
formance index for aggregation control algorithms designed to
provide ancillary services. A case study is presented where the
index is applied to two controllers with same service objective.
Through the index it is shown that centralized solution is able to
provide a better Quality of Service to its costumers.
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I. INTRODUCTION

The future increase in energy production from Renewable
Energy Sources (RES) may lead to a power system where
production is distributed, and where the Transmission System
Operators (TSOs) require a larger amount of balancing ser-
vices. At the same time, the increase in Distributed Energy
Resources (DERs) brings new challenges to the Distribution
System Operators (DSOs), which may need new kind of
ancillary services [1]. It is anticipated that DER owners will be
able to provide services to the system operators via Demand
Side Management (DSM).

An Aggregator is a market player whose business case is
to manage DER units in its portfolio and use their inherent
consumption flexibility to participate in one or more ancillary
service markets, i.e. it provides the necessary coordination
for DSM. A general classification of different aggregation
methods is presented in [2]. An example of direct control can
be found in [3]. An analysis and evaluation of indirect control
architectures can be found in [4].

Since the Aggregator has contractual obligations with cus-
tomers and system operators, it is important that the control
algorithm the Aggregator uses proves suitable to task. From
a service perspective, an aggregation algorithm is considered
suitable if it performs according to the specified quality of
service (QoS). In this case, a service is the control of a DER
portfolio in such way that it fulfills the needs of both the
DER owners and the System Operator. The QoS is the service
performance that makes an acceptable service provision. A
good QoS is essential to the functioning of the power grid.

Little attention has been given to the problem of perfor-
mance assessment of aggregator controllers seen from a service
delivery perspective. This paper approaches the problem by
presenting two main points:

• both ancillary services and DSM have minimum QoS
requirements that need to be respected. In this work
we propose a way of evaluating the aggregation con-
trol algorithms according to specific requirements;

• a performance index suitable for evaluating, from the
Aggregator point of view, the quality and reliability
of aggregation control algorithms.

The paper is organized as follows: Section II gives a
general description of concepts relevant to the definition of
the index, while the index itself is defined in Section III. A
case study is presented in Section III-C and further research
is discussed in Section IV.

II. METHOD BACKGROUND

A. Ancillary Services

Ancillary services are acquired by TSOs in order to ensure
the stability of the system and can generally be divided into
primary, secondary and tertiary ancillary services [5]. Each
class of ancillary services has different purposes and work on
different time scales.

In the Danish system, producers are allowed to bid into
the ancillary services market once they have been approved by
the TSO. In order to be approved, the producers must prove
that they are able to deliver the relevant services within the
specified requirements defined in [6]. The TSO defines in the
quality of service (QoS) which are the acceptable errors in
service delivery with respect to a reference power schedule.

Furthermore, it is expected that new ancillary services will
appear in the near future, which will help the DSOs resolve
congestion and voltage problems [1]. Throughout this paper,
the recurring example of an ancillary service is the PowerMax,
one of the new DSO services. This service is discussed further
in Sec.III-C.

B. Asset Management Service

Since the flexibility of individual DERs is too small to
provide services to the system operators, an Aggregator pools
the flexibility of the units, and present their flexibility in the
market as a single entity, see Fig.1. In this way the Aggregator
provides ancillary services to the DSO or, through a Balance
Responsible Party (BRP), the TSO. The Aggregator and the
BRP could be the same entity, but if they are not, the Aggre-
gator should not work against the balancing responsibilities of
the BRP. The concept of an Aggregator operating a portfolio



TSO

BRP

DER DER DER

DSO

Aggregator

Ancillary Service

Management Service

Fig. 1. The setup of the power system with DSM.

of DER units in order to deliver ancillary services is referred
also as Demand Side Management (DSM) [7].

The objective of a DER is to satisfy the needs of its
owner. The Aggregator provides the DER owners with an asset
management service that ensures the QoS to customers is ad-
equate. Providing services to the grid is only a secondary (and
optional) function, which the Aggregator must take advantage
of within the constraints of the primary function.

The power consumption of DERs varies greatly depending
on the daily routines of their owners and the meteorological
conditions. Due to the varying and distributed nature of the
DERs, the Aggregator must be able to evaluate if its control
algorithms are capable of providing DSM to the system
operators and, at the same time, manage the primary functions
of the DERs.

C. Control Performance Assessment

When talking about evaluation of controllers, there already
exists a wide field of theory: Control Performance Assessment
(CPA). The theory in this field is applied mostly in the process
industry, and for a thorough overview of its application we
refer to [8]. It seems natural to transfer the well studied
concepts of CPA to the field of DSM.

From [9] we have that the measures used to evaluate a
controller usually fall within three categories: Quality related
criteria, Reliability related criteria, Energy efficiency related
criteria.

The two first types of criteria can be directly related
to service provision, for which the quality criterion is the
performance of the asset management service towards the DER
owner; and the reliability criterion, which is the performance
of the service delivered to the DSO or Balance Responsible
Party (BRP). Energy efficiency criteria are not considered in
this work.

One approach to CPA is to establish the deterministic
properties the closed-loop system must have, e.g. settling time
and steady-state error [10] and summing up the criteria over
time such that:

η =
Jopt

Jact
(1)

where Jopt is the theoretical optimal value of the performance
criterion(which is usually impossible to achieve in reality), Jact
is the actual measured value of the criterion. Since Jopt > Jact,
then η ∈ [0, 1].

Given that the requirements of service delivery can easily
be translated into time-domain deterministic measures, this
work presents a deterministic approach. Using the concepts
presented in this section, the performance index is defined in
the next section.

III. THE PERFORMANCE INDEX

A. Defining the index

This section presents the main contribution of the paper:
the formulation of a performance index that can be used
to assess aggregation control algorithms designed to provide
ancillary services. The index presented here is defined for
post-simulation analysis, and represents the performance of the
control algorithm over the whole time horizon.

Using the square root of the Integral Square Error index
(i.e. the 2-norm, as defined in e.g. [11]), the following perfor-
mance criterion is defined:

J =

√

√

√

√

∫ N

0

(

M
∑

k=1

|e(t)D,k|2QD + |e(t)U |2QU

)

dt (2)

where e(t)D and e(t)U are, respectively, the time-dependent
errors for the asset management service and the ancillary
service. The units controlled by the Aggregator are denoted
by the index k, the unit portfolio is of size M and N is the
time horizon over which the services are provided. Finally,
QD and QU are scaling factors that convert the errors into
percentages so that e(t)D and e(t)U are comparable.

The actual measured performance criterion of the aggrega-
tion control algorithm is scaled with the maximum permissible
error, Jmax, such that the performance index is given by:

η =
Jact

Jmax

(3)

where η ∈ [0, 1] and for which values close to zero represent
good performance of service delivery. Contrary to index (1),
which gives an intuition of how close performance is to the
optimum, index (3) gives an intuition of how far performance
is from the worst case scenario. The index was designed this
way because the theoretical optimum of service delivery is
Jopt = 0.

It must be noted that the performance criterion only
measures the permissible error defined in the contract of
the service, and service non-delivery is measured separately.
Therefore, whenever the algorithm performs outside the es-
tablished limits, then J(t)act = J(t)max and the non-delivery
counter is increased.

It is important to stress that the QoS has already been
defined by the entity requesting the service, and this index
is specifically designed to evaluate how close the service pro-
vision conforms to the defined QoS. Having defined what the
performance index measures, we will proceed with establishing
how to obtain the required values to estimate the index.

B. Calculating the index

Calculating the performance index requires the following
steps:



1) Identify and model the service requirements and error
in service provision.

2) Estimate Jact.
3) Calculate J for operation on the requirement bound-

aries (J(t)max).
4) Calculate η by normalizing Jact with Jmax.

For the first step, the service requirements must be defined
and translated into measurable errors. For some services, the
error can be stated as a tracking error, e.g. e = yref − ymeas.
In other cases, service requirements are defined by operation
within bands, which may lead to error defined as:

e(x) =







xmin − x if x ≤ xmin

0 if xmin ≤ x ≤ xmax

x− xmax if x ≥ xmax

(4)

This step is a service-specific problem and it is non trivial.

The second step requires to compute Jact using measure-
ment data from the unit portfolio. This can be a challenge for
evaluation in field deployment. In this paper it is assumed that
the measurement data will be available, either through a DSO
or a third party metering company.

The actual performance of the aggregation algorithm can
be found through two different methods:

On-line monitoring – This method brings the added benefit
of being able to use the index for performance monitoring and
diagnosis at runtime, but the downside of being communication
intensive.

Post-delivery analysis – This method is less communication
intensive, but does not permit to take remedial actions at run
time if a aggregation controller is not working as expected.

Usually services have some acceptable error (see Sec. II-A)
which can be interpreted as the hard boundaries for the service
delivery. The third step requires the calculation of J along
these boundaries, in this way, the maximum allowed error
is found for the service. The boundaries are based on the
service models presented in the first step. By adding the
maximum permissible error for all services, Jmax is obtained.
Normalizing the performance measure with the Jmax gives an
intuitive value of the performance of the control algorithm.

In the following subsection an example of how to determine
Jmax is presented.

C. An example: DSO Service PowerMax

For demonstration purpose, in this paragraph Jmax for the
PowerMax service is calculated.

Typically, the service will be contracted several months
ahead the actual delivery. The activation schedule (On and
Off triggers), the maximum power cap (PM ), the maximum
duration of the service per activation (TM ), and the quality of
service (QoS) are defined when contracting the service. The
contract is valid for a period of several months, where the
Aggregator is obliged to follow the established schedule.

The limits specified in the QoS [1] for the PowerMax
service are presented here:

• Deviation from On trigger: ± 15 min. per day

Fig. 2. The PowerMax service requirements, where the red line represent
the boundaries for the permissible error, and the shaded area represents the
error in service delivery which is within the limits established in the QoS.

• Deviation in size of service (dependent on PM ): Max.
±5%PM

• Acceptable no. of unsatisfactory activations(non-
delivery): Non-del = 4

A graphical representation of these service requirements is
depicted in Fig. 2. It is clear that the maximum acceptable
error in service delivery is the shaded area. Note that the
limit for non-delivery of service during the first 15 minutes
of activation is dotted due to the fact that non-delivery is not
counted during this period. The specifications for counting
unsatisfactory activations are not clarified in [1], so it is
assumed that breaking the QoS limits on one sampling period
counts as one non-delivery. In the case where the service is
not respected in 3 consecutive(or non-consecutive) sampling
periods, Non-del = 3.

For example, in the case where PM = 5 kW , TM = 4 h
and the power is measured once an hour, Jmax = 200, as
it represents the square root of the square of the maximum
(100%) permissible error over 4 hours.

This case study presents the aggregation of multiple flexible
DERs via coordinated operation: 75 DERs installed in a
suburban residential area, which are all connected to the same
feeder leading to a 10/0.4 kV transformer. The transformer is
rated to a maximum power flow of 200 kW, which is sufficient
under the current load circumstances.

This case study addresses a scenario with high electric
vehicle (EV) penetration, low photo-voltaic (PV) penetration
and electric space heating in all households. Furthermore all
DERs connected to the same LV feeder offer their flexibility to
the same Aggregator. Then, the proposed performance index
for service provision is evaluated for two different aggregation
control algorithms: Centralized soft Model Predictive Control
(C-MPC) and Distributed soft Model Predictive Control (D-
MPC).

D. The reference case: without units coordination

In this section we make a scenario hypothesis for year 2050
regarding PV and EV penetration in a distribution feeder in a
rural area and present simulation results. The following units
are connected to the LV transformer:

• 40 buildings with electric climate control: resistive
space heating with maximum load of 10 kW and air
conditioning with a maximum load of 5 kW.

• 20 large EVs, with a battery size of 25 kWh, 11 kW.



0 20 40 60 80
10

20

30

40

50

A
ct

iv
e 

P
ow

er
 [k

W
]

Time [hours]

Fig. 3. The nonflexible load of the households under the transformer. The
sample is statistically represantative of danish households.
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Fig. 4. PCC aggregated power flow reference case of units non coordination:
Demand Response based on day ahead energy price.

• 10 small EVs, with a battery size of 14 kWh, 3.3 kW.

• 5 PV (polycrystalline) installations of 6 kW rated
power each.

The PV installations provide forecasts of the production
for one day ahead. To simulate uncertainty in the forecasts,
Gaussian noise has been added to real data of PV production
according to:

PPV −F,t = PPV −T,t + vt, vt ∼ N
(

0, α
√

PPV −T,t

)

(5)

where PPV −F,t is the forecasted PV power production at time
t and PPV −T,t is the actual power production at time t (from
historical data). Uncertainty in solar radiation and ambient
temperature are modelled in the same way. The actual power
production time-series used in this case covers the same days
as [12].

The load related to households is divided into climate
control (flexible load) and everything else (non-flexible load).
The building climate control is operated on MPC basis for
minimum deviation from temperature set point. Regarding the
non flexible household loads, a 5 day (one hour-sampled)
profile of the non flexible load of 40 households is depicted
in Fig. 3.

The EVs leave the charging station at a uniform randomly
distributed time between 6am and 8am, and are plugged again
at a uniform randomly distributed time between 4pm and
6pm. The EVs operate on dumb charging, i.e. they try to
fully charge as soon as they are connected to the grid. By
running a simulation of the described scenario without units
coordination, the results shown in Fig. 4 are obtained.

EVs operating on dumb charging can cause peak consump-
tion up to 190 kW. Given that the transformer capacity is 200
kW and it is customary to reserve 30% of the transformer
capacity for emergency operations [13], the DSO aims at
keeping the load below 140 kW and limit the inverse power
flow at the substation. Thus, the DSO can sign a contract

MPC

PCC

(a) The setup of the Centralized MPC scheme.

Blackboard

PCC

MPC MPC MPC

MPC

(b) The setup of the DMPC scheme as seen in
[12].

Fig. 5. The setup of the two Aggregation algorithms to be compared.

for PowerMax service (see Sec. III-C) with an Aggregator
which, at any time, operates Demand Response via Direct
Load Control (DLC) [2] in order to limit the power flow
at the transformer. The maximum capacity available at the
transformer is therefore 140 kW for direct power flow and
-10 kW for inverse power flow.

The rest of this section presents the C-MPC and D-MPC
formulations. For the formulation of the mathematical models
we refer to [14] for the battery model and to [15] for
the building space heating model (modified, as proposed in
[12]). For the modelling of the services, we apply the method
described in Sec.III-B. A discussion on the simulation results
concludes this section.

E. The Centralized Model Predictive Control scheme

In this scheme the Aggregator contains the control al-
gorithm to centrally manage all the units in its portfolio
(Fig. III-E). Since the Aggregator optimizes its portfolios
consumption through MPC, it has detailed knowledge of the
state and dynamics of its portfolio. The units portfolio is the
same as of the reference case. The C-MPC control problem is
formulated as quadratic optimization with soft constraints (as
seen in e.g. [16]):

min
ut,ϑt

J =

N
∑

t=1

[

‖yt − rt‖
2

Q + ρϑt + ψγt

]

(6a)

subject to :

xt+1 = Axt +But + Edt (6b)

yt = Cxt +Dut (6c)

umin,t ≤ ut ≤ umax,t (6d)

ymin,t − γt ≤ yt ≤ ymax,t + γt (6e)

PCCmin,t − ϑt ≤ ut ≤ PCCmax,t + ϑt (6f)

ϑt ≥ 0 (6g)

γt ≥ 0 (6h)

(6i)

where rt is the output reference, γ is the weight for output
soft constraints and ρ penalizes the power over max. Since this



MPC controller is centralized, the system matrices in Eq. (6b)
and Eq. (6c) are formed by block diagonal-adding each of
the systems’ respective matrices. Being the set of units S =
{1..N}, it follows:

x =

[

x1

xj

]

, u =

[

u1

uj

]

, d =

[

d1

dj

]

, y =

[

y1

yj

]

A =

[

A1 0

0 Aj

]

, B =

[

B1 0

0 Bj

]

C =

[

C1 0

0 Cj

]

, D =

[

D1 0

0 Dj

]

E =

[

E1 0

0 Ej

]

, ϑ =

[

ϑ1

ϑj

]

, γ =

[

γ1

γj

]

(7)

where the index j ∈ S and the system in Eq. (6b) and (6c)
is extended with all the units belonging to the set S.

F. The Distributed Model Predictive Control scheme

In the D-MPC formulation units within the same cluster
retrieve the power plans of the other units, compute their own
plan accordingly and publish it in a blackboard. Note that in
this case study, differently from what it has been proposed
in [12], the unit controllers have soft constraints on the outputs
(temperature for buildings and SOC for batteries and EVs). In
this algorithm, as soon as the units publish their consumption
plan, the available power at the PCC decreases in a way such
that the subsequent units communicating with the blackboard
tend adjust their plan accordingly. After a negotiation period
the units are entitled to operate according to the power plan
that has been published in the blackboard for the next time
frame. Figure III-E shows the configuration for the D-MPC.
This is an example of transactional control [2], where the unit
power consumption negotiated.

G. Comparison and discussion of results

Certain assumptions have been made with regards to con-
trollers:

• The EVs are preferably kept operating in the range
SOC = [0.2, 0.9] due to battery life concerns [14],
although it is possible to operate in SOC = [0.0, 1.0].

• The comfort band for the households lie in the band
Tref = 22◦C ± 1◦C. The concept of non-delivery
is not used in the asset management services, but
the absolute boundaries for user comfort bands lie on
Tref = 22◦C ± 1.5◦C.

• The required PowerMax service is of PM = 90kW
each day in the periods of 16:30 to 20:30.

• The time sampling is of 15 minutes and the prediction
horizon is of 23 hours.

• The EVs are not capable of providing Vehicle to Grid
(V2G) services, i.e. EVs only charge.

These assumptions lead to the results presented Fig. 6-8 as
well as in Table I. The following conclusions can be made: 1)

(a) Households temperatures and power consumption

(b) EV State of Charge

Fig. 6. Simulation results for the D-MPC with α = 0.1

TABLE I. RESULTS OF 3-DAY SIMULATION

D-MPC C-MPC

α 0.1 0.2 0.1 0.2
Non-delivery 0 0 0 0

η 0.0075 0.0160 xxxx 0.0153

From the graphs it can be seen that both controllers are quite
good at staying within the QoS limits, as can be seen in the fact
that none of the controllers have non-delivery and η is small.2)
Controller performance is sensible to prediction uncertainties,
as can be seen in the varying values of η depending on the
uncertainty α. 3) In terms of service provision, the C-MPC
outperforms the D-MPC. This arises from the fact that the
C-MPC has absolute control of all units and determines a
global optimum. 4) Due to behaviour difference between the
local EV controllers in the D-MPC scheme, and the behaviour
of the C-MPC, the power consumption of the EV is very
different (compare Fig. III-G and Fig. III-G). This also leads to
a vast difference in the power flow at PCC (see Fig. 8). 5)By
comparing the values of η in both cases, it is clear that the
difference comes from the behaviour of the household heating,
where the C-MPC clearly manages to deliver a better quality
service than the D-MPC.

IV. OUTLOOK

The index is useful for the systematic evaluation of the
adequacy of different control architectures providing ancillary
services. As modelled in this paper, the index only gives a
general idea of the performance of the control algorithm, but
future work could include a method for differentiating the
sources of high error. It is also expected that the performance
index can be part of validating Aggregators for ancillary
service provision.

In order to do a successfull evaluation of an aggregation



(a) Households temperatures and power consumption

(b) EV State of Charge

Fig. 7. Simulation results for the C-MPC with α = 0.1
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(a) Total power load for C-MPC
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(b) Total power load for D-MPC

Fig. 8. Power load at Point of Common Coupling for the controllable loads

algorithm, it is important that the QoS specifications of the
future ancillary services are well defined. This is a challenge in
itself since many of the ancillary services assume a production
baseline, which poses many problems (see e.g. [17]).

The evaluation of aggregation control algorithms is an
important part of a general verification framework for service
providing control algorithms. Future work will also include
performance assessment in laboratory implementation, as well
as modelling of ancillary services provided through DSM.

V. CONCLUSION

We wanted to formulate a method for assessing perfor-
mance of control service provision of aggregation algorithms.
In order to do this, a performance index was defined by
drawing inspiration from the field of Control Performance
Assessment.

A case study was presented, where two different control
algorithms were evaluated and the results were presented.

Evaluation of aggregation algorithms is expected to be an
important part of validation of Aggregators providing DSM.
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Abstract

Driven by the opportunity to harvest the flexibility related to building climate control for demand response applications, this work
presents a data-driven control approach building upon recent advancements in reinforcement learning. More specifically, model-
assisted batch reinforcement learning is applied to the setting of building climate control subjected to a dynamic pricing. The
underlying sequential decision making problem is cast on a markov decision problem, after which the control algorithm is detailed.
In this work, fitted Q-iteration is used to construct a policy from a batch of experimental tuples. In those regions of the state space
where the experimental sample density is low, virtual support samples are added using an artificial neural network. Finally, the
resulting policy is shaped using domain knowledge. The control approach has been evaluated quantitatively using a simulation and
qualitatively in a living lab. From the quantitative analysis it has been found that the control approach converges in approximately 20
days to obtain a control policy with a performance within 90% of the mathematical optimum. The experimental analysis confirms
that within 10 to 20 days sensible policies are obtained that can be used for different outside temperature regimes.

Keywords:
Thermostatically controlled load, batch reinforcement learning, demand response, data-driven modelling, fitted Q-iteration

1. Introduction

Perez et al. estimate that 20 to 40% of the global energy
is consumed in buildings [1]. About half of this energy is
used for Heating, Ventilation and Air Conditioning (HVAC)
[2]. As a consequence, control strategies for HVAC have re-
ceived considerable academic attention in recent years. A pop-
ular class of control strategies is that of model-based strategies,
such as Model Predictive Control (MPC) [3]. MPC for HVAC
systems has been largely investigated in the recent literature
[4, 5, 6, 7, 8], in both of its main aspects, modelling [9, 10],
and control [11]. In MPC, at regular time intervals, a control
action is selected by solving an optimization problem over a fi-
nite time horizon, which is typically a day for HVAC control.
In MPC the impact of future disturbances, such as internal heat-
ing and meteorological conditions, is taken into account using
forecasts. Predictive control allows using the load flexibility re-
lated to thermal storage, e.g. through the thermal inertia of the
building or through direct heat storage [12].

This flexibility can be harvested to enable demand response
and provide load control services, which value has been in-
creasing together with the share of renewable energy in the pro-
duction mix. Examples of services are peak shaving and valley
filling for a distribution system operator [13], ancillary services
towards a transmission system operator [14, 15] or energy arbi-
trage [16]. However, deploying MPC can be a challenging task.

∗Corresponding author: tel.: +3214335910;
e-mail: { bert.claessens@vito.be}

The most significant challenge is to derive an accurate model
which, in the case of thermal control, has to include the thermal
dynamics and the actuation model. In [17], Širokỳ et al. give
a detailed report on implementation issues of MPC controllers
for building heating systems.

In this context, completely data-driven approaches are
deemed interesting, sacrificing performance for practicality.
One possible embodiment uses data-driven model in combi-
nation with an optimization algorithm to obtain a control pol-
icy [18]. Alternatively, it is possible to learn directly the con-
trol policy by estimating a state-action value function through
interaction with the system. For example in [19], Reinforce-
ment Learning (RL), a model-free control approach is applied
to building thermal storage. In RL, the policy is updated on-
line, i.e. at each time step. In Batch Reinforcement Learning
(BRL), on the other hand, the policy is calculated offline using
a batch of historical data. Even though (B)RL is getting more
mature [20], as discussed in [21], combining techniques of RL
with prior (domain) knowledge is a logical control paradigm.
It is towards this direction that this paper is positioned, i.e. in
applying BRL in combination with prior knowledge to the oper-
ation of a building climate control system for demand response
applications.

The basis of our approach is BRL with Fitted Q-Iteration
(FQI) [22, 23], where the learning of an optimal control policy
is enhanced by virtual data coming from a model. For this rea-
son, such approach is called Model-Assisted Batch Reinforce-
ment Learning (MABRL) as discussed in [24].
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In Section 2 an overview of the related literature is provided
and the contribution of this work is explained. Following the
approach presented in [25], in Section 3 the building thermal
scheduling is formalised as a sequential decision making prob-
lem under uncertainty. In Section 4 MABRL is detailed, while
Section 5 presents a quantitative and qualitative assessment of
the performance of the controller. Finally, Section 6 outlines
the conclusions and discusses future research directions.

2. Related Work

This section gives a non-exhaustive overview of related work
regarding MPC and RL for building climate control, after which
the main contributions of this work are explained.

2.1. Model Predictive Control

When considering building climate control, MPC has re-
ceived considerable attention in the recent literature [6, 7, 8,
26]. The overview of practical issues related to the implemen-
tation of an MPC controller can be found in [27]. The key ele-
ments of an MPC comprise mathematical models describing the
building dynamics, comfort requirements and exogenous infor-
mation such as user behavior and outdoor temperature. This in-
formation is used to cast an optimization problem that is solved
to define optimal control actions with respect to a defined ob-
jective function, subject to constraints provided by the model.

In typical embodiments of MPC one tries to formalize the
problem as a mixed integer problem to allow using fast solvers
with performance guarantees. Therefore, a Linear Time Invari-
ant model (LTI) of the system under control is to be identified.
If no domain knowledge is available, black-box identification
techniques are used, such as subspace identification methods
[28, 29]. Alternatively, gray-box models can be used, where the
model structure is defined and the parameters are estimated us-
ing experimental data [9]. In the context of thermal modelling
a number of studies use thermal circuits [30, 31, 32, 33, 34].

Advanced climate control allows, besides efficient use of en-
ergy and comfort management, integration within aggregation
schemes to provide ancillary services and portfolio manage-
ment in demand side management [35]. For example, in [36]
the aggregated flexibility of a cluster of buildings is used to
provide balancing services using an aggregate-and-dispatch ap-
proach.

An alternative for LTI modelling is to use non-linear data-
driven models, such as artificial neural networks (ANNs) [18,
37], in combination with Dynamic Programming (DP) [38] to
compute a control policy. This form of control can be seen as a
form of RL [39].

2.2. Reinforcement Learning

As discussed in Section 1 RL is a model-free control tech-
nique whereby a control policy is learned from interactions with
the environment. A well established reinforcement learning

method is Q-learning [40] where the state-action value func-
tion, or Q-function, is learned. Compared to techniques pro-
vided in the previous section, RL mitigates the risk of model-
bias [24] as a policy is build around the data. When consider-
ing Q-learning and its applications to demand response, mainly
traditional Q-learning has been used [41, 42, 19]. More re-
cently BRL [43, 44] in the form FQI [21] has been investigated.
The main advantage of BRL is the practical learning time re-
quired for convergence (20-40 days in [43, 44]) which comes
at the cost of an increased computational complexity. Although
BRL can rival the performance of MPC techniques, as indi-
cated in [21], the context of demand response allows to add
prior knowledge to the optimal control problem that can result
in faster convergence. A first approach uses prior knowledge by
shaping the policy, obtained with FQI, by means of constrained
regression [22]. A second approach is described by Lampe et
al. in [24]. Here virtual data from a model is used together with
experimental data to obtain an approximation of the Q-function
(state-action value function).

Building upon [43, 22, 24], this work has the following con-
tributions:

• BRL in the form of FQI [21] in combination with vir-
tual trajectories [24] and policy shaping is applied to a
HVAC system for a typical objective of dynamic pricing
[45]. This effectively results in a data-driven solution for
building climate control systems, combining state of the
art BRL with domain knowledge;

• Quantitative and qualitative performance assessment of
MABRL in a simulated and experimental environment,
where the operation of an air conditioner is subject to dy-
namic energy pricing.

3. Problem Formulation

Before presenting the control approach in Section 4, this Sec-
tion formulates the decision-making process as a Markov De-
cision Process (MDP) [38, 46]. An MDP is defined by its state
space X, its action space U, and a transition function f :

xk+1 = f (xk,uk,wk), (1)

which describes the dynamics from xk ∈ X to xk+1, under the
control action uk ∈ U, and subject to a random process wk ∈ W,
with probability distribution pw(·, xk). The reward accompany-
ing each state transition is rk:

rk(xk,uk, xk+1) = ρ(xk,uk,wk) (2)

which is here considered to a cost, as it accounts for the en-
ergy price. Therefore, the objective is to find a control policy
h : X → U that minimises the T -stage cost starting from state
x1, denoted by Jh(x1):

Jh(x1) = E
(
Rh(x1,w1, ...,wT)

)
, (3)

with:

Rh(x1,w1, ...,wT) =

T∑
k=1

ρ(xk, h(xk),wk). (4)
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It is worth remarking that an optimal control policy, here de-
noted by h∗, satisfies the Bellman equation:

Jh∗ (x) = min
u

E
w∼Pw(.|x)

{ρ(x, h(x),w) + Jh∗ ( f (x, h(x),w))} (5)

Typical techniques to find policies in an MDP framework are
value iteration, policy iteration, and policy search [22]. As men-
tioned earlier, in this work MABRL (related to value iteration)
is considered.

3.1. State description

Following the approach presented by Ruelens et al. in [25],
it is assumed that the state space X consists of: time-dependent
state information Xt, controllable state information Xphys, and
exogenous (uncontrollable) state information Xex:

X = Xt × Xphys × Xex. (6)

In the following, each component of the state space is detailed.

3.1.1. Timing
The time-dependent information component Xt contains in-

formation related to timing. In this implementation the quarter
hour during the day has been used:

Xt = {1, . . . , 96} , (7)

in order to identify behavioral daily patterns. Extending this
with, e.g. the day of the week, can be done at little extra cost.
However, this extension is outside the scope of this work.

3.1.2. Physical representation
The controllable state information xphys,k consists of the in-

door air temperature, Tk:

xphys,k = Tk | T k < Tk < T k (8)

where T k and T k denote the lower and upper bound set by the
end consumer.

3.1.3. Exogenous Information
The exogenous (uncontrollable) information xex,k is consid-

ered to have an impact on xphys,k, but it is invariant for control
actions uk. In this study the exogenous state information con-
sists of the outside temperature, To, and the solar radiance, S:

xex,k = (To,k, S k) . (9)

In this work it assumed that a forecast of the outside temper-
ature and the solar radiance is available when constructing the
policy h, as will be detailed in Section 4.2 (.̂ is used to denotes
a forecast).

3.1.4. Control action
In this work the control action is a binary value indicating if

the HVAC system should switch ON or OFF:

uk ∈ {0, 1} . (10)

The control action of the previous control event uk−1 is also
added to the state information, as it is relevant for the dynamics
of the HVAC system. In fact, its value will be used to avoid too
frequent switching as discussed in Section 3.2. As a result, the
final state vector is defined as:

xk =
(
xt,k,Tk,To,k, S k, uk−1

)
. (11)

As this state vector only contains part of the actual state of
the system, a common approach to enrich the state vector is to
add previous state samples [47]. This, however, results in an
increased state dimension that could be reduced by means of
feature extraction, e.g. non-linear principal component analy-
sis [48]. In this work however, the state vector is defined ac-
cording to (11).

3.2. Backup controller and physical realisation
The HVAC system is assumed to be equipped with a backup

controller, which acts as a filter to the control actions resulting
from the policy h. The function B : X × U −→ U maps the
requested control action uk taken in state xk to a physical control
action uphys

k :
uphys

k = B(xk, uk, θ) , (12)

with θ containing system specific information. In this case, θ
contains T k and T k, and B (·) is defined as:

B(xk, uk, θ) =


1 if Tk ≤T k
1 if Tk ≤T k ∧ uk−1 = 1
uk if Tk ≤T k ∧ uk−1 = 0
0 if Tk >T k

, (13)

3.3. Reward model
As discussed in the introduction, different applications can

be considered to harvest the flexibility related to climate control
of buildings. In dynamic pricing or energy arbitrage [16], i.e.
responding to an external price vector λ, the reward function is
defined as:

ρ
(
xk, u

phys
k , λk

)
= −P∆tλkuphys,k , (14)

with P is the average power consumption of the air conditioner
in during the time interval ∆t.

4. Model-Assisted Batch Reinforcement Learning

As discussed in Section 2.2, the control policy h∗ is obtained
using MABRL in combination with policy shaping, as illus-
trated in Figure 1. To this end, FQI is used to obtain an approx-
imation Q̂∗ of the state-action value function Q∗ from a batch
of four tuples F L, as detailed in [49]:

F L =
{
(xl, ul, rl, x′l), l = 1, ..., #F L

}
, (15)
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Figure 1: Overview of the information flow in this implementation of MABRL using FQI and policy repair.

where x′l denotes the successive state in time to xl. As illustrated
in Figure 1, F L is a combination of experimentally observed
tuples F E and virtual tuples generated by a model FM:

F L = F E ∪ FM . (16)

From the resulting Q̂∗(x, u) a control action uk can be ob-
tained following

uk ∈ arg min
u

Q̂∗(xk, u). (17)

In the following subsections we detail the algorithms behind
each block in Figure 1.

4.1. The support model: Artificial Neural Network
Following the approach presented in [24], an ANN is used

to represent a support model. In this work, single-layer, single-
output Extreme Learning Machines (ELMs) are trained to pre-
dict the change of internal temperature, ∆T . These are used
as they allow for fast training of the weights of the network at
the expense of reduced regression performance. The latter is
partially mitigated by combining multiple ELMs in an ensem-
ble [50].

The output of an ANN with p input neurons and n hidden
neurons can be formulated as:

y(x) =

n∑
i=1

βigi(wi · x, bi) = G(x)β , (18)

where x ∈ Rp is the input vector, wi ∈ Rp ∼ i.i.d.U (−1, 1)
is the weight vector connecting the input nodes with the i-th
hidden node, bi ∈ R ∼ U (0, 1) is the bias of the i-th hidden
node, and βi ∈ R is the output weight of i-th hidden node.
β =

[
β1 . . . βn

]T is the output weight matrix, while G(x) is the
output matrix of the hidden nodes, where the nodes activation
function g is a sigmoid.

Since the parameters of the hidden nodes are randomly gen-
erated, training an ELM corresponds to determining the output
weight matrix β based on the least-squares solution of Gβ = Y:

β =

(
1
C

+ GT G
)−1

GT Y , (19)

where the regularisation term 1
C is used to enhance the robust-

ness and the generalisation performance of the solution [51].
Finally, the ensemble model output yens(x) is given by a

weighted average of M individual ELMs outputs:

yANN(x) =
1
M

M∑
i=1

yi(x) . (20)

The input vector at time k is xk =
(
xt,k,Tk,To,k, S k, uk−1

)
, and

the output is yk = ∆Tk = Tk+1 − Tk. For a deeper insight on
ELMs, we refer to [52]. As the training process is fast, finding
the appropriate number of hidden nodes is done using cross-
validation.

4.2. Fitted Q-Iteration

A popular BRL technique that found its way into several
practical implementations is FQI [49]. Typically, BRL tech-
niques construct policies based on a batch of tuples. However,
since in this context the reward function is known a priori and
the resulting actions of the backup controller can be measured,
Algorithm 1 uses tuples of the form

(
xl, ul, x′l , u

phys
l

)
. Algo-

rithm 1 shows how FQI [49] can be used in a demand response
application when a forecast of the exogenous data is available.
Here x̂′l denotes the successor state to xl. In Algorithm 1, the
observed external temperature and solar radiance in x′ex,l are re-
placed by their forecasted value x̂′ex,l (line 7 in Algorithm 1). As
such, Q̂∗ becomes biased towards the provided forecast. Before
constructing Q̂∗ a set FM, containing at most n virtual samples
is created with random state-action pairs. However, a randomly
generated tuple is only accepted to FM if the nearest experi-
mental tuple in F E falls outside a predefined radius r, following

4



Algorithm 1 Model-assisted Fitted Q-iteration using a forecast
of the exogenous data

Input: F E =
{
xl, ul, x′l , u

phys
l

}#F E

l=1
, X̂ex =

{
x̂ex,k

}T
k=1 ,

yANN , r, n,C λ, θ
1: FM = generateSamples(F E, yANN , r, n,C, θ)
2: F L = F E ∪ FM

3: let Q̂0 be zero everywhere on X × U
4: for N = 1, . . . ,T do
5: for l = 1, . . . , #F L do
6: rl ← ρ

(
xl, u

phys
l , λ

)
7: x̂′l ←

(
x′t,l,T

′
l , T̂

′
o,l, Ŝ

′
l , u
′
l−1

)
8: QN,l ← rl + min

u∈U
Q̂N−1(x̂′l , u)

9: end for
10: use regression to obtain Q̂N from

Treg =
{(

(xl, ul),QN,l
)
, l = 1, . . . , #F L

}
11: end for
12: return Q̂∗ = Q̂N

Algorithm 2 generateSamples(F E, yANN , r, n,C, θ)
Input: F E, yANN , r, n, C, θ

1: FM = {∅}

2: N ← 0
3: while #FM < n and N < C do
4: generate random state action sample {xk, uk}

5: d = min
(x, u)∈F E

{‖x − xk‖ + ‖u − uk‖}

6: if d > r then
7: uphys

k = B(xk, uk, θ)
8: T ′l,k = yANN(xk, u

phys
k ) + Tl,k

9: FM = FM ∪
{
(xk, uk, x′k, u

phys
k )

}
10: end if
11: N ← N + 1
12: end while
13: return FM

a distance metric ∆.1 In order to keep Algorithm 2 tractable in
the event of a dense set F E, a computational budget C is added.

The distance metric is defined as: ∆ ((x, x′) , (u, u′)) =

‖x − x′‖ + ‖u − u′‖, where ‖·‖ is the Euclidean norm. Algo-
rithm 2 uses the artificial network yANN to generate the virtual
tuples as in (20)

Similarly as in [49], Algorithm 1 uses an ensemble of ex-
tremely randomized trees [53] as regression algorithm to esti-
mate the Q-function. In principle, other regression algorithms,
such as artificial neural networks or support vector machines
can be applied.

4.3. Policy Repair
This section shows how to shape a policy h∗ by using trian-

gular Membership Functions (MFs) [22] and expert knowledge
to enforce monotonicity in the policy.

1Note that this radius can also be defined based upon local inter-tuple dis-
tances. This is however to be explored in future work.

The centers of the triangular MFs are located on an equidis-
tant grid with Ng MFs along each dimension of the state space.
This partitioning leads to (N |Xphys |

g ) state-dependent MFs for each
action.

The parameter vector θ∗g that approximates the original policy
can be found by solving the following least-squares problem:

θ∗g ∈ arg min
θg

#F L∑
l=1

(
[F(θg)](xl) − h(xl)

)2
,

s.t. expert knowledge

(21)

where F denotes an approximation mapping of a weighted lin-
ear combination of triangular MFs and [F(θg)](x) denotes the
policy F(θg) evaluated at state x. A more detailed description
of how these triangular MFs are defined can be found in [22].

4.4. Policy dispatch

The policy dispatch block is in charge of operating the air
conditioner according to the policy coming from the MABRL
controller. The airco controller selects each action in any en-
countered state with nonzero probability (exploration), or dis-
patches the optimal control action by exploiting the acquired
knowledge (exploitation) [40]. A common technique to balance
the exploration-exploitation in RL is ε-greedy exploration:

uk =

{
u ∼ Bernoulli (0.5) if γ ≤ ε j

[F(θ∗g)](xk) if γ > ε j
, (22)

where γ ∼ U (0, 1). In this study the exploration factor ε j re-
duces by half every four days:

ε j =
ε0ς

ς + j − 1
, (23)

where the decay factor ς is 4, the initial probability ε0 is 0.4,
and the the day index is j ∈ {1, 2, 3, . . .}.

5. Performance assessment

This section provides a qualitative and quantitative perfor-
mance assessment of the controller discussed in Section 4.2.
Section 5.1 presents a quantitative assessment in a setting where
the online part in Figure 1 is simulated via an equivalent ther-
mal parameter model [54] of the air conditioner and the build-
ing (further detailed in Appendix A). Section 5.2 provides a
qualitative analysis of MABRL performance in a real climate
control application.

5.1. Simulated environment

In order to test the convergence and the performance of the
MABRL controller, a benchmark is required. As the experi-
mental setup is a living lab, exact external conditions cannot
be reproduced from day to day. Thus, the model described
in Appendix A has been used to simulate the air conditioner
and the lab room. An optimal solution to thermal scheduling
obtained using MPC is taken as benchmark and is depicted in
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Figure 2. This benchmark solution is explained in more detail
in Appendix B.

The simulations have been performed using different exoge-
nous information and price profiles from day to day [55]. In
Figure 2 the top graph shows the cumulated cost of the differ-
ent controllers: BRL, MABRL, Optimal (MPC), and default
thermostatic control.

These results indicate that indeed the control approach as
presented in Section 4 is able to find near optimal control poli-
cies in a learning time of approximately 20 days, after which
the performance relative to a mathematical optimum is stable.
However, adding virtual samples, as illustrated in the procedure
in Section 4.2, has limited contribution, with a slight economic
advantage of the MABRL approach over the BRL. The follow-
ing subsection presents the policy computation on the basis of
experimental data, together with its experimental validation in
a living lab.
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Figure 2: Cost performance of the different controllers: BRL (no virtual tuples),
MABRL, Optimal (MPC), and Default (hysteresis). Top plot: cumulative elec-
tricity cost. Bottom plot: daily electricity cost.

5.2. Experimental environment

5.2.1. Ability to integrate forecasts
A first analysis focuses on the ability MABRL to effectively

take into account the forecast of exogenous information. To this
end, Figure 3 shows several policies organised in a matrix for
different predicted profiles of the external temperature (from
left to right) and increasing size of the learning batch (from
top to bottom). For clarity no virtual traces have been added.
During the experiments control actions have been taken every 5
minutes.

Starting from the top row, policies are computed using ex-
perimental batches of: two days, eight days, and sixteen days.
The black areas in the policies correspond to the control action
switch on. Note that, recalling Eq. 13, once the heating system
has been switched on it continues heating until the temperature
upper bound is reached in order to avoid frequent switch events.

Consider Figure 3, from left to right only the profile of ex-
ternal temperature is changed. One can observe that the poli-
cies are highly influenced by the weather conditions: as soon as
the external temperature is low, the policies correspond to basic
thermostatic control (i.e. heat only when it is necessary). Fi-
nally, note that the policies in the first row resemble each others,
regardless of the different forecast of the external temperature,
due to the fact that the training tuples are few.

5.2.2. Policy shaping
Figure 4 shows the effect of shaping the policy as discussed

in Section 4.2. Here triangular membership functions [22] have
been used with the constraint that the policy needs to be strictly
decreasing with increasing indoor temperature. This is a direct
consequence from the physical understanding that a room at a
higher temperature is subjected to higher losses to the environ-
ment. The results depicted in Figure 4 show that the policies
are smoothed following the monotonicity constraints.

5.2.3. Effect of adding virtual samples
Figure 5 shows the impact of virtual tuples on the conver-

gence of the policy. The policy is computed using experimental
data and virtual tuples in three different proportions. The left
chart in Figure 5 shows the computed policy with only few ex-
perimental data points (2 days) and no virtual tuples in support,
which is called early policy.

The right chart shows the policy computed using a large set
of experimental data, without virtual tuples (20 days), called
regime policy. The middle chart shows the computed policy us-
ing few field data (2 days) and a large share of virtual tuples
(400 samples) from the support model, which is trained on the
basis of the few field data available. This latter is called model-
assisted policy. One can recognise that the model-assisted pol-
icy is much more similar to the regime policy than the early
policy, concluding that the support model enhances the policy
convergence. Furthermore, adding virtual tuples results in more
smooth policies.

5.2.4. Power profiles
Figure 6 shows the implementation of a regime policy (af-

ter 12 days). The bottom chart depicts the internal temperature
and the control policy, where the black areas correspond to the
control action switch on (recall that the heating is kept on until
the temperature upper bound is reached, in order to avoid oscil-
lations). The second last chart reports the power consumption
of the air conditioning units power and the intraday balancing
price. The second and first charts show the external and internal
air temperature, respectively.

Figure 6 shows the implementation of a regime policy on a
warmer day (16 days). In this case, since the thermal losses are
moderate with respect to a cold day, the optimiser allows longer
pre-heating in order to avoid high price zones. This doesn’t
occur in cold days, where the policy is much more similar to a
simple thermostatic logic.
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Figure 3: Policies projections obtained from experimental data for different forecast of the outside temperature, depicted in the lower row. From top to bottom data
from 2, 8 and 16 days has been used. The lowest row indicates the forecasts of outside temperature for which the policies have been calculated.

6. Conclusions and Disussion

In this work model-assisted batch reinforcement learning has
been deployed to harvest the flexibility related to building cli-
mate control. The results from both a quantitative analysis
based upon a simulation show that a performance within 90%
of a mathematical optimum is obtained within approximately
20 days. These results are confirmed qualitatively after deploy-
ing the control approach in a living lab. After collecting data for
approximately 16 days the approach is able to generalise poli-
cies for different outside temperature forecasts. Adding virtual
tuples from a support model result in a limited performance in-
crease.

Future work will be aimed towards evaluating the presented
algorithm for different objectives related to demand response.
Furthermore, other types of models, such as gray-box models,
will be used to add virtual tuples.
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Appendix A. ETP model

The data batch of the simulated experiments is provided by
an Equivalent Thermal Parameter model (ETP) [54] that is fitted
on experimental data from the living lab. The heat flow for the
ETP model of a residential heating/cooling system is defined as
follows:

Ṫa = 1
Ca

[
1

Ra
(To − Ta) + 1

Rm
(Tm − Ta) + AsQs + AcQAC

]
Ṫm = 1

Cm

[
1

Rm
(Ta − Tm) + (1 − As)Qs

] ,

(A.1)
where Cm equals the thermal mass of the building envelope. To

is the outside air temperature, Ta is the inside air temperature
and Tm is the envelope temperature. Rm is the resistance be-
tween the inner air and the envelope, while Ca represents the
thermal mass of the air. The heat flux into the interior air mass
is given by a fraction As of the solar heat gain Qs, a fraction Ac

of the heat gains of the air conditioners QAC . The heat flux to
the building envelope is given by the thermal exchange with the
inner air and by a fraction As of the solar heat gain.
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Figure 4: regime policies. Original form (row n. 3 from Figure 3), in the upper row, versus repaired policies, in the lower row.

Figure 5: Computation of the closed-loop policies for different shares of virtual tuples over experimental data.

Table A.1: ETP model parameters
Parameter Value

Ra 110 ◦C/kW
Ca 2.5E + 06 kWh/◦C
Rm 2000 ◦C/kW
Cm 1.2E + 07 kWh/◦C
As 0.5
Ac 1

Figure A.8: Sketch of the equivalent thermal parameter model.

Appendix B. Benchmark

An optimal solution of the building heating scheduling can be
found using mixed-integer linear programming. The objective8
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Figure 6: Experimental results 1. Top plot: outside temperature. Middle plot: consumed power by the HVAC and electricity price. Bottom plot: control policy
obtained with MABRL and the resulting indoor air temperature.

of the HVAC controller is to minimize its electricity cost using
known prices λ ∈ RT :

P∗ =

T∑
t=1

Pλtu
phys
t ∆t (B.1)

subject to:

xt+1 = f (xk, uk,wk)

uphys
t = B(xk, uk, θ),

where the plant model f is defined by (A.1) and the backup
controller B is defined by (13). Notice that the optimal con-
troller knows the plant model, settings of the backup controller
θ and future disturbances w. An optimal solution of this opti-
mization problem was found by applying a mixed-integer linear
programming solver using Gurobi [56].
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Abstract—This paper presents a systematic approach for
abstracting the flexibility of a building space heating system and
using it within a composable framework for real-time explicit
power control of microgrids and, more in general, active distribu-
tion networks. In particular, the proposed approach is developed
within the context of a previously defined microgrid control
framework, called COMMELEC, conceived for the explicit and
real-time control of these specific networks. The designed control
algorithm is totally independent from the need of a building
model and allows exploiting the intrinsic thermal inertia for
real-time control. The paper first discusses the general approach,
then it proves its validity via dedicated simulations performed
on specific case study composed by the CIGRE LV microgrid
benchmark proposed by the Cigré TF C6.04.02.

Index Terms—Demand-side Management, Explitic power con-
trol, Microgrids.

I. INTRODUCTION

Today’s trend of vast penetration of distributed generation
in low and medium voltage power networks threats the en-
ergy/power equilibrium as well as the quality-of-supply of
these electrical grids in a way that, in several countries,
operational constraints are already attained. Additionally, their
active contribution to the operation of transmission networks
needs to be re-defined. In particular, the main concerns of
power transmission networks operators refer to the definition
of new control schemes able to evaluate, and schedule, the con-
tributions of these active networks to the grid ancillary services
(with particular reference to voltage and frequency controls,
e.g. [1]). It this respect, a fully-composable framework for
explicit and real-time control of network power flows has
been introduced in [2], where real-time means with a typical
response time of 0.1 sec. It is based on three main elements:
(i) an abstract framework that applies to electrical subsystems
and specifies their capabilities, expected behaviour and a sim-
plified view of their internal state; (ii) the agents responsible
for subsystems/resources capable to communicate with other
agents by using a simple, yet powerful, protocol and (iii) the
recursive property, namely it is possible to compose a set of
interconnected elements into a simple entity that responds to

protocol messages (see [2] for further details). This framework
allows for abstracting devices status and consumers or produc-
ers operation capabilities regardless of their type and operation
mode. Device abstraction and control is performed by the local
resource controller, which exposes a standard interface toward
the grid controller. The grid controller is totally generic and
needs information only on the grid topology and its status,
as well as of the devices underneath, to compute the power
setpoints for all the resources, thus guarantee the network
safe operation. Such framework, called COMMELEC [2], is
based on request/response communication protocol between
the devices controllers (Resource Agents, RAs) and the grid
controller (Grid Agent, GA). The RAs export generic and
standardized information about devices status to the GA that
computes, in real-time, the optimal power injections at the grid
nodes that the various RAs are requested to realize. Thus, the
design of a Resource Agent is specific to device type, whereas
the GA is totally generic and can be adapted to any network.

Within the context of the COMMELEC framework, there
is the interest in investigating whether the flexibility related
to this type of load can be exploited. [2] has already pre-
sented the design of RAs for induction motors, PV plants
and micro hydro turbines, while the building consumption
has been treated as a non-controllable load. This paper goes
further: it proposes a systematic approach for abstracting and
representing the intrinsic flexibility related to building thermal
inertia within the COMMELEC framework. The design of
a RA for electric space heating system, called Load Agent
(LA), is here presented. It uses the measured air temperature
in different building sectors to compute the system flexibility
and the other information sent to the GA.

The structure of the paper is the following: Section II
summarizes the information exchange protocol and the COM-
MELEC framework by making use of a case study composed
by the Cigré LV microgrid benchmark of the TF C6.04.02 [3].
In this first case study, the building space heating is a non-
controllable load. The simulation reported in this section
shows the positive impact on the network performances that
COMMELEC has with respect to the standard droop-based



control approaches. From this starting point, the design of
the Load Agent for electric space heating is fully explored in
Section III. A simulation study using the building as flexible
load is presented in Sec. IV. The simulation results quantify
the positive impact of the proposed LA in improving the
microgrid performances while increasing the production from
renewables, all without any modification of the GA that does
not need to be aware of the load under control of the LA.
Sec. V outlines the final conclusions and the next research
steps.

II. THE COMMELEC FRAMEWORK

In this section, we briefly discuss the COMMELEC frame-
work for real-time control of electrical grids using explicit
power setpoints introduced in [2]. This framework uses a
hierarchical representation of software agents, each associated
with a single device or an entire subsystem (including a
grid and/or a number of devices). Thanks to a standardized
interface between the agents, it is possible to completely
disregard devices details in the overall network control and
easily upscale (or downscale) the entire architecture. Each
agent speaks for and controls the subsystem under its re-
sponsibility, which can consist of other electrical grids or
resources (loads, generators and storage devices), by using
explicit power setpoints.

An agent can be assigned the role of leader of one or
more other agents, which we term the followers of that leader.
The roles follow the topological/voltage hierarchy of power
networks. An example of agents hierarchy is shown in Fig. 1,
where there are two Grid Agents: one for the MV grid (called
MVGA), and one for the LV grid (called LVGA). The LVGA
is the leader of a group of Resource Agents (RAs).

The considered network model is mainly taken from [3],
where a 0.4kV benchmark microgrid is proposed. In [2] we
have assumed to connect the low voltage microgrid with a
simplified 20kV medium voltage grid. The whole network
is considered islanded. As typically used in a microgrid
setup, we assume that power electronic devices are used to
interface the generation/storage units with the grid and, as
presented in [2], the distributed generation is composed by (i)
photovoltaic plants (PVi) and a hydraulic microturbine (µH),
(ii) two battery-based energy storage systems (ESS and ESS1),
(iii) uncontrollable loads (ULi) and (iv) controllable loads
modelled as water boilers (WBi) capable of deploying explicit
power control setpoints (in the following, called just setpoints).

The agents communicate with each other by using a simple
Advertisement/Request protocol, and using some simplified
quantitative information about their devices capabilities and
internal states. In particular, the follower agents periodically
advertise to their leader the following three elements: (i) PQt
profile, that is a region in PQt space of setpoints that the
subsystem is willing to implement; (ii) Virtual cost function,
that acts as proxy for the internal state of the system, the
preferred setpoints, and how close the subsystem is to its
operational constraints; and (iii) Belief function, representing
all the possible values of (P,Q) that the subsystem may
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Fig. 1: Reference distribution network. The LV part of the grid is composed
by the CIGRE LV microgrid benchmark proposed by TF C6.04.02 [3]. The
MVGA is the leader of one or more LVGA, which themselves are leaders of
one or more RAs (dotted arrows).

implement in practice when it receives a certain setpoint.
Note that the latter is a set-valued function from R2 to sets
over R2. Observe the difference between PQt profiles and
belief functions: the former indicates the setpoints that this
subsystem is willing to receive, whereas the latter indicate all
the possible operating conditions that may result from applying
a received setpoint. The PQt profile is used by the grid agent
to compute an “optimal” setpoint, whereas the belief function
is used to determine the region of the safe operation of the
grid.

All agents monitor in real time the state of the grid device(s)
and/or the agents (the GAs) under their responsibility and
compute the general messages to send to their leader agent.
When receiving a new request, each agent projects the power
setpoint to the current updated PQt boundaries in order to
ensure its individual safety. We refer the reader to [2] for
further details on the protocol and the computation of the
setpoints of the GA.

In the following we show the operation of COMMELEC
and its positive impact in a 0.4kV LV microgrid in terms of:
(i) minimization of renewables curtailment, (ii) local power
balance, (iii) automatic management of the line congestions
and voltage control in a case study where three different
control methods are compared: COMMELEC, droop with only
primary frequency control (DP) for all resources and primary
voltage control only in the slack resource (in our case the
ESS), and Droop with additional secondary frequency control



(DPS) at the slack resource. The focus here is on the dynamic
short-term behaviour, so that results are presented over a time
horizon of 1600 seconds.

As it can be seen from Fig. 2, COMMELEC allows higher
energy production from PV with respect to both droop control
strategies. Figure 3b shows COMMELEC performance in
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Fig. 2: Comparison between COMMELEC and Doop control strategies: total
PV production (a) and detailed production of PV1 (b) (the green line is the
ideal production).

controlling the local water boiler WB2 for compensating the
local PV3 production, while the line current and node voltage
are kept within the safe bounds (Fig. 3d). This case study
shows some of the benefits introduced by COMMELEC, as
the maximization of production from renewables and local
power balance at LV level. Observe that in the network
topology shown in Fig. 1 there is an uncontrollable load
of 15kVA (UL2) connected at the end of the feeder. In the
following study we replace this load with a 8kW residential
load consisting of building space heating. We next focus on
the design of the Load Agent for this resource, while the grid
configuration, the GA and the other agents remain unchanged.

III. THE LOAD AGENT

The algorithm, which design is here presented, is the core
of the building Resource Agent, henceforth called Load Agent
(LA), which generality and model-independent design this
section is intended to enlighten. The presented LA can be
adapted to buildings of any size and type provided that the
heating system is electric (resistive heaters) and air temper-
ature measurements are available in each control volume.
Note that, since this study is based on simulations, the LA
communicates with a building emulator (Fig. 4), which model
is detailed in [4].

As introduced in Sec. II, the information the LVGA sends to
RAs is an explicit power setpoint. RAs, as acknowledgement,
send to the GA the PQt profile, the belief function and the
virtual cost function, which calculation is presented in the
following three subsections. The fourth subsection presents
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Fig. 3: COMMELEC control strategy: WB2 power consumption (a), PV3
production (b), line current (c) and node voltage (d).

ADV/REQ  - COMMELEC interface

Control actions
(heaters on/off)

Device state
(Rooms’ temperature)

Fig. 4: Interaction between the Load Agent and the building simulator.

the control algorithm used in the LA to implement the power
setpoint requested by the GA.

A. PQt profile

The Load Agent advertises to the GA the region in the
(P,Q) plane of the load admissible active and reactive power
setpoints at time t, where negative power means consump-
tion. Being X the set of all possible power setpoints x =
(P,Q) ∈ R2, the PQt profile sent at time t0 is the collection:
A (t) ⊆ X , where t is the time instant at which the PQt
profile is advertised. Since in this study the controlled system
consists of resistive space heaters, only pure active power
consumption is considered in a way that A is in this case
an interval in P and zero in Q.



Even if the notion of the load flexibility is associated to both
the PQt profile and the cost function, we here link it to the
former. Namely, the load is flexible if it can be interrupted and
re-started without causing user discomfort or device failure.
Specifically, a single room flexibility is determined by the fact
that the heater can be switched on or off without compromising
the user comfort as long as the room temperature is within
the comfort bounds. Conversely, if the room temperature is
below the comfort bound (TLB) the heater must operate and
if the temperature is above (TUB) the heater must not operate
(Fig. 5).
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Fig. 5: The flexibility of operation of a heating system is related to the
system state itself.

The flexibility of the whole system (building) is determined
by its subsystems (rooms) flexibilities. Let R denote the set
of rooms in the building and j ∈ R the room index. Define
Fj as the flexibility of room j in terms of upper and lower
active power consumption:

Fj =


[
P ∗j , P

∗
j

]
: Tj < TLB,j[

P ∗j , 0
]

: TLB,j ≤ Tj ≤ TUB,j

[0, 0] : Tj > TUB,j

, (1)

where P ∗j is the rated active powers of the heating system of
room j.

The building PQt profile is obtained by performing the
Minkowski sum of Fj over R:

A =
∑
j∈R
Fj . (2)

The rooms whose temperature is below TLB determine the
building minimum power consumption, while the maximum
consumption is limited by those rooms whose temperature is
above TUB . The (P,Q) flexible region is determined by those
rooms which temperature is within the comfort requirements
[TLB , TUB ].

Figure 6 presents the computation of the flexibility region
based on rooms temperatures in case of a linear variation of
external temperature. It is possible to observe the effect of this
disturbance on the PQt profile.

The example provided in Fig. 6 aims at showing how the
upper and lower bounds of set A evolve with respect to the
system state and how external disturbances impact the system
flexibility. It can be seen that the bounds of A coincide as soon
as the rooms are outside the comfort zone (from time 0 to 0.2
hours) and load consumption constrained to 8kW . Analogous
situation occurs when, due to an external disturbance in the
outside temperature, the rooms’ temperature rises above TUB ,
causing the load consumption to be constrained to zero.
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Fig. 6: Evolution of rooms’ temperature (first sub-plot), PQt profile com-
putation (second sub-plot) and external temperature (third sub-plot).

In the same figure, the blue line is the power setpoint
from the GA and the red line is the load consumption. The
LA implements the requested power setpoint by means of
Laod Admission Control (LAC), which details are deferred
to Sec. III-D.

B. Belief function

The belief function, henceforth denoted by B, describes the
ability of the Load Agent to map a requested power setpoint,
u, coming from the Grid Agent, to actual load consumption.
Note that B is a set-valued function from R2 to sets over
R2 and is designed to account for model uncertainties and
quantization effects in the load.

In this study, the building is composed by eight rooms
with one electric space heater each. The heaters can be either
switched on or off, therefore the load can implement only
discrete active power setpoints from 0kW to 8kW in steps
of 1kW . Hence the belief function simplifies to the nearest
integer function:

B (u) = {nint (u)} , (3)

where u is a power setpoint received from the GA.
Note that, thanks to the LAC algorithm (Sec. III-D), the

LA achieves tracking a power setpoint from the GA with an
accuracy of ±0.5kW .

C. Virtual cost function

The cost function serves as a proxy for load internal
conditions and it associates a cost to every operating point
x ∈ A and it is a map: C : A 7→ R, that is formally defined
as:

C (x) =
∑
j∈R

[U (j) ch (Tj)− (1− U (j)) ch (Tj)] , (4)

where the terms U(j) are the components of the heaters
activation vector

−→
U . This vector, given a certain state of the

system, is computed with respect to a specific operating point
x by means of LAC (Sec III-D):

−→
U = LAC (M, x).



In Eq. (4) the terms ch (Tj) are computed as:

ch (Tj) :


1 +

(
Tj − TUBj

)2
: Tj ≥ TUBj

Tj − TMj

TUBj
− TMj

: TLBj
< Tj < TUBj

−1− (TLB − Tj)2 : Tj ≤ TLBj

(5)

and they express the cost associated to heating a room j; Tj is
the room internal temperature, TUBj and TLBj are the comfort
upper and lower bounds and TMj =

(
TUBj − TLBj

)/
2.

Equation (5) returns zero when the room temperature is in
the middle of the comfort band, TM , positive when it is above
TM and negative when it is below. This design choice follows
the fact that the building exhibits the maximum flexibility for
longer time if all the rooms temperatures are in the middle
of their comfort zone. The cost is linearly defined within the
comfort zone in order to not excessively penalize deviations
from TM and it is always related to the action of heating
(U (j) = 1). It follows that the action of not heating (U (j) =
0) generates opposite cost in Eq. (4). Therefore the total cost
expressed in Eq. (4) is obtained by summing up the costs
related to each room control action. Figure 7 shows examples
of virtual costs in correspondence of different times
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Fig. 7: Example of cost function computed for different system states (t =
0.25h, t = 1h, t = 1.5h)

Note that in this case study only active power operating
points are considered and the LA does not need any infor-
mation about the building model to compute the cost. Every
time the Load Agent computes the cost function, it uses the
information on load state (temperatures) to compute the terms
ch and it calls the LAC algorithm, presented in the next
subsection, which uses the same temperature and comfort
information to compute the U (j).

D. Load Admission Control (LAC) algorithm

This subsection presents the algorithm for load Direct Power
Control (DPC) via Load Admission Control (LAC). DPC is
introduced in [5] and consists of run-time control of a DER
for the tracking of a power setpoint. It differs from the Power
Schedule by the fact that future values of the power setpoint
are not known to the DER. The interested reader can refer
to [6] and the references therein for an overview on control
policies for energy consumption in buildings.

Algorithm 1 presents the Load Admission Control, an
heuristic-based search algorithm for load online scheduling
that was first introduced in [7] for demand response applica-
tions and provision of PowerMax service [5] . However, the
algorithm presented in [7] is here modified in order to track a
power reference instead of limiting the peak power.

Define the triple γj associated to room j as:

γj =
〈
hj , P

∗
j , pj

〉
, (6)

where P ∗j is the heater rated active power consumption, hj is
a priority factor defined as:

hj =


1 : Tj ≤ TLBj

Tj − TLB,j

TUBj
− TLB,j

: TLBj
< Tj < TUBj

0 : Tj ≥ TUBj

, (7)

and pj is boolean value representing the load preemptiveness
(interruptibility). A device is interruptible if its operation state
can be modified from ON to OFF. Heaters in rooms which
temperature is below TLB are non-preemptible.

Define (M,≤) a totally ordered set of pending consumption
requests:

M =
⋃
j∈R

γj , (8)

where γk ≤ γj , ∀k > j and (≤) is a Lexicographical order.
Given a power setpoint from the GA, u, the control vector−→

U for the heaters is computed via LAC:
−→
U = LAC (M, u),

where LAC (·) is detailed in Algorithm 1.

Algorithm 1 Load Admission Control for DLC.
Variables:
• u: active power setpoint from GA (u ∈ A)
• M: set of pending power requests
• L: set of accepted power requests
• ρ: cumulative power of accepted requests
•
−→
U : control decision vector

Require:
Initialize: L = ∅, ρ = 0, U = O
for all γj ∈M do

if pj = false then
M =M\ γj , L = L ∪ γj , ρ = ρ+ P ∗j

end if
end for
for all γj ∈M do

if |u− ρ− P ∗j | <= |u− ρ| then
M =M\ γj , L = L ∪ γj , ρ = ρ+ P ∗j

end if
end for
set U (j) = 1 ∀γj ∈ L
return

−→
U

IV. SIMULATION

This section presents two simulations studies that show the
building response to signals from the LVGA when: i) six
rooms out of eight are initialized below the comfort zone
(Sec. IV-A), ii) all the rooms are initialized within the comfort
zone (Sec. IV-B). Note that the LVGA here was not modified
with respect to the simulation presented in Sec. II.
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Fig. 8: Simulation with LA - rooms initialized below the comfort zone. From
the top chart: temperature of building rooms, building power consumption,
WB2 consumption and PV3 production, building and connecting line (Line
16) currents.

A. First scenario: load initialized below the comfort zone

In this simulation, the PQt profile of the LA is initially
between −6kW and −8kW , as six rooms out of eight are
below the comfort zone (Fig. 8). The LA is able to track
the explicit power setpoint coming from the LVGA and the
building flexibility increases as soon as all the rooms enter
the comfort zone (upper chart). At this time, the LVGA fully
exploits the load flexibility when dealing with local resource
contingencies and line constraints.

One can observe that, given a combination of such events
as: increased PV production, increased building flexibility and
pending WB2 operation, the LVGA allows the WB2 to charge
(by increasing the WB2 power setpoint) and limits the building
consumption (by decreasing the LA power setpoint) in order to
avoid the congestion of the line connecting the water boiler, the
building and the two PV installations to the distribution feeder
(Line 16 in Fig. 1). As intrinsic property of composability of
the system, this behaviour emerges without the need of any
predefined control policy or manual intervention.

The building is used as a virtual electrical storage resource
by the LVGA to optimize the operation of the microgrid, as
the LA is requested to partially follow the local PV production
(PV2 receives the same irradiation of PV3). At the same time,
as the rooms approach the midpoint of the comfort zone, due
to the virtual cost function, the LVGA reduces the heating
input (Fig. 8, last part of the simulation).

B. Second scenario: load initialized within the comfort zone

Due to the initialization of the internal temperature in
all the rooms within the comfort zone, the PQt profile is
constrained between 0kW and −8kW (Fig. 9), in a way that
the building exhibits the maximal flexibility to the LVGA from
the beginning.

Figure 9 shows that only the rooms in the lower part of the
comfort zone are heated, while the LVGA operates the water
boiler WB2 in advance with respect to the previous simulation.
When WB2 is switched on, the LA is requested to reduce the
building consumption in order to not overload the feeder. At
about 1200s, the decreased PV production brings the LVGA
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Fig. 9: Simulation with LA - rooms initialized within the comfort zone. From
the top chart: temperature of building rooms, building power consumption,
WB2 consumption and PV3 production, building and connecting line (Line
16).

to reduce the WB2 charging power and restore the building
heating so that all the rooms steer toward the middle of the
comfort zone (i.e. to the minimum virtual cost).

V. CONCLUSIONS AND FUTURE WORK

This paper presented a systematic approach to abstract
the flexibility of a building heating system and interface it
with the composable framework for real-time grid control,
COMMELEC, i.e. to be able to use a building’s thermal inertia
for real-time control.

The presented simulations show the efficacy of the LA
to operate the load within the user comfort requirements
and communicate generic information to the GA to perform
explicit power control. The LA designed for the building space
heating system is independent from the building model and it
was plugged in the COMMELEC framework and tested in the
same setup presented in [2]. In this context, the next research
steps foresee the implementation of the presented LA in a real-
time control platform and test with real loads in a microgrid
setup currently developed at EPFL.
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APPENDIXB
Insights

B.1 Overview on system identification via Maximum
Likelihood Estimation

Mathematical modelling is a crucial topic in many disciplines of engineering and sci-
ence. It is a procedure that, by trading off complexity with accuracy, strives at finding
a tractable, but rather accurate, mathematical description of a system behaviour or a
physical phenomenon. The purposes are diverse, at glance we find: simulation, analy-
sis, and control systems design. System identification consists in applying numerical
methods to find the best values for the model parameters according to the observed
system behaviour.

Maximum Likelihood Estimation is a procedure leads to the set of parameters that
maximises the probability of obtaining the observed data under a chosen parametric
model. Assuming that the observations are independent and identically-distributed,
their joint probability function is:

f (x1 . . . xn| θ) =
n∏

i=1

f (xi| θ) ,

where f ( · | θ) is a parametric model that generates the data. This model is unknown,
but it belongs to a family of distributions {f ( · | θ) , θ ∈ Ω}, where θ is a vector of
parameters for this family. Denoting θ∗ the true parameters vector, we have that
f∗ = f ( · | θ∗). The aim is to obtain an estimator θ̂ that is as close as possible to θ0.

Let L denote the likelihood function, with a fixed set of parameters xi, i ∈ {1 . . . n},
and the function variable θ. If L is defined as:

L (θ;x) = f (x1 . . . xn| θ) ,

maximising L is equivalent of maximising the probability of obtaining the observed
data, given a set of parameters θ, under the parametric model f ( · | θ). In practise
it is common to maximise the logarithm of L, since ln (·) is a monotonic-increasing
function.

Denoting the log-likelihood as:

ℓ (θ;x) = lnL (θ;x) ,
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the method of MLE finds an estimate for θ∗, called θ̂, that maximises ℓ(θ̂;x):

θ̂ ⊆
{

arg max ℓ (θ;x)
θ∈Θ

}
.

MLE is based on the assumption that the model parameters are unknown variables
with Gaussian distribution, therefore their estimation is provided in terms of mean
and variance. This is particularly useful for prediction in terms of expected system
behaviour and its variance.

For a deeper insight of MLE, the interested reader can refer to [Mad08], and its
application to identification of grey-box models in [KMJ04]. The tool used in this
research for parameters estimation is Continuous-Time Stochastic Modeling (CTSM-
R), an open source toolbox for R developed by DTU Compute at Technical University
of Denmark [Dan13]. [REF: CTSM1 and CTSM2] present a closer insight on the
CTSM operation and mathematics.

B.2 A gentle introduction to Model Predictive Control

A predictive controller has an internal model that is used to predict the behaviour of
the process, starting from the current time, over a future prediction horizon. Given
a system described by:

dx

dt
= f (x, u) , (B.1)

where x is the process state, u is the control input, and f is the process model (often
non-linear), a predictive controller strives at minimising a function of the form:

V (x, u, t) =

T∫
0

ℓ (x (t) , u (t) , t) dt+ F (x (T )) , (B.2)

in which ℓ is function of the the system state x, the control input u, and the time t,
and F is function of the final state of the system. In general terms, every optimal
control problem can be expressed in this form and be solved by solving the Hamilton-
Jacobi-Bellmann equation:

∂

∂t
V 0 (x, t) = min

u∈U
H

(
x, u,

∂

∂x
V 0 (x, t)

)
, (B.3)

where H (x, u, λ) = ℓ (x, u)+λf (x, u), with the boundary condition V 0 (x, T ) = F (x)
[Mac02]. The optimal solution is therefore the following feedback control law, which
depends on actual time and actual state:

u0 (x, t) = arg min
u∈U

H

(
x, u,

∂

∂x
V 0 (x, t)

)
. (B.4)
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Unfortunately, no analytical solution has yet been found for u0, except for a re-
stricted class of problems, such as fuel minimisation for trip planning [Mac02]. How-
ever, under the linearity assumption, it is possible to reduce problem B.4 from an
optimisation over a set of functions to an optimisation over a finite set of parameters,
which are indeed the values of the control input over a finite time horizon.

Let’s start with considering the discrete time model of the system for which we
are interested in designing the MPC controller:

S :

{
xk+1 = Adxk +Bduk + Eddk
yk = Cdxk +Dduk

, (B.5)

where k is the current time step, x is the system state space, y is the system output,
Ad, BdEd CdDd are the state space matrices, u is the control input, and d is the
disturbance vector. The cost function of a predictive controller can be designed to
pursue different objectives. For instance we may be interested in following a reference
signal, limiting the control effort and the cost of control action:

V (k) =

k+N∑
j=k

∥∥yk+j|k − rk+j|k
∥∥2
Q(j)

+

N−1∑
j=0

∥∥∆uk+j|k
∥∥2
R(j)

+

N−1∑
j=0

ρk+juk+j|k . (B.6)

In B.6 N is the prediction horizon and k is the current time step, at which the
MPC optimisation is performed. The first term penalises the deviation of the system
output, y, from a given reference, r; this is used for output reference tracking (i.e
temperature in a building, state of charge of a battery, etc..). The second therm
penalises the derivative of the control signal in order to avoid having hard control
effort on the system (in this way the control signal is smoothened out). Finally, the
third term penalises the control signal itself by a weighting factor (i.e. energy price
if uj represents electrical power). Matrices Q and R in Eq. B.6 are used to assign
different weights to the squared norms: ∥x∥2Q = xTQx.

Note that MPC does not provide an analytical expression of the feedback control
law, therefore it is necessary to recompute the control vector at every time step using
the updated system state. This concept is known as receding horizon (Fig.B.1), and at
every MPC computation only the first value of the obtained control vector is applied
to the physical system.

SIMULATION TIME (SYSTEM)

PREDICTION HORIZON (MPC)

T0

k j

N0

Figure B.1: Concept of receding horizon.
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Assuming k = 0, without loss of generality, the MPC problem is stated as:

min
uj ,θj

V : 1
2

[
N∑
j=1

∥yj − rj∥2Q +
N−1∑
j=0

∥∆uj∥2R +
N−1∑
j=0

ρjuj +
N∑
j=1

ηjθj

]

s.t. xj+1 = Adxj +Bduj + Eddk
yj = Cdxk +Dduk
ymin − θj ≤ yj ≤ ymax + θj
umin ≤ uj ≤ umax
∆umin ≤ ∆uj ≤ ∆umax
θj ≥ 0

(B.7)

By massaging the equations, Problem B.7 can be casted to the following least-
square minimisation problem and solved using standard commercially-available and
open-source QP solvers:

min
x
ϕ : 1

2x
THx+ fTx

s.t. : Ax ≤ b

(B.8)

where the matrices H, f , A, and b are computed as shown in the following. Let’s
consider the system in Eq. 4.14. Its state and output at a generic time k can be
written as:

xk = Akx0 +
k−1∑
i=0

Ak−1−iBui +
k−1∑
i=0

Ak−1−iEdi ; yk = Cxk

The evolution of y in the horizon N can be written in matrix form (e.g. N = 3): y1
y2
y3


Y

=

 CA
CA2

CA3


Φx

x0+

 Hu
1 0 0

Hu
2 Hu

1 0
Hu

3 Hu
2 Hu

1


Γu

 u0
u1
u2


U

+

 Hd
1 0 0

Hd
2 Hd

1 0
Hd

3 Hd
2 Hd

1


Γd

 d0
d1
d2


D

,

(B.9)
with:

Hu
i = CAi−1B, Hd

i = CAi−1E .

Therefore, system 4.14 is equivalent to:

Y = Φxx0 + ΓuU + ΓdD . (B.10)

Recall the first therm of the cost function in Problem B.7,
N∑
j=1

∥yj − rj∥2Q; consid-

ering Eq. B.10, it can be written as:

∥Φx0 + ΓuU + ΓdD −R∥2Q = ∥ΓuU − (R− Φx0 − ΓdD)∥2Q = ∥ΓuU −m∥2Q ,
(B.11)



B.2 A gentle introduction to Model Predictive Control 127

where R denotes the vector
[
r1 r2 r3

]T . By developing the norm in Eq. B.11,
we obtain:

1

2
∥ΓuU −m∥2Q =

1

2
UTΓT

uQΓuU −
(
ΓT
uQm

)T
U +

1

2
mTQm . (B.12)

The second therm of the cost function in Problem B.7 is: 1
2

N−1∑
j=0

∥∆uj∥2R, where

∆uj = uj − uj−1. In vector notation (e.g. N = 3):

1

2

 u0
u1
u2

T  2S −S 0
−S 2S −S
0 −S S


Hs

 u0
u1
u2

+

 −Su−1

0
0

T

Mu−1

 u0
u1
u2

+
1

2
u−1Su−1 ,

or:
1

2
UTHsU +Mu−1U +

1

2
u−1Su−1 . (B.13)

The third and fourth therm of the cost function in Problem B.7 are linear, and
therefore they can be directly written as:

N−1∑
j=0

ρjuj +

N∑
j=1

ηjθj =

 ρ0
ρ1
ρ2

T

Ψ

U +

 η0
η1
η2

T

Υ

 θ0
θ1
θ2


Θ

= ΨU +ΥΘ . (B.14)

Therefore, the matrices H and f , and the vector x in Problem B.8 are:

H =

[
ΓT
uQΓu +Hs O

O ON

]

f =

[
ΓT
uQ (Φx0 + ΓdD −R) +Muu−1 +Ψ

Υ

]

x =

[
U
Θ

]
Note that the constant therms in Eq. B.12 and B.13 are offsets to the optimisation

problem, and therefore are discarded.
We continue with showing the calculations for matrices A and b. Recall the system

dynamics in Eq. B.10. We can express the first three constraints of Problem B.7 as:

ΓuU + (Φxx0 + ΓdD) ≤ Ymax +Θ
−ΓuU − (Φxx0 + ΓdD) ≤ −Ymin +Θ

,

or in matrix form:[
Γu −I
−Γu −I

] [
U
Θ

]
≤

[
Ymax − Φxx0 − ΓdD
−Ymin +Φxx0 + ΓdD

]
(B.15)
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Considering N = 3 as example, we can express the fifth constraint of Problem B.7
in matrix form: ∆umin + u−1

∆umin
∆umin

 ≤

 I O O
−I I O
O −I I

 u0
u1
u2

 ≤

 ∆umax + u−1

∆umax
∆umax


which, extracting the dependency of u−1, can be expressed with the following two
constraints: [

∆umin
∆umin

]
∆Umin

≤
[

−I I O
O −I I

]
Λ

 u0
u1
u2

 ≤
[

∆umax
∆umax

]
∆Umax

(B.16)

∆umin + u−1 ≤ u0 ≤ ∆umax + u−1 . (B.17)

Equation B.16 is re-written as:[
Λ O
−Λ O

] [
U
Θ

]
≤

[
∆Umax
−∆Umin

]
(B.18)

The fourth and sixth constraints of Problem B.7 are straightforward: I O
−I O
O −I

[
U
Θ

]
≤

 Umax
−Umin
O

 , (B.19)

where Umax and Umin are defined taking into account Eq. B.17:

Umax =
[

min {umax,∆umax + u−1} umax,1 . . . umax,N−1

]T
Umin =

[
max {umin,∆umin + u−1} umin,1 . . . umin,N−1

]T .

By combining Eq. B.15, B.18, and B.19, matrices A and b in Problem B.8 are
therefore defined as follows:

A =



Γu −I
−Γu −I
Λ O
−Λ O
I O
−I O
O −I


, b =



Ymax − Φxx0 − ΓdD
−Ymin +Φxx0 + ΓdD

∆Umax
−∆Umin
Umax
−Umin
O


. (B.20)

Concerning a Bakery unit, for example a dishwasher, it has a predefined power
pattern and an earliest starting time and latest finishing time defined by the user.
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the MPC Problem B.7 needs therefore to be reformulated as follows:

min
uj ,dj

V :
N−1∑
j=0

ujρj

s.t. ui = Pi ∀i ∈ {k . . . k + τ − 1}
k ∈ {max (0, Tearliest) . . .min (Tlatest − τ,N)}
Pi ∈ P
ρj > 0

(B.21)

Problem B.21 is reformulated as a Mixed-Integer Quadratic Program (MIQP):

min
x
V : xTHx+ fTx

s.t. : Ax ≤ b
Aeq = beq

(B.22)

where:
x = [u0 . . . uN−1| d0 . . . dN−τ−1] , x ∈ R , d ∈ {0, 1}

H = O2N−τ , f = [ρ0 . . . ρN−1|O1,N−τ ]
T

,

and τ is the process running time (in time steps), N is the MPC prediction horizon,
ρ is the energy price, and d is a slack variable indicating the process starting time.
Clearly, u is the control signal. We show the computation of matrices A and b in the
case of τ = 2 and N = 2:

A =



−1 0 0 0 0
0 −1 0 0 0

∣∣∣∣ P1 0 0 0
P2 0 0 0

0 −1 0 0 0
0 0 −1 0 0

∣∣∣∣ 0 P1 0 0
0 P2 0 0

0 0 −1 0 0
0 0 0 −1 0

∣∣∣∣ 0 0 P1 0
0 0 P2 0

0 0 0 −1 0
0 0 0 0 −1

∣∣∣∣ 0 0 0 P1

0 0 0 P2


, x



u0
u1
u2
u3
u4
d0
d1
d2
d3


, b = O2N−τ,1

where Pi is the average power consumption in the time slot i. The equality constraints
are used to ensure that the process is run at least once (in the following, we impose
just once):

Aeq = [O1,N | I1,N−τ+1] , beq = 1

B.3 Dual Decomposition.

This method is a variant of the Dual Ascent method that applies to decomposable
objective functions and allows solving the N optimisation problems separately, and
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concurrently. The basic concept is simple: to the primal problem is associated a dual
problem, which is also separable and convex. The dual problem uses an additional
variable that serves to coordinate the distributed solution of the N subproblems.
Once found the solution to the dual subproblems, assuming that the strong duality
holds 1, the solution to the primal problems is easily reconstructed.

Consider the problem:
min
x

f (x)

s.t : Ax = b
,

the associated Lagrangian function (assuming A = [A1 . . . AN ]) is:

L (x, y) = f (x) + yT (Ax− b) =
N∑
i=1

(
fi (xi) + yTAixi − yT bN−1

)
,

and the variable y is the Lagrange multiplier, called also dual variable. Let g (y)
denote the dual function:

g (y) = inf
x
L (x, y) = −f∗

(
−AT y

)
− bT y ,

where f∗ is the complex conjugate of f 2; the dual problem is:

min
y
g (y) .

Denoting the solution to the dual problem with y∗, the solution to the primal
problem, x∗ is given by:

x∗ = arg min
x

L (x, y∗) ,

provided that there is a unique minimiser of L (x, y∗) (which is actually the case since
g is convex and smooth). Therefore the N subproblems can be iterativey solved in
parallel with the following algorithm:

xk+1
i := arg min

xi

Li

(
xi, y

k
)

yk+1 := yk + α∇g (y)
,

where α > 0, ∇g (y) =
(
Axk+1 − b

)
, and for which a stopping criterion can be∥∥yk+1 − yk

∥∥2 < ε

1Strong duality holds when the primal and the dual solutions are equivalent or, in other words,
the duality gap is zero. A sufficient condition for strong duality in convex optimisation problems is
given by the Slater’s condition, which states that the feasible region must have an interior point.

2Let f : Rn 7→ R. The function f∗ : Rn 7→ R is called conjugate function and is defined as:
f∗ (y) = sup

x∈dom f

(
yT x− f (x)

)
. We see immediately that f∗ is a convex function, since it is the

pointwise supremum of a family of convex (indeed, affine) functions of y. [Boy+11]
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Note that the x-minimisation step is carried independently and in parallel. Once
the xk+1

i are computed, they are sent to the coordinator. This last carries the y-
minimisation step and broadcasts the resulting yk+1. In this context, the dual variable
can be thought as a price variable. An implementation of DMPC based on DD for
grid congestion management is present by Biegel in [Bie+12].

The Dual decomposition works if g is differentiable, and therefore ∇g (y) =(
Axk+1 − b

)
holds. In this case, the convergence is monotone, g

(
yk+1

)
> g

(
yk

)
,

and xk and yk converge respectively to an optimal point and a dual optimal point.
In some cases in which g is not differentiable, the choice of αk is different and the
algorithm may not converge or the convergence may not be monotone. For example,
if the decision variables are binary, the Dual Decomposition does not converge.

B.4 Alternating Direction Method of Multipliers.

Augmented Lagrangian methods were developed in part to bring robustness to the
dual ascent method, and in particular, to yield convergence without assumptions
like strict convexity or finiteness of f . The Alternating Direction Method of
Multipliers (ADMM) is an algorithm that blends the decomposability of dual
ascent with the superior convergence properties of the method of multipliers [Boy+11].
Without going into details of ADMM, we present below the algorithm.

Consider a problem of type:

min f (x) + g (z)
s.t. : Ax+Bz = c

where the only assumption is that f and g are non-strictly convex. Note the difference
with general linear equality constraint problem: the original variable x has been
split in x and z, with the objective function being separable across splitting. The
Lagrangian function is presented below, which has been augmented with a quadratic
therm according to the method of augmented multipliers:

Lρ (x, z, y) = f (x) + g (z) + yT (Ax+ bz − c) + (ρ/2) ∥Ax+ bz − c∥22 ,

where ρ > 0 is called penalty parameter. The augmented Lagrangian is introduced to
enhance the robustness of Dual Decomposition and to yield convergence without the
assumption of strictly convexity of f and g [Boy+11]. The ADMM algorithm follows:

xk+1 := arg min
x

Lρ

(
x, zk, yk

)
zk+1 := arg min

z
Lρ

(
xk+1, z, yk

)
yk+1 := yk + ρ

(
Axk+1 +Bzk+1 − c

)
When implementing ADMM, x and y are local variables to the subsystem i,

whereas z is the global variable. Boyd et al. in [Boy+11] point out the main fea-
tures needed to implement ADMM: mutable state: each subsystem must be able to
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store the current values of xi and yi (local variables); local computation: each subsys-
tem must be able to solve a small convex problem; global aggregation: there must be a
system for collecting and averaging the local variables, and broadcast the result back
to each system. Note that a message passing (MP) implementation is also possible in
ADMM for general consensus problems, where the z is not centrally stored and the
nodes communicate between themselves the local variables; synchronisation: all the
local variables must be updated before performing global aggregation, and the local
updates must use the latest global variable.

A general convergence result for ADMM consists in the following two conditions:
1) the functions f and g are closed, proper, and convex, and 2) the augmented La-
grangian function has a saddle point. Under these two conditions, ADMM leads to
[Boy+11]: Residual convergence, i.e. the iterates approach feasibility, Objective con-
vergence, i.e. the objective function of the iterates approaches the optimal value, and
Dual variable convergence, i.e. the dual variable converges to a dual optimal point.
The interested reader can refer to [Boy+11] for an extensive review on distributed
optimisation techniques, the ADMM method, and its application to a variety of prob-
lems.

B.5 Extremely Randomized Trees.

A tree is a data structure organised as a type of graph, where nodes and edges follow
a hierarchical structure. If a node generates other branches it is called split node,
otherwise it is a terminal node and it is called leaf node (or simply leaf ). Most of
trees applications for classification and regression use binary trees, where the split
nodes have only two outgoing edges. Note that all nodes have exactly one incoming
edge and, in contrast with general graphs, trees do not contain loops [CSK11]. The
Extremely Randomized Trees (ERT) are a type of regression trees with some peculiar
characteristics.

Let’s consider the problem of learning a general non-linear function:

f : Rm 7→ R ,

where the domain Rm is often referred as feature space and the function output is
called target value. The idea behind regression trees is that the estimation of the
target value can be performed by sequentially evaluating different properties of the
feature space. Which property to evaluate at which step depends on the previous
evaluation outcome (true or false). The regression based on trees uses the tree as
path to these evaluation steps until a leaf node is reached, where an estimation of the
target value is available.

Trees training is a supervised-learning task, in which the training dataset consist
of tuples of input-target points. The goal is to train the regressor in order to emulate
the input-output relationship hidden in the experimental data coming from the DSR.
Trees and ERT are trained by taking one training point at time. Starting from the
root, a feature (i.e. dimension of the feature space), called split feature, is randomly
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selected and a random number (split value) is drawn from a uniform distribution
which bounds are specific to each feature and correspond to the minimum and maxi-
mum observed value (this needs a pre-processing the training data set). In ERT, both
split feature and split value are chosen randomly, while in other approaches based on
trees, such as Random Forests (RF), the split feature and split value are optimised
based on a given information criterion (e.g. information Enthropy) [CSK11]. The
split feature and the split value are stored in the current node, called split node, and
are used to divide the training set in two subsets. Each point having the value of the
split feature grater than the split value is sent to the right branch, while the remain-
ing points are sent to the left branch. This divide-and-conquer process is iterated
recursively for each node, until the number of train points in a node reaches nmin.
At this point the branch growth is stopped and the node becomes a leaf node.

Split node

Leaf node

Feature = 1
Split = 1.34

Feature = 3
Split = 0.2

Feature = 2
Split = 25

Feature = 1
Split = 3.1

Figure B.2: Example of tree training

Note that at every leaf node there is a collection of train points, which includes
the target values. Then, input data with unknown target is tested according to the
tree and, when reached a leaf node, the target value is predicted by averaging the
target values of the train points present in that leaf. Being a regression tree (or ERT
in this case) a sort of piece-wise linear approximator of the training dataset, it is a
low-accuracy regressor (weak regressor).

Ensemble methods for ERT. A way of improving the regression accuracy is to
combine multiple weak regressors (base learners) in ensembles, instead of using a
single sophisticated regressor to solve the same problem [Zho12].

Most of ensemble learning approaches use a single technique to produce homoge-
neous sets of learners (regressors), even though in some applications heterogeneous
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Regressor 1

Regressor 2

Regressor n

Input Combination Prediction

Figure B.3: Example of ensemble architecture.

sets of learners can be used (e.g. decision trees, neural networks, SVMs, etc...). The
beauty and appeal of ensemble methods stay in: i) the generalisation capabilities of
an ensemble, which are often much stronger than a single strong learner and ii) the
ability of boosting weak learners, which are slightly better than a random guess, into
strong learners, which makes accurate predictions. Furthermore, the computational
time required to train weak regressors is often few orders of magnitude smaller than
strong regressors.

In this research, a number of ERTs are fitted on various sub-samples of the learning
dataset and then combined in a meta estimator by means of averaging in order to
improve the predictive accuracy and control the over-fitting. The software used to
perform such task is the Scikit Leran library for Python, which is distributed under
open-source license [SCI]. We refer the interested reader to [Bis+06] and [Has+05]
for a good insight on many machine learning techniques for linear and non-linear
signal analysis and data mining, to [CSK11] and [Bus+10] (appendix) for a closer
look at classification and regression trees, and to [Zho12] for an overview on ensemble
methods.

B.6 Value-iteration Dynamic Programming

The final goal of DP is to obtain a control policy that maximises the cumulative
rewards along a trajectory starting from any initial state x0, consequently the reward
obtained by the controller in the long run. Recalling Eq. 5.6 and specialising it for
the finite-horizon case, the Q-function associated to a generic policy h is:

Qh (x, u) = ρ (x, u) +
T∑

k=1

γkρ (xk, h (xk)) , (B.23)

where T is the finite control horizon. The optimal Q-function is defined as the best
Q-function that can be obtained by any policy:

Q∗ (x, u) = max
h

Qh (x, u) . (B.24)
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The Bellman optimality equation characterising Q∗ states that the optimal value
(reward) of an action u taken in state x corresponds to the immediate reward plus
the discounted return obtained by the best action in the next state [Bus+10]:

Q∗ (x, u) = ρ (x, u) + γmax
u′

Q∗ (f (x, u) , u′) (B.25)

The algorithm used in this section consists in iteratively computing the Q-function
(from which the name Q-iteration) until Q∗ is obtained. Then, the optimal policy
h∗ is derived from Q∗ with:

h∗ (x) ∈ arg max
u∈U

Q∗ (x, u) . (B.26)

The proof of convergence for the Q-iteration algorithm is provided in [Bus+10],
and it is based on the fact that the update of the Q-function:

Ql+1 = Ψ(Ql) , (B.27)

is given by the map Ψ(Q):

[Ψ (Q)] (x, u) = ρ (x, u) + γmax
u′

Q (f (x, u) , u′) , (B.28)

which is a contraction. Therefore it follows that:

Q∗ = Ψ(Q∗) , (B.29)

and equation B.27 is iterated until Ql = Ql−1 or another stopping criterion is met.
We are interested in obtaining from the DP controller a closed-loop policy that

contains the optimal control actions for any internal temperature at any time within
the optimisation time horizon. Therefore the backward induction approach is suitable.
The following python code shows how the implemented DP controller works, which
optimises the control action from the end of the control horizon backward to the
beginning, at every state (measured temperature).

1 f o r t in np . arange (tmax,−1,−1) :
2 print ’ time : ’+s t r ( t )
3 CostToGoNew = np . zeros (np . shape (CostToGo) ) ;
4 policyMap = np . zeros (np . shape (CostToGo) ) ;
5 f o r stateC in np . arange (0 ,np . shape ( stateArray ) [ 0 ] , 1 ) :
6 # Select a s p e c i f i c s tate to analyze
7 s tate = stateArray [ stateC ] ;
8 temp = [ ] ;
9 controlArrayLocal = controlArray ;

10 f o r contro l in controlArrayLocal :
11 data_input = Test_set1 [ t , 1 : ]
12 l o ca lPr i c e = contro l * pr iceS igna l [ t ]
13 data_input [ 0 ] = state # T( i )
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14 data_input [ 1 ] = contro l # u( i )
15 out = MODEL0. predict ( data_input ) # T( i+1)
16 Vnext = np . interp (out , stateArray ,CostToGo) ;
17 temp = np . append(temp , loca lPr i c e+Vnext) ;
18 indexMin = temp . argmin () ;
19 minner = temp [ indexMin ]
20 CostToGoNew[ stateC ] = minner ; neurons
21 policyMap [ stateC ] = indexMin ;
22 CostToGo = CostToGoNew;
23 CostToGo [ stateArray <20.2] = 1e9 ; # deal with comfort
24 CostToGo [ stateArray >21.8] = 1e9 ; # deal with comfort
25 policyMat = np . vstack ( [ policyMat , policyMap ] ) ;
26 VMat = np . vstack ( [VMat,CostToGoNew] ) ;

The main loop goes from the end of the optimisation horizon (tmax) to the be-
ginning of time, the computed policy is stored in the variable policyMap, and the
value function in the CostToGo. Synthetically, this DP algorithm determines, for
every time step, for every internal temperature, the best control action from all the
possible control actions.

If we intended to perform DP optimisation for Problem 5.4, the previous code
should have been extend with an additional nested loop, that for each measured
internal temperature had to determine the action to be taken at each Ti (t− 1). This
would have led the problem dimension to grow by one order of magnitude, resulting
in a matrix of policies, where one policy of the type shown in Fig.5.9 is associated to
every possible value of Ti (t− 1).
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