Reprogramming amino acid catabolism in CHO cells with CRISPR-Cas9 genome editing improves cell growth and reduces by-product secretion

Ley, Daniel; Pereira, Sara; Pedersen, Lasse Ebdrup; Arnsdorf, Johnny; Hefzi, Hooman; Lund, Anne Mathilde; Kwang Ha, Tae; Wulff, Tune; Kildegaard, Helene Fastrup; Andersen, Mikael Rørdam

Publication date:
2017

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
CHO cells primarily utilize amino acids for three processes: biomass synthesis, recombinant protein production and catabolism. In this work, we disrupted 9 amino acid catabolic genes participating in 7 different catabolic pathways, to increase synthesis of biomass and recombinant protein, while reducing production of growth-inhibiting metabolic by-products from amino acid catabolism.

Key message

CHO cells utilize amino acids for three processes: biomass synthesis, recombinant protein production and catabolism. Disruption of single amino acid catabolic pathways in CHO cells reduces specific production of by-products, while increasing growth and viability.

Overview of experiments

Target genes were identified using a metabolic network reconstruction of amino acid catabolism. Gene knock-out was performed with CRISPR-Cas9. Single cells expressing GFP-linked Cas9 were enriched on FACs. Physiology of gene-edited clones was assessed in shake flasks and bioreactors. Phenotypes were validated by targeted genome sequencing, qRT-PCR, western blot and proteomic analysis.

Validation of functional gene knock-out

Functional gene disruptions were validated using deep sequencing of the targeted genomic loci, gene expression analysis, western blots and proteomics. All genes displayed out-of-frame mutations (A) and generally reduced transcription (B). Western blots indicated potential wild type proteins in some clones (C), to proteomic analysis and mRNA sequencing was applied to verify functional knock-out of target genes (ongoing work).

Physiology of multiple gene disrupted CHO cells

To explore potential synergistic effects of disrupting multiple pathways, we targeted gene 1-4 for knock-out, but did not achieve full knock-out of all genes. Still, we isolated two clones with interesting genotypes. Clones were characterized in duplicated bioreactor cultures and showed further reduced lactate and ammonium secretion, but no growth benefit.

References

1. Madsbad et al. (2019), Biotechnology and Bioengineering, 114(8), pp. 1779-1790.