Reprogramming amino acid catabolism in CHO cells with CRISPR-Cas9 genome editing improves cell growth and reduces by-product secretion

Ley, Daniel; Pereira, Sara; Pedersen, Lasse Ebdrup; Arnsdorf, Johnny; Hefzi, Hooman; Lund, Anne Mathilde; Kwang Ha, Tae; Wulff, Tune; Kildegaard, Helene Fastrup; Andersen, Mikael Rørdam

Publication date:
2017

Citation (APA):
Reprogramming Amino Acid Catabolism in CHO Cells with CRISPR-Cas9 Genome Editing Improves Cell Growth and Reduces By-Product Secretion

Daniel Ley1,2, Sara Pereira2, Lasse Ebdrup Pedersen2, Johnny Arnsdorff2, Hooman Hefzi3,4, Anne Mathilde Lund1, Tae Kwang Ha2, Tune Wulff2, Helene Faustrup Kildegaard2, Mikael Rørdam Andersen1.

(1) Network Engineering of Eukaryotic Cell Factories, Department of Bioengineering and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark. (2) Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark. (3) Department of Bioengineering, University of California, San Diego, United States. (4) Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, United States.

Correspondence: Daley@biosustain.dtu.dk / Mr@bio.dtu.dk, 24, pp. 1102-1107.

Key message
CHO cells primarily utilize amino acids for three processes: biomass synthesis, recombinant protein production and catabolism. In this work, we disrupted 9 amino acid catabolic genes participating in 7 different catabolic pathways, to increase synthesis of biomass and recombiant protein, while reducing production of growth-inhibiting metabolic by-products from amino acid catabolism.

Background
Amino acid catabolism produces a wide range of growth inhibiting compounds1, amongst these ammonium and lactate. Ammonium is produced by transamination and deamination reactions2, whereas lactate is produced by either amino acid catabolic pathways fueling glycolysis or by NADH producing catabolic pathways, which forces the cell to regenerate NAD+ through lactate synthesis3. Disruption of amino acid catabolic pathways may reduce production of growth-inhibiting metabolic by-products.

Physiology of single gene disrupted CHO cells
To study the physiological impact of disrupting single amino acid catabolic pathways, we characterized single gene disrupted clones in triplicate shake flask cultures in batch mode. We monitored physiological changes in terms of maximum specific growth rate (\(\mu_{\text{max}}\)), integral of viable cell density (IVCD) and secretion of lactate and ammonium.

Single gene disrupted clones generally showed an increased growth phenotype with 8 of 9 clones displaying increased \(\mu_{\text{max}}\) (up to 115% of WT), while 6 of 9 clones had increased IVCD (up to 136% of WT). Specific secretion of lactate was reduced in 4 of 9 clones (down to 81% of WT), while specific secretion of ammonium was reduced in 5 of 9 clones (down to 91% of WT). Monoclonal antibody titers increased proportionally to IVCD (data not shown).

To exclude that the improved phenotypes are caused by clonal variation, we characterized multiple clones with different mutations in gene 4 and 6, and found a strong link between genotype and phenotype.

Validation of functional gene knock-out
Functional gene disruptions were validated using deep sequencing of the targeted genomic loci, gene expression analysis, western blots and proteomics. All genes displayed out-of-frame mutations (A) and generally reduced transcription (B). Western blots indicated potential wild type proteins in some clones (C), to proteomic analysis and mRNA sequencing was applied to verify functional knock-out of target genes (ongoing work).

Conclusion
Disruption of single amino acid catabolic pathways in CHO cells reduces specific production of lactate and ammonium, while increasing \(\mu_{\text{max}}\) and IVCD, leading to increased titers of recombinant proteins. Disruption of multiple catabolic pathways further reduces secretion of lactate and ammonium, but does not increase growth. Thus, we recommend combinatorial disruption of multiple amino acid catabolic pathways, to identify a set of disruptions that increase growth, while reducing secretion of lactate and ammonium.

References
4. Ley & Kæmpe et al. (2017), Biotechnology and Biobusiness, 11(11), pp. 2373-2397.