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INDUSTRIAL PROCESS CONTROL

Kim J. Vicente and Jens Rasmussen

Abstract.  There are two properties of process control environments that cre-
ate a need for effective computerized decision support.  First, the fact that
the system is usually quite reliable means that faults are relatively infre-
quent.  Consequently, operators have great difficulty in dealing with these
situations because they are so unfamiliar to them.  To make matters even
worse, it Ls under those very same rare, abnormal conditions that the risk of
endangering system safety is greatest.  Decision support systems are being
built to help operators cope with these demands.  As a result, the operating
staff and the computerized control system are involved in a complex cogni-
tive system, in which several different task allocation policies can be chosen.
This paper discusses how to determine what the cognitive architecture of the
decision support system should be in order to achieve effective and reliable
performance. A taxonomy of decision support techniques is proposed, and
the appropriateness of each for the various problem solving tasks that are
typically encountered in process control is discussed.  The considerations
associated with the presentation of evidence in the form of a problem repre-
sentation and the presentation of expert advice are treated in greater detail.
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1. INTRODUCTION

Several recent trends in technological development have some significant
implications for the problems encountered in designing decision support
systems.  Centralization leads to large and, hence, potentially risky installa-
tions.  Therefore, it is not enough to design decision support systems that
are very efficient and successful for frequently encountered tasks.  It is im-
portant that system performance measures reflect performance during com-
plex rare events as well.  Another consideration is that automation has
moved the operating staff to higher level supervisory control tasks.  Thus,
operator support is essential for complex cognitive tasks such as diagnosis
and planning.  As a result, the operating staff and the computerized control
system are involved in a complex cognitive system, in which several basically
different task and responsibility allocation policies what we call the cognitive
architecture of the decision support system - can be chosen.

Clearly, providing effective decision support for industrial process control
systems is a very important, but very complex, issue.  In this paper, we dis-
cuss the problems and considerations that should be taken into account
when selecting an appropriate form of decision support for such systems.
First, we describe a framework for cognitive task analysis (CTA) which pro-
vides a methodology for selecting an appropriate cognitive architecture for
the DSS.  Secondly, we propose a taxonomy of decision support methods,
and discuss the appropriateness of each category of support for typical plant
requirements.  The CTA framework will be used as a reference for evaluating
the match between the demands of the task and the form of support being
provided.  Finally, we provide a more detailed discussion of two support
functions: decision support through presentation of evidence, and decision
support through presentation of advice.  While we will only be concerned
with process systems in this paper, much of the discussion generalizes to
other complex domains (cf.  Vicente, 1987 for the domain of emergency
management).

2. A FRAMEWORK FOR COGNITIVE TASK ANALYSIS

A methodology is required f or matching the characteristics of a problem
domain to the different forms of computerized decision support that technol-
ogy has made available.  Rasmussen (1986) has proposed a framework for
cognitive task analysis (CTA) that serves this purpose.  In this section, we
will provide a brief description of the rationale behind the framework, as well
as the different phases of the methodology.  The approach described here is
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in contrast to the more traditional method of designing according to norma-
tive procedures.

In general terms, the goal of a CTA is to design a DSS that provides the op-
erator with a resource envelope within which he can act in normal, as well
as unforeseen situations, without violating his resource limitations.  This
goal is accomplished through a four phase methodology.  First, the func-
tional properties of the system are represented in a problem space defined
by a part-whole dimension and a means-end dimension.  This is a technical
analysis of the system from an engineering perspective with the purpose of
identifying the system's control requirements.  The second phase consists of
analyzing the decision making activities associated with meeting the control
demands of the domain.  This should be conducted within a device inde-
pendent framework, such as the decision ladder described by Rasmussen
(1986).  During this stage, it is also important to evaluate the extent to
which stereotypical bypasses in the decision sequence can be analyzed and
implemented by automatic functions in order to simplify the decision task
during actual operations for well structured and foreseen situations.  The
third phase in the CTA methodology consists of identifying the mental
strategies and heuristics that can be used to effectively and reliably carry
out the decisions outlined in the previous phase.  This usually requires em-
pirical studies of the strategies people use in their work context so that the
resource requirements for each strategy, and the criteria that people adopt f
or strategy selection can be determined.  Finally, the fourth phase is an
evaluation of the match between the resources available for implementation
of the strategies by means of the three decision making agents: designer, op-
erator, and process computer.  The product of this phase should be a speci-
fication for the allocation of the decision making activities between these
three agents.  For this, a set of models of human information capabilities
and limitations is necessary, together with knowledge of the subjective task
formulation and performance criteria which are likely to control the choice of
strategy in the actual situation.

The procedure outlined above will allow designers to develop an appropriate
cognitive architecture for the DSS, one that maximizes the match between
the demands of the domain and the resources available to each of the three
decision making agents.  Similar procedures have been applied to determine
the information support requirements for various work domains (cf.  Cohen,
May, and Pople, 1987; Hoc, 1987).  Typically in process control systems, the
resulting cognitive architecture will require an intimate cooperation between
designer, operator, and process computer.
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3. A TAXONOMY OF DECISION SUPPORT TECHNIQUES

In this section, we propose a taxonomy of decision support techniques.  Us-
ing the CTA framework as a reference, we will discuss how appropriate each
form of support is for the various problem solving tasks that are typically
encountered in process control.  Before entering into the description of the
taxonomy, it is important to briefly describe the problem solving activities
that we are attempting to support.

3.1. Process Control Activities

Problem solving in a process plant consists of three generic activities: state
identification, decision making, and planning.  These are illustrated in Fig-
ure 1, which is a simplified version of Rasmussen's (1986) decision ladder.
State identification, which in unfamiliar situations becomes diagnosis, cre-
ates a need for integrating the individual physical variables that are meas-
ured by the system's sensors into higher level information characterizing the
situation to act upon.  The decision making activity consists of selecting a
target state to be achieved.  Usually, it takes place at a higher conceptual
level than either data measurement or action.  Finally, planning involves the
decomposition of intentions onto actions on elementary components, such
as switches and valves.  The discussion below is centered around how to
match the form of decision support provided by the different categories in
the taxonomy to the requirements of each of these different processing
tasks.

Figure 1. Generic Problem Solving Activities in Process Control.

There are many different forms of computerized decision support that could
be provided for industrial process control.  Table 1 describes a taxonomy of
the general categories of computer support.  The list is not meant to be ex-
haustive nor definitive, but merely illustrates the range of alternatives that
can be considered for information support.  The categories are listed in de-
creasing order according to the degree of user involvement in the decision
making process.  The categories can also be described with reference to Fig-
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ure 1, since they represent a logical progression of support of the operator's
problem solving activities.  Thus, categories 1 and 2 are related to the re-
trieval of measured data.  The third category is concerned with relieving the
operator's load by having the computer perform the data integration associ-
ated with state identification, the goal decomposition involved in planning of
action sequences, and the execution of actions, thereby allowing the opera-
tor to concentrate on goal setting and decision making activities.  The fourth
category of decision support goes even further by adapting the presentation
of information to the mental strategy that the operator is adopting.  The fifth
category is different from all the preceding ones since it supports the deci-
sion making activity itself by providing advice.  Finally, in the last category,
the computer actually carries out the decision making activities itself.  Each
of the categories is described below in more detail, and the important con-
siderations for each are discussed.

Table 1. Categories of Computerized Decision Support for Industrial Process
Control.

CategorV Form of Decision Support Provided

1 Data retrieval, analysis, and presentation.

2 Data filtering and selection.

3 Data integration to decision level.

4 Problem representation matching user.

5 Advice with explanation facility.

6 Fully automated decision system.

3.2. Data Retrieval, Analysis-,- and Presentation

The first category represents the case where the computer system serves as
a means f or communicating raw data to its users.  This stage merely repre-
sents a simple transfer of the one-sensor-one-indicator technology found in
traditional control rooms to a computerized medium.  Data are presented
individually even though they may be displayed in various screen formats
(e.g., grouped by function).  Computer support would be in the form of sen-
sor and data validation and display formatting.  The operator has unlimited
access to all primary data but he is left with a data retrieval problem,
searching for the proper format, that he must deal with.  This function may
require special retrieval tools.  With this category of support, the locus of de-
cision making control resides entirely with the user, and he must base his
decision on primary data alone.
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3.3. Fully Automated Decision System

At the other extreme, category six, we have the case where the entire deci-
sion making process is completely automated.  In this case, the locus of
control resides entirely with the computer (representing the designer's fore-
sight); no operator involvement is required.  This form of decision support is
most appropriate for well-structured situations.  For example, in the case of
a plant start-up sequence, the designer can carry through all the decision
steps, except the execution itself, and store the design in a decision table in
a computer.  Complete automation of decisions is also typically applied for
safety functions, such as automatic shut-down.  In order to cope with rare,
abnormal events in a reliable way, it is important to adopt a very conserva-
tive definition of symptom patterns to guarantee the integrity of the plant.
Therefore, the operator is left with an important task.  To protect plant op-
eration from unnecessary intervention due to conservative safety measures,
he must keep the state of the system away from the operating regions that
trigger the automatic protection mechanisms.

It should be noted that, even when the computer performs stereotypical
control based on design decisions, the operator will be required, or desire, to
monitor performance of the automatic system.  Thus, he must be supplied
with information on system states and designers, intentions, thereby ena-
bling him to verify decisions by his own preferred decision strategy.  The im-
portance of this type of support cannot be overemphasized (cf.  Lehner and
Zirk, 1987).  Without it, the operator will be ill equipped to take over control
of the system when an abnormality occurs.  Perhaps even more importantly,
due to a lack of understanding, he may also attempt to take over control of
the system when he should not, as was the case with the Dresden 2 acci-
dent.  Making the activities and strategies of automated functions transpar-
ent to the operator will thus allow him to retain a more detailed knowledge of
the current state of the system.  This will provide him with a stronger basis
for deciding when and how to manually take over the system.  Taxonomy
categories 3, 4, and 5 indicate the type of support that should be provided to
improve understanding of automated functions.

We have actually provided a very simplified description of this type of sup-
port.  While the discussion has benn limited to the case where the operator
has no involvement in the decision process, instances of automation can be
further classified into finer categories (e.g., whether the operator is notified
of the computer's action, whether an explanation is given, and so on).  For a
more in depth discussion of these factors and their relationship to supervi-
sory control, see Sheridan (1987) and Moray (1986).

3.4. Data Filtering and Selection
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In the second category, the operator only has access to the information that
is relevant to the current decision making activities. The computer filters
away the extraneous raw data, based on its knowledge of the current proc-
ess state.  An example of this type of support is the use of logical f ilters to
reduce the number of alarms that are activated at any one time.  This form
of support requires that the designer perform an analysis to identify con-
straints that can be used to successfully minimize the presentation of infor-
mation, and then program the results, usually in the form of a decision ta-
ble, into the process computer.  An important consideration is that the
analysis performed by the designer may be inadequate to cope with multiple
faults due to non-additivity of symptoms (see, for instance, the discussion in
Rasmussen and Rouse, 1981, p. 350).

3.5. Data Integration to the Decision Level

In the third category, the representation of information is tailored to the
user's decision making needs.  Unlike the previous categories which only
communicate primary data, in this category, the data are processed by the
system to provide higher level information about the state of affairs.  In a
similar manner, the user can express his intentions at a high level of ab-
straction as these will be decomposed into actions on lower level compo-
nents by a computerized sequence controller.  It is important to note, how-
ever, that this form of support does not force the user to adopt a given high
level of representation.  Rather, the DSS makes different display formats
available to the user and allows selection according to the actual need.  The
result is information that is more appropriate for decision making purposes.
The reduction in mental effort allows the users to devote their attention to
the actual decision problem, while the computer takes care of data analysis
and planning.  For an example of a successful implementation of this form of
advice, see Mitchell and Saisi (1987).

This form of decision support should be adopted only when it can be based
on a consistent engineering analysis.  Whether or not this will be possible
depends on two factors: first, whether it is possible to accurately describe
the process, behavior in a formalized manner, and secondly, whether it is
possible to develop a control algorithm that will deal with the degrees of
freedom that are necessarily associated with control from a high level of ab-
straction.  In principle, systems based on symptomatic state identification
derived from the designers preview of situations and the related engineering
analysis are only suited to routine, well structured situations, not for distur-
bance control.  In these cases, a designer can only offer advice, which is dis-
cussed in a subsequent section.  Another support for the problem identifica-
tion function is to arrange data in graphic formats representing the rela-
tional structure of the process to be controlled in a way that supports direct
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perception and manipulation.  A theoretical framework that suggests princi-
ples for implementing this type of decision support will be presented in a
later section.

3.6. Problem Representation Matching User

In the fourth category, the information system is designed to be sensitive to
its users.  In this case, the DSS would develop a model of each user's sub-
jective preferences.  This model would then allow the system to identify the
mental strategy and the level of functional representation a user is adopting,
and thereby fit the preprocessing of data and level of intentions to that par-
ticular strategy.  As with the previous category, the user can over-ride the
context sensitivity mechanism if he wants to view a different display repre-
sentation.  An example of this type of support would be a DSS that could
identify whether an operator was adopting a symptomatic or topographic di-
agnostic search strategy (Rasmussen, 1986). Because the strategies have
very different requirements in terms of resources, information, and actions,
the operator's task would be greatly facilitated if the computer would adapt
the sequence and format of information presentation according to the strat-
egy being adopted.  A first step towards this type of decision support has re-
cently been taken by Rubin, Jones, and Mitchell (1987) who have developed
a program, based on a blackboard architecture, that is capable of inferring
an operator's intentions.

This form of decision support should be adopted when it is possible for the
designer to identify a set of mental strategies that operators adopt, as well as
their respective support requirements.  This knowledge can then be used to
constrain the content or form of the information that should be displayed to
the operator.  The intent is to, whenever possible, provide a problem repre-
sentation that is appropriate for the current decision making needs, thereby
reducing cognitive load.

3.7. Computerized Advice Giving

In the fifth category, computer support is provided in the form of expert ad-
vice.  In this case, the computer is not only providing a mediating level be-
tween the operator and the process, but it is also acting as an assistant or
advisor, performing analyses requested by the operator.  Whereas the previ-
ous level provided the operator with evidence, this level provides the operator
with advice.  As an example, the user could provide input data into the sys-
tem, and the system would provide recommendations for action or hypothe-
ses by accessing its knowledge base of rules.  The final decision concerning
what action to take, however, resides with the user.  In addition, the system
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could also provide some form of explanation facility so that the user can
know how the system arrived at its conclusion.

An important consideration for an advice giving DSS is to provide the opera-
tor with information about the complex relationship between overall pur-
poses and goals and the intentions behind the design at the lower levels of
functions and equipment (Rasmussen, 1987).  While often ignored, top-down
information about the designers, intentions and reasons is crucial for judg-
ing whether preplanned procedures or other safety measures such as inter-
locks can be safely overridden.

This category of decision support is appropriate for situations where the de-
signer is able to plan proper tasks and procedures, for instance for system
protection, but is not able to foresee the  related disturbed system states.  In
this case, diagnosis must be performed on-line by operator and computer in
various degrees of cooperation.  This category of support will be discussed in
more detail in a later section with reference to the characteristics of expert
systems.

3.8. Conclusion

The preceding discussion suggests that two functions are particularly im-
portant for the different categories of decision support.  One is to present
preprocessed information to the system operators in a way that matches
their immediate task at the level of their mental processes.  Another is the
advice giving function.  These two aspects will be discussed in more detail in
the following sections.

4. PROVIDING THE OPERATOR WITH EVIDENCE

In this section, we will present a discussion of the problems related to the
presentation of pre-processed information to an operator in a way support-
ing direct perception and manipulation, i.e., by designing a high level repre-
sentation of the problem space.

4.1. Ecological Interface Desiqn

Ecological interface design (EID) is a theoretical framework that provides
principles for developing appropriate mappings between the process being
controlled, the interface surface, and the operator's mental model.  In this
section, the fundamentals of EID are discussed and then illustrated by con-
sidering the activities associated with cognitive control of a process plant.
For a more comprehensive account of EID, see Vicente and Rasmussen
(1988) and Rasmussen and Vicente (1987).
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4.1.1. Making visible the invisible

EID is based on the skills, rules, and knowledge framework of cognitive
control proposed by Rasmussen (1986).  The principal goal behind the the-
ory is to design an interface that will not force cognitive control to a level
higher than that required by the demands of the task, and yet that provides
the appropriate support for each of the three levels.  In order to design such
an ,ecological interface', the following factors must be taken into considera-
tion.  First, it is necessary to merge the observation and action surfaces so
that the time-space loop is maintained, thereby taking advantage of the effi-
ciency of the human sensorimotor system.  In addition, it is also necessary
to develop a consistent one-to-one mapping between the abstract properties
of the internal process to be controlled and the cues provided by the ma-
nipulation/observation surface.  The idea is to make the invisible, abstract
properties of the process (those that should be taken into account for deep
control of the process) visible to the operator.  In semiotic terms, this means
that the cues provided by the interface have a consistent mapping onto the
symbolic process properties.  In this way, the same conceptual model may
act as a symbolic representation when considered in relation to the elements
of the environment and the laws controlling their relationships, and as a
system of prescriptive signs when considered in relation to the rules for
model actions on the system.

4.2. Cognitive Control of a Process Plant

Figure 2 illustrates the mappings between the process, the interface, and the
operator's mental model for a typical process system.  The activities associ-
ated with each of the three levels of cognitive control are described below.

4.2.1. Skill-based level

Because the operator cannot directly observe or act on the process, the sen-
sorimotor control patterns at the skill-based behavior level will only be con-
cerned with the manipulation of items on the interface surface.  The use of a
mouse or a trackerball is preferred to command languages for this task be-
cause it maintains the communication of spatial-temporal aspects of the
perception-action loop intact.  To allow the development of a high degree of
manual skill, the interface must be designed in such a way that the aggre-
gation of elementary movements into more complex routines corresponds
with a concurrent integration (i.e., chunking) of visual features into higher
level cues for these routines.  Thus, the display of information should be
isomorphic to the part-whole structure of movements rather than being
based on an abstract, combinatorial code like that of command languages.
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4.2.2. Rule-based level

The rule-based level governs the choice of control alternatives.  The display
provides the operator with signs that he uses as cues for the selection of an
appropriate action.  Typically, the action alternatives consist of a set com-
prised of operating procedures and routine control strategies.  One of the
problems with conventional interfaces is that the cues they provide the op-
erators with are not uniquely defining with respect to the current process
state.  The result is that the cues that operators rely on are optimized for
frequently encountered situations, but they can lead to 'procedural traps' in
novel situations.  EID attempts to overcome this difficulty by developing a
unique and consistent mapping between the symbols that govern the be-
havior of the process, and the signs, or cues, that the interface displays.
This will reduce the frequency of errors due to procedural traps because the
cues for action, being based on abstract process properties, will be uniquely
defining.

4.2.3. Knowledge-based level

Knowledge-based behavior consists of abstract reasoning based on a mental
model of the process.  EID supports this level of cognitive control through
the mapping of signs onto symbols.  This mapping turns out to be very com-
plex because the symbolic reference can be to several different conceptual
levels representing general functions, physical processes, or equipment
anatomy, depending on the actual circumstances (Rasmussen and Good-
stein, in press).  This means that, in addition to serving as cues for action,
the same display configuration can also be interpreted in several ways as
symbols for reasoning.  Thus, if the display configuration is interpreted
symbolically, it presents the operator with a visible model of the process that
can support thought experiments and other planning activities.  In addition,
it is suggested that such a mapping will also support functional under-
standing necessary for error recovery.  If signs can also be interpreted as
symbols, then this may force the user to consider informative aspects when
looking for action cues.

Display formats having these features can, in some cases, readily be devel-
oped from the ‘externalised mental models' which are normally being used
as a support of functional reasoning in the form of graphic representation of
relational structures such as technical drawings, graphs, and diagrams.
Semiotic analyses of the use of such professional representations in actual
work (Cuny and Boy6, 1981) have shown that they are actually interpreted
as prescriptive signs or descriptive symbols, depending on the requirements
of the task.  Such an interface based on the engineering representation of
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two-phase thermodynamic systems in terms of a Rankine cycle diagram has
been proposed by Beltracchi (1987).

4.3. Summary

The EID approach to interface design can be summarized as follows:

1. Synthesize the control and the observation surfaces so that interaction
can take place via time-space signals;

2. Have the computer perform the translation task by developing a con-
sistent, one-to-one mapping between the invisible, abstract properties
of the process and the cues or signs provided by the interface.
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3. Display the process, relational structure directly to serve as an exter-
nalised mental model that will support knowledge-based processing.

The framework has the advantage that it is based on fundamental properties
of human cognition (the SRK model), which in turn means that its generalis-
ability is greatly enhanced.

5. PROVIDING THE OPERATOR WITH ADVICE

In this section, we will analyse the case where the operator and the com-
puter are involved in co-operative decision making.  We begin by considering
the classical expert systems approach.

5.1. Limitations of the Expert System Approach

Bobrow, Mittal, and Stefik (1986) provide an excellent review of both the ca-
pabilities and the limitations of state of the art expert systems.  Their ac-
count is founded on the experiences, both successful and otherwise, that
knowledge engineers have had in building various expert systems.  They be-
gin by stating: "Expert systems are no panacea for achieving the impossible
or even the very difficult .... Instead, there are a number of fundamental is-
sues and requirements that must be considered" (Bobrow et al., 1986, p.
881-2).  Based on their extensive experience in the area, they then go on to
provide a set of guidelines for choosing appropriate problems and developing
successful systems.  The emphasis is on the fact that the characteristics of
the application are the prime factors in determining the success of the ex-
pert system.  In this section, we will take up some of their guidelines and see
how the domain of process control measures up to the types of problems
they consider appropriate for expert system use.

In general terms, expert system technology is best suited for tasks that are
"fairly routine and mundane, not exotic and rare" (Bobrow et al., 1986, p.
886).  Applying this recommendation to process control leads to the conclu-
sion that expert systems may be appropriate f or supporting the operator
during normal conditions, but not during the rare situations where abnor-
malities are present.  However, as mentioned earlier, it is during these un-
foreseen events that decision support is needed the most.

Another prerequisite for a successful expert system is the availability of a
domain expert.  "The expert must ... understand what the problem is and
have actually solved it quite often. it is not enough to have somebody with a
theory about how cases like this should be handled or some good ideas
about a new way to do things" (Bobrow et al., 1986, p. 887).  Again, this de-
scription does not compare favorably with the characteristics of rare event
detection and diagnosis.  Each abnormality presents the operator with a
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unique problem, and therefore, it will not be possible for designers to antici-
pate and effectively support all of the faults that an operator may encounter.
Anticipated decision support will always be unreliable.  In more direct terms,
"there are no Three Mile Island diagnostic experts" (Rasmussen and Rouse,
1981, p. 689).

Also, Bobrow et al. (1986, p. 887) warn that "problems that are known to re-
quire English-language understanding, complicated geometrical or spatial
models, complex causal or temporal relations, or understanding of human
intentions are not good candidates for the current state of the art in expert
systems." Clearly, process control posesses several of these problematic
qualities.  In particular, it is the causal nature of these systems allowing
events to propagate over time which makes them so complex and difficult to
control.

The evidence presented so far gives strong reasons to believe that expert
systems may not be the most appropriate way to aid the operator in process
control, at least under abnormal conditions.  However, the guidelines pre-
sented by Bobrow et al. (1986) are based on the experiences designers have
encountered in implementing expert systems to date.  It may be the case
that the limitations identified above are not inherent in the expert system
approach, but rather they may be a result of present-day implementations.
If the latter is true, then it may indeed be possible to build effective DSS in
the expert system tradition for process control environments.  To determine
whether or not this is the case, we must determine what, if any, are the
limitations that are not inherent in the approach, and what can be done to
overcome these.

5.2. The Epistemology of Expert Systems

In order to partition the limitations of existing expert systems into those that
can be avoided and those that cannot, it is necessary to have an abstract
description of what an expert system does and how it does it.  To fit our
purposes, such a description should refer to different types of knowledge
represented within the expert system, but in a way that is independent of
the particular application.  Clancey (1985) has developed an epistemological
description of expert systems which meets these requirements.

5.2.1. Heuristic classification

Based on his extensive involvement with the MYCIN project and a thorough
analysis of many other expert systems, Clancey (1985) has determined that
all expert systems solve problems in the same general way.  This method,
called heuristic classification, involves relating concepts in different classifi-
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cation hierarchies by non-hierarchical, uncertain inferences.  The general
structure is shown in Figure 3. From this f igure it can be seen that, in heu-
ristic classification, data statements are first abstracted and then associ-
ated, preferably with specific problem solutions, or alternatively, with fea-
tures that characterize a solution.  As an example, MYCIN heuristically re-
lates an abstract characterization of the patient to a classification of dis-
eases (see Figure 4).  This description of heuristic classification is necessar-
ily a simplified account.  Clancey (1985) provides a more detailed description
of the method along with several references to existing expert systems.

Figure 3. Inference Structure of Heuristic Classification, (adapted from
Clancey, 1985).

Since heuristic classification is an abstract concept, it is useful to illustrate
it by a concrete example.  Figure 4 illustrates the line of reasoning behind a
single MYCIN rule: If the patient's white blood count is less than 2.5, then
the infection is of type E.coli. There are two interesting things to note.  First,
most of the reasoning shown in Figure 4 is not explicitly embedded in the
rule.  The knowledge that allows one to infer that there is a compromised
host from the fact that WBC < 2.5 is simply not represented.  This presents
some problems which we will describe later.  Secondly, it should also be
noted that the inference from the patient abstraction to the disease class is a
heuristic inference, i.e., it may not hold for every possible condition.  While
the rule in Figure 4 is a very simple one, its characteristics as described
above apply to all of the rules in MYCIN.  Both of these characteristics of
heuristic classification have important implications for the method's gener-
alizability as a means for decision support.  These considerations are best
illustrated by a case history.
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An effort was conducted to adopt MYCIN's explanation facility as a basis for
tutorial instruction for medical students.  The resulting program was called
GUIDON.  This seemed like a promising idea since MYCIN was designed to
explain its reasoning to the user, i.e., how a request for data relates to a
goal, how one goal leads to another, and how a goal is achieved.  However,
as Clancey (1983, p. 217) states: "It was surprising to find out how little the
explanation facility could accomplish for a student".  Naturally, the explana-
tions provided by the system are entirely in terms of the rules and goals that
are represented in the system.  The difficulties that medical students experi-
enced with GUIDON can be attributed to the fact that the knowledge that a
student needs to learn and understand is not explicitly in the system.  To
quote from Clancey (1985, p. 216): "GUIDON cannot justify the rules be-
cause MYCIN does not have an encoding of how concepts in a rule fit to-
gether.  GUIDON cannot fully articulate MYCIN's problem solving strategy
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because the structure of the search space and the strategy for traversing it
are implicit in the ordering of rule concepts".

The fact that much of the domain knowledge is not explicitly represented in
the system not only leads to problems in learning, as was the case in GUI-
DON, but it can also inhibit error recovery.  In order to be able to detect er-
rors, it is not enough to merely monitor the outcome of the decision making
process since this will lead to detection beyond the point of recovery.  Thus,
understanding of the functioning of the system behind the task and knowl-
edge of the intended dynamic behavior is necessary (Rasmussen, 1987).
Therefore, in order to provide comprehensive decision support that will fa-
cilitate error recovery, it is important that this type of information be explic-
itly represented in the DSS.

There are three basic classes of knowledge that are not represented within
MYCIN: strategic, structural, and support knowledge (Clancey, 1983).  Each
of these is important for the instructional purpose that GUIDON was de-
signed for, and their absence accounts for GUIDON's failure as a tutoring
device.  More importantly for our concern is the fact that the absence of
strategic, structural, and support knowledge also seriously limits any pro-
gram's utility as a DSS.  We will discuss how each of these knowledge
classes is important for effective decision support.

5.2.2. Support knowledge

Support knowledge is theoretical knowledge that allows the system to reason
from first principles.  An example would be a thermodynamic description of
a steam engine.  Clancey (1983) found that all of the expert systems he in-
vestigated did not have any form of support knowledge.  They were all based
on heuristics rather than formal process models.  He argued that the lack of
support knowledge in these systems is due to the fact that the domains for
which the expert systems were developed cannot be adequately described in
terms of a theoretical model.  If support knowledge were available, there
would be no need to resort to heuristics.

Recently, there has been more and more discussion about support knowl-
edge in AI systems (cf.  Fink and Lusth, 1987; Hollnagel, 1988; Milne, 1987).
The type of knowledge that a system has been characterized as a continuum
with deep knowledge at one end and shallow knowledge at the other.  Shal-
low knowledge forms the basis of traditional expert systems.  In these sys-
tems, reasoning is based on uncertain inferences (i.e., heuristic classifica-
tion or rule-based level support), e.g., an expert's 'tricks of the trade'.  While
shallow systems are based on experiential knowledge, deep systems are
based on a formal model of the process (i.e. , support knowledge, or knowl-
edge-based level support), and thus are much more robust.
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While most existing expert systems are based on shallow knowledge, recent
research in AI diagnostic systems has emphasized the deep knowledge ap-
proach (Fink and Lusth, 1987).  Examples of diagnostic systems based on
deep knowledge are described by: Hudlicka and Lesser (1987) ; Nawab,
Lesser, and Milios (1987) ; and Scarl, Jamieson, and Delaune (1987).  Most
of the limitations of current expert systems outlined by Bobrow et al. (1986)
stem from the fact that the shallow knowledge will fail in certain situations.
Whether or not this is a fundamental limitation of expert systems depends
on whether or not a formal model of the application domain is available.  In
the specific case of MYCIN, the lack of formal domain model means that a
heuristic based approach is necessary.

5.2.3. Structural knowledge

This type of knowledge consists of the relations that hierarchically abstract
data and hypotheses.  One way to view structural knowledge is as a set of
meta-rules which make all the inferences behind the heuristics explicit.  As
an example, in Figure 4, structural knowledge allows one to make the chain
of inferences linking the datum, WBC < 2.5, to the conclusion, compromised
host.  As mentioned previously, structural knowledge is not explicitly repre-
sented within MYCIN.  This is an important limitation, not only for GUI-
DON's purposes but also for decision support purposes as well.  As Clancey
(1983) states, structural knowledge provides a top-level explanation of a rule
which in turn can serve as a constraint for how the rule should be general-
ized, or more importantly, when it should be broken.  In fact, this is one of
the hallmarks of expert performance: an expert knows when to violate a rule
because he can reason about the rule's justification.  Thus, it is imperative
that structural knowledge be explicitly represented in the system in order to
support the decision maker in deciding if the advice provided by the heuris-
tics should be over-riden or not.

It should also be mentioned that the absence of structural knowledge is not
a limitation inherent in the expert system approach, but rather a limitation
of MYCIN.  MYCIN is a f lat system of rules.  As such, it can only describe its
current inf erencing steps, and it cannot explain them on any level of detail.
The purpose of embedding structural knowledge in a system is to provide
justifications for the rules.  Explanations of rules provide levels of detail by
referring to more general concepts. Thus, one way to represent structural
knowledge in a system is as a generalized rule.  In fact, as shown in the ex-
ample in Figure 4, what is needed is a tree of rules.  But how many levels of
abstraction are sufficient?  In order to provide the necessary bridge between
the user's knowledge and the knowledge represented in the computer, the
hierarchy should go to a level of abstraction that connects to a pattern of
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reasoning that the users have encountered before, i.e., premises that they
readily accept (Clancey, 1983).

5.2.4. Strategic knowledge

The third and final type of knowledge discussed by Clancey (1983) is strate-
gic knowledge, which is concerned with planning activities.  Typical consid-
erations are where to focus the search and also determining in which prior-
ity goals should be pursued.  Such considerations are important in human
reasoning but in MYCIN they are completely arbitrary: the order in which
goals are addressed is determined by the order in which the rules were en-
tered into the system!  Thus, it is not surprising that students found it diffi-
cult to understand GUIDON's problem solving strategy.  The basic lesson is
that it is not sufficient to know all the rules in order to understand the pro-
gram's reasoning.  One must also have a plan for which rules to apply and
in what order.  Because MYCIN applies rules exhaustively, it has no explicit
plan.

Just as with structural knowledge, strategic knowledge can be represented
in the system as meta-rules.  An example for a medical System would be: if
there are unusual symptoms, then pursue those first. It is important to de-
velop a rational planning strategy (i.e., on that people can understand), and
to make it explicit.

Again, this will support the user in identifying situations in which the expert
system should be over-riden.  Just as with the absence of structural knowl-
edge, MYCIN's lack of strategic knowledge is a limitation that can be over-
come, not one inherent in the heuristic classification approach.

5.3. Implications for Process Lontrol

There is an interesting correspondence between the three types of knowledge
described by Clancey and the framework for CTA described earlier.  The re-
lationships are illustrated by comparing Figures 1 and 3. Structural knowl-
edge is that knowledge required to perform either state identification (ab-
stracting from measured data to a functional description of the current state
of affairs) or planning (specifying an intention in terms of a sequence of
acts).  Support knowledge is the knowledge required to make a decision
based on first principles.  In effect, it maps functional states onto appropri-
ate intentions to be carried out.  This mapping can take place at any of the
various levels of abstraction.  The f inal epistemological category, strategic
knowledge, represents knowledge concerning intentions about which goals
to pursue in the search for an appropriate decision.  The distinction between
this category and the previous two is similar to that between product and
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process criteria.  Whereas strategic knowledge describes the goals to be ob-
tained (product criteria), structural and support knowledge decribe how
those goals will be obtained (process criteria).

This epistemological description of expert systems allows us to extract some
recommendations for providing computerized advice for process control
systems.  In doing so, we have to distinguish between two cases, state iden-
tification and decision making, since the support requirements for each of
these will be different.

5.3.1. State identification

In general, advice in this task is typically relevant only in the infrequent,
unknown situations.  In this case, diagnosis is a critical task which cannot
be based on advice that is inherently unreliable, as is the case with opera-
tors' heuristics or designers, foresight.  The best solution is to supply the
operator with the result of consistent engineering analysis of the state of
afairs in the plant based on deep knowledge, i.e., basic physical principles,
and with a proper presentation of information, as discussed in the previous
section.  This analysis can be a complex and time consuming process, and
heuristic rules may be applied to set priority on different available ap-
proaches to the analysis, without endangering the consistency of the results.
More work is needed to be able to formulate the most effective combination
of engineering analyses and heuristics.

When formal models of the process are not available, a classical expert sys-
tem approach based on shallow knowledge must be adopted.  In these
situations, several considerations should be taken into account.  All of these
follow from the fact that this approach is based on uncertain inferences, im-
plying that there will be situations for which the heuristics are not appropri-
ate.  It will be up to the user of the system to recognize these situations, and
use his domain knowledge and adaptive ability to deal with them effectively.
In order to successfully take on such a flexible role, the user must be pro-
vided with strategic and structural knowledge.  Thus, such knowledge
should be explicitly represented in the system and made available to the
user, so that he can cope with novel situations (Woods, Roth, and Bennett,
1988).

The need for structural knowledge is most obvious in rule-based state iden-
tification.  In this case, rules provide a mapping from observable cues to the
appropriate action to be taken.  If this is performed directly then data inte-
gration, goal setting, and decision making are combined into one function
(see Figure 1).  This is equivalent to MYCIN's form of direct diagnosis, as
shown in the rule in Figure 4. As was found with GUIDON, this cognitive ar-
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chitecture will result in an 'opaque' system that may not support operator
understanding.  This in turn implies that the potential for error recovery is
greatly reduced, as mentioned above.  In order to avoid this problem, an in-
termediate stage of determining the functional state of the system is neces-
sary.  The implication for design of DSS is that even rule-based DSS for di-
agnosis should incorporate the bridging level of diagnosis in functional
terms.  By making the intermediate steps available to the user, under-
standing and potential for error recovery are greatly enhanced.  In Clancey's
terms, this is equivalent to making the structural knowledge explicit and
available to the user (cf.  Hollnagel, 1987; Lehner and Zirk, 1987).  Hudlicka
and Lesser (1987) describe an automated diagnosis system that adopts this
strategy at several levels of abstraction.

5.3.2. Decision Making

A much more promising use of AI technology appears to be the use of com-
plex knowledge-based systems to supply the operators' with design basis
information; not only factual information about system anatomy and func-
tion, but also the reasons and intentions behind operating procedures and
practices, interlocks, and automatic control systems.  An efficient query and
advice system in this domain can be more trustworthy than a system based
on heuristics.  The presently available AI tools make such a system practi-
cally feasible, but only if the necessary information can be obtained from de-
signers.  Unfortunately, much of the design basis depends on subjective
choices of designers, who may no longer be accessible, or on implicit indus-
try or company practices.

Regardless of the activates they are intended to support, advice giving sys-
tems should be designed so that the operator can verify decisions by his own
preferred decision strategy.  This means that all of the knowledge that the
computer uses to provide advice should be explicitly represented in the sys-
tem, and made available to the operator.  Expert systems designed according
to this principle have already been proven to result in better performance
(Lehner and Zirk, 1987).  The point of designing 'transparent' decision sup-
port systems has already been made with reference to automatic systems,
but it is just as important for advice giving systems.

Finally, the possibility of allowing the user to select which alternatives are
pusued and in what order (the role played by the strategic knowledge in ex-
pert systems) should also be considered.  This type of support attempts to
take advantage of the operator's domain knowledge and adaptive creativity
by allowing him to direct the computer's resources to the goals that seem to
be most promising or urgent.  The capability to direct the computer's focus
of attention is a very advanced form of decision support that is relatively un-
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explored (but see Pople, 1985 for an example) Thus, little is known about
the potential problems that can arise.  In principle, however, this form of
support provides the operator with the capability to redirect the computer in
situations where it deviates from the correct Solution path.  This is an im-
portant feature since machine problem solvers may sometimes take long in-
efficient detours before turning to the correct solution path, or can get stuck
in one path and never reach a solution (Pople, 1985; Roth, Bennett, and
Woods, 1988).

5.4. An Alternative Approach to Providing Advice

The preceding discussion has illuminated the limitations of existing expert
systems and how some of these can be overcome.  The recommendations
that were proposed should result in DSS that are more compatible with the
characteristics of the problem and the human operator.  In spite of this, the
design space of possible DSS is excessively constrained by the expert sys-
tems perspective.  In this section, we suggest a new perspective for inter-
preting the demands encountered by the process operator which leads to a
recommendation for a different form of computerized decision support.

Due to their inherent complexity, process environments will inevitably pres-
ent operators with control situations they have never before experienced.
The rare but potentially catastrophic fault is the prototypical example.  Be-
cause the particular characteristics of any fault are unique, the operator is
faced with the problem of having to cope with unanticipated variability.  He
cannot rely on the designer's foresight nor a computerized problem solver to
provide him with a solution to his problem.  In fact, the operator is faced
with a control engineering design problem that he must solve on line in real
time.  Clearly, this is a very challenging problem, one that requires consider-
able support to be handled effectively.  To obtain a solution, the operator
must consider various alternatives, and their probable outcomes, before de-
ciding what the best course of action is.

A fundamental obstacle to effectively carrying out this role is the selection of
an appropriate stop-rule.  In carrying out their problem solving activities,
operators are supposed to ensure that the control task they intend to effect
is the correct one by conceptually testing their hypotheses before they act.
But when should the operator stop thinking and start acting?  Designers
have a variety of tools available to them for testing hypotheses (e.g., simula-
tors, computers, laboratory experiments, textbooks, etc.). Operators, on the
other hand, only have their experience and the plant.  At some point or other
they have to test their hypotheses by actually manipulating the plant.
Therefore, truly effective decision support should give operators the means
for testing hypotheses with the same powerful and reliable tools that design-
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ers have access to, not in terms of the solutions prepared by designers, since
these will necessarily be incomplete, nor in terms of an lexpert's, heuristics,
since these are fallible.  A similar point has been made by Woods (1988),
who suggests that the most valuable form of decision support that operators
could be provided with is the capability to conceptualize the problem domain
in various ways.  Clearly, very little is known about how to provide this form
of support.  The topic is one that is in urgent need of research since the
benefits of such powerful tools are likely to be great.

6. CONCLUSIONS

In this paper, we have outlined a taxonomy of decision support techniques.
It was shown that the appropriateness of each category of support is de-
pendent upon the characteristics of the problem to be solved.  We have ar-
gued that CTA can be used as a methodological tool to match the demands
of the problem domain to the capabilities of the three decision making
agents: designer, operator, and process computer.  The remainder of the pa-
per was concerned with discussing the suitability of each category of deci-
sion support for the various problem solving tasks that are typically en-
countered in process control, as well as the important considerations that
should be taken into account for each category.  This general discussion of
how to determine the cognitive architecture of a DSS for process control
suggests some principles for maximizing the match between the demands of
the task and the capabilities of the human operator.  The end result should
be the design of truly effective and reliable industrial systems.
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