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Abstract 

Biogas upgrading to natural gas quality has been under focus the recent years for increasing the 

utilization potential of biogas. Conventional methods for CO
2
 removal are expensive and have 

environmental challenges, such as increased emissions of methane in the atmosphere with 

serious greenhouse impact. In this study, an innovative microbial electrochemical separation cell 

(MESC) was developed to in-situ separate and regenerate CO
2
 via alkali and acid regeneration. 

The MESC was tested under different applied voltages, inlet biogas rates and electrolyte 

concentrations. Pure biomethane was obtained at 1.2 V, inlet biogas rate of 0.088 mL/h/mL 

reactor and NaCl concentration of 100 mM at a 5-day operation. Meanwhile, the organic matter 

of the domestic wastewater in the anode was almost completely removed at the end. The study 

demonstrated a new sustainable way to simultaneously upgrade biogas and treat wastewater 

which can be used as proof of concept for further investigation.   

Keywords: Biogas upgrading; Microbial electrochemical technologies; CO
2
; Separation and 

Regeneration; Acid and alkali generation; Wastewater  
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1. Introduction 

The increasing emissions of carbon dioxide (CO
2
) to the atmosphere mainly due to the 

combustion of fossil fuels have accelerated the urge of non-petroleum-based substitutes (Lee et 

al., 2006; Zhu et al., 2014). Biogas is a renewable energy carrier that derives from the anaerobic 

digestion of organic waste (Bo et al., 2014; Chen et al., 2013; Andriani et al., 2014). It is 

composed of 40-75% methane (CH
4
), 25-60% carbon dioxide (CO

2
) and some trace gases such 

as hydrogen sulfide (H
2
S) (Chen et al., 2013; Andriani et al., 2014). Upgrading through CO

2 

removal besides increasing the calorific value of the gas, also expands its applications routes, 

such as vehicle fuel or injection to the natural gas grid (Andriani et al., 2014; Petersson and 

Wellinger, 2009; Ryckebosch et al., 2011). The definition “biomethane” is used when the 

upgraded biogas contains 95-97% CH
4
 and 1-3% CO

2
. Some used biogas upgrading techniques 

are pressure swing adsorption, physical or chemical CO
2
 absorption and membrane separation 

(Ryckebosch et al., 2011). 

The separation of CO
2
 from gases usually happens in two steps: capture and regeneration. In 

the capture step, the CO
2
 gas source contacts with an absorber/adsorber into a solid or liquid and 

CO
2
 gets captured physically or chemically. During regeneration, the CO

2
 is separated from the 

absorber/adsorber by usually combining thermal, chemical or electrical methods and therefore, 

CO
2
 gas is released (Eisaman et al., 2011). The regenerated CO

2
 gas can be used for subsequent 

sequestration or reaction to synthetic hydrocarbons and their products (Jiang et al., 2010). 

Alkali solutions such as sodium, potassium and calcium hydroxide are typically used for the 

chemical absorption of CO
2
 (Eisaman et al., 2011; Zhao et al., 2010; Stolaroff et al., 2008). The 

caustic solvents convert CO
2
 into carbonates (CO

3

2-
) and bicarbonates (HCO

3

-
) (Eisaman et al., 

2011), whereas for the consequent regeneration of CO
2
 the CO

3

2-
 and HCO

3

-
 can react with acids 
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such as hydrogen chloride and phosphoric acids. Currently, the production of alkali and acids is 

mainly based on the chlor-alkali process through electrolysis of salt solutions, which has very 

high electrical energy consumption (IPPC 2001). 

Bipolar membrane electrodialysis (BMED), which enables the dissociation of water into H
+
 

and OH
-
 when electric field is applied, is an alternative mean to in-situ produce acids and bases 

from neutral salts. A bipolar membrane is made of an anion-exchange layer, a cation-exchange 

layer and a hydrophilic interface at their junction (Bazinet et al., 1998). Research has suggested 

that the production of acids and bases with application of BMED can be considered as cost-

effective and be applied in large-scale systems (Davis et al., 2015). Thus, BMED has potential 

for an innovative biogas upgrading method. Nevertheless, the energy consumption still needs to 

be reduced before industrial application. Therefore, a cost-effective and efficient technology, 

which takes the advantages of the BMED, needs to be pursued.  

Microbial electrochemical systems (MESs), as a potentially sustainable technology, have 

intensively been investigated over the recent years (Du et al., 2007; Hallenbeck et al., 2014; 

Huggins et al., 2013). Almost all the MESs share the same principle for the anode; 

electrochemically active microbes consume organic and inorganic electron donors and generate 

electrons through microbial oxidation (Wang and Ren, 2013; Logan et al., 2006; Han et al., 

2013). The electrons are transferred to the cathode for multiple applications, such as direct 

capture of current, production of value-added chemicals such as H
2
 and CH

4
, or desalination (Lu 

et al., 2015). It has been recently demonstrated that MESs can be integrated with BMED for 

efficient and cost-effective production of acid and alkali. With an applied voltage of 1.0 V, the 

pH reached to 0.68 and 12.9 in the acid-production chamber and cathode chamber after 18 h, 

respectively (Chen et al., 2012). Thus, a MES-BMED integrated system could fulfill the 

requirement for biogas upgrading through CO
2
 separation (i.e., via absorption and regeneration), 
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which has never been reported. Especially, how to in-situ utilize the alkali and acid solutions in 

such integrated system for CO
2
 absorption and regeneration is still unknown. 

In this study, we developed an innovative microbial electrochemical separation cell (MESC) 

for a brand new application with respect to biogas upgrading via simultaneous CO
2
 absorption 

and regeneration. This concept has never been suggested and implemented before and 

demonstrates a new avenue for biogas upgrading through microbial electrochemical separation 

of CO
2
. 

2. Materials and methods 

2.1. Set-up of the bipolar membrane electrodialysis system (MESC) 

Figure 1a illustrates a schematic of the experimental set-up. Thanks to the application of external 

voltage on an alternating stack of two bipolar membranes (BPM) and one anion exchange 

membrane (AEM), the inlet CO
2
 was initially captured by sodium hydroxide (NaOH) in an 

absorption chamber, thus forming a CO
3

2-
 and HCO

3

-
 solution. Then, the CO

3

2-
 and HCO

3

-
 anions 

moved to a regeneration chamber to form CO
2
 again. As CO

2
 was separated from the inlet 

biogas, treated biogas was released from the absorption chamber. The objective of this study was 

to investigate the MESC performance by varying operational parameters such as applied voltage, 

inlet biogas rate and electrolyte concentration. Moreover, the treatment of the domestic 

wastewater in the anode was an important sub-objective. 

2.2. Reactor set-up 

The MESC consisted of four successive chambers: anode, regeneration chamber, absorption 

chamber and cathode with corresponding working volumes of 50, 40, 40 and 40 mL (Figure 1b). 

The compartments were made of polycarbonate plate (BrønnumPlast A/S, Denmark) and 

respectively separated with: bipolar membrane (fumasep FBM, FuMA-Tech GmbH, Germany), 
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anion exchange membrane (AMI 7001, Membrane international, NJ) and bipolar membrane. The 

working area of the membranes was approximately 25 cm
2
. Holes were made on the top of the 

chambers for sampling activities and connection to peristaltic pumps and sealed air bags. The 

peristaltic pumps (OLE DICH Instrumentmakers ApS, Denmark) were used for wastewater 

recirculation in the anode and supply of untreated biogas and air to the absorption chamber and 

cathode respectively. The inlet and upgraded biogas as well as the regenerated CO
2
 gas were 

collected in the sealed air bags. 

The anodic electrode was made by a carbon fiber brush (5.0 cm diameter, 5.0 cm length, 

Mill-Rose, USA), pretreated at 450 
º
C for 30 minutes. Before use, it was pre-acclimated with 

electrochemically active biofilm in an MFC operated with domestic wastewater. The cathodic 

electrode was a stainless steel woven mesh (v4.0 x 4.0 cm, 0.24 mm wire diameter, 1.57 mm 

aperture, The Mesh Company, United Kingdom). A stainless steel diffuser (2 micrometers cavity 

diameter, M alt Bazaar ApS, Denmark) was used to diffuse the inlet biogas. The negative and 

positive lead of the power supply were connected to the cathode and anode respectively. A 10 Ω   

resistance was set between the positive lead and the anode. 

2.3. Operation 

Domestic wastewater from a primary clarifier (Lyngby Wastewater Treatment Plant, 

Copenhagen, Denmark) was selected as anodic substrate. The composition of volatile fatty acids 

(VFA) was 0.3 mg/L ethanol, 28 mg/L acetate, 13.4 mg/L propionate, 3.8 mg/L isobutyrate and 

4.2 mg/L butyrate. Before being loaded, the wastewater was enriched with acetate with 

concentration of 1 g COD-acetate/L and flushed with N
2
 for 15 minutes to ensure anoxic 

conditions (Alatraktchi et al., 2014; Velasquez-Orta et al., 2011). The extra acetate along with 

the existing sCOD of the wastewater led a total initial sCOD concentration of 1174 mg/L. During 
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operation the anodic solution was constantly stirring in a feed reservoir (250 mL) and 

recirculating through the anode with a rate of 25 mL/min. 

The regeneration chamber, absorption chamber and cathode were filled manually with the 

same NaCl solution, which was previously flushed with N
2
 for at least 5 minutes. The air supply 

to the cathode was 25 mL/min. The untreated gas mixture (Aga Gas AB) contained 60% CH
4
 and 

40% CO
2
, which belongs to the range of the typical biogas composition.  

When external voltage was applied, OH
-
 and H

+
 were generated due to water dissociation by 

the bipolar membranes. In the absorption chamber, OH
-
 reacted with the dissociated Na

+
 to form 

NaOH, which successively absorbed the diffused CO
2
 and transformed it into CO

3

2-
 and HCO

3

-
. 

The CO
3

2-
 and HCO

3

-
 penetrated the anion exchange membrane and moved to the regeneration 

chamber, where the environment was acidic due to the formation of HCl. In that low pH, CO
2
 

could be reformed. The continuous water dissociation maintained the regeneration chamber and 

absorption chamber respectively acidic and basic throughout the operation.   

This research intended to elucidate the influence of the inlet biogas rate, applied voltage and 

NaCl concentration on the MESC performance. The operation started with inlet biogas rate of 

0.088 mL/h/mL reactor, applied voltage of 1.2 V and NaCl concentration of 100 mM. 

Afterwards, one parameter changed while the others remained same, in order to observe the 

impact of each one individually. The addition tested parameters levels were for the inlet biogas 

rate 0.138 mL/h/mL reactor; applied voltage 0.8, 1.0 and 1.4 V; NaCl concentration 5 mM. The 

MESC was operated in batch mode for 5 days at room temperature. At the end of every batch, 

the medium in all the chambers was replaced with new one. The experiments were carried out in 

duplicate. 
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The control experiments were performed as abiotic electrochemical systems, merely 

modifying the anode. The anode electrode was replaced with a fresh one without biofilm. The 

anodic substrate was deionized water with Na
2
SO

4
 so as to keep similar conductivity and pH with 

the acetate modified domestic wastewater. The operational conditions were same as the first 

conducted experiments. 

2.4. Analysis 

The voltage across the resistor was monitored by a data acquisition system (Model 2700, 

Keithley Instruments, Inc., Cleveland, OH) every 30 minutes. The volume of the upgraded 

biogas and regenerated CO
2
 gas was measured manually by emptying the sealed air bags with a 

syringe and the composition of the gases was measured by a gas chromatograph coupled with 

thermo conductivity detector (GC Biogas TCD, Mikrolab, Aarhus, Denmark). The total 

inorganic carbon contained in the regeneration chamber, absorption chamber and cathode was 

detected with a TOC analyzer (SHIMADZU TOC-VWP, Holm and Halby). The pH was 

measured by pH meter (PHM 92, Radiometer, Copenhagen or FiveEasy Plus, METTLER 

TOLEDO) and the conductivity by a microprocessor conductivity meter (LF 539, MOBRO 

INSTRUMENTERING). A standard method was followed to measure the chemical oxygen 

demand (COD) and soluble COD (sCOD) of the collected domestic wastewater and the sCOD of 

the anodic samples. The collected wastewater was primarily filtered with a 0.45 µm membrane 

before the sCOD analysis (Feng et al., 2008).
 
The anodic samples got centrifuged (Eppendorf 

Minispin) at 13.400 rpm for 10 minutes and the supernatant was later used for the sCOD 

analysis.  

3. Results and discussion 

3.1. The biogas upgrading performance of MESC 
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The first experiments were conducted as proof of concept. The conditions were: inlet biogas rate 

of 0.088 mL/h/mL reactor, applied voltage of 1.2 V and NaCl concentration of 100 mM. There 

was a direct relation between current density drop and sCOD consumption, which happens 

because the bacteria need organic matter in order to generate electrons through their metabolic 

paths. The current density started at 1.11 A/m
2
 and significantly decreased during the first two 

days since the sCOD decreased from 1174 to 344 mg/L. However, in the next days, the current 

density became almost constant, ranging between 0.32-0.39 A/m
2
, due to low presence of 

substrate. That result was consistent with previous observation that the current depends on the 

substrate consumption (Baudler et al., 2015). Meanwhile, the current density in the control 

experiment, as independent of the anode, displayed low values, between 0.19-0.08 A/m
2
, with 

less significant variations. The microorganisms exhibited high sCOD removal rates under 

considerable quantity of organic matter. These microorganisms came from the recirculating 

wastewater as well as the biofilm of the pre-acclimated in domestic wastewater electrode. The 

sCOD removal rate ranged from 34 to 52% until the 4
th
 day, but dropped to 9% the last day 

because the added acetate and the organic matter of the wastewater had nearly been utilized. 

Other types of wastewater can also be used efficiently if the anode has been acclimated to 

wastewater (Zhang et al., 2015). The acetate was used here as additional carbon source in order 

to exclude the substrate effect on the system performance and also to make it be easily 

comparable to previous studies using the same substrate.  An alternative substrate in anode could 

be industrial effluents high in COD (Passos et al., 2016). That option could probably be more 

cost efficient in a potential industrial implementation of the method. 

The treated biogas could be characterized as biomethane, since it contained 99-100% CH
4
 

(Figure 2a). On the other hand, the upgraded biogas in the control experiments included 78-84% 

CH
4
, verifying the significance of microorganisms as catalyst in the anode. 
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Figure 2b shows that the MESC was provided with 230 mL CH
4
 and 153 mL CO

2
 during the 

batch. 210 mL CH
4
 were collected back in the upgraded biogas, giving approximately 9% loses 

of CH
4
 into the system, probably due to the sampling activities. From the supplied CO

2
 only 0.32 

mL was detected in the treated biogas. Consequently, the results evidently demonstrate the 

feasibility of MESC for biogas upgrading. 

Figure 3a demonstrates the changes of the pH after the procedure begun and the bipolar 

membranes forwarded the water dissociation. The initial pH of the NaCl solution was 5.6. The 

cathode became alkalic due to the oxygen reduction and its pH increased gradually to 9.1 during 

the experiment. The pH in the absorption chamber increased highly to 11.7 at the 1
st
 day, and 

afterwards, it progressively decreased to 10. The pH values in the regeneration chamber were 

between 1.5 and 1.7, thus confirming that the mechanism of CO
2
 reformation worked out. At pH 

lower than 4.4 only free CO
2
 is present (Buecker, 1997). The buffering capacity of the released 

OH
-
 from the water dissociation maintained the pH of the anode between 7.7 and 8, which was 

close to the initial value of the acetate modified wastewater (pH 7.6).  

Figure 3b illustrates the variations of conductivity at the end of the batch. The conductivity in 

the regeneration chamber had increased by 73%. That change was attributed to the transfer of 

CO
3

2-
, HCO

3

-
 and Cl

-
 from the absorption chamber, where consequently, the conductivity 

decreased by 8.8%, intensifying the internal resistance. The conductivity in the cathode raised by 

13.5%. Besides the fact, that the cathode was open to the air, it is also possible that the bipolar 

membrane may have been anion permeable and let anions diffuse from the absorption chamber, 

which can also explain the gradual pH drop in the absorption chamber. That might also reduce a 

little the CO
2
 absorption efficiency.  

3.2. Effects of inlet biogas rate on biogas upgrading 



  

11 

 

A higher inlet biogas rate of 0.138 mL/h/mL reactor was tested. The CH
4
 percentage in the 

upgraded biogas started at 93% and dropped to 87% throughout the operation. Therefore, the 

increase of the inlet biogas rate had a reverse effect on the quality of the generated biogas. This 

indicates that the capacity of the MESC for CO
2
 absorption needs to be further improved in order 

to enhance the gas treatment. The current density across the circuit started at 0.76 to decrease to 

0.3 A/m
2
 during the experiment, following a similar tendency to the current density with the inlet 

biogas rate of 0.088 mL/h/mL reactor.   

Figure 4 shows that the initial pH of the anode was 8.1 and decreased slightly during 

operation, ranging between 7.6 and 8. The initial pH of the NaCl solution was 6.8. After the 

experiment commenced, the pH in cathode elevated to reach 9.4 at the 2
nd

 day and then dropped 

gradually to 9 till the end of the experiment. Comparing to the results with the inlet biogas rate of 

0.088 mL/h/mL reactor, the increasing amount of the supplied CO
2
 led to a consequent pH 

reduction and pH raise in the absorption chamber and regeneration chamber respectively. The pH 

fluctuated from 7.6 to 8.3 in the absorption chamber. In the regeneration compartment the pH 

varied significantly, as firstly reduced to become 1.6 at the 2
nd

 day, and afterwards, escalated to 

reach 3.7 at the last day. 

3.3. Effects of applied voltage on biogas upgrading 

The effect of the applied voltages of 0.8, 1, 1.2 and 1.4 V was investigated. As illustrated in 

Figure 5a, for 1.4 V, the current density started at 1.49 A/m
2
 and decreased sharply to get values 

of 0.4-0.5 A/m
2
 at the end of the 2

nd
 day.  Afterwards, the reduction became less abrupt to reach 

0.27 A/m
2
 at the end of the batch. The current density at 1.2 V showed a similar tendency, as 

explained before. On the contrary, the current density at 0.8 and 1.0 V started low, at 0.16 and 

0.29 A/m
2
 respectively, and did not decrease severely during operation. The total current density 
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drop was approximately 33%, 44%, 73% and 82% for the corresponding voltages of 0.8, 1.0, 1.2 

and 1.4 V, proving that the microbes were more active at high voltages.   

Figure 5b shows that the CH
4
 percentage in the treated biogas was 92.3-96.5, 98.3-100, 99.4-

100 and 91-95.6% at 0.8, 1, 1.2 and 1.4 V, correspondingly. The quality of upgraded biogas 

deteriorated during operation, since it was reliant on the sCOD removal (Figure 5c). However, 

the batch at 1.2 V constituted an exemption of that observation because biomethane was 

constantly generated, fact that renders 1.2 V as the most optimal voltage for the MESC operation 

under those conditions.  

The lower CH
4
 percentage in the treated biogas at 1.4 V occurred because the 

microorganisms exhibited higher activity then. As shown in Figure 5c, nearly 88% of the organic 

matter had already been removed at the 2
nd
 day. However, if acetate was frequently added in the 

anode during operation, the biogas quality would enhance. The sCOD removal was similar under 

0.8, 1 and 1.2 V; most of the organic matter had been utilized at the end of the experiments. 

3.4. Effects of NaCl concentration on biogas upgrading 

Table 1 presents the carbon mass balance with two different concentrations of NaCl as 

electrolyte solution. It was noticed that the carbon of the inlet CO
2
 was distributed differently at 

each case. When the concentration of the NaCl solution was 100 mM, 76.7% of the carbon 

stayed in the absorption chamber. Only 15.4% moved to the regeneration chamber, where 2.2% 

remained in the liquid phase and 13.2% evolved to CO
2
 gas. The amount of carbon in the 

generated biogas was minor.  

When the concentration of the NaCl solution was reduced to 5 mM, the supplied carbon 

mainly moved to the regeneration chamber. More precisely, 40.7% of it stayed dissolved in the 

acidic phase, whereas, another 18.4% proceeded to CO
2
 gas formation. In the absorption 
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chamber, 24.6% stayed dissolved, while, 16.6% formed CO
2
 into the treated biogas. Therefore, it 

can be stated that the reduced NaCl concentration can endorse the transportation of CO
3

2-
 and 

HCO
3

-
 to the regeneration chamber.  

The Cl
-
 concentration could be the most possible reason of that different distribution of 

carbon. In both experiments the amount of the inlet carbon was the same. However, in the first 

experiment, the Cl
-
 anions in the absorption chamber were 20 times more comparing to the 

second experiment. Consequently, these anions would also utilize more of the applied energy in 

order to move through the anion exchange membrane, rendering the transfer of CO
3

2-
 and HCO

3

-
 

more difficult. Additionally to this, anion exchange membranes have also been described to have 

low ionic conductivity and chemical stability, mainly at the cationic site (Arges et al., 2010). 

Therefore, this challenge would probably require to limit the application to low Cl
-
 solutions. 

Research has indeed shown that water with low conductivity and hardness is necessary for ion-

exchange experiments with acidification (Eisaman et al., 2012). Nevertheless, lower NaCl 

concentration may increase the internal resistance of the system, and thus, may have a negative 

impact on the quality of the upgraded biogas. Concerning the carbon mass balance of the CH
4
, 

the loses of carbon were less with 5 mM NaCl solution. The overall mass balance was 92% for 

100 mM NaCl solution and 99.3% for 5 mM NaCl solution. 

3.5 Practical significance and perspectives 

This study demonstrated a state-of-the-art approach on biogas upgrading. The principle of the 

chemical separation (i.e., absorption and regeneration) of CO
2
 was applied in a coupled system of 

MES and bipolar membrane electrodialysis (MESC). The main outcome was the in-situ 

production of upgraded biogas with the simultaneous treatment of domestic wastewater. The 

concept demonstrates various financial, but also environmental advantages. More particularly: 1) 
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the in-situ production of NaOH and HCl is integrated with the generation of upgraded gas. 2) It 

reduces the emissions of CH
4
 to the atmosphere. 3) The reactor can possibly be used for the 

further treatment of the anaerobic digestion effluent or other types of wastewater. There are also 

savings comparing to a conventional wastewater treatment plant because aeration is not needed 

and less sludge is produced. 4) The CO
2
, CO

3

2-
 and HCO

3

-
 may be further utilized for of high 

value-added products, e.g. glycerol carbonate. 5) The reactor has the potential of more advanced 

modifications. For instance, in another part of this research an MESC was operated with 

anaerobic cathode for additional biohydrogen generation.  

However, there is still need for improvements and optimization. The optimal combination of 

the operational parameters has to be found to achieve simultaneously high-quality biogas and 

efficient CO
2 
regeneration. Moreover, some parts of the equipment may be replaced or altered so 

as to enhance the mechanism of the carbon distribution. For instance, anion exchange 

membranes with higher anion permeability and selectivity, thicker bipolar membranes, or 

vacuum stripping in the regeneration chamber could be some suggestions. Finally, experiments 

under continuous mode would be interesting in order to observe the performance of the reactor 

till saturation.  

A more solid conclusion about the energy requirements of the suggested technology could be 

drawn when these improvements will have been applied. The system is unique and not optimized 

yet and therefore, a direct comparison to lab scale and industrial biogas upgrading methods 

would be difficult. The majority of the needed energy comes from the voltage application. It is 

also true that the required power will decrease significantly with higher inlet biogas rates since 

the same amount of upgraded biogas will be produced in less time. Some estimation on the 

energy requirements for the production of 1 m
3
 upgraded biogas was proven very promising. 

This fact along with the benefits of the wastewater treatment and the opportunity to use the 
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cathode for various applications indicates that under the right modifications that system can be 

energy efficient.  

4. Conclusion  

This study proposes a new avenue on biogas upgrading by implementing the chemical 

absorption of CO
2
 into a microbial electrochemical system. The MESC operation can 

significantly contribute to enhanced biogas quality and effective wastewater treatment. The 

upgrading performance was affected by external applied voltages, inlet biogas rates and 

electrolyte concentrations. Pure biomethane was generated and almost complete removal of the 

organic matter in the wastewater was achieved at 1.2 V, inlet biogas rate of 0.088 mL/h/mL 

reactor and NaCl concentration of 100 mM at a 5-day operation. 
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Figure captions 

Figure 1. Schematic of the experimental set-up (a) and photo of the reactor (b). Anode, 

regeneration chamber, absorption chamber and cathode are marked as 1, 2, 3 and 4 respectively. 

Figure 2. Performance with applied voltage of 1.2 V, inlet biogas rate of 0.088 mL/h/mL reactor 

and NaCl concentration of 100 mM. Composition of upgraded biogas compared to control (a); 

Accumulative volume of CH
4
 and CO

2
 in inlet and upgraded biogas (b). 

Figure 3. Performance with applied voltage of 1.2 V, inlet biogas rate of 0.088 mL/h/mL reactor 

and NaCl concentration of 100 mM. pH (a); Conductivity (b). Where RC: Regeneration 

chamber, AC: Absorption chamber. 

Figure 4. pH for inlet biogas rate of 0.138 mL/h/mL reactor. Where RC: Regeneration chamber, 

AC: Absorption chamber. 

Figure 5. Effects of applied voltage of 0.8, 1.0, 1.2 and 1.4 V. Current density (a); Composition 

of upgraded biogas (b); sCOD (c). 
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Figure 1. Schematic of the experimental set-up (a) and photo of the reactor (b). Anode, 

regeneration chamber, absorption chamber and cathode are marked as 1, 2, 3 and 4 respectively. 
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Figure 2. Performance with applied voltage of 1.2 V, inlet biogas rate of 0.088 mL/h/mL reactor 

and NaCl concentration of 100 mM. Composition of upgraded biogas compared to control (a); 

Accumulative volume of CH4 and CO2 in inlet and upgraded biogas (b). 
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Figure 3. Performance with applied voltage of 1.2 V, inlet biogas rate of 0.088 mL/h/mL reactor 

and NaCl concentration of 100 mM. pH (a); Conductivity (b). Where RC: Regeneration 

chamber, AC: Absorption chamber. 
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Figure 4. pH for inlet biogas rate of 0.138 mL/h/mL reactor. Where RC: Regeneration chamber, 

AC: Absorption chamber. 
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Figure 5. Effects of applied voltage of 0.8, 1.0, 1.2 and 1.4 V. Current density (a); Composition 

of upgraded biogas (b); sCOD (c). 
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Table 1. Mass balance on carbon with different concentration of NaCl as electrolyte
a
. 

NaCl 
solution  
(mM) 

Chamber
b
 

In (mg)  Out (mg) 

Balance 
(%) CO

2
 

CO
3

2-
/ 

HCO
3

-

/H
2
CO

3
 

CH
4
 

 
CO

2
 

CO
3

2-
/ 

HCO
3

-

/H
2
CO

3
 

CH
4
 

100 
RC 0 0 0  39.8 6.8 0 

92.0 
AC 300.8 0 164.1  0.6 230.8 149.9 

5 
RC 0 0 0  55.4 122.5 0 

99.3 
AC 300.8 0 164.1  49.9 74.0 159.7 

a
 The mass balance was made based on RC and AC chamber, as the transfer of CO

2 
and CH

4 
from 

biogas to anode and cathode could be neglected. 
b 
Where RC: Regeneration chamber, AC: Absorption chamber. 
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� Innovative microbial electrochemical separation cell for biogas upgrading. 

� In-situ separate and regenerate CO2 without external supply of chemicals. 

� Simultaneously biogas upgrading and wastewater treatment. 

� Applied voltages, inlet biogas rates and electrolyte as key affecting factors. 

� New avenue for biogas upgrading via microbial electrochemical separation of CO2. 
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