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ABSTRACT

Rapidly increasing share of intermittent renewable energy production poses a great
challenge of the management and operation of the modern power systems. Deploy-
ment of a large number of flexible demands, such as electrical vehicles (EVs) and
heat pumps (HPs), is believed to be a promising solution for handling the challenge.
Equipped with batteries and hot water storage systems, EVs and HPs are able to
shift the consumption according to the production level of renewable energy. How-
ever, most of today’s distribution networks are not able to accommodate such large
number of flexible demands if coordination is not exercised. Congestion can occur
on distribution networks if the EVs and HPs consume power simultaneously. This
thesis is dedicated to handle the congestion problems on distribution networks
when there is high penetration of distributed energy resources (DERs), including
EVs and HPs.

Market-based congestion management methods are the focus of the thesis. They
handle the potential congestion at the energy planning stage; therefore, the aggre-
gators can optimally plan the energy consumption and have the least impact on the
customers. After reviewing and identifying the shortcomings of the existing meth-
ods, the thesis fully studies and improves the dynamic tariff (DT) method, and pro-
poses two new market-based congestion management methods, namely the dy-
namic subsidy (DS) method and the flexible demand swap method.

The thesis improves the DT method from four aspects. Firstly, the formulation of
the DT method has been improved. Based on the locational marginal pricing (LMP)
concept, the DT method has been proposed in several previous works for conges-
tion management in a decentralized manner. However, linear programming models
are not suitable for determining DT due to the multiple-response issue (one price
set can have multiple flexible demand responses from aggregators). The thesis pro-
poses a quadratic programming model for the DT method which can avoid the mul-
tiple-response issue and make the DT method an efficient decentralized congestion
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management method. Secondly, the combination of the DT method and direct con-
trol methods is studied and the feeder reconfiguration based DT method is proposed
for more efficient congestion management and loss reduction on distribution net-
works. Thirdly, the stochastic nature of flexible demands is studied and a method
for uncertainty management of the DT method is proposed. The probability of con-
gestion events is controlled to be under a certain level through the modified DT
method, where the behavior and parameters of the flexible demands have a given
probability distribution. At last, a convex relaxation based AC optimal power flow
(OPF) model is proposed for determining DT where voltage constraints are in-
cluded. Moreover, a sufficient condition for exact convex relaxation is proposed
and validated. The condition is that there is no reverse power flow, or only active
or reactive reverse power flow on the distribution network.

After the study of the DT method, the thesis proposes the DS method for day-ahead
congestion management, which is conceptually opposite to the DT method; how-
ever, it doesn’t discriminate the customers. Finally, the thesis proposes the flexible
demand swap method for real-time congestion management, which handles the re-
sidual congestion after the day-ahead market and the congestion caused by forecast
errors and contingent events. As such, a series of market-based methods, including
DT, DS and flexible demand swap, are formed systematically in this thesis for han-
dling congestion more comprehensively and efficiently.



ABSTRACT (DANISH)

Den ggede integration af vedvarende energikilder i el-nettet udger en udfordring
for stabilliteten af fremtidens el-system. En lovende lgsning pa problemet ved den
periodiske produktion af vedvarende energi syntes at ligge i at kontrollere det flek-
sible forbrug fra elbiler og varmepumper. Ved brug af hhv. batterier og varmt-
vandsbeholdere kan elbiler og varmepumper endre deres forbrug til at ligge i peri-
oder med hgj produktion af vedvarende energi. Denne strategi medferer dog en ny
udfordring, da den nuvarende infrastruktur ikke er i stand til at servicere en stor
mangde fleksibelt forbrug uden koordinering af de enkelte forbrugere. Hvis der
opstér en situation hvor et stort antal elbiler og varmepumper forbruger elektricitet
samtidigt, kan det medfere overbelastninger i distributionsnettet. Denne athandling
omhandler overbelastningsproblemer i distributionsnettet hvortil en stor maengde
distribuerede energi ressourcer, inkl. elbiler og varmepumper, er tilsluttet.

Denne athandling fokuserer pa metoder der handterer overbelastningsproblemer
med en markedsbaseret tilgang. Disse metoder kan tage hgjde for eventuelle over-
belastninger af el-nettet i planlaegningsfasen, hvilket muligger at aggregatorer kan
udregne de optimale forbrugsmenstre og have mindst mulig negativ effekt pa kun-
derne. Efter en gennemgang af eksisterende metoder og identifikation af deres
mangler, beskriver denne afhandling en forbedret dynamisk tarif metode og pree-
senterer to nye markedsbaserede metoder til handtering af overbelastning. De to
nye metoder er kaldt den dynamiske tilskuds metode og fleksibelt forbrugs swap
metoden.

Den dynamiske tarif metode er forbedret pé fire punkter i denne athandling. Forst
og fremmest er den matematiske formulering af metoden forbedret. Den dynamiske
tarif metode er baseret pé lokalitets marginal prissaetning konceptet og er blevet
praesenteret i adskillige tidligere udgivelser som en metode til decentraliseret over-
belastningshandtering. Pa trods af dette, er den lineare programmerings model ikke
egnet til udregningen af den dynamiske tarif pga. degenerering. Denne athandling
foreslér en ny formulering af den dynamiske tarif metode baseret pd kvadratisk
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programmering, hvilket afthjelper degenereringsproblemet og dermed forbedrer
den dynamiske tarif metode til handtering af overbelastningsproblemer. For det an-
det beskrives en kombination af den dynamiske tarif metode og direkte overbelast-
nings kontrol, og distributionsnetvaerk re-konfigurations dynamisk tarif metoden er
foreslaet som en mere effektiv metode til handtering af overbelastning og tabsbe-
greensning i distributionsnet. For det tredje undersegges den stokastiske natur af det
fleksible forbrug og en metode til usikkerhedshéndtering i den dynamiske tarif me-
tode foreslés. Sandsynligheden for overbelastning i el-nettet er kontrolleret til at
vere under et givet niveau i den dynamiske tarif metode, hvor béde adferd og pa-
rametre af det fleksible forbrug har en given sandsynlighedsfordeling. Til sidst prae-
senteres den konveks afslapnings-baserede vekselstrems optimalt effekt flow me-
tode som en metode til at udregne den dynamiske tarif nar der er taget hgjde for
spendingsbegransninger i distributionsnettet. Derudover er en tilstreekkelig betin-
gelses konveks afslapning foresléet og bekraftet. For denne betingelse er det ned-
vendigt at der ikke er omvendt power flow eller at der kun er aktive eller reaktive
omvendte power flows i distributionsnettet.

Efter den dybdegéende underseggelse af dynamisk tarif metoden forslas denne af-
handling dynamisk tilskuds metoden, som er begrebsmeessig det modsatte af dyna-
misk tarif metoden. Forskellen er at dynamisk tilskuds metoden ikke diskriminerer
kunderne. Til sidst forslar denne athandling fleksibelt forbrugs swap metoden til
realtids handtering af overbelastninger, som handterer den resterende overbelast-
ning efter spotmarkedet og den overbelastning der matte skyldes prognose fejl og
uforudsete haendelser. Derved indeholder denne afhandling en systematisk oversigt
over markedsbaserede metoder, inklusiv dynamisk tarif, dynamisk tilskud og flek-
sibelt forbrugs swap, til mere omfattende og effektiv handtering af overbelastning
1 el-nettet.
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CHAPTER 1.

INTRODUCTION

1.1  Background

Denmark, as one of the countries that strive for CO, emission reduction and energy
supply security, has adopted energy strategies that aim at achieving independence
from fossil fuels by 2050 [1]. After the world leaders met 2015 in Paris to address
the climate change, China promised to reduce 60% of the major pollutant emissions
from the power sector by 2020. In order to realize such ambitious goals, renewable
energy, such as hydro power, wind power (WP) and solar power (SP), and distrib-
uted energy resources (DERs), such as distributed generators (DGs), electric vehi-
cles (EVs) and heat pumps (HPs), will be extensively used and play an important
role in future power systems.

The installation of WP around the world increased rapidly since the beginning of
this century. Table 1-1 shows the statistics of the global installed wind power till
2015 [2]. The wind power in Denmark covered 42% of the total electricity con-
sumption in 2015 [3].

TABLE 1-1. GLOBAL INSTALLED WIND POWER CAPACITY

(MW)
Africa, Asia Europe Latin North Pacific World
Middle America, Amer- Region Total
East Caribbean ica
End 2014 2,536 | 141,973 134,251 8,568 77,935 4,442 | 369,705
New 2015 953 33,859 13,805 3,652 10,817 381 63,467
End 2015 3,489 | 175,831 147,771 12,220 88,749 4,823 | 432,883
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SP experiences the same rapid speed of development and installation as WP. There
are 22 countries that have enough SP capacity to cover at least 1% of their total
electricity demand [4]. Italy, Greece and Germany have SP production to cover
respectively 8%, 7.4% and 7.1% of their total annual electricity consumption. The
top 5 countries by the end of 2015 for cumulative installed PV capacity are listed
in Table 1-2.

TABLE 1-2. ToP 5 COUNTRIES TILL END 2015 FOR CUMULATIVE INSTALLED CAPACITY

(GW)

China | Germany | Japan | USA | Italy
End 2015 | 43.5 39.7 34.4 25.6 | 189

Impacts of the renewable energy on the power systems have been widely studied
[5], [6]. The intermittent nature of WP and SP needs a revolution at the demand
side, because the conventional non-shiftable loads can’t maximize the utilization
of the intermittent renewable energy. The flexible demands, such as EV and HP
equipped with energy storage devices, are able to harvest the benefits of the inter-
mittent renewable energy and support the stability of the power system. Thanks to
the advancement of the technologies and the support from the government policies,
the sales of plug-in light vehicles had a fast growth in the past five years in the
major markets [7], as shown in Fig. 1-1.

1.2 Problem Statement

It is a great challenge to manage and operate the power system with high penetra-
tion of the abovementioned new power sources, namely WP, SP, EVs and HPs.
The challenge includes the issue of imbalance between production and consump-
tion, and the issue of the congestion due to simultaneous discharge / charge (pro-
duction / consumption) of DERs.

The key to coping with this challenge is smart grid technology based on infor-
mation and communication technologies (ICT). The smart grid technology enables
advanced coordination between the components of the power system. It also ena-
bles a more sophisticated management and control of the new members to handle
the imbalance and congestion issues. Both issues are critical to the power system
operation; however, the PhD study focuses only on the congestion issue, specifi-
cally, the potential congestion on distribution networks due to high penetration of
DERs. Congestion problems in distribution networks are envisaged as voltage
problems (bus voltage is close to or exceeding the limit, typically +/—10%) and
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overloading problems (loading is close to or exceeding the thermal limit of the
power components).

600,000
500,000 -
» 400,000 — Canada
[}]
3 W Japan
= 300,000 . —
§ United States
c
< 200,000 . Western Europe
m China
100,000 WL
I
0
2011 2012 2013 2014 2015

Fig. 1-1. Global plug-in light vehicle sales, 2011-2015

The goal of a distribution network is to efficiently deliver active power p, (shown

in Fig. 1-2) as required to the customers with high reliability. The customers can
absorb some reactive power (e.g. induction motor) in the allowed range (according
to the grid code). Delivering active and reactive power through a feeder will lead
to voltage drop problems. Similarly, in the case of receiving renewable energy
production, p, can be negative and it can lead to over-voltage problems. In both

cases, if the power flow exceeds the thermal limits of the power components, it will
lead to overloading problems.

1.3 Existing Research Work on Congestion Management

To solve (or alleviate) the under-voltage or over-voltage issues and overloading
issues discussed in the above section, distribution system operators (DSOs) can
reinforce the distribution network (i.e. use cables/lines with higher current carrying
capability and smaller impedance). The DSO can also change the total active and
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reactive power at Bus 2 (Fig. 1-2) by installing local new DGs and FACTS devices,
such as static VAR compensators (SVCs), or by motivating the customers to
change p, and ¢, via market-based methods or directly controlling p, and ¢, under

pre-agreements with the customers.

Busl: V; Bus2: V,
bulk feeder

) ’
| r x

Pda 94

Fig. 1-2. Illustration of a simple distribution grid

Market-based methods or indirect control methods, as the main topic of this thesis,
are defined as the methods that employ prices or incentives to influence the behav-
ior of DERSs such that congestion on distribution networks is alleviated. Direct con-
trol methods refer to those methods in which the DSO can directly control power
system components, such as sectioning switches (network reconfiguration), on-
load tap changers (OLTC), SVC, grid-owned DGs and in some cases, customer-
owned DGs. There are scenarios that the coordination between the market-based
methods and the direct control methods is beneficial. One example is the reconfig-
uration-based dynamic tariff (DT) method, which will be discussed in Chapter 3.

Several market-based methods have been developed in previous literature, which
are reviewed in the following subsection. Market-based methods rely on the under-
lying market structure. It’s very often that a market-based method will interact with
the markets; therefore, a good understanding of the fundamental market structure
is very important. In Appendix B, the market structure of the Nordic electricity
market is reviewed, which is the fundamental assumption for discussing the mar-
ket-based methods in this thesis unless specified otherwise.
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1.3.1 Price-based Congestion Management Methods

By extending the locational marginal price (LMP) concept [8] from transmission
networks to distribution networks, [9]-[13] have developed the distribution LMP
(DLMP) concept and applied it to handle the congestion issues in distribution net-
works with distributed generators (DGs). Through the DLMP concept, the local
DGs will make profits if they produce more power and reduce the energy require-
ment of the local bus from remote areas during the congestion hours. DLMP is
determined through an OPF method, which is very similar to LMP calculation. In
the DLMP method, the LMP at the bulk grid connection point is the reference price
for DLMP, i.e. the energy exported to or imported from the bulk grid has a price as
LMP. However, whether this LMP is a forecast price or an actual price in the
DLMP method has not been pointed out in the abovementioned references. In ad-
dition, as a market clearing method on the distribution level, its relation with the
major market clearing on the transmission level is not clear.

References [14], [15] employ the dynamic tariff (DT) concept (a detailed introduc-
tion can be seen in Chapter 2) to solve congestion due to flexible demands in dis-
tribution networks. The flexible demands may create congestion if the price is not
properly set; on the other hand, they can help the congestion management if they
are controlled through proper price signals. In [14], [15], the congestion manage-
ment is conducted in a decentralized manner where the aggregators independently
determine the energy plans for the flexible demands managed by them without con-
sidering network constraints. The network constraint information is contained in
DT. However, due to the linear formulation of the DT method proposed in [14],
[15], multiple-response issue may occur, which can cause a failure of the DT
method for congestion management as a decentralized indirect control method.

The DT method shares many similar features of the DLMP method, e.g., both meth-
ods employ OPF methods and the marginal cost concept (Lagrange multipliers),
and the DT per node is equal to the congestion cost element of the corresponding
DLMP. But there are differences between them. First of all, the DT method is not
a market clearing method while DLMP is. The DT method relies on the existing
day-ahead market, e.g. the spot market in Nordic area, and it can be seamlessly
integrated into the existing market. Second of all, the DT method is a decentralized
control method, which is implemented through two steps of optimizations, while
DLMP is a centralized clearing method through one step of optimization.

Also based on OPF methods and the marginal cost concept, a distribution network
capacity reallocation method was proposed in [16]-[19]. However, unlike the DT
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method, it determines the marginal cost and the network capacity for each aggre-
gator through an iterative process between the DSO and the aggregators. One of
the benefits of this method is that it can protect the privacy of the aggregators, but
the efficiency of this method is questionable due to the high communication burden
from the multiple iterative steps.

In theory, the abovementioned three methods will converge to same prices if setups
are the same. However, the implementation of these methods is quite different.
Only the DT method has no requirement of binding between DSO and aggregators,
so the aggregators can be fairly easy to enter the day-ahead market, which makes
it suitable for being integrated with the day-ahead market.

1.3.2  Incentive-based Congestion Management Methods

The authors of [20] proposed a new method to solve the congestion: FLECH- flex-
ibility service clearing house. The aggregators do not need to buy distribution grid
capacity, i.e. they can make their own demand plan without considering the distri-
bution grid limitations. Instead, the DSO needs to buy flexibility services to solve
the congestion problem, e.g. buy a service which is to reduce the demands at a
certain time and a certain location. In [20], the possible flexibility services are clas-
sified as: Flexibility Service of Overload Planned (FSOP), Flexibility Service of
Overload Urgent (FSOU), Flexibility Service of Overload Reserve (FSOR), Flexi-
bility Service of Overload Cap (FSOC) and Flexibility Service of Overload Maxi-
mum (FSOM). A similar idea, i.e. the active demand (AD) product, has been pro-
posed in [21]. AD products are classified as: Scheduled Re-Profiling (SRP),
Conditional Re-Profiling (CRP) and Bi-directional Conditional Re-Profiling (CRP-
2). However, both the FLECH method and the AD method are still in a fairly con-
ceptual phase without detailed investigation of implementation method.

Reference [22] has proposed a coupon incentive-based demand response program
that can benefit both the load serving entities (LSEs) and the customers. In US and
Europe, LSE refers to retailers or aggregators. LSEs buy electricity from markets
and sell it to their customers. Outside of US and Europe, LSE may refer to different
entities due to different structures of the electricity markets. One of the shortcom-
ings of the coupon based incentive program is that it only considers the economic
profit of LSEs, without considering the limits of distribution networks and the in-
tertemporal effect of flexible demands.

A monetary incentive based method was proposed in [23] for coordinating and re-
scheduling flexible demands, where the capacity limit of distribution networks was
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taken into account. With this method, the flexible demands will be rewarded if they
are willing to reduce consumption during the congestion hours. However, the
method to determine a proper incentive is not optimal for the following reason. The
authors of [23] choose the best one from a finite set of predefined incentives, how-
ever, it is not necessarily global optimal due to limited size of the finite set. The
rebound effect, i.e., the reduced flexible demand will cause an increase in a future
period, is not considered because the method only handles one period at each exe-
cution. Another issue is that it does not consider the location of the incentives. De-
mand responses for solving congestion are usually needed at specific areas or nodes.
Locational incentives can improve the efficiency of solving congestion because the
responses of flexible demands from uncritical areas or nodes (e.g. the upstream
nodes to the congested point) have a limited effect.

1.4  Contributions of the Thesis

Motivated by the issues associated with the abovementioned existing methods for
congestion management on distribution networks, several new market-based con-
gestion management methods/concepts were proposed in this thesis, including: A
new formulation to strengthen the DT concept; The uncertainty management
method and the convex relaxation based AC OPF model for supporting the DT
concept; The combination of the DT and reconfiguration method; The DS method;
The flexible demand swap method for real-time congestion management. These
methods can be organized chronologically as shown in Fig. 1-3, to form a series of
market-based methods for congestion management. The time frame for these meth-
ods spans from the time day-ahead to the time near the operation; therefore, they
can handle the potential congestion appearing from the day-ahead energy planning
stage to the near operation stage. These methods are proposed to outperform the
existing methods, not from the economic point of view (the proposed methods have
as good economic efficiency as the existing methods, such as the DLMP method),
but rather from the practical point of view. All these methods have taken into ac-
count the rules of the day-ahead market; therefore, they are hopefully more accepta-
ble to the stakeholders from the industry.

The first contribution is to strengthen the DT concept for congestion management,
which is the most important and fundamental concept in this thesis. The quadratic
programming based optimization model for determining DT was proposed to han-
dle the multiple-response issue associated with the linear programming based opti-
mization model.
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The second contribution is to propose a method for the DT concept to manage the
uncertainties due to the stochastic nature of flexible demands and the inevitable
forecast errors. The third contribution is to propose a sufficient condition for exact
convex relaxation of the AC OPF model, which can be employed to determine DT
with voltage constraints included.

The fourth contribution is to investigate the combination of the DT method and the
direction control method, such as reconfiguration. The fifth contribution is to pro-
pose a new concept, i.e. DS, to replace the DT method and avoid regulation issues
nowadays.

The last contribution is the proposal of the flexible demand swap method for real-
time congestion management, which can handle the unsolved congestion from the
day-ahead market and the potential congestion occurring near the operation time.
This method is the last-minute method for congestion management through market-
based methods.

Day-ahead (Market) Real-time (Market) Operation and Control
5-60 minutes before operation (Not covered in Thesis)

‘ DT + Reconfiguration

7

B Direct Control:
Curtailment;
I: Flexible Demand Swap @ Reconfiguration;

OLTP; Reactive Power
Support/Capacitor
Banks, etc.

Convex
Relaxation and
AC OPF

Uncertainty
Management

Fig. 1-3. Structure of the proposed congestion management methods/concepts, organized chronolog-
ically; dashed arrows show the support function between the two methods, solid arrows show the
chronological relation among the methods.
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2. S. Huang, Q. Wu, L. Cheng, and Z. Liu, “Optimal Reconfiguration-Based Dynamic Tariff for Con-
gestion Management and Line Loss Reduction in Distribution Networks,” IEEE Trans. Smart Grid,
vol.7, no.3, pp. 1295-1303, May 2016.

3. S. Huang, Q. Wu, L. Cheng, Z. Liu, H. Zhao, “Uncertainty management of dynamic tariff method
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The publications 1-6 are incorporated in this thesis, while the rest are cited as ref-
erences wherever relevant.

1.5  Structure of the Thesis

The thesis is organized as follows.

Chapter 2: This chapter is to provide a rigorous theoretical foundation for the DT
concept through mathematical formulations and proofs. Quadratic programming
optimization model is employed to handle the multiple-response issue of the DT
method.

Chapter 3: This chapter is to investigate the possibilities of combining the DT
method with direct control methods, such as feeder reconfiguration, for a more ef-
ficient congestion management on distribution networks.

Chapter 4: This chapter is to provide a method to handle the uncertainties related
to the DT method for congestion management.

Chapter 5: This chapter will present a method to solve AC OPF through exact con-
vex relaxation and its application for EV energy planning and DT determination
where voltage constraints are included.

Chapter 6: In this chapter, the dynamic subsidy method will be presented, which is
opposite to the DT method and has less regulation concerns.

Chapter 7: This chapter will present a congestion management method, i.e. flexible
demand swap, which can be employed near the operation time.
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Chapter 8: Conclusion is made and the possible future work is discussed in this
chapter.



CHAPTER 2.
DYNAMIC TARIFF THROUGH QUADRATIC PRO-

GRAMMING'

This chapter is to provide a sound theoretical foundation for the DT concept
through mathematical reformulations and proofs.

2.1  Introduction

A DSO, who has the main responsibility for resolving congestion in distribution
networks, can choose to reinforce the network through their long term planning or
employ market-based methods [14], [18], [19] to influence DERs to respect the
system capacity limits. Compared to direct control methods for congestion man-
agement [24], [25], market-based methods can maximize the social welfare, cause
the least discomfort to customers and encourage more participation in the energy
planning.

Reference [14] employs the dynamic tariff (DT) concept to solve the congestion
due to flexible demands in distribution networks. However, the method proposed
in [14] did not consider the inter-temporal characteristics of flexible demands. In
[15], taking into account the inter-temporal characteristics, a linear formulation for
determining DT was proposed. The method proposed in [15] works in many cases.
However, the aggregator optimization may have multiple solutions because of the
linear programming formulation, leading to multiple possible responses from the
aggregator side. The multiple-response issue of the aggregator optimization in the
DT concept was discussed in [26]. The multiple-response issue may cause the cen-
tralized DSO optimization and the decentralized aggregator optimization not to

! This chapter is based on paper: S. Huang, Q. Wu, S. Oren, R. Li and Z. Liu, “Distribution Locational Marginal
Pricing Through Quadratic Programming for Congestion Management in Distribution Networks”, IEEE Tr. Power
System, vol: 30, issue: 4, pages: 2170 - 2178, July 2015.
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converge, and the decentralized congestion management to fail. Motivated by the
multiple-response issue of the decentralized aggregator optimization, this chapter
is dedicated to solve the non-convergence problem of the centralized DSO optimi-
zation and the decentralized aggregator optimization by proposing a new formula-
tion with quadratic programming (QP).

The chapter begins with an introduction of the spot price prediction method and the
optimal energy planning model of EVs and HPs, which are the basic elements of
the DT method. DT is determined through an optimal energy planning of flexible
demands in the distribution network by the DSO based on the predicted day-ahead
electricity price, energy requirements of the demands and the production from dis-
tributed renewables. Next, the non-convergence issue of the linear programming
formulation and how to solve it through QP formulation, including the proof of the
convergence through QP, are presented. Finally, the case studies are presented and
discussed.

2.2 Optimal Energy Planning for EVs and HPs

EVs and HPs meet their energy needs for driving and heating by procuring energy
in the day-ahead electricity market. Such purchases can be done through an aggre-
gator representing the EV and HP users by submitting bids on their behalf in the
day-ahead electricity market. As such, the individual users shift the burden of mar-
ket participation to aggregators, and the aggregators get enough capacity to partic-
ipate in different markets. This section is to derive EV and HP planning models
respectively, which later on will be used in Section 2.3.3 for the integrated energy
planning at DSO side and the distributed energy planning at aggregator side.

2.2.1  Spot Price Prediction

Before submitting their bids, the aggregators need to determine an optimal energy
plan based on the predicted spot prices. The electricity prices are plan-dependent,
which poses some difficulty in determining an optimal energy plan because the
price is a discontinuous function of the energy plan. A price sensitivity based spot
price prediction method was proposed in [16], [27] to deal with such difficulty.
Specifically, the predicted price consists of a baseline price plus a linear component
proportional to the demand. Therefore, the predicted spot price at time # (hour) is
given by,

yr:ct+ﬂrpz’ (21)
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where ¢, is the baseline price, g, is the sensitivity coefficient and p, is the total
power of flexible demands.

The price sensitivity coefficient B is determined by evaluating the merit order of

the power plants in the electricity market [27]. The production of renewable energy
resources, such as WP and SP, is deducted from the conventional demands first.
Then the net demands and the flexible demands are met by conventional power
plants according to the order of their marginal cost. The function of marginal cost
versus demand is fit by an exponential function and £ is the first order coefficient

of the Taylor expansion of the fit function. The concept of the price sensitivity is
illustrated in Fig. 2-1. The coefficient S estimated in the above method is scaled

up by the total number of available flexible demands (EVs and HPs) in order to be
used for individual flexible demand, which is still denoted as g without causing

ambiguity.
Marginal cost
Exponential fit function

Original function

Total price

Baseline price

|

|

i

- -
Net demands Flexible demands

demand

Fig. 2-1. Concept of the price sensitivity
2.2.2  Optimal EV Charging

The optimal EV charging aims to meeting the energy needs of EVs with minimum
energy cost. Taking into account the price sensitivity, the cost function of the EV
charging becomes a quadratic function. The total charging cost of an EV is,
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> vp,=2 (c+Bp)p,= Y. Bp’ +cp, (2.2)

teNy teNy teNy

where p, is the charging power of one EV and g, is the average sensitivity coeffi-
cient for one flexible demand.

With the aggregator concept, the charging plan of the EVs managed by aggregator
I at period 7 can be expressed as a vector P, €R", where m, is the number of EV's
of the aggregator i .

As such, the optimal EV charging plan can be found by solving the optimization
problem below.

. 1
rnlnpi,t Z (Epi,tTBi,tpi,t +(Ct1)rpi,z) (2.3)
ieBteT
subject to,
g™ < Z(Pi,,f ~d,, )te,<e™ VteT,ieB,(u, i) (2.4)
t <t
pi<p, <pvieT,ieB(s,.q,) (2.5)

In the above equations, vectore ™" and ¢,™ are the minimum SOC and maximum
SOC of the batteries (absolute value with unit kWh), vectord is the discharging
power, vectore, , is the initial SOC, B is the set of the aggregators and T is the
set of planning periods. Elements of the diagonal matrix B is the sensitivity coef-
ficient g, . Vector U and gare Lagrange multipliers. Constraint (2.4) ensures that

the SOC levels of the batteries are within the specified range. It is assumed that one
planning period is one hour; therefore, the charging power in kW is equivalent to

the energy change in kWh, i.e. (p,-,[_ _di,t_):(pi,t_ _di,t_)At in (2.4). Equations
(2.3)-(2.5) form a QP problem.
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2.2.3  Optimal HP Planning

The optimal HP planning is to schedule the energy consumption of HPs so as to
maintain the house temperature within a specified range at the minimum energy
cost. The heat transfer process of the air source HP can be represented by an electric
circuit [28] which is illustrated in Fig. 2-2. Thus, the following thermal balance
equations can be derived [28].

‘+S —k(K'-K)-k,(K'-K)=
Ql‘ t 1( t t) 2 ( t t ) (2‘6)
C.(K'-K!), vteT
S’ +hky (K —K))—ky(K; —K,) =
t 2( t ' t ) 3( t t) (2‘7)
C(K’ -K’),VvteT
In the above equations, kis the heat transfer coefficient of one time unit, K is the

temperature, Sis the solar radiation of one time unit, C is the heat capacity and
O is the thermal energy produced by the HP of one time unit. Here, the time unit

is chosen to be one planning period, e.g. 1 hour. The right side of (2.6) and (2.7)
are the heat energy needed to change the temperature from x * and x* to k“and

K, which are the temperatures of the inside air and the house structure at the be-
ginning and the end of one planning period respectively.

ki ventilating

exterior
Q2

I side

Fig. 2-2. Heat transferring process of the house

Equations (2.6) and (2.7) can be solved iteratively. As a result, the house inside air
temperature k¢ will be a linear combination of all the previous and the current

thermal energy (¢ ) plus an initial state. Because Q¢ has a linear relation (by the
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coefficient of performance (COP)) to the active power p, consumed by the HP, the

house inside air temperature can be expressed as,

K= Zat,t,ﬁt, +u, VteT (2.8)

t <t

where 4 is the coefficient and 4 is the constant relating to the initial temperature and
the given solar radiation profile.

Finally, the optimization problem of the HP energy plan can be formed as,

. 1, . .
mlnﬁu Epi,tTBi,tpi,t + (Ct l)Tpi,t (2-9)
ieBteT
subject to,
Kﬁtmm S 24;,1]5[,;7 +ut,z = KatmaX’VZ = B’t = T’(ﬂljl"[l:t) ’ (2' 10)
t <t
p<p, <prVieBteT,(&,.8), (2.11)

A .. . . n;
where Af,t,t, eR"™™ is a diagonal matrix, and U, eR" represents the constant

values.

2.3 DT through QP

2.3.1 Decentralized Congestion Management through the DT Concept

According to [14], [15], the procedure of using the DT concept to solve the con-
gestion problem in a decentralized manner can be summarized as follows. Firstly,
the DSO obtains the flexible demand data, such as energy requirements and the
availability, from the aggregators or by its own prediction. The DSO also needs the
network information and the predicted spot price. Secondly, DTs are calculated
through the optimal schedule respecting the network constraints, and the DTs are
published to all the aggregators. Thirdly, after receiving the DTs, the aggregators
make their own optimal plans independently with both the predicted spot prices
and the DTs. At last, the aggregators submit their energy plans/bids to the spot
market (the energy cost will be paid to the day-ahead market).
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2.3.2  Multiple-response Issue of the Aggregator Optimization with Linear Pro-
gramming Formulation

The multiple-response issue of the aggregator optimization through linear program-
ming was pointed out by the discussers of [26] based on the observation of the case
study results of [15]. According to the observation, there are an infinite number of
optimal solutions of the aggregator optimization due to the equal DTs at some load
points?. The multiple-response issue of the aggregator optimization through linear
programming is further discussed by the following analysis.

Assume that there is one EV (or HP) in the distribution network and it is available
for energy planning in two periods. It is also assumed that the energy requirement
cannot be fulfilled by consuming power in only one period due to the network con-
straints. For such a case, the DSO optimization is,

minp ap+Gp,, (2.12)
subject to,
Dp, < fi, (4) > (2.13)
Dp, < /5, (4), (2.14)
a\p+a,p,2b, (u), (2.15)
PP 20, (6,6,) (2.16)

where the scalar (or matrix with one element) D is power transfer distribution fac-
tor (PTDF), f is the remaining capacity for the flexible demands, A is Lagrange
multiplier. The decision variables p, and p, represent the energy consumption at
the two periods respectively. Constraints (2.13) and (2.14) are network constraints
for the two periods, constraint (2.15) is the energy requirement (derived from (2.4)
and (2.10), parameter bis the summation of all constants of (2.4) and (2.10); the
upper limit is ignored for simplicity), and constraint (2.16) is to set the lower limit

2 Note that there is a relationship to Danzig-Wolfe decomposition, in which the master problem states prices,
and the subproblem returns quantities. To avoid the problem occurring here, the master problem considers sched-
ules that have been proposed and chooses a convex combination. However, a DW approach to this market would-
n't work because there's not a market-based way for aggregators and the DSO to iterate to generate multiple can-
didate schedules.
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of the consuming power ( p,, p, ) (the upper limit is ignored for simplicity). Coef-

ficients @, and a, are positive (a, = a, =1 whenitis EV).

According to the KKT conditions, the DTs are calculated by (note that ¢ ,¢, =0
and p,, p, >0, because the energy requirement cannot be fulfilled by any one of
them),

¢, +D" A = pa,

, (2.17)
¢, +D' A, = ua,

where the terms p’2and p’ 2, are the DTs and should be sent to the aggregator.
The aggregator optimization (no network constraints) is,

min, (¢, +4'D)p,+(c,+4 ' D)p,, (2.18)
subject to,

(2.15) and (2.16).

It can be seen that such a linear programming has an infinite number of optimal
solutions due to the proportional coefficients. The aggregator optimization and the
DSO optimization do not converge. For instance, the optimal energy plan of the
aggregator optimization, where p, = 0, is infeasible for the DSO optimization be-

cause the energy requirement cannot be fulfilled by any one of p,, p, , as stated in
the assumption.

When there are many flexible demands in a distribution network, the above analysis
is still valid, as there is at least one flexible demand behaving like the one in the
above example. As such, the decentralized congestion management formulated
through linear programming fails.
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2.3.3 QP Formulation and the Proof of Convergence

2.3.3.1 DSO Optimization through QP

In this chapter, it is assumed that the aggregators are willing to share the flexible
demand information (energy requirement, availability, etc.) with the DSO; there-
fore, the DSO can have detailed information for modelling the optimal EV and HP
planning. However, this assumption is relaxed in chapter 4 (see section 4.2.1). The
DSO optimization in the second step of the procedures in Section 2.3.1 is,

. 1
mim, . Z 5P zTBi,zpi,z + (Czl)Tpi,z +

vichreT 2 ’ (2.19)
S b Bubi @) b,
subject to,
S DE(p, +h,)< ST, (3), 2.20)
ieB

and (2.4), (2.5), (2.10) and (2.11).

Matrix £ is a mapping from the customers to the load busses. The conventional
household demands are assumed to be inflexible. Therefore, they are not included
in the objective function (2.19), but reflected in the line loading limits £, , which

are the total line capacities F, excluding the loadings induced by the conventional
demands.

The DTs, equal to p” 2, will be published by the DSO before the day-ahead market

clears. Parameters ¢, and 8, (B ) used by the DSO are shared with the aggrega-
tors since the aggregators need them in their optimization problems.

2.3.3.2 Aggregator Optimization through QP

Aggregator [ first forms the prices for each of his customers, i.e.
¢,1+ E” D" .Then, the optimal energy plan of aggregator i can be formulated as,
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. 1
min, Z—p,,JTB,Jp,,‘, +(c 1+ EI.TDT/L)TpU +

ie7 2 , 2.21)
BB PR ETDAY b,
subject to,

e,'mjn < Z(pi,t, _di,t7)+ei0 Seimax’Vt ET,(,U[;,,U;) ’ (222)

t <t
Py <p, <p VteT (6,6, (2.23)
K™<Y> A, b, +u, <K™NVieT,(i,i), (2.24)

t <t
pr<p, <P vteT (G ,.6)). (225)

As discussed in section 4.2.2, price sensitive coefficients ( 8,, ) can be the one from

the DSO, who publishes this information together with DTs. The rationale behind
the aggregators using this coefficient matrix is that the individual planning of flex-
ible demands will affect the final energy price of the day-ahead market. Although
it should be an aggregated effect, the individual owner or the aggregator can only
rely on its own consumption data (quantity of each hour) and a predicted coefficient
that describes the relation of the individual consumption and the final price. This is
a sort of multiplayer game. Everyone wishes to consume energy at low price hour
and hope others not to do the same, otherwise the final price can be much higher
than expected. Under this circumstance, the sensitive coefficient matrix can give
the aggregators an indication of how their own consumption will affect the final
price, though not very accurate. An accurate coefficient matrix is almost impossible
to obtain; therefore, the DSO should use some judgement in addition to prediction
and estimation. Whether this strategy (using sensitive coefficient matrix) can lead
to an equilibrium of the multiplayer game is not investigated.

2.3.3.3  Proof of the Convergence of the DSO Optimization and the Aggregator
Optimization through QP

The KKT conditions of the DSO optimization are,
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Bi,tpi,t + Ctl +EiTDTﬂ't + Z(:u:rt - lLll:t )+ (g:rt _g;t)
= : (2.26)
=0,VieB,teT
Bi,tﬁi,t + Ct1+EiTDTﬂ’t + z(/&:z_ _/[li:t_) + (g’\:rt _é:ijt)
= : 2.27)
=0,VieB,teT
(> DE.p,,~ f)-2,=0, teT > (2.28)
ieB,

(Z(pi,ti —di’ti) +e,—€™): /I;;ZO,VZ eT,ieb, (2.29)

t <t
Qp, —d, ) +e,—€™) 4, =0VteT,ieh, (2.30)

t <t
(pi,t _Hl:f:‘x)g;:o’vt ETai EB, (231)
(p,—P)-6,0,VteT,ieB, (2.32)
Q4. b, +u,—Ki™) ' =0VteT,ieB, (2.33)

t <t
Q A, b, +u,—Ki™) i, =0NteT,ieB, (234)

t <t
(D, =P 6, 0vteT ieB, (2.35)
(B, —Py")-6,~0VteT,ieB, (2.36)
2, 20,VteT , (2.37)
Hioo b 156156 o ks b 13611061, 2O VU ET i €, (2.38)

together with the constraints (2.4), (2.5), (2.10), (2.11) and (2.20).
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Similarly, the KKT conditions of the aggregator i optimization are,

Bipi,t + Ctl + EiTDTﬂ’t + Z(lu:rti - /’li:ti) + (g:t - gf,,)

: (2.39)
=0,VieT
Bilai,t + Ctl + E,'TDTX'[ + Z(I&:rt - /:\li:t ) + (gAiJ,rt - g’:t)
= : (2.40)
=0,VieT
Q.(p, —d, )+e,—€™) 1, =0vteT (2.41)
t <t
Q.(p, —d, )+e,—e™) 1, =0NVteT (2.42)
t <t
(p,—D)) 6 OVteT, (2.43)
(p,—P")-6,0VreT, (2.44)
(ZAU,LZA?[,L + u;, _K'lc’l[maX) ’ l[l:t :O’Vt € Ta (2~45)
t <t
Q. A, b, +u,—K:™)- i A0Vt eT (2.46)
t <t
(P, —P) 6, 0VteT, (2.47)
(B, —Pi")-&,A0VteT, (2.48)

together with (2.22)-(2.25) and (2.38).

It can be seen that the objective function (2.19) of the DSO problem is a quadratic
function with all quadratic terms being positive and no cross terms. Therefore, the
Hessian matrix can be found by observation. Particularly, it is a diagonal matrix
with the elements being the coefficients of the quadratic terms in (2.19), which are
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all positive. A diagonal matrix with all elements being positive is a positive definite
matrix; therefore, the Hessian matrix of (2.19) is positive definite.

Since the objective function (2.19) is a quadratic function with positive definite
Hessian matrix and all the constraints, i.e. (2.4), (2.5), (2.10), (2.11) and (2.20) are
affine functions, the DSO optimization problem is a strict convex QP problem,
which has a unique minimizer [29] assuming the problem is feasible. Moreover,
the KKT conditions of the DSO optimization problem are necessary and sufficient
[29].

Similarly, it can be inferred from (2.21)-(2.25) that each aggregator optimization
problem is also a strict convex QP problem. Therefore, each of them has a unique
minimizer and the KKT conditions are necessary and sufficient.

Now, suppose

* Ak ¥ oA4E A
(20 PV AN T TR AN S Y Y T RN

is a solution of the KKT conditions of the DSO problem ((2.4), (2.5), (2.10), (2.11),
(2.20) and (2.26)-(2.38)), implying that (pi,t*,f?i,t*) is an optimal solution of the

DSO problem. By comparing the KKT conditions, it can be seen that, with respect
to aggregatori ,

_*® A+* A_*

is also satisfying (2.22)-(2.25) and (2.38)-(2.48), i.e. the KKT conditions of the ag-

gregator problem. This means (p,-,,*, ﬁ,-,,*) is also an optimal solution of the aggre-

gator problem. Because any solution of the DSO problem must satisfy the KKT
conditions of it, it can be concluded that any solution of the DSO problem is also a
solution to the aggregator problem.

On the other hand, a solution that satisfies the KKT conditions of the aggregator
problems does not necessarily satisfy the KKT conditions of the DSO problem,
because the switching condition (2.28) of the DSO problem is not respected by the
aggregator problems. However, due to the uniqueness of the solution to the DSO
problem and the aggregator problems, any solution of the aggregator problems
must also be a solution of the DSO problem. This can be proven by contradiction.
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A

Suppose (Pi,t**api,,**) is a solution of the aggregator problems but not to the DSO
problem. Suppose (p,»,,*, }5,»,[*) is a solution to the DSO problem. Then, according to
the previous conclusion, (pi,t*, Ai’t*) is also a solution to the aggregator problems.
Due to the uniqueness of the aggregator problems, there is (pl»’,*, f?,[*) :(p,-,,**, ﬁl,ﬁ‘)

and it contradicts to the assumption that (p,»,t aﬁi,t ) is not a solution to the DSO

problem. Therefore, it can be concluded that any solution to the aggregator prob-
lems is also a solution to the DSO problem. Based on the above conclusions, the
DSO problem and the aggregator problems do converge.

2.4  Discussion of the DT Method

2.4.1 Regulation Concerns regarding DT

The concern regarding the regulation issues of the DT concept can be explained as
follows.

One issue is the non-discrimination requirement by distribution grid code in many
European countries [30]. This means that the customers can’t have different prices
just because of their location. In other words, the customers may receive different
prices due to their demand sizes, power band requirement etc., but not due to their
location. The DT collected by the DSO from the aggregators is similar to the con-
gestion revenue collected by the independent system operator (ISO) in transmission
networks. The concept of the congestion revenue on transmission level is widely
accepted in the electricity market with, e.g. nodal price systems [31] or zonal price
systems [32]. The congestion revenue will be used to improve the network condi-
tions and reduce the congestion in the future, and thereby benefits the parties who
pay this congestion revenue. On the other hand, on distribution level where non-
discrimination is required, the aggregators (function as retailors or suppliers) can
absorb the discrimination due to DT and socialize the congestion cost among its
customers. The aggregators benefit from the flexibility from its customers by opti-
mizing the consumption at the cheapest hours which can be the cause of congestion.
Therefore, it is reasonable that the aggregators bear the cost of the congestion due
to rearranging the flexible demands. However, there is possibility that the aggrega-
tors will tend to contract with customers having low DTs. In chapter 6, a new
method called dynamic subsidy will be presented to deal with the non-discrimina-
tion requirement. More details about the DS method, including a comparison be-
tween the DT and DS method, can be seen from chapter 6.
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Another issue is that the total revenue of the DSO is regulated by the regulators
[30]. When the DT is considered in addition to the conventional flat tariff structure,
the DT should be included in the calculation of the total revenue of the DSO. The
DSO uses DT as a tool to handle the potential congestion and cannot pursue maxi-
mization of revenue through DT since the total revenue is regulated.

2.4.2 Linear Approximation of Power Flows in Distribution Networks

A distribution network has two distinguishing features, namely unbalanced three-
phase loads and a high R/X ratio of the lines, compared to a transmission network.
The DT concept is developed for congestion management of medium voltage (MV)
distribution networks. In most cases, MV distribution networks are balanced net-
works. All the loads and the flexible demands are aggregated and considered as a
lump load connected to the low voltage (LV) transformers. The LV transformers
are considered as load points in the load flow analysis. In future work, the applica-
tion of the DT method for congestion management of unbalanced distribution net-
works will be studied.

The high R/X ratio affects the accuracy of the DC OPF model for the DT or DS
method, compared to the AC OPF model. Due to the nonlinear and nonconvex fea-
ture of the AC OPF model, it is very difficult to find a global optimum. Employing
the DC OPF to approximate the AC OPF is a good option; however, the accuracy
must be improved before it can be used for distribution networks. It is reported that
the total line losses are marginal for many developed countries [33], e.g. China 6%,
Denmark 6%, France 7% and the USA 6%. The active power losses in distribution
networks will be even smaller. Because the R/X ratio is higher than one, the reac-
tive power losses in distribution networks will be very small as well. Therefore, the
main factor that affects the accuracy of the DC OPF is the neglected reactive power
consumptions of the loads and the low voltage transformers. For instance, the ac-
tive power will be 10% less than the apparent power transferred through the lines
if the average power factor of the loads and the low voltage transformers is 0.9.
One way to handle this issue is that the DSO can set the line loading limits a bit
lower than the actual limits, e.g. 10% lower depending on the estimated power fac-
tor, to have a safety margin. The other way is to improve the power factor by in-
stalling reactive power compensators or having reactive power support from EVs
or smart transformers [34].

In addition, the voltage issues are also important aspects of the congestion problems,
especially for long distance distribution feeders. Therefore, they should be consid-
ered as well. The authors of [35] have proposed a linear approximation method to
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calculate the voltages based on the power consumptions at each load point. These
linear equations can be combined with the DT model without increasing much of
the model complexity and computation time.

2.4.3  Stochastic Nature of the Flexible Demands

The model for determining DT is deterministic and doesn’t take into account the
stochastic nature of flexible demands. For instance, EVs are modelled by their ex-
pected energy demands and the expected arriving and leaving times. The determin-
istic model has the following advantages: It is easier to understand the concept of
the DT method with a simple and clear model; The DSO can have a quick overview
of where and how heavy the congestion is in the network based on the average
model of the flexible demands; The DSO can choose to use the worst scenario of
the flexible demands for the DT method and has a sufficient safety margin in the
distribution network.

On the other hand, the DSO may want to manage the uncertainties of the congestion
due to the stochastic flexible demands, in addition to the abovementioned average
model case and the worst scenario case. It should be pointed out that, in the business
model of the DT method for congestion management, the focus is given to DSO
side. The DSO determines the DT through an optimal energy planning based on
predicted data of the flexible demands and the conventional demands. How the
aggregator will interact with its customers in the real-time operations/controls de-
pends on the contract type made between the aggregator and its customers, and it
is not a focus of the DT method. However, it is assumed that the aggregators are
rational and use optimization methods to make energy planning and control for its
customers.

In chapter 4, it will be shown that DTs can be determined using a deterministic
method, such that the possibility of congestion is less than a predefined level based
on the statistical feature of the predicted data for flexible demands. Since only MV
networks are considered and it is assumed that there are many flexible demands
connected to a load point (LV transformer), there is enough diversity (randomness)
of the stochastic flexible demands at each load point. This feature helps the statis-
tical analysis of the flexible demands at each load point. More aspects about the
uncertainty analysis of the DT method will be discussed in chapter 4.
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2.5 Case Studies

Case studies were conducted using the Danish driving pattern and the Bus 4 distri-
bution system of the Roy Billinton Test System (RBTS) [36]. In line with the day-
ahead market (an introduction can be seen from section B.1), 24 hours of the next
day are considered in the hourly based energy planning in the case studies.

2.5.1 Grid Data

The single line diagram of the Bus 4 distribution network is shown in Fig. 2-3. Line
segments of the feeder one are labeled in Fig. 2-3, among which L2, L4, L6, LS,
L9, L11, and L12 refer to the transformers connecting the corresponding load
points (LP1 to LP7). The study is focused on this feeder because it has the most
diversity among all the feeders: 5 residential load points with different peak con-
ventional demands and two commercial load points. The detailed data of these load
points are listed in Appendix A. The peak conventional demands of residential cus-
tomers are assumed to occur at 18:00 when people come home and start cooking
(shown in Fig. 2-4).
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Fig. 2-3. Single line diagram of the distribution network

The key parameters of EVs and HPs, and the EV availability can be seen from
Appendix A. There are a large number (200) of households at each residential load
point and each household has one EV and one HP. The stochastic feature of the
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EVs can be approximated by taking samples from the population. In this study, the
Danish National Transport Survey data are used as the population, which have
134,756 survey results [37]. Parameters of HP depend on the household area, which
is a random number chosen between 100 and 200 m’ (see Appendix A for the cal-
culation of the parameters from the household area). The predicted day-ahead
system prices are shown in Fig. 2-5 as the ‘base price’. The solar radiation impacts
can be deemed as negative loads, which are inflexible and are neglected for brevity
in this study.

2.5.2 Case Study Results

In the case study, it is assumed that there are two aggregators. The aggregator 'aagl’
has contracts with 40 customers per load point while the other has contracts with
the rest 160 customers per load point. The line loading limits of all line segments
are listed in Table 2-1, which are higher than the peak conventional demands but
lower than the peak demands including EVs and HPs.

The simulation was carried out using the General Algebraic Modeling System
(GAMS) optimization software [38] although many other tools can be used such as
QUADPROG in MATLAB, Gurobi and AMPL. Firstly, the DSO optimization
problem was carried out and the results are shown in Fig. 2-4. Because the line
loading limits are respected in the optimization, the line loadings of all line seg-
ments are lower than the limits.

TABLE 2-1. LINE LOADING LIMIT

line L2 L3 L4 L8 L9

limit

1400 000 1700 1600 1500
(KW) 7 7
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Fig. 2-4. Line loading of the DSO problem

It can be seen from Fig. 2-4 that the line loadings reach (but not exceed) the limits
at hour 16-18 (only line L2) and hour 23-24. This means that the corresponding
inequality constraints of the optimization problem are 'active' and the Lagrange
multipliers of these constraints are positive. Therefore, according to the DT calcu-
lation method described in 2.2.3, the locational prices are higher than the base price
(shown in Fig. 2-5 and Table 2-2). The prices of LP1 at hour 17-18 are very high
and are chopped in Fig. 2-5 (they can be found in Table 2-2) in order to have a
better illustration of locational price of other hours. The high prices of LP1 at hour
17-18 can be explained by analyzing the nature of the congestion caused by HPs.
HPs are less sensitive to the prices compared to EVs because of the significant
thermal leakages of the households; therefore, higher DTs are required to solve the
congestion caused by them.
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Fig. 2-5. System prices and locational prices at LP1

Secondly, the aggregator optimization was performed. Two aggregators carried out
their own optimization problem independently.

In order to clearly show the effect of the DT, two case studies were conducted. In
Case One, the DT was not applied; in Case Two, the DT was applied.

As expected, when the DT is not applied, congestion occur at 24:00 and 18:00
(shown in Fig. 2-6). At 24:00, because the system price is the lowest, every EV
wants to charge its battery as long as it is available for charging. The simultaneous
charging leads to the very high peak. Overloading of line L2 at 18:00, however, is
not due to the low price. In fact, it is the peak conventional demand that has con-
sumed most of the capacity of the line and the available capacity is not enough for
the HP demands.
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TABLE 2-2. LOCATIONAL PRICES, DKK/KWH, DUE TO MULTIPLE CONGESTION ON L2, L3, L4, L8
AND L9 ('-' MEANS EQUAL TO BASE PRICE)

time 5 16 17 18 23 24

base
price 0.3012 0.3884 0.3513 0.3313 0.2941 0.2241

LP1 - 0.5611 1.1006 2.4335 0.3012 0.3012
LP2 - - - - - 0.2940
LP3 - - - - - 0.2937
LP4 - - - - 0.3006 0.3006
LP5 - - - - 0.3008 0.3008
L2 loading
2000
N -
n A Emmpll;
E a0 %a%%%%%%%%%% oz cany load %
|:|agg1 load
L3 loading o load
10000 — — — lirnit
| _————-———-_
E 5000 -
| ™| mmmmamemmmmnn TR
L4 loading
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= 1000+ -
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Fig. 2-6. Line loading without DT

When the DT is applied, the congestion is alleviated (shown in Fig. 2-7). Due to
the posed DTs, the locational price at load point LP1 at 24:00 is as attractive as the
ones at 23:00 and 5:00. Therefore, the EV charging demands are spread at those
hours and the resulted peak is not higher than the limits. The previous congestion
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of line L2 at 18:00 also disappears due to the DT. The DT at LP1 at 18:00 is so
high that the HPs choose to produce more heat before 18:00 and due to the dynam-
ics of the thermal objects (house inside air, house structure), the temperature at
18:00 is maintained between the lower and upper limits. Hence, the HP demands
are shifted to the previous hours when the conventional demands are low enough
to accommodate them.

b
e
s e

20 25

Fig. 2-7. Line loading with DT

In order to illustrate the non-convergence issue that might occur with the linear
programming formulation, a simulation was conducted where the price sensitive
part was excluded. Without the price-sensitive part, the DSO optimization problem
and the aggregator optimization problems are linear programming problems. The
locational prices were calculated and shown in Table 2-3. It can be seen that the
locational prices of LP1 are the same at time 5, 23 and 24 hour. This will lead to
infinite number of solutions of the aggregator problems. As a result, the aggregator
may not act as the DSO expects. This is confirmed by the simulation results shown
in Fig. 2-8 and Fig. 2-9. In Fig. 2-8, for the DSO optimization, there is no conges-
tion, however, in Fig. 2-9, for the aggregator optimization, congestion occur at line
L2; loading of line L3 at 5 hour is different.
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TABLE 2-3. LOCATIONAL PRICES, DKK/KWH, WITH MULTIPLE CONGESTION AT L2, L3, L4, L8

loading (kW)

loading (kW)

loading (kW)

2000

1000

10000

2000

=

2000

1000

AND L9, CALC. WITHOUT QUADRATIC TERMS ('-': EQ. TO BASE PRICE)

time 5 16 17 18 23 24
base
price 0.3012 0.3884 0.3513 0.3313 0.2941 0.2241
LP1 - 0.5605 1.0984 2.4267 0.3012 0.3012
LP2 - - - - - 0.2941
LP3 - - - - - 0.2941
LP4 - - - - 0.3012 0.3012
LP5 - - - - 0.3012 0.3012
L2 loading
B el
aaaa %%%%%%a%l cnn\fluad ’
_ |:|E\/Iuad
L3 loading I - o
— ——limit

L4 loading
D g
5 10 S 15 20 5

Fig. 2-8. Line loading of the DSO problem excluding quadratic terms
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Fig. 2-9. Line loading of the aggregator problems excluding quadratic terms

2.6 Summary

Though the DT concept is efficient in alleviating congestion in distribution net-
works with high penetration of flexible demands, the formulation of the decentral-
ized aggregator optimization must be carefully handled. With the linear program-
ming formulation of the aggregator optimization, there might be multiple solutions
of the decentralized aggregator optimization. The multiple solutions of the aggre-
gator optimization may cause the centralized DSO optimization and the decentral-
ized aggregator optimization not to converge, and the decentralized congestion
management to fail.

The multiple solution issue of the aggregator optimization is addressed in this chap-
ter by introducing price sensitivity which leads to strict convex QP formulation for
both the DSO optimization and the aggregator optimization. The convergence of
the centralized DSO optimization and the decentralized aggregator optimization
with the QP formulation is proven which ensures that the aggregators act as the
DSO expects. The case study results have demonstrated the convergence of the
DSO optimization and the aggregator optimization with the strict convex QP for-
mulation, and the efficacy of the DT through QP for congestion management.



CHAPTER 3.

OPTIMAL RECONFIGURATION BASED DT?

This chapter is to investigate the possibilities of combining the DT method with
direct control methods, such as feeder reconfiguration, for a more efficient con-
gestion management on distribution networks. The other direct control methods,
e.g. control of online tap changer of the transformers and the reactive power com-
pensators, can also be combined with the DT method in a similar manner; how-
ever, they will not be covered in this thesis.

3.1 Introduction

Feeder reconfiguration (FR) has been used for reducing resistive line losses in dis-
tribution networks for a long time [39]. The DSOs, who have the responsibility of
operating the distribution network in an optimal way, will search the best operation
topology of the distribution network that can minimize the line losses. Many meth-
ods have been developed for searching the optimal operation topology in the last
few decades, including exact optimization methods [40]—[42], heuristic methods
[39], [43] and their combinations.

Meanwhile, the congestion problems due to the physical limits of the distribution
network, caused by increasing penetration of DERs, such as EVs and HPs, have
become a major concern of the DSOs. Different methods have been proposed in
recent years for congestion management within distribution networks. DT is one of
such methods that can solve the congestion within distribution networks in a de-
centralized manner. In the DT framework for congestion management, the DSO
will first acquire the energy requirement information of the flexible demands in the
distribution network; then the DSO will calculate the DT through an optimal energy

3 This chapter is based on paper: S. Huang, Q. Wu, C. Lin and Z. Liu, “Optimal reconfiguration-based dynamic
tariff for congestion management and line loss reduction in distribution networks”, IEEE Tr. Smart Grid, vol: 7,
issue: 3, pages: 1295-1303, May 2016.
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planning taking into account the network constraints; in the end, the DT will be
sent to the aggregators, who make the optimal energy planning of flexible demands
on behalf of the owners and submit the bids to the spot market. It is proven in
chapter 2 that the energy planning at the aggregator side without the knowledge of
the network constraints converges to the energy planning at the DSO side because
the DT, as a price control signal linking both sides, contains the network congestion
information.

However, the combination of the FR and the DT framework for congestion man-
agement and line loss reduction has not been studied yet. Given the DT framework,
the FR can be used ex post, i.e. handle the potential congestion that have not been
solved by the DT method. A superior way of integrating the FR into the DT frame-
work is to take into account the FR during the process of calculating DT. The ad-
vantages of combining the FR and the DT framework include: combined optimiza-
tion of the flexible demands and the network topology can achieve the best solution
for congestion management in distribution networks with minimized energy cost;
DT can be reduced if the congestion is alleviated by the FR during the calculation
of DT; line losses can be reduced on top of the congestion management. Motivated
by this idea, the optimal reconfiguration based DT is proposed in this chapter for
congestion management and line loss reduction within distribution networks.

The chapter will first describe the optimal reconfiguration based DT for congestion
management within distribution networks. Next, the optimal reconfiguration based
DT is extended to take into account line loss reduction. At last, case studies are
presented and discussed.

3.2 Optimal Reconfiguration Based DT for Congestion Management

3.2.1 Distribution Network Reconfiguration Modeling

According to the DT calculation method presented in chapter 2, the exact optimi-
zation method is required in order to determine the DTs. The exact optimization
method can ensure the consistency among the aggregators who have freedom of
choosing different optimization tools in the decentralized congestion management
framework. Hence, it is very desirable that the additional network reconfiguration
constraints can be modelled algebraically through a group of equations and/or ine-
qualities. It will be better to prevent the nonlinearity of constraints considering the
complexity of integer programming caused by multiple planning periods (e.g. for
24 planning periods/hours, the total possible combinations are the number of com-
binations of the switch status to the power of 24).
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Medium voltage (MV) distribution networks usually have a meshed structure, but
operate radially in most cases for safety reasons. The radial condition of the net-
work is equivalent to a tree graph in the graph theory. A spanning tree is defined as
a tree that consists of all the vertexes of a graph. There are a number of equivalent
conditions that can assure a spanning tree in a given connected graph with , ver-
texes. For instance, any of the following conditions is an equivalent condition [44]:

e It has n—1ledges and it is connected,;
e It has n—1ledges and it has no loop;
e There is only one path from one vertex to another.

Based on the above equivalent conditions of a spanning tree, a number of modelling
methods for network reconfiguration have been developed in [40]-[42], [45].
Among them, the method in [45] is the most efficient one in terms of reduced num-
ber of constraints, and is employed in this chapter.

Considering the fact that not every line segment (or branch) is equipped with sec-
tionalizing switches, the electric distribution network can be abstracted to a con-
nected graph, where several electric nodes are deemed as one graphic node. This is
beneficial in terms of reducing the number of variables in the optimization problem.
The process is illustrated in Fig. 3-1, where (a) is a portion of the original electric
network, (b) is the equivalent graph of the portion and (c) is the final graph. The
positive direction of the active power is defined in the graph such that the sign of
the power flow solution ( P or K ) is meaningful, i.e. a positive sign means that the
power is transported along the direction while a negative sign means that it is done
backwards.

The network reconfiguration constraints (radial condition) can be formulated as the
follows [45] with consideration of multiple planning periods.

z Xy, =n,—1LVteT (3.1
(jh)eE’

CK,=1VieT (3.2)

(K} | < My, V() e te T (3.3)

X, €0,1},V(jk) €&t eT (3.4
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In the above equations, £ is the set of lines with sectional switches, T is the set
of planning periods, decision variable X , represents the status of the switch ( jk )

at planning period 7, »  is the number of the total vertexes/ graphic nodes, vector
K represents fictitious active power flows, C is the reduced incidence matrix of

graphic nodes. Parameter M s a sufficiently large number; when  is zero, the cor-

responding element of K is forced to be zero. Matrix C is obtained in this way: the
element is 1 if the positive direction of the edge enters into a node (junction); it is
-1 if the positive direction goes out of a node; and it is 0 if the edge is not associated
with a node (see Fig. 3-1(c)).

(a) " T e Electric node
‘ i I | o Sect. switch
8- ; —C -~ Graphic
\_/  node
(b)
° o e Graphic
node
(©)
e Graphic
node

> Positive dir. of
active power

Fig. 3-1. From electric network to an abstract graph (a) a portion of the original electric network (b)
the equivalent graph of the portion (c) an example of the final abstract graph

Constraint (3.1) is to assure the total edges of the resulting graph (after reconfigu-
ration) are the total vertexes » minus one. This ensures that there are no loops in
a fully connected graph. Constraints (3.2)-(3.3) are to force the resulting graph be-
ing connected. The connection of the resulting graph is assured by supplying ficti-
tious positive active power (=1) to each node from the substation.
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The substation node is not part of the constraints because the active power supplied
from the bulk grid is assumed to be unlimited. If there are two or more substation
nodes in the distribution network, the model can be slightly modified to cope with
those situations.

According to [45], constraints (3.2)-(3.3) can be omitted since they are implied in
the 'real’ power flow constraints if the active power demand of each node is positive
and there is no DG in the network. In this chapter, these constraints are explicitly
kept in order to have generality.

3.2.2  DSO Optimal Energy Planning with Reconfiguration

It is obvious that the combined optimization of flexible demand and reconfiguration
can achieve better solution than the optimization of flexible demand alone or re-
configuration alone. The key feature of the decentralized congestion management
through DT is that the optimal energy planning made at the DSO side can be real-
ized at the aggregator side with their own optimal planning independently. Hence
it is an obligation of the DSO that they should make the best solution for their
customers with whatever resources they have, which in principle are all paid by the
customers.

On the other hand, the cost of the combined optimization is the increased complex-
ity and computation burden. The increased complexity and computation burden can
be alleviated by formulating the optimization with a good structure and condition.
In this sense, the DC power flow is employed as in [14], [15]. However, the power
transfer distribution factor (a matrix describing the coefficient of line power flow
with respect to a unit injection at each node) cannot be used because it is no longer
a given parameter in the optimal reconfiguration problem. Instead, the reduced in-
cidence matrix is employed to establish a group of load flow equations, all in linear
forms.

Thus, the optimal energy planning of EVs, which represent the flexible demands in
this chapter, with reconfiguration is formulated below.

min, ... &@,) (3.5)

subject to,
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BP=p +) Ep, . VteT,(p) (3.6)
ieB
~F <P <FNteT,(A ,1") (3.7)
\{P,}jk\ <My, V(K) eVt eT (W, Vi) (3.8)
e™ <Y (p, —d, )te,<e™ VteT,ieB, (1, 1)) (3.9)
t <t
pi<p, <prNieBieT,(g,.q,) (3.10)

and (3.1)-(3.4).

In the above equations, cost function & depends on the energy planning, vector p,
is the charging power of EVs, vector P, is the power flow, B is the reduced inci-

dence matrix regarding electric nodes, E is the matrix mapping individual houses
to the node, vector p¢represents the total conventional loads on each node, d is

the discharging power of EVs, ¢ ™/ ¢ ™" are the limits of SOC, B is the set of

aggregators, and /' is the line loading limit.

Constraint (3.6) is the DC load flow equation, which in this case corresponds to
KCL only (there are no loops when the network is operating). Constraint (3.7) ex-
presses the line loading limit. Constraint (3.8) forces the transferred active power
to be zero if the corresponding switch is open. Constraints (3.9)-(3.10) are the EV
charging limits.

3.2.3  Optimal Reconfiguration Based DT

It can be seen that (3.1)-(3.10) form a Mixed Integer Quadratic Programming
(MIQP), where the quadratic terms are introduced for the same reason discussed in
Chapter 2. In general, there are no dual variables (or Lagrange multiplier) for the
MIQP as the case that there are only continuous variables [46]. Therefore, it is
required to make an assumption to determine the reconfiguration based DT, which
shall serve as a control signal and ensure the energy planning at the aggregator side
converges with the one at the DSO side. It is assumed that a very small change at
the right side of the constraints will not lead to a change of the discrete variables.
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Accordingly, the Lagrange multipliers of (3.1)-(3.3) are zero because they can only
influence the objective function through discrete variables. The above assumption
is consistent with those in market clearing methods of US ISOs (MILP SCUC mod-
els), where binary/integer variables are involved.

Suppose an optimal solution (pi,, P Xk, ) is obtained through a commercial opti-

mization tool, e.g. MINLP in MATLAB (R2014a) [47] or the MIQCP solver in
GAMS/CPLEX [38] (both tools use cut and/or branch and bound algorithm; a near
optimal solution with a small relative gap to the optimal solution, e.g. 1%, is al-
lowed if the convergence becomes too slow due to the large scale of the MIP prob-
lem). The Lagrange multiplier of (3.6)-(3.10) can be determined by solving the fol-

lowing linear equations (derived from the KKT optimal conditions by fixing X jk’,*

according to the assumption).

og(p.) .1 - -
oM 7 ) _ T —(cF =c7)=0
., +Ep, Z(ﬂ M, )= (5, =6.) =0, G.11)

VieB,teT

(B 'p,+ A =27}y +Wi, W, =0,
V(jk)ye&',teT

(3.12)

{B'p,+4 =4}, =0V(jk)eE\E teT (3.13)

Set &is the set of all lines. The element of /1t+,/1[,l//;{’t,l//}{’t, ,u:t,,uij,,g;,g; is zero
if the associated inequality (3.7)-(3.10) does not bind. There is a feasible solution
to (3.11)~(3.13) since the optimal solution (pi,t*,f?*,xik’,*) exists by assumption.

According to the decentralized congestion management framework, the optimiza-
tion problem at the aggregator side can be formulated as (for aggregatori ),

min, g(p,)+(c") Ep, (3.14)

subject to,
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eimjIl < Z(pi,L _di,tf) +ei,0 yimax’Vt € T’ (luzit"u:t) (315)

t <t

P <p, <PVt eT (G .60). (3.16)

Comparing the KKT optimal conditions of the optimal energy planning at the ag-
gregator side with (3.11)-(3.13), it can be seen that p, is the DT (¢”” ) that can

link the optimal energy plans at both sides. It is proven in chapter 2 that the optimal

energy plan pi,t* at the DSO side can be achieved at the aggregator side through
solving (3.14)-(3.16) independently, assuming that g()is quadratic and strictly

convex.

Moreover, it can be observed from (3.12) and (3.13) that the DT contains both the
congestion cost due to the line loading limit and the marginal cost of the topology
requirement of the reconfiguration. It can be explained by the fact that the optimal
energy plan can be achieved at the aggregator side without knowledge of the line
loading limits or knowledge of the topology requirement. Therefore, the infor-
mation of both costs must be contained in the DT.

3.2.4 Minimization of Switching Cost

If the cost of the switching operations is concerned by the DSO, the following op-
timization problem can be formulated, where the switching operation cost is in-
cluded in the objective function.

min, .o 2B DL iV (3.17)

Jjke&® 1eT
subject to,
(3.1)-(3.4), (3.6)~(3.10) and,

¥ =X €7 YUR €€ e TS, (3.18)

\x = xjk,o\ <y VUk) e tedl), (3.19)

J
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\)

where Cj is the switching cost and the binary variable ), represents the switching

operation (0 means no switching, 1 means a switching operation).

Constraints (3.18)-(3.19) are to count the number of switching operations
(open/close). Due to the fact that the objective is to minimize the cost, constraints
(3.18)-(3.19) always bind at one side (notice that an inequality including absolute
operation is equivalent to two linear inequalities).

For conventional circuit breakers (CB), such as vacuum or gas insulated CB, the
average switching cost Cjk can be estimated by dividing the total investment and

installation cost by the predicted total number of normal operations according to
the electrical and mechanical endurance. Due to the limited number of normal op-
erations, the average switching cost is usually prohibitive for the reconfiguration.
More research on improving the endurance of CB is required for enabling the re-
configuration applications [48], [49]. The use of power electronics in the power
systems offers a good solution for the above issue, e.g. solid state CB [50], [51]. In
such cases, the average switching cost is reasonably small and can be estimated
from the average turn on and off losses of the power electronic devices.

Suppose (p,-,,**,Pt**,X ,-k,,%,y,k,,%) is a solution for the above MIP problem. Based on
the same assumption made in section 3.2.3, it can be observed from (3.17)-(3.19)

that the terms associated with ', can be separated from the terms associated with
p,and P, since X, is fixed at X jk’,** . It can be inferred that the terms associated
with Y, do not affect the calculation of DT (notice that the aggregator side opti-
mization is the same as in 3.2.3, i.e. (3.14)-(3.16)). The DT ( p, ) can be found by
solving (3.11)-(3.13) at the new optimal point ( p,-,,**,Pt**, X /'k,t**) . Similarly, the DT

contains the information of both the line loading limit and the topology requirement
as in section 3.2.3; meanwhile the information of the reduced switching cost is em-
bedded in the topology information.

3.3 Optimal Reconfiguration Based DT with Line Loss Reduction

Both reconfiguration of distribution network and rescheduling of flexible demands
for line loss reduction are interesting topics and they have been widely studied [39],
[42], [52]-[54]. It is natural to look into the possibility of combining these two
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methods and achieving the best solution. Moreover, it will be demonstrated in this
section that the combined objective of minimizing energy cost and line loss cost
can be realized in the decentralized management framework through the DT con-
cept.

The main goal of the DSO energy planning for the flexible demands is to meet the
energy requirements of their customers with the minimal energy cost and mean-
while respect the network constraints. The cost of line losses of the distribution
network will be paid eventually by the customers through grid tariffs since the DSO
does not make any profit and certainly does not bear any loss. Hence the line loss
cost can be put together with the energy cost, and the DSO can form a single ob-
jective function of the energy planning. The complete optimization problem at the
DSO side can be formulated as below.

rr]inpi,t’Ptvxjk,t g(pi,t)+h(e) (320)

subject to,
(3.1)-(3.4), (3.6)~(3.10)

The cost function of line losses #(P,) can be estimated with a linear method [55],

a piece-wise linear method [56] or second order polynomials, such as

h(B)~ ZC z 3 jkt , where ¢, is the predicted baseline energy prices, Fj-k,t is

teT  jke€ ¥ p
an element of vector P, corresponding to edge (jk), ¥, is the average voltage
level.

sciok sefek

Suppose the optimal solution of the above problem is found as ( pi’t***,P,' 2 X s ).

The associated linear equations for determining the DT are formulated below.

sk

og(p, ) - _
=L CLETp - )= (¢t —c ) =0,
a y t tZ:t( it z,ti) (gz,t gz,t) (321)

VteT,ieB
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sk

Oh(F, ) b p i
{_ 8 ) + BTpt +/1t _/1, }jk +l//jk,t _"//./k,f = 0’ (322)
V(jk)e&teT
{_M-FBT,Q +A =4}, =0,
o y (3.23)

V(jk)yeE\E,teT

Similar to section 3.2.3, the elements of the Lagrange multiplier vectors are zero if
the corresponding inequality (3.7)-(3.10) does not bind at the optimal point

( pi,t***,f)f*,x jk,,***). Equations (3.21)-(3.23) can be solved and the DT is found to

be p, . From (3.22)-(3.23), it can be seen that the information of the line loading
limit, the topology requirement and the marginal cost of line losses are all included
in the DT. If there is no congestion in the network, i.e. 2+, 1" are zero, the DT con-

tains only the line loss information and topology requirement (see (3.22)-(3.23)).
Therefore, it can be served as a line loss control signal by the DSO.

After obtaining the DT, the DSO will send them to each aggregator, and the aggre-
gator will use (3.14)-(3.16) to determine its own optimal energy plan, which should

be P, asthe DSO expects. Thus, the objective of congestion management, overall

energy cost reduction and line loss reduction can be achieved in a decentralized
manner.

3.4 Case studies

In order to verify the methods developed in section 3.2 and 3.3, three case studies
were conducted and described in this section using the Danish driving pattern [37]
and the Bus 4 distribution system of the RBTS [36].

3.4.1 Grid Data and Simulation Parameters

The single line diagram of the Bus 4 distribution network of the RBTS with marked
sectionalizing CBs is shown in Fig. 3-2 (a). Its equivalent graphic diagram is shown
in Fig. 3-2 (b), where the dotted lines indicate that the corresponding CBs are open.
This provides the original tree-like operation topology of the meshed distribution
network.
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Line segments of the feeder one to four are labeled in Fig. 3-2 (a), among which
L2, L4, L6, L8, L9, L11, and L12 refer to the transformers connecting the corre-
sponding load points LP1 to LP7 (other transformer branches are not labeled for
simplicity). The feeders without residential customers are not shown in the figure
since the EVs are assumed to be passenger cars and charged with household facil-
ities. The detailed data of the load points (residential and commercial customers)
can be seen in Appendix A. The lengths of the line segments on the four feeders
and line loading limits are listed in Table 3-1.

Grid
(@) 33 kv == Normal close CB
= Normal open CB
SPT ik
L1 = L19 Lp1s L31 P32 L56
3 « & I L33 L58
L3 L21
L4 LP12—ar LP19}_@;@4{ LP20 LP33 @y
LP2 ] L23 L36 L60
s 2 olad e FPPlrorm{ P2 LP34 - qp-GD—{LP35
L6 — L39
LP3 (- L26 L63
L7 LP1S| o= L5 aD—{LP23 LP36| -
LP4_ |- LP5 L28 L41 L65
S Le LPﬂH}i}f@A o LP24i-aplp—{LP25 LP37 —ap—| LP38
L10 L69
LP7 —QD—{LP6
L1 [L12
L70

(b)

Fig. 3-2. (a) Single line diagram of the distribution network. (b) The equivalent graphic diagram (dot-
ted lines are equipped with normal open CBs)

The key parameters of EVs and their availability can be seen from Appendix A. In
the case studies below, two aggregators are assumed to manage the EVs in the dis-
tribution network independently, where the aggregator 'aggl' has contracts with 80
customers per load point while the other has contracts with the rest 120 customers
per load point. The high availability and penetration level of the EVs provide
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enough flexibility for the DSO to manage the congestion and the line losses of the
distribution network.

The predicted day-ahead system prices can be seen from Appendix A, which serve
as the baseline prices for the optimal energy planning at the DSO side. The system
prices are employed for calculating the cost of the line losses as well.

TABLE 3-1. KEY PARAMETERS FOR THE SIMULATION

Parameter value
Resistance of the feeders 0.1 ohm/km
Len. of line seg.: L2 6 1021 28 41 58 68 69 70 0.6 km
Len. of lineseg.: L1479 12 19 56 60 63 65 0.75 km
Len. of line seg.: L3 58 112326313336 39 0.8 km
Line loading limit: L1 8000 kW
Line loading limit: L3 19 51 56 6100 kW
Switching cost 0.5 DKK/switching

3.4.2 Case Study Results

34.2.1 CaseOne

In this case study, the feeder reconfiguration and flexible demand reallocation is
performed for congestion management and energy cost reduction (without consid-
ering switching times and line losses). The resulting line loadings of L3, L19, L31
and L56 are shown in Fig. 3-3. It can be seen that the line loadings reach the limits
at 't24'; therefore, the locational prices of the load points under these line segments
are expected higher than the baseline prices (see Table 3-2) while LP1 has a loca-
tional price equal to the baseline price since L1 is not congested.
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Fig. 3-3. Line loadings with the optimal topology in Case One

The optimal topology schedule is shown in Fig. 3-4. The topology changes at every
planning period because there is no limitation of the switching operations and the
solver of the optimization tool returns an arbitrary solution (the integer part) of the
many alternative solutions (the number of alternative topologies is huge at e.g. the
non-congestion periods).

As a comparison, the optimal energy planning with the original topology is ob-
tained and the line loadings are shown in Fig. 3-5. The locational prices with the
original topology are listed in Table 3-2. It can be seen that the congestion under
the optimal topology is further alleviated and the locational prices are reduced in
comparison to the congestion and locational prices with the original topology (zero
DT at 't23' with the optimal topology indicates no congestion while positive DT at
't23" with the original one suggests the potential congestion; DT at 't24' is reduced
under the optimal topology versus the original one).
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Fig. 3-4. The optimal topology schedule of the planning periods in Case One

TABLE 3-2. LOCATIONAL PRICE, DKK/KWH, OF CASE ONE (DT = LOCATIONAL PRICE - BASELINE PRICE;
'-' MEANS THE LOCATIONAL PRICE EQUALS TO THE BASELINE PRICE)

optimal topology original topology
time t5 23 124 23 t24
baseline 0.3012 0.2941 0.2241 0.2941 0.2241
LP1 - - - - -
LP2-7 - - 0.2938 - 0.2938
LP11-17 - - 0.2940 - 0.2940
LP18-25 - - 0.2942 0.3010 0.3009
LP32-38 - - 0.2942 0.3008 0.3008
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Fig. 3-5. Line loadings with the original topology in Case One

3422 Case Two

In Case Two, the cost of switching operations is taken into account in the objective
function. As a result, the switching operations are reduced to a minimum, which
are twice (a switch-on operation and a switch-off operation) as shown in Fig. 3-7.
The line loadings are shown in Fig. 3-6 and the locational prices are listed in Table
3-2. Comparing to the results of Case One, the solution of the Case Two is better
than the one of the original topology in Case One in terms of the reduced congestion
and reduced locational prices, but not as good as the one with the optimal topology
in Case One.
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Fig. 3-6. Line loadings under reduced switching operations

The line losses and the cost of the three case studies are listed in Table 3-4. It can
be seen that Case Three has the minimum total line losses and the cost of the line
losses.

Fig. 3-7. The optimal topology schedule for minimum energy cost and reduced switching operations
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TABLE 3-3. LOCATIONAL PRICE, DKK/KWH OF CASE TWO AND THREE
(DT = LOCATIONAL PRICE - BASELINE PRICE; '-' MEANS THE LOCATIONAL PRICE EQUALS TO THE BASE-

LINE PRICE)
Case Two Case Three

time 23 24 t5 23 24

baseline 0.2941 0.2241 0.3012 0.2941 0.2241
LP1 - - 0.3022 0.2953 0.2264
LP2 - 0.2937 0.3031 0.2964 0.2953
LP3 - 0.2937 0.3037 0.2972 0.2967
LP4-5 - 0.2937 0.3042 0.2979 0.2976
LP6-7 - 0.2937 0.3043 0.2980 0.2976
LP11 - 0.2942 0.3020 0.2957 0.2959
LP12 - 0.2942 0.3028 0.2975 0.2974
LP13-14 - 0.2942 0.3034 0.2988 0.2987
LP15 - 0.2942 0.3038 0.2996 0.2992
LP16-17 - 0.2942 0.3039 0.2997 0.2993
LP18 - 0.2939 0.3024 0.2963 0.2965
LP19-20 - 0.2939 0.3034 0.2980 0.2980
LP21-22 - 0.2939 0.3041 0.2989 0.2990
LP23 - 0.2942 0.3044 0.2999 0.2995
LP24-25 - 0.2942 0.3045 0.3000 0.2996
LP32 0.3008 0.3008 0.3024 0.3004 0.3007
LP33 0.3008 0.3008 0.3031 0.3018 0.3019
LP34-35 0.3008 0.3008 0.3039 0.3032 0.3032
LP36 0.3008 0.3008 0.3043 0.3040 0.3039
LP37-38 0.3008 0.3008 0.3046 0.3044 0.3042

3.4.2.3 Case Three

In this case study, the DT concept for congestion management and line loss reduc-
tion in a decentralized manner was tested. Firstly, the optimal energy plan taking
into account the cost of line losses (modelled by a quadratic approximation) was
obtained at the DSO side with respect to the line loading limits and network topol-
ogy requirements. The resulting line loadings and the optimal topology schedule
are shown in Fig. 3-8 and Fig. 3-10, respectively. The DTs were then calculated
which are listed in. Due to the consideration of line losses, DTs are not zero even
though there is no congestion, e.g. at 't5'. At last, the aggregators (‘aggl' and 'agg2")
perform their own energy planning based on the DTs received from the DSO. The
line loadings due to the energy plan realized at the aggregator side are shown in
Fig. 3-9. It can be seen that the total line loading of each line segment is the same
as the one at the DSO side energy planning (Fig. 3-8), which means the DTs are
effective in terms of alleviating the congestion and reducing the line losses in a
decentralized manner.
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Fig. 3-8. Line loadings under reduced total line loss cost
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Fig. 3-10. The optimal topology schedule for reduced energy cost and line loss cost

TABLE 3-4. LINE LOSS COMPARISON OF THE THREE CASE STUDIES

Case One | Case Case Thr.
Two
Total line losses (kWh) | 2759.29 1961.39 1960.73
Cost of line losses
(DKK) 901.642 627.01 626.24

3.5 Summary

The optimal reconfiguration based DT method is proposed in this chapter. The
method is derived from the DT method by integrating the FR into the formulation
of the optimal energy planning problem at the DSO side for congestion manage-
ment. The combined optimization of the flexible demands and the network topol-
ogy can achieve congestion management with minimum energy cost and reduced
DT. The switching cost can be taken into account in the proposed DT framework
if it is concerned by the DSO. By including the line loss cost in the energy planning
at the DSO side, the calculated DT can contain the line loss information in addition
to the congestion information, and therefore realize the line loss reduction in a de-
centralized manner through DT. The case studies have validated the efficacy of the
optimal reconfiguration based DT method for both congestion management and
line loss reduction in distribution networks with high penetration of EVs.



CHAPTER 4.

UNCERTAINTY MANAGEMENT OF DT METHOD*

This chapter is to provide a method to handle the uncertainties related to the DT
method for congestion management.

4.1 Introduction

In previous two chapters, the DT concept and its application for congestion man-
agement and line loss reduction have been introduced. However, the uncertainty
within the DT framework and the corresponding optimization under uncertainty
has not been studied yet. The uncertainty comes from the following aspects.

Firstly, the uncertainty lies in the nature of the decentralized control structure of
the DT method. The DSO employs price signals instead of direct command to con-
trol the energy planning of each aggregator, which makes it a decentralized control
method. In the previous studies [14], [15], and chapter 2 and 3, an assumption was
made that the parameters used by the DSO were the same as used by the aggrega-
tors. However, this might not be the case in practice and it may compromise the
decentralized control concept by forcing the aggregators to report parameters to the
DSO. Recognizing the importance of relaxing the link between the DSO and the
aggregators, a different, but more practical assumption is made in this chapter, i.e.
the DSO predicts the energy requirements of the flexible demands as the aggrega-
tors will not share this information with the DSO for protecting privacy of their
customers. The prediction leads to a certain level of uncertainty of the DT method
for congestion management. Secondly, there is uncertainty between the day-ahead

* This chapter is based on paper: S. Huang, Q. Wu, C. Lin, X. Zhao and H. Zhao, “Uncertainty Management
of Dynamic Tariff Method for Congestion Management in Distribution Networks”, IEEE Tr. Power System, Vol.
31, pp 4340 — 4347, Nov. 2016.
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energy planning and the real-time operation condition. For instance, the compo-
nents of the power system or DER can fail with a certain level of probability. The
forecast error of the energy production or consumption of the DER is another ex-
ample.

By knowing the sources of the uncertainty and quantifying the uncertainty, it is
possible to enhance the robustness of the DT method for congestion management
through uncertainty management, which is the main contribution of this chapter.
The robustness is defined in this chapter as the guarantee that the congestion prob-
ability is under a certain level with a given confidence level. Uncertainty manage-
ment has been previously employed in other optimal scheduling problems in dis-
tribution networks, such as EV scheduling in [57] where a stochastic load profile
is considered, and DG scheduling in [58] where stochastic productions of DERs
are treated. However, unlike the DT method, both of them are using direct control
methods without employing the DSO-Aggregator business model and the price in-
centives.

This chapter will first briefly present the DT method for congestion management
in distribution networks with high penetration of EVs, adapted from chapter 2. Next,
the uncertainty sources of the decentralized control of the DT method are analyzed.
The robustness enhancement of the DT method through uncertainty management
is then proposed. At last, two case studies regarding robustness enhancement are
described and discussed.

4.2 DT Method and Its Uncertainty

4.2.1 Quadratic Programming Based DT Method

In chapter 2, a quadratic programing formulation was proposed for the DT method.
The DT is determined by the DSO through an optimal energy planning of the flex-
ible demands. In chapter 2, the optimization model is given based on the flexible
demands of both EVs and HPs. In order to simplify the analysis of the uncertainties,
EV is chosen to represent the flexible demands in this chapter. In the follows, the
optimization model for the DT method presented in chapter 2 is tailored for the EV
case of this chapter. In chapter 2, it is assumed that the aggregators are willing to
share the flexible demand information (energy requirement, availability, etc.) with
the DSO; therefore, the DSO can have detailed information for modelling the opti-
mal EV and HP planning. However, in this chapter, the DSO will forecast the flex-
ible demands by itself. The DSO will forecast the parameters, such as mean and
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variation, of the statistic distribution of the flexible demands. Then a sam-
pling/Monte Carlo process is employed to provide data for modelling the optimal
EV and HP planning. Because there are a large number (e.g., 200) of flexible de-
mands of each load point (refers to low voltage transformer; the network below the
transformer is not modelled), the sampling process can provide a good representa-
tion of the actual flexible demands.

The optimal energy planning at the DSO is,

. 1
mnpi,, Epi,tTBi,tpi,t +(Ct I)Tpi,t 5 4.1)
ieBteT
subject to,
D DE(p, +pi)SENteT (), (4.2)
ieB

> p,>d,NieB, (4.3)

teT
0<p, <a,p™ VieBteT, (4.4)

where B is the set of the aggregators, 7 is the set of the planning periods, P, 18

the charging power of EVs, p,'; is other fixed load of the household, 4, is the energy
requirement of the EV's, pr is the maximum charging power, ¢, is the availability
of the EVs, F, is the line flow limits, ¢, is the baseline energy price, D is PTDF,
E maps the household to load point, and B,,1s a diagonal matrix of the price sen-

sitivity coefficients (see chapter 2 for the definition).

In the energy planning, the line loading limit is ensured by constraint (4.2), energy
demand requirement of EVs is fulfilled by constraint (4.3) and the allowed charging
power of EVs is represented by (4.4).

The calculated DT through the above optimization by the DSO, denoted asr, is

equal to D", . It will be sent to the aggregators, who then make the energy planning
of the flexible demands on behalf of the owners. The energy planning of different
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aggregators is independent and without the information of the network constraints.
Aggregator i can employ the following optimization to make the energy planning.

min,, 2% P B.p,, +(c1+E'r ) p, 4.5)
subject to,
> p., =24, (4.6)
e
0<p, <a,/ p™ VteT 4.7)

In chapter 2, it is proven that the convergence of the aggregator energy planning
and the DSO one can be assured, i.e. the results and the line loading profiles result-
ing from the energy planning at the aggregator side will be same as those at the
DSO side. As such, the DT method for the congestion management is realized in a
decentralized manner. A strong assumption made in chapter 2 is that the parameters
of the optimization problem at the DSO side are same as those at the aggregator
side. However, it is not necessarily true. In the following sub section, the source of
parameter differences and the resulting uncertainty of the decentralized control of
the DT method will be studied.

4.2.2  Uncertainty of the Decentralized Control

Table 4-1 gives one possible scenario of the information sources where the DSO
and aggregators may have the required parameters ready for their energy planning
respectively, which will be the assumption made for the study of the following
sections. In this scenario, parameter g, is mainly to resolve the multiple-response

issue in linear program and therefore the DSO should share it with the aggregators.
Although the aggregators should have the freedom to choose their own energy price
prediction resources, it is suggested that they (include DSO) all use the same source,
since the DT method works through the total price (DT + energy price) as the price
signal to control the behavior of the flexible demands. However, small discrepancy
due to e.g. numerical errors of computers or modifications according to their own
preferences is allowed as shown by case studies in [59]. The only uncertainty
sources lie in the parameters 4, andq, ,, i.e. the driving patterns of EVs, where the

DSO can only predict the driving pattern while the aggregators can have the de-
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tailed data from their customers. Since the study is focused on the difference be-
tween the DSO plan and the actual plans made by the aggregators that will be sub-
mitted to the day-ahead market, the data that the aggregators employ to determine
the optimal energy plans will be deemed as accurate.

TABLE 4-1. INFORMATION SOURCE OF DSO AND AGGREGATOR

Para. DSO Aggregator
B, Predicted by DSO From DSO
From DSO or choose the same
¢, Predicted by DSO or third party third party as the DSO do
D F, Determined by DSO Not needed
E..p™ From customers’ subscription From customers’ subscription
d;» a;, Predicted by DSO From the customers’ reports

It is important to know the distribution of the prediction error of predicted param-
eters 4, andg,  in order to analyze the accuracy of the DSO’s energy plan (com-

pared to the energy plans of the aggregators) and then enhance the robustness of
the DT method. In [37], the driving pattern (driving distance and availability) of a
large number of drivers has been surveyed. The study is based on Denmark and it
can help illustrate the discussion of parameter randomness in this section and the
methodology of robust enhancement in the following sections without affecting the
generality of the discussion.

In Denmark, a large portion of the drivers (about 40% on weekdays, about 50% on
weekends) do not drive at all according to the daily observations (interviews). The
percentage of the drivers who drive on a particular day diminishes as the driving
distance goes up. The average driving distance is about 30 km while it varies from
weekdays to weekends. From the statistics point of view, the prediction error (pa-
rameter used by the DSO minus the one used by the aggregator) of the predicted
driving distance of each EV can be considered to have a normal distribution with
variance o as shown in Fig. 4-1. The chance of the error bigger (or less) than a
predefined number can be calculated from the normal distribution table, e.g. the
probability of the error that is positive and bigger than 2cis only 2.5% (the shadow
part of Fig. 4-1).
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Fig. 4-1. Normal distribution of the prediction error

The energy demand of an EV has a linear relationship with the driving distance,
which is defined as the parameter “energy consumption per km” (Table 4-2).
Therefore, the prediction error of the energy demands 4, also has a normal distri-
bution.

The parameter ¢, is also influenced by the randomness of the driving pattern. The

availability of an EV can be modeled through two random variables, namely arriv-
ing (home) time and leaving (home) time. For example, in Fig. 4-2, Vis the arriving

time while xis the leaving time. The availability «,, (j-th element) can be deter-

mined by the following rules.

1 t<|x|or,t>]y]
0 isi<l)
{a,},=1x=[x] t=|x].t#|y] teT (4.8)

[yl t=[y].r#]x]
=[xt fyl-y r=lx]=y]
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Fig. 4-2. Tllustration of the modeling of the availability, x is the leaving time and }is the arriving

time

The prediction error of the predicted arriving time has a normal distribution, so
does the prediction error of the predicted leaving time.

4.3  Robustness Enhancement of The DT Method through Uncertainty
Management

The criterion of the robustness enhancement for the DT method is defined as: The
probability of the line overloading &(percentage) is no bigger than a predefined
number, e.g. 1—7 with 7jbeing a confidence level, under the uncertainty of the pa-

rameters. The task of the robustness enhancement is to find such DT that the above
criterion is fulfilled.

4.3.1 Problem Formulation

According to the concept described in chapter 2, DT should be able to serve as a
proper price signal such that the optimal energy plans made by the aggregators
based on the received DT will result no (or alleviated) congestion on the distribu-
tion network. The method to determine such DT presented in chapter 2 has been
tailored as (4.1)-(4.4), which is based on a deterministic optimization. However, it
is not suitable for determining a DT with uncertainty constraints (such as (4.13))
presented, because of the following two facts: 1) The Lagrange multiplier of un-
certainty constraints is very difficult to find; 2) The Lagrange multiplier with un-
certainty constraints presented is no longer the marginal price of the congestion
cost.

A method that can determine the DT without using Lagrange multiplier can be
written as a two-level optimization,
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min, 3|, “9)
teT
subject to,
D DE(p, +p)SENteT, (4.10)
ieB
r>20,vVteT, “4.11)
p., cargmin {(4.5): (4.6)-(4.7)},VieBB. (4.12)

In the above two-level optimization, variable p, is the unique minimizer of the in-
ner optimization, which is a strictly convex optimization. The parameters &, and
a,,in (4.6)-(4.7) are deemed as random parameters; therefore constraint (4.10) can-

not be fulfilled with certainty. A chance constrained two-level optimization can be
formed as,

4.9),

subject to,
prob.{> DE(p, +p,) S(+)F. T} >, “.13)
ieB

and (4.11)-(4.12),

where 77is the confidence level and has a typical value of 0.9, 0.95 or 0.99, and &
is the predefined allowed overloading percentage.

The above chance constrained two-level optimization is very difficult to solve di-
rectly. An alternative method is developed in this chapter to solve it, i.e. an iteration
method based on the probability analysis, the deterministic method to determine
DT presented in section 4.2.1 and the sensitivity analysis proposed in [59]. The
main idea of the iteration method is explained as follows.

Firstly, the chance constraint (4.13) is reformed to be deterministic. Meanwhile,
the parameter Ebecomes a control variable which will take different value in each
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iteration step according to the results of the previous iteration step. Random param-
eters d, andq,  are replaced with their expected values, i.e. 4, andg, , respectively.

Secondly, the two-level optimization is reformed as the standard form descripted
in section 4.2.1 ((4.1)-(4.4)) in order to determine an iterative DT, denoted as *) .
The idea is based on the theory proven in chapter 2: The solution at the aggregator
side ((4.5)-(4.7)) is the same as the solution at the DSO side ((4.1)-(4.4)) if
r, = D" 2, holds. Thus, the optimization to determine the iterative DT can be written

as,
4.1),
subject to,
2 DE(p, +p) <A+ VT (A7), (4.14)
ieB
> p,>d,NieB, (4.15)
teT
0<p, <a,p™ VieBteT, (4.16)

where krepresents the iteration step and ¢ ) is the control parameter representing

the overloading level at k-th iteration step.

Thirdly, the chance constraint (4.13) will be verified through probability calcula-
tion based on the uncertainty analysis described in section 4.2.2 and the sensitivity
analysis of the optimization (4.5)-(4.7) with updated DT, i.e. »*© = p”2® , which
will be elaborated in section 4.3.2. If (4.13) is fulfilled, then we find the final DT;
otherwise the control parameter ¢ ) will be updated and perform the next iteration.

The detailed procedure of the iteration method will be described in section 4.3.3.

4.3.2 Probability Calculation

Probability calculation is an important step in the uncertainty management. It is
carried out through uncertainty analysis of the parameters and the sensitivity anal-
ysis of the optimal solution of the energy planning at the aggregator side.
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4.3.2.1 Sensitivity analysis

The sensitivity analysis is to determine the changes of the optimal solution due to
the changes of the parameters and it shall be done for a specific optimal solution
[59]. The optimization (4.5)-(4.7) (the optimization at the aggregator side) can be
rewritten with updated parameters as,

minpl., zlpi,tTBi,tpi,t +(c 1+ EfTrr(k))Tpi,r (417)

teT 2

subject to,

>p, >, (4.18)

teT
0<p, <a,/ p™ VieT, (4.19)

Assume that the optimal solution of the above deterministic optimization problem
is ( pz 12 pZ 95 pz g90ees p: 0y )(k) , which should be also the optimal solution of (4.1) sub-
ject to (4.14)-(4.16). Now assume that the parameters o, and g, at the right side of
(4.18)-(4.19) can vary according to their statistic distributions with their centers 7,

and g, respectively, note that 4, = 4, + Ad, and a,, = @,, + Aa,, - It therefore can
be determined how the optimal solution will change according to the changes of

the parameters 4, and 4, , i1.e. Ad, and Aq,, , near the optimal point

( p: 1> p: ” p: e p: iy )(k) through the sensitivity analysis method presented in [59].

According to [59], the optimization problem (4.17)-(4.19) should be rewritten as a
standard form as below (7 is fixed) with inactive constraints removed,

min , %pTBp +g'p (4.20)

subject to,
Ap =b (4.21)

T
: T T T T
where P is I:pi,l sPin »Piz 55 Pin, :I >
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B 18 B,‘qg

(e 1+ ET®
e, 1+ E" 0

g ls 031+E’T (k) )

T .(k)
¢, 1+E r,’

A and bare coefficients of the active constraints in (4.18)-(4.19), n. is the number
of planning periods.

The optimal solution changes over the changes of the vector bcan be obtained as,
% =B'A"(AB7'A")". (4.22)

The line loading change at a particular hour £ is the summation of the changes of
the EV charging power P , which can be written as,

S DE,(Ap,,) = Y DE, ﬁAb , (4.23)

ieB ieB b
op, . .
where % can be retrieved from matrix — 8p by taking the corresponding rows.

4.3.2.2 Chance of overloading due to energy demand

Since the change of the energy demand 4 results the change of bvector of (4.21),
the sensitivity of the change of the line loading over the change of the energy de-
mand can be calculated through (4.22) and (4.23). Moreover, the probability of a
predefined overloading &, e.g. line overloading 5% (5% more than the line loading
limit), due to the prediction error of the energy demand, denoted as Ad, , can be
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calculated through combining the statistic distribution of the prediction error into
the calculation. Specifically, the probability can be determined by (for given #),

Py =prob-{Z%TAd,- 2 ek, } (4.24)

ieB

where «, is the sensitivity coefficients corresponding to Ad, and can be retrieved
from the result of (4.23).

4.3.2.3 Chance of overloading due to availability

Similarly, the prediction error of the availability 4, ,can be determined through (4.8)
and the changes of the line loading can be determined through (4.22) and (4.23).

The probability of a predefined overloading & due to the prediction error of the

availability, denoted as Aq, ,, can be calculated by (for given 7),

P, =pr0b.{ Z B Aa,, > SE}, (4.25)

ieB.t'eT

where g is the sensitivity coefficient corresponding to Aq,, and can be retrieved
from (4.23).

Combining (4.24) and (4.25), the probability of a predefined overloading & due to
EV parameters can be obtained as (for given ¢),

p= prob.{ZaiTAdi + > B, Aa,> gF,}. (4.26)

ieB ieB,t'eT

The distribution ZCY,TMi + Z ,B[,,-TAH,»,f , denoted by I | is a normal distribu-

ieB ieBt'eT

tion since each element of Ad, and Agq,, is a normal distributed random variable

and I is a linear combination of them. It is assumed that Ad, and A, are inde-

pendent random variables since the mathematical complexity incurred from the de-
pendency of these random variables is not a focus of this chapter. The variance of

the joint distribution I is a linear combination of the variance of each random var-
iable.
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433

Procedure of Robustness Enhancement

In order to achieve robustness enhancement, a procedure is designed and illustrated
in Fig. 4-3. The procedure that the DSO should follow is:

)
2)

3)
4)

5)

6)
7)

8)

9)

Forecast the day-ahead energy prices.

Forecast the driving behaviors of EVs, including driving distance, arriving
time and leaving time.

Set the initial line loading limit to be 100%, i.e. £(© = ¢ in (4.14).

Perform the optimal energy planning at the DSO side through QP and cal-
culate the DT, i.e. solve (4.1) subject to (4.14)-(4.16).

Perform the sensitivity analysis of the energy planning at the aggregator
side, i.e. (4.17)-(4.19). Determine ¢, and g in (4.26).

Perform the probability calculation, i.e. determine the value p of (4.26).
Check whether the probability o is no bigger than 1-7. If yes, publish the

final DT and terminate the algorithm; otherwise,

Calculate the new line loading limit, which is achieved by pushing down the
limit with a small step. The step size can be a fixed small number, e.g. 0.5%,
or estimated by the Newton-Raphson method noticing the fact that the sen-
sitivity matrix is the Jacobian matrix.

Go back to step 4.

The above algorithm for uncertainty management has a heuristic feature. It can find
a feasible solution that makes sure the congestion probability below a certain criti-
cal value. If there are more than one congested lines, step 8 should handle multiple
lines, i.e. push down the line loading limits for multiple lines. The theory and the
algorithm themselves do not assume only one congested line.
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N

Forecast Energy Prices

J

Forecast Driving Behaviors

Initial Line Loading Limit (100%)

N

Perform QP and Calc. DT

Perform Sensitivity Analysis

Probability Analysis
Calc. New
| | Line ance of
Loading erloading & < 5%
limit
Yes

Publish The Final DT

(End )

Fig. 4-3. Flowchart illustrating the procedure of robustness enhancement



4.4 Case Studies 69

4.4  Case Studies

Case studies were conducted using the Danish driving pattern and the Bus 4 distri-
bution system of the RBTS [36] to demonstrate the robustness enhancement of the
DT method through uncertainty management. The details of the case studies are
presented in this section.

44.1 Grid Data

The single line diagram of the Bus 4 distribution network is shown in Fig.4-4. Line
segments of the feeder one are labeled in Fig.4-4, among which L2, L4, L6, L8, L9,
L11, and L12 refer to the transformers connecting the corresponding load points
(LP1 to LP7). Each of the residential load points (LP1-5) has 200 customers while
each of the commercial load points (LP6-7) has 10 customers. Detailed data about
the load points can be seen in Appendix A. The peak conventional demands of
residential customers are assumed to occur at 18:00 when people come home and
start cooking (shown in Fig. 4-5).

The key parameters of the simulations are listed in Table 4-2. The EV availability
information can be seen from Appendix A. Assume that there are two aggregators
(aggl and agg?); one has 40 customers per load point and the other has 160 cus-
tomers per load point.

Grid
33 kV
P
SP1 11 kV
L1
T b LP32
5 o] i@ LP18 =05 o
3 L3
L4 LP12| LP18 |+~QD— LP20 LP33 =@
LP2-Cp
s g | Lpua P21y LP22 LP34 | qp-qp—| LP35
L6
LP3}—Co
L7 ED—{LP LP23|—C- LP36 |-
LP4}_@{D4LP5 o
S| Le Fao-—@H4 LP24f-- D LP25 LPa7 | @ LP38
L10 LP17
LP7 [—0D——CD—LPe
L1 L12

Fig. 4-4. Single line diagram of the distribution network
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Fig. 4-5. Line loading of the initial energy planning at DSO side

TABLE 4-2. KEY PARAMETERS FOR THE SIMULATION

Parameter value

EV battery size 25 kWh
Peak charging power 11 kW (3 phase)
Energy consumption per km, ¢ 150 Wh/km
expected driving distance 40 km
expected leaving time Hour 8
expected arriving time Hour 18

o of predicted driving distance, o, 20 km

o of predicted leaving time 60 minute
o of predicted arriving time 60 minute
Line loading limit: L2 1400 kW
Line loading limit: L3 6000 kW

Line loading limit: L4 1700 kW
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4.42 Results of The Robustness Enhancement

44.2.1 Case One

According to the procedures proposed in section 4.3.3, the basic energy prices are
firstly predicted. The predicted energy prices can be seen from Appendix A. In this
chapter, the prediction of the energy price is assumed to be shared by the DSO and
the aggregators. Then the driving behaviors including driving distance, arriving
time and leaving time are predicted as list in Table 4-2. The energy planning at the
DSO side is performed with initial values, i.e. let £ = ¢ in (4.14), and the results

are plotted in Fig. 4-5.

Then the sensitivity analysis of the line loading change to the change of energy
demand, arriving time and leaving time is performed at the optimal point. Part of
the results (only regarding L3) is shown in Table 4-3. It can be seen that the line
loadings (L3) at hour 23 and 24 are sensitive to energy demand of EVs (the results
are synthesized from the individual sensitivity of each EV, because it is not neces-
sary to show the results of a thousand EVs), while it is less sensitive at hour 5, 6,
10 and 19. The change of energy demand will not affect the line loadings at other
hours since the sensitivity coefficient is zero. For the change of the arriving time,
it will only influence the line loading at hour 24 and the influence is insignificant
(one minute change of the arriving time will only lead to 3.2 kW change of the line
loading). The reason can be explained by the fact that the expected arriving time
(see Table 4-2) is far away from the congestion hour, namely hour 24. The same
reason explains that the change of the leaving time has insignificant influence to
the line loading change.

TABLE 4-3. SENSITIVITY OF L3 LOADING CHANGE TO THE CHANGE OF ENERGY DEMAND, ARRIV-
ING TIME AND LEAVING TIME (DATA OF OTHER HOURS IS ZERO)

Hour | Energy Demand Arriving Time Leaving Time
(KkW/kWh) (kW/min) (kW/min)
5 32 0 0
6 8 0 0
10 16 0 0
19 8 0 0
23 352 0 0
24 384 3.2 0

The next step is to carry out the probability analysis. Take L3 as an example (both
L2 and L3 are critical which can be observed from Fig. 4-5; however, L2 can be
analyzed through the same method as for L3). The line loading limit is 6000 kW
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and the probability of the overloading 5%, i.e. 5% of the original limit or 300 kW,
will be estimated. The critical hour (congestion hour) is hour 24 and the sensitivi-
ties associated with arriving time and leaving time are negligible according to Table

4-3. The standard deviation of I can be determined as

Ja' o, +a," a,do, =43.26 (kW). Therefore, the probability of I" bigger than 300

kW is very low (less than 0.1%). According the procedure, the algorithm can be
terminated with the final DT (the 1% iteration column of Table 4-4).

TABLE 4-4. RESULTS OF EACH ITERATION

1t iter 2" jter 3rd jter 4 jter
DT at LP1, 0.0519 0.0519 0.0519 0.0519
Hour 24
(DKK/kWh)
DT at LP2-5, 0.0511 0.0514 0.0518 0.0521
Hour 24
(DKK/KWh)
Prob. of over- | <0.1% - - -
loading 5%
Prob. of over- | 50% 24.5% 8.2% 2.1%
loading
L3 loading 6000 5970 5940 5910
limitation
(kW)

4422 Case Two

However, if the DSO is more conservative, e.g. the DSO sets its goal to be that the
probability of overloading (0%) is no bigger than 5%, the algorithm needs to con-
tinue to the second iteration because after the first iteration, the probability of over-
loading is 50%. The new line loading limit of L3 at the critical hour is reduced by
0.5% (a fixed small step), i.e. the new line loading limit is 5970 kW. The procedure
is repeated from step 4. The sensitivity and the standard deviation of I" are almost
not changed from the first iteration. The probability of —30+I">0(noted that the
line loading limit is reduced by 30 kW in the optimal energy planning) is 24.5%.
The algorithm needs to continue to the third and fourth iteration. After the fourth
iteration, the probability is reduced to 2.1 % and the algorithm can be terminated
with the final DT (the 4™ iteration column of Table 4-4).

The results of Case One and Case Two are listed in Table 4-4. As the L3 loading
limitation sets to be lower and lower in the optimal energy planning at the DSO
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side, the DTs at LP2-5 go up gradually (DT at LP1 is not changed because the
enhancement regarding L2 overloading has not been carried out yet; it can be done
by following the same procedure for L3), which is reasonable because it needs to
shift more power consumption to other hours. It can be seen from the final energy
planning results shown in Fig. 4-6 that 90 kW is shifted from hour 24 to hour 23
comparing to the original planning (Fig. 4-5). The benefit is that the probability of
L3 overloading (the physical limitation is still 6000 kW) is only 2.1%, which is the
confidence that the DSO has on the DT method for congestion management.

L2 loading
gzooo _______________________________ i
¢\ coomomppeennEnnAl 00n
L3 loading | W =V lood | 2000
’%‘ ______________________________ v_4 910
< 5000
g, noarerdnnrnnnei P
L4 loading
’%"‘2000_____________._______. _____________
§1000— !
I %mm%%%%m%%%%%

0 10 15 20 25
time (h)

Fig. 4-6. The final energy planning results at the DSO side

4.5 Summary

This chapter presents the uncertainty management of the DT method with the pres-
ence of stochastic parameters of the flexible demands. The uncertainty comes from
the fact that the DSO needs to forecast the behavior and energy requirement of the
flexible demands since the DT method has a decentralized control architecture,
where the aggregators make day-ahead energy plans independently without con-
sidering network constraints. With the uncertainty management, the robustness of
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the DT method is enhanced that the probability of congestion (or an allowed con-
gestion level) resulting from the DT method is under a predefined level.

The main limitation of the proposed uncertainty management method lies on the
sensitivity analysis carried out in each iteration step, which has an assumption that
the changes of the parameters are reasonably small. Therefore, the forecast errors
should not be too big; otherwise, the accuracy of the sensitivity analysis will be
compromised.



CHAPTERSS.

CONVEX RELAXATION OF AC OPF?

In all previous chapters, the DC OPF is employed to determine the DT where
voltage constraints are neglected. This chapter will present a method to solve AC
OPF through exact convex relaxation and its application for EV energy planning
and DT determination where voltage constraints are included.

5.1 Introduction

Optimal power flow (OPF) is a very important optimization problem widely used
in power system applications, such as congestion management, economic operation
and control. The OPF considers the economic aspect of the power system compo-
nents, and models the system at the steady state. There are two types of OPF,
namely AC OPF [60] and DC OPF [61], resulting from AC and DC power flow
models.

The DC OPF is a linear problem, and can be solved very efficiently and robustly
by many commercial optimization solvers such as GAMS/CPLEX [38]. However,
the solution of the DC OPF is only an approximation of the power system status.
The accuracy will be poor if the R/X ratio is high in the studied system. Further-
more, even if the R/X ratio is low, if voltage constraints are an issue or if power
factors are poor, congestion may be misestimated and the solutions from a DC op-
timization may be far from feasible.

The AC OPF is non-convex in its original form and is an NP-hard problem. Gen-
eral-purpose nonlinear programming (NLP) solvers can be used to solve the AC
OPF. A number of dedicated methods were developed to solve the AC OPF prob-
lems in the last two decades, such as the trust region interior point algorithm [62],

5 This chapter is based on paper: S. Huang, Q. Wu, J. Wang and H. Zhao, “A Sufficient Condition on Convex
Relaxation of AC Optimal Power Flow in Distribution Networks”, IEEE Tr. Power System, epub ahead.



76 CHAPTER 5 Convex Relaxation of AC OPF

[63], Lagrangian method [64], and primal-dual interior point method [65]. How-
ever, these methods normally obtain a locally optimal solution and it is not possible
to know how far it is from the global optimum.

The convex relaxation method for solving the AC OPF was first presented in [66]
as a second-order cone programming (SOCP) for radial networks and in [67] as a
semidefinite programming (SDP) for meshed networks. For meshed networks, [68]
has analyzed the exactness of the convex relaxation. However, the analysis is lim-
ited to pure resistive networks.

For radial networks, [69]-[71] have proposed several sufficient conditions for the
convex relaxation to be exact. In [69], [70], it is proposed that if just one of any
two connected nodes has a lower active power bound and no node has a lower
reactive power bound, the convex relaxation is exact. However, these sufficient
conditions may not be practical. In [71], the authors propose that if the upper
bounds of the active and reactive power are not too large, the convex relaxation
will be exact. The conclusion of [71] is promising as it allows a certain amount of
feed-in power from renewables; however, the constraints of the AC OPF formula-
tion in [71] miss the thermal and line capacity limits. The line capacity limit may
lead to inexactness of the convex relaxation of the AC OPF as shown in [72]. Be-
sides, the thermal and line capacity limits are necessary in many practical applica-
tions with renewable energy or flexible demands present, such as the congestion
management applications in [ 19] and chapter 2. The details of the convex relaxation
for the AC OPF can be found in [73], [74].

This chapter will propose a sufficient condition such that the convex relaxation of
the AC OPF with all practical constraints is exact for radial networks, after the
introduction of the basic idea of the convex relaxation and the discussion of the
convexity of the sub-injection region. Next, the models for applications based on
the convex relaxed AC OPF, such as optimal EV energy planning and DT calcula-
tions, will be presented. Then, case studies for the above applications are carried
out and presented.

5.2 Convexity and Convex Relaxation of AC OPF in Distribution Networks

5.2.1 Convex Relaxation

A few assumptions are made for the convexity analysis and convex relaxation of
AC OPF in distribution networks. Only radial networks are considered, i.e. the net-
work (N, ) is a tree. Node 0 is chosen to be the slack node, which means voltage
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v, is fixed and given (normally 1 p.u.). In this chapter, vrepresents square magni-

tude of the original voltage, while irepresents square magnitude of the original
current 7, for the sake of using branch flow model. Node 0 is also the root of the
tree graph and the direction of each edge is pointed towards the root, e.g. node jof
edge (i, j) is the parent node of nodei . In all practical applications in distribution

networks, the (square) voltage limits of each node are 1 £a% p.u., where & can
be a number between 8 and 21 (corresponding to the original voltage limits 1 +/-
0.04 p.u. and 1 +/- 0.1 p.u. respectively) depending on the standards. Therefore, it
is reasonable to assume that v > v and v < v, (assume that v =I p.u. in this chap-

ter).

The original AC OPF can be written as (5.1)-(5.9). The cost function £ of s is
listed separately in the objective function because there is a special requirement for
£, (see the discussion in section 5.3.1). Constraints (5.2)-(5.5) describe the line
flow through a branch flow model. Constraints (5.6)-(5.7) are the thermal and line
capacity limits. Constraint (5.8) is the limit of the generator output or the demand,
and (5.9) is the voltage limits.

OPF: min g, f(Re(s,))+5 Re(s)) (5.1)

s.t.
Sy=s,+ 2 (S, —2,in) Vi, ) e € (5.2)
h:h—i
0=s,+ > (S0 = Zpoing) » (5.3)
h:h—0

v,~v,=2Re(5,5,) - |5, 1,.V(. )€€, (5.4)
i

i, =—-,Y(i,)) €&, (5.5)
Vi

i, <§,V0j)ec, (5.6)

|5,/ <S,. v ) eE, (5.7)
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5,<s,<5,VieN", (5.8)
v.<v <V. VieN", 5.9

where s, (vector form: s ) is the injection of plus node (other than node 0), named
as sub-injection, s, is the injection of node 0, Sis the reverse apparent power flow,

zis the impedance, Eis the set of lines (edges) of the distribution network, A * is
the set of plus node (other than node 0), the direction of edge (i, j) or & —> i is point-
ing to the root.

Its convex relaxation as an SOCP is shown below [75].

SOCP: (5.1),
s.t.

(5.2)-(5.4), (5.6)-(5.9), and

| |2

i>17

ij >
V.

i

Vi, /) ek . (5.10)

To clearly show the fundamental idea of the exactness of the convex relaxation as
an SOCP, condition A1 for the convex relaxation to be exact is introduced first.

Al: The upper limit of the sub-injection fulfils: 5 <0.

Though A1l is a special case of the condition proposed in [71], it needs to be proven
to be a sufficient condition since the AC OPF has current and line capacity con-
straints compared to the one in [71].

The physical meaning of Al is that all the nodes except the root will draw active
and/or reactive power from the system. This condition is easy to understand and
can be used in many applications where the generation from, e.g. renewable energy
sources (RES), is less than the consumption.
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5.2.2  Convexity of Sub-Injection Region

Before studying the exactness of the convex relaxation of the AC OPF, it is helpful
to know more of the structure of the AC OPF. As shown in [69], [70], the feasible
set P of the AC OPF, known as the feasible injection region of ( p,, p) , is normally

non-convex.
P={p,.p:(52)-(5.9)}, where (p,,p)=Re(s,,s) -

However, if the focus is put on the feasible injection region of P only, the feasible
set can be proven to be convex. This partial injection region can be named as the
feasible sub-injection region, denoted by P* (the word “feasible” is omitted later
on for brevity). SetP"is an orthogonal projection of P to the subspace of vector

p.
P ={p:(52)(59)}, where p = Re(s).

In fact, a stronger statement regarding the sub-injection region with reactive power
included, i.e. S", can be made. Together with S, they are defined as,

S'={5:(52)-(5.9)},

S={s,,5:(52)-(5.9)}.

Proposition 5.1: S'is convex if Al holds.

The idea of focusing on the sub-injection region comes from the power flow cal-
culation methods, such as the Newton-Raphson method or Forward-Backward
method. In the power flow calculations, the power injection of the slack node is
dependent on the power injections of other nodes, i.e. the sub-injection. In other
words, only the sub-injections are free variables while the injection of node 0 is not.

Since not all variables are free ones, P or S is not convex unless the relationships
between these variables are linear, which is not true because of (5.5). Therefore, it
is reasonable to put the focus on the sub-injection.

Proposition 5.1 will be proven after the proof of the following lemma.
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Lemma 5.1: If A1 holds, then $* =8", i.e. the sub-injection region is equal to the
convex-relaxed one, where

S=1{5,,5:(5.2)(5.4), (5.6)-(5.10)},

S"={5:(52)(5.4), (5.6)-(5.10)}.

It is obvious that Vs e S*, then s e S* because of the relaxation. Therefore, there is
S* < §* . Then we only need to prove S* o S*.

VseS™, 3(8©,v®,i®, sy such that (5,5 ,v® i s satisfies (5.2)-(5.4),
(5.6)-(5.10). Then employ the following iteration method to construct a series of
variables (§*) v i) {0y

Reorganize the tree network as shown in Fig. 5-1 according to the depth (the dis-
tance to the root) of the nodes. Relabel the node number such that the deeper the
node, the larger the number. In case of the same depth, the numbering is arbitrary.

[} o e —
0 1 3 6 n-3 n-2 n
7

n-1
Fig. 5-1. Relabel the nodes according to their depth

Let (S®,v® i® sy = (S© vy i ) vie 2z ,and v * = v, . Thenin the k-

th (k > 0) iteration, apply a Forward-Backward sweep algorithm as described be-
low.

Forward: For i=n,n—1,n—-2,---1, and (i, j) € £ ,apply sequentially,
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(k) _ (k) e (k)
Sij =8+ Z (S =zl )

h:h—i

2 Si + z (Shi(k_l) - Zhiihi(k_l)) s (51 1)

h:h—i
— ¢ (k=D
=S,

2 2 2
(k) (k-1) (k-1)
PO i 0 Y

<i ¢, :
i I v 62 Sy (5.12)
For node 0,
(k) _ (k) s (k)
Sy =~ z (Sho " —Znolpo )
h:h—0
(k-1) o (k=D
<=2 (S0 =20 ). (5.13)
=0
— 5D

Backward: For i =1,2,3,---,n—1,n, and (i, j) € £ ,apply,

2
k) _ v () = q (k) 2 (k)
v, =v, " +2Re(Z,S, )—‘ZU‘ i,

>v D +2Re(7,8,4 ) |z, 1,47 (5.14)

y

=y &

The above algorithm not only shows how to update the variables iteratively, but
also ensures that the obtained series are monotonic.

In order to show the monotone of the series, let £=1. Since Vi >0, jis unique such
that (i, j) € € , the subscription j is sometimes omitted in branch variables or pa-

rameters for brevity. In the forward sweep, when i=n, the inequality in (5.11)
holds because it is a leaf node. Because s, < 0 due to Al, § @ <0 . Therefore, the

first inequality in (5.12) holds due to (5.11). Because v* = v, Vk <0, the sec-
ond inequality in (5.12) holds. According to (5.10), i ¥ > |Sn‘°)|2 /v, the third

inequality in (5.12) holds as well. When i =n—1, the inequality in (5.11) holds be-
cause (5.11) and (5.12) holds for any of its child nodes (if any) with the relabeling
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shown in Fig. 5-1. Noticing that for any of its child nodes (if any), Sh,n_l(l) <0,

Zy,0 20 andih,n_l(o) >0, there is s, <o.With (5.11) and 5, " <0, the first
inequality in (5.12) holds. Similar to the analysis for i=n, the second and third
inequality in (5.12) holds for i =n—1. Similarly, it can be verified that (5.11) and

(5.12) hold for the rest i . The analysis of (5.13) is the same as (5.11).

In the backward sweep, when i=1, the inequality holds in (5.14) because
v,V =v,, (5.11) and (5.12). When i >1, with the relabeling shown in Fig. 5-1,

v j(l) is always determined before v, and V j(l) ZY,-(O) due to (5.14). Therefore, the

inequality in (5.14) holds for i =2,3,...,n — 1,1, respectively. The second equation
in (5.11), (5.13) and (5.14) holds because (5.2)-(5.4) hold for (5,5, v© i® ().

Because of the iterative nature of (5.11)-(5.14), it can be verified that they hold for
k =2,3,4,---. Therefore, there exists the following monotonic series.

{S(k)}‘S(O)<S(1)<S(2)<'~'<0
({0021 2i% 220

(K)y . o (0) (1 (2)
{50 s, )28, 28,7220

v O <vO <v® <<y
In the last series, v, is a bound, because 2R€(Elj§j(k)) - |z,.j |2 i, in (5.14) is neg-
ative. Since all the above infinite monotonic series have bounds, they have limits.
Denote S zklirpw SY T :klgnm i“, s, = klirgo s, ") and v = klirgo v,

It can be verified that (s,5",v",i",s,") fulfills the line flow constraints (5.2)-(5.5)
and s satisfies (5.8). It can also be shown that (s*,v",i") satisfies constraints (5.6),
(5.7) and (5.9) because of the assumption of (§® v, i®)and the relation be-
tween (§©,v©®, i) and (s",v",i") . Hence, (s5,5,") e S and seS". This means
S o §* . It ends the proof of Lemma 5.1.
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With Lemma 5.1 proved, Proposition 5.1 is easy to be proved because S*is convex

since it is an orthogonal projection of the convex set S . Therefore, S*is convex
as well.

5.3  Exactness Analysis

5.3.1 Exactness of Convex Relaxation

In [71], a definition of the exactness of the convex relaxation is given as: the SOCP
is exact if every of its optimal solutions satisfies the nonlinear line flow constraint
(5.5). This requires (5.10) to be active at the optimal point and £ to be strictly

increasing. However, this requirement can be relaxed.

It can be seen from the proof of Lemma 5.1 that any optimal point of the SOCP can
be converted to a feasible point to the original AC OPF. In order to use this Lemma,
the definition of the convex relaxation exactness is modified to an intuitive one: the
SOCEP is exact if the gap between the optimal values of the AC OPF and its convex
relaxation is zero. It is shown below that £ is only required to be non-decreasing

for the SOCP to be exact.

Proposition 5.2: When £ is non-decreasing, the SOCP is exact if Al holds.

Proof: Assume that (s",s,") is an optimal solution of the SOCP and the constructed
feasible point of the AC OPF is (s°,s,”) , where s, "is the constructed feasible in-

jection at node 0 using the Forward-Backward sweep method described in Section
5.2.2. It is obvious that,

£y(Re(s,")) + £, (Re(s")) < £, (Re(s, ")) + £ (Re(s"))

because (s°,s,”) is an optimal point of the SOCP. It is known from the construction

process that s " < 5,* . Therefore, if £ is non-decreasing, there is,
£, (Re(s,)) + £, (Re(s)) = £, (Re(s,”)) + £, (Re(s"))

Therefore, they are equal. It is obvious that (s°,5,”) is an optimal solution of the
AC OPF and it has the same optimal value. This ends the proof of Proposition 5.2.
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An example of non-decreasing function £ is shown in Fig. 5-2. In fact, £, can be

zero or constant, which is a special case of non-decreasing. In that case, the SOCP
is equivalent to the AC OPF in terms of having the same sub-injection region and
the same objective value for every feasible point. The significance of this argument
can be seen from the EV planning application presented in [76], [77]. The charging
service provider employs an OPF problem to make an optimal charging plan for
the EVs with the network constraint information received from the DSO. The op-
timal planning considers only the cost of EV charging; therefore, the cost function
£, 1s zero in this application. The authors of [76], [77] use an iterative method to

solve the ACOPF problem, which is slow and complicated. However, employ the
method proposed in this chapter, this application can be solved more efficiently
(see section 5.4 and 5.6).

fo(Re(so))

Re(so)

Fig. 5-2. An example of non-decreasing function £ |

5.3.2 The Proposed Sufficient Condition for Exactness

A new sufficient condition, denoted as C1, is proposed in this chapter, which also
ensures an exact convex relaxation and a convex sub-injection region, but much
wider applicability.

C1: The sub-injection s satisfies (5.15)-(5.18).
S;=s,+ .8,V j)e€, (5.15)
h:h—i
Y, —¥,=2Re(z,3,).V(, j) €€, (5.16)

Re(Z,5,) <0Y(i, ) €&, (h1) €€, (5.17)
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vV, <V, ,VieN". (5.18)

In (5.16), ¥, = v, . Equation (5.15) and (5.16) are known as Linear Distribution
Flow Model [78]. It can be verified that Al is a special case of C1 (see section
5.3.3). Notice that the linear approximation of the voltage (V) and the reverse power
(8) is an upper bound of the voltage (v) and reverse power (.S). The physical mean-
ing of (5.17) can be interpreted as that the network does not allow both active and
reactive reverse power flow simultaneously on its non-leaf lines (neither of the line
ends is a leaf node). C1 is suitable for the applications with light reverse power
flow, such as EV planning problems with reactive power support functions or with
capacitor banks (see the case study in section 5.6.3). Equation (5.18) will be always
satisfied if the reverse power flow is not heavy.

Proposition 5.3: When £ is non-decreasing, the SOCP is exact if C1 holds.

Proof: In order to prove the exactness of the SOCP, the key is to check the mono-
tone of the constructed series, {s®}, {i*, {5,}, {v\*} , using the Forward-

Backward sweep method.

With k=1, for i=n,n—1,n-2,---1,and (i, j) € £ , there is,

_qgM 0y _ s () _s (0)
ASij_Szj _S;'/ - Z (_th(lht — 1 )

(h,t)e&
= > (-z,AL,) : (5.19)
(h)e€;

>0
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A‘Sz‘j‘z - ‘S,-jm‘z _‘Sljw)r (VY +(0,")
~(B") -,
=(AB)(B" +B")
+HAQ,)(Q," +0,)
<(AR)(2E) +(A0,)(20,) : (5.20)
=2( > —1,AL,)P +

(h.)eE,

2( Z _xhtAihz )Qy

(h1)eé,

= 2 Z _Aiht(r;ztﬁij + xthAij) < 0

(h.1)eé;

2 2
M (0)
5,1 [s,”

f 21 © _%
Al =1, -1 < vO
1
s _alsf -
<0
V.

l 1

Inequality constraints (5.19)-(5.21) can be verified sequentially, i.e. after verify all
of them for i=n, start over again to verify (5.19)-(5.21) for i =n—1. For node 0,
there is,

+ (0)
As, _So Zzht(lht -1,)

hte€

=3 z,A5, . (5.22)
hte€

<0

For i=1,2,3,--,n—1,n and (i, j) e £,

AV, =v " vV = Av +2Re(Z,AS,) |5, [ A, (5.23)
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Therefore, the voltage is increasing, which supports the first inequality in (5.21).
The first inequality in (5.20) is due to the property of IA’U and Q] (they are upper
limits). The second inequality in (5.20) is due to (5.17).

It is not difficult to verify that for £ >2 , (5.19)-(5.23) are valid. Notice that
v® <¥<¥, the new series will be,

(950 <5V <50 <. <8,
{i(k)} 4O >0 >i® > >0,
{so“‘)} : So(m > Som > Som > 28,
(v v <y <vP <<

Therefore, the above series have limits and the limits satisfy the constraints of the
OPF. Moreover, the SOCP is exact. This ends the proof of Proposition 5.3.

5.3.3 Discussion on Sufficient Condition A1, B1 and C1

The sufficient condition proposed in [71], named as B1, is rewritten in this chapter.

B1: The positive linear approximation of the reverse power based on
the upper limit of the sub-inject S fulfils (5.24), and the linear approximation of
the voltage based on the sub-injection s fulfils (5.18). And

41‘47'2‘47‘3"'4 u, >0,V ~i ,i, >0, (5.24)

n-1 ‘n

where ; is the parent node of i

x+172

4= 1—3@((1%@))* Q@)

1

r.
L . . .
u, = (x j, rrepresents i ~ i ,
i
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symbol a” means max(a,0) .

It can be seen that Al is a special case of B1 given that »,x > 0. According to Al,

s <0 . There are (Ifl’(}_?))+ =0 and (Q,@))+ =0. Therefore, A =1 and the left
side of (5.24) equals to u , , which is strictly positive since »,x > 0. Equation (5.18)

is also satisfied because v<0<V.

Al is also a special case of C1. Since 5 <0, there is §<0. Therefore, S < 0 and
the left side of (5.17) is always negative. Equation (5.18) is satisfied because
v<0<v. Comparing to Al, C1 allows active reverse power flow or reactive re-
verse power flow while A1 doesn’t allow any reverse power flow.

The differences between B1 and C1 are analyzed below. First of all, it should be
emphasized that B1 is a sufficient condition for the exactness of the SOCP without
line flow constraints while C1 is proposed for the case with line flow constraints.

Secondly, for Bl to be a sufficient condition, the cost function f | is required to be

strictly increasing, while for the case with Cl1, it only needs to be non-decreasing.

Thirdly, there is no requirement of the impedance for C1 (and A1 as well), but it is
required that »,x > 0 for B1. This is because the ‘greater than’ symbol is used in
(5.24).

At last, B1 does not imply C1 and vice versa. According to B1, the reverse power

flow has an obvious upper limit, 2 (p)< ;’—_ and Q,(7) < 21_1', due to (5.24) and
7 i

the definition of 4,. However, according to Cl1, if the active power flow is very

high, the allowed reactive reverse power flow will also be very high, without an

explicit upper limit. On the other hand, B1 may allow both active and reactive re-

verse power flow at the same time. However, C1 does not allow both active and

reactive reverse power flow at the same time.

54  AC OPF for Multi-Period EV Energy Planning

In this section, the AC OPF with EV charging planning over multi-period is de-
scribed considering the line flow and voltage limits.
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OPF-EV: min, g, & = z (C,Z e,)> (5.25)
teT keV
S.t.
Sy =58, + Z (Sy = 24d), VU, j)e&teT 5 (5.26)
h:h—i
0=s,+ z (S)0: = Zholpo)sVEteT 5 (5.27)
h:h—0
v, =V, =2Re(z,S,) - |z, i,. V(. )eEreT, (5.28)
5.f
i, =—-V(,j)e&teT, (5.29)
i, <i,V(j)eteT, (5.30)
1S,,| <5,V j)e&teT, (5.31)
v,<v, <V, VieN",teT, (5.32)
Re(s,)=—Y e, —Re(b,),Vie N ,teT (p,), (5.33)
keV,
Im(s,)=-1Im(b,),Vie N ",teT, (5.34)
Y, =d,VkeV, (5.35)
teT;
0<e, <e¢a,,VkeV,iteT, (5.36)

where ¢,, is the EV charging power, ¢, is the upper limit of the charging power,

d, 1s the total energy requirement of each EV, ¢, 1s the availability of EV, 5, 1s

the total fixed consumption, V is the set of EVs, 7 is the set of planning periods.

The objective function is to minimize the total charging cost for the EVs. The EV
charging related constraints (5.33)-(5.36) are all linear. Only (5.35) is coupling the
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multiple periods, which is to satisfy the total charged energy required by each EV.
Constraint (5.36) is to limit the charging power, which will lead to the limit of s,
through (5.33). Because of (5.29), the OPF-EV problem is nonconvex, which is
very hard to solve. Similar to the method employed in the single period OPF, (5.29)
can be relaxed. The corresponding SOCP is written below.

SOCP-EV: (5.25) s.t. (5.26)-(5.28), (5.30)(5.36), and

2
S
| w| Vi, e teT . (5.37)

it

i, >
v

Proposition 5.4: The SOCP-EV is exact if C1 holds.

Proof: Let (¢",s") be an optimal solution of the SOCP-EV, and g" is the optimal

>

value. For any given period 7, the corresponding sub-injections,” can be used to

construct a feasible power flow solution, denoted as (s,",v,",i,",s,,) , to the OPF-

EV that satisfies the constraints (5.26)-(5.32). Therefore, the solution
(e',s",8",v",i",s,")1s feasible to the OPF-EV. It is obvious that the objective value

for the OPF-EV based on this feasible solution is also equal to g* . Hence, g" is the
optimal value of the OPF-EV because ¢* is a lower bound of the optimal value due

to the relaxation. This ends the proof of Proposition 5.4. Notice that, B1 cannot be
used to determine whether the SOCP-EV is exact, not only because there are line
flow constraints (5.30) and (5.31), but also there isno £ .

In some application cases with different market and business assumptions, the line
losses are considered in the cost function. Then the objective function (5.25) can
be replaced with the following function.

g =Y e Re(s,) - (5:38)

teT

For these applications, a conclusion similar to Proposition 5.4 can be drawn. The
proof is not difficult and is neglected for brevity.
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5.5 AC OPF for DT determination

As discussed in Chapter 2, quadratic terms are needed in order to determine the DT
without causing multiple-response problems in the DT method. Only the optimal
energy planning at the DSO side is needed, which has the same model as OPF-EV
defined in section 5.4, except that the objective function should be slightly modi-
fied. The model for determining DT through AC OPF is defined below, names as
OPF-DT, where the quadratic terms have a very small coefficient £ such that they

can make the optimization problem strict convex without changing the total cost
too much.

OPF-DT mine,x,S,v,i,so g = z (ﬁxz ektz + C’Z ekt) ? (539)

T kv kev
s.t.
(5.26)-(5.36).
The corresponding convex relaxed model is defined as below.
SOCP-DT: (5.39)
s.t.
(5.26)-(5.28), (5.30)-(5.37).

The DT equals to the Lagrangian multiplier of (5.33), i.e. p,, . Considering the strict

convexity of SOCP-DT and the exactness between OPF-DT and SOCP-DT, it can
be proven through the same method from Chapter 2 that the summarized energy
planning at the aggregator side based on the above DT will be the same as the
solution of SOCP-DT and OPF-DT. Hence, the DT method for congestion man-
agement based on the convex relaxed AC OPF model is valid.

5.6 Case Studies

Case studies were conducted using the Danish driving pattern and the Bus 4 distri-
bution system of the RBTS [36] and the IEEE 123 node feeder [79]. The details of
the case studies are presented in this section.



92 CHAPTER 5 Convex Relaxation of AC OPF

5.6.1 Grid Data

The single line diagram of the Bus 4 distribution network is shown in Fig. 5-3. Line
segments and nodes of the feeder one are labeled in Fig. 5-3, among which L2-1,
L4-3, L6-5, L8-7, L9-7, L11-10, and L12-10 refer to the transformers connecting
the corresponding load points. Notice that the labelling follows the rules mentioned
in section 5.2.2. The detailed data of these load points are listed in Table 5-1. The
reactive power consumption is assumed to be 10% of the active power consumption
for each load point. The peak conventional demands of residential customers occur
at 18:00 when people come home and start cooking (shown in Fig. 5-4).

Grid
33kv
0§ o

0
=B I ey {—ao-
o - @+ (R %
a 3
61— . e o
e ool +a>Lao oo
11}‘00—1—000—|n

Fig. 5-3. Single line diagram of the distribution network
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TABLE 5-1. LOAD POINT DATA

peak peak number
load customer conv.load conv. load of cus-
points type / point / point tomers
(kW) (kVar) per point
node
2,4,6,8 residential  886.9 88.69 200
node 9 residential  813.7 81.37 200
node commer-
11,12 cial 671.4 67.14 10

Line (2,1) loading

% 1500
1000 ————————————————————————————
2
5 500 F %%%
®
2 0 %%% %%% %%%%%% conv load - active
I £V load
Line (3,1) loading — — — . |imit

time (h)

Fig. 5-4. Active power sharing of EV and conventional loads, where active power losses are very
small

Voltage limits are set to be 5% p.u., then the limits of the square voltage will be
v =10.95" and v=1.05". Assume that v, =1. The line parameters including re-
sistance, reactance and line capacity limits can be seen in Table 5-2. The prices for
the EV charging are the predicted day-ahead market system price, as shown in Ap-
pendix A.
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TABLE 5-2. LINE PARAMETERS

Capacity limit
From To r (ohm) X (ohm) X/r ratio (kVA)
1 0 0.176 0.52 2.954 8000
2 1 0.4 2.4 6 1000
3 1 0.22 0.66 3 6100
4 3 0.4 2.4 6 2000
5 3 0.264 0.64 2424 6000
6 5 0.4 2.4 6 2000
7 5 0.176 0.56 3.181 6000
8 7 0.4 2.6 6.5 2000
9 7 0.48 2.8 5.833 2000
10 7 0.22 0.6 2.727 6000
11 10 0.4 2.44 6.1 2000
12 10 0.44 2.8 6.363 2000
5.6.2 EV Data

Assume there are 1000 EVs in the network (except for Case Study Four), i.e., one
EV per residential customer. The key parameters of the EVs are listed in the table
in Appendix A. The EV availability (available for charge per hour) is also shown
Appendix A.

5.6.3 Case Study Results

The simulation is carried out using CVX, a package for specifying and solving
convex programs [80], [81]. CVX is a toolbox in Matlab and it supports several
SOCP solvers, such as SeDuMi, SDPT3, Gurobi and MOSEK. In this chapter,
CVX/MOSEK is chosen, and the platform is a personal computer (a laptop) with
Intel Core 15-4310U, 2 GHz, 8 GB RAM, windows 64-bit Operation System.

5.6.3.1 Case Study One

The first case study is the application of EV energy planning. CVX can transform
constraints (5.31) and (5.37) in SOCP-EV to conic ones, and thereby solved by the
SOCP solvers. The optimal solution of the OPF-EV can be recovered using the
Forward-Backward sweep method and used to describe the operation status of the
network, as shown in Fig. 5-4, Fig. 5-5 and Fig. 5-6.
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Line (2,1) loading

Line (4,3) loading
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Fig. 5-5. Apparent power of three line segments
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Fig. 5-6. Voltage profiles of node 8 and 9, which are critical node in the feeder
It can be seen from Fig. 5-4 that most of the EV charging loads are allocated at the
hour with the lowest price, i.e., hour 24. However, due to the availability and the

line capacity limit, part of the loads is allocated to the hours with the second and
third lowest prices. Due to small resistances, the line losses are very small, which
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is about 1%. Hence, it is not shown in the figure. The sharing of EV loads and
conventional loads are calculated using the linear model, i.e. (5.15), and the losses
are the gaps between the linear model and the full model.

The apparent power (magnitude) profile of three line segments is shown in Fig. 5-5.
It can be seen that the apparent power is below or equal to the line capacity limit.
Due to the heavy EV charging loads, the capacity limit of L2-1 is reached at hour
23 and hour 24. The apparent power of L.3-1 is below the capacity limit at hour 24
because the voltage limit is hit first as shown in Fig. 5-6.

5.6.3.2 Case Study Two

The second case study is to calculate the DT through convex relaxed AC OPF. The
parameters are the same as the first case study. The calculated DTs are shown in
Table 5-3. Because of the line congestion of Line(2,1) as shown in Fig. 5-4 and Fig.
5-5, DTs are not zero for Node 2 at hour 23 and 24. Due to the fact that the voltage
limits of Node 8 and 9 are bounded at hour 24 as shown in Fig. 5-6, the DTs are
not zero for all nodes at hour 24.

TABLE 5-3. CALCULATED DT
(DKK/MWH, DT NoT SHOWN IN THIS TABLE IS ZERO)

time 23 24

Node 2 7.01 77.01
Node 4 0.00 27.11
Node 6 0.00 46.25
Node 8 0.00 70.00
Node 9 0.00 70.00

5.6.3.3 Case Study Three

A third case study was carried out, where the EVs were allowed to produce reactive
power up to 10% of its active power, to test the reactive power support function of
the EVs and the validity of C1. With the feed-in of reactive power, the voltage
profile is improved (see Fig. 5-6), and the total cost is reduced a bit because the
EVs are able to consume more energy at the lowest price up to the limit of the line
capacity as shown in Fig. 5-5.
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5.6.3.4 Case Study Four

At last, the efficiency of the SOCP-EV model was tested on distribution networks
of different complexity scales. The results were tabularized in Table 5-4. The first
simulation is the case described above. The simulation focuses on the first feeder
of the network shown in Fig. 5-3. The 11-kV bus was deemed as the root node.
Because it is a multi-period optimal planning problem, the number of scalar varia-
bles depends on the number of EVs and the number of planning periods (24 here).
The optimizer only took 0.39 seconds to finish the optimization. The second simu-
lation was done on the whole distribution network. The 33-kV bus was deemed as
the root node. The optimizer took 1.56 seconds to finish the optimization. The third
simulation was done with the IEEE 123 node test feeder [79]. The number of EVs
was increased to 20000 and the total optimization time is 12.09 seconds for such a
complicated feeder with high penetration of EVs.

TABLE 5-4. SOCP-EV MODEL EFFICIENCY TEST

Simulation 1 2 3
Number of nodes

(exclude root) 12 50 123
Number of EVs 1000 4000 20000
Constraints 3280 13576 43592
Cones 576 2400 5904
Scalar variables 28217 113249 532521
Time (s) 0.39 1.56 12.09

5.7 Summary

This chapter has proven that if Al holds, i.e., there is no net injection power, the
sub-injection region will be convex. Moreover, if the cost function is non-decreas-
ing, the convex relaxation of the AC OPF of distribution networks with line con-
straints will be exact under A1. When this condition holds, the NP-hard AC OPF
of distribution networks can be solved through an SOCP. In order to expand the
applicability of the convex relaxed AC OPF in distribution networks with line con-
straints as an SOCP, a weaker condition C1 is proposed and proved, which allows
that the reverse power flow is only active or reactive, or none. The case study
demonstrates the exactness of the convex relaxed AC OPF and the efficacy of using
the convex relaxed AC OPF for solving a multi-period EV planning problem and
determining DT with line and voltage constraints.
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CHAPTER 6.

DS METHOD FOR CONGESTION MANAGEMENT?®

In this chapter, the dynamic subsidy method will be presented, which is opposite
to the DT method presented in previous chapters.

6.1 Introduction

The DT method is economically efficient for alleviating congestion in distribution
networks, because only those consumers causing congestion pay the DT. However,
considering the regulations of distribution networks in many countries nowadays
[82], there are regulatory issues to deploy the DT method. Firstly, from the per-
spective of the customers, the DT method may not be viewed as a fair method,
because the customers might have to accept different tariff rates because of their
locations in the network. This is against the non-discrimination rules specified by
the regulations. Secondly, the flexible demands that help alleviate congestion pay
the DTs instead of getting rewards.

A monetary incentive based method was proposed in [23] for coordinating and re-
scheduling the flexible demands, where the capacity limit of the distribution net-
works was taken into account. With this method, the flexible demands will be re-
warded if they are willing to reduce the consumption during the congestion hours.
However, the method to determine a proper incentive is not optimal. This is be-
cause the authors of [23] choose the best one from a finite set of predefined incen-
tives, however, it is not necessarily the optimal one. The rebound effect, i.e. the
reduced flexible demand will cause an increase in a future period, is not considered
because the method only handles one period at each execution. Another issue is
that it does not consider the location of the incentives. The demand responses for

® This chapter is based on paper: S. Huang and Q. Wu, “Dynamic Subsidy Method for Congestion Management
in Distribution Networks”, IEEE Tr. Smart Grid, epub ahead.



100 CHAPTER 6 DS Method for Congestion Management

solving congestion are usually needed at specific areas or nodes. Locational incen-
tives can improve the efficiency of solving congestion because the responses of the
flexible demands from uncritical areas or nodes (e.g. the upstream nodes to the
congested point) have a limited effect. These issues also exist in other previous
studies, such as in [20], [22].

In order to resolve the issues of the abovementioned demand response methods,
this chapter proposes a dynamic subsidy (DS) method to handle the potential con-
gestion problems in distribution networks. Same as the DT method, the DS method
realizes the congestion management in a decentralized manner. The DS motivates
the aggregators to re-profile their energy plans such that the network constraints
are respected. The DS is a timed subsidy for the next day paid by the DSO to the
aggregators while the DT is a tariff collected by the DSO from the aggregators. In
the DS method, the DSO provides subsidies to the aggregators who are willing to
consume the energy at the designated hours, when there are available capacities
predicted by the DSO. As a result, the energy consumptions at “peak” hours or
potential congestion hours are under the limits.

The motivations of proposing the DS method are summarized as the follows. Firstly,
like other incentive-based methods, the DS method does not have regulatory issues.
The DSO normally needs an official approval from the authorities to charge new
types of tariffs. However, the DSO’s purchase of services from the customers does
not require a special approval. There isn’t a direct statement in regulations about
whether it is allowed for a DSO to pay DS. The idea is that paying DS is an alter-
native method to reinforcing the network to avoid congestion. The DSO should
have some calculations to make sure that the expenditure on paying DS is less than
the (annualized) cost of the network reinforcement; otherwise the DSO should
choose to reinforce the network. In this sense, the DSO should be able to convince
the regulators that this expenditure is due to a reasonable substitute to the invest-
ment on infrastructures.

Secondly, the DS determined by the DSO is always limited between zero and the
maximum predicted energy price. The DT is unlimited in theory. In practice, the
upper limit of the DT can be set, however, the efficacy of the DT method will be
compromised [59]. Also, unlike other incentive-based methods, it provides an ef-
ficient method to determine the DS without iterative information exchanges be-
tween the DSO and the aggregators. And finally, it does not incur the rebound effect
of the DR while other incentive-based DR methods do.
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In this chapter, the DS concept, mathematical formulation of the DS method and
the feasibility study are firstly presented. Then, the calculation of the DS through
optimization is described. Afterwards, the analysis and comparison of the DS
method with the DT method is presented. At last, case studies are presented and
discussed.

6.2 DS Concept

In this section, the market mechanism of the DS method for congestion manage-
ment of distribution networks is presented. Afterwards, the mathematical formula-
tion of the DS concept is described.

6.2.1 Decentralized Congestion Management through the DS Concept

The DS method for congestion management in distribution networks is based on
the day-ahead energy market mechanism and can be seamlessly integrated into the
day-ahead energy market (spot market in Nordic). This is the same as the DT
method, except that the DS is an income for the aggregators. The DS is a price
signal from the DSO to the aggregators, which implies that the DSO has only an
indirect control of the aggregators. The aggregators have the freedom of choosing
their own optimal energy planning for the flexible demands. However, it is assumed
that the aggregators as business units are economically rational and pursue the max-
imum profits. The DSO needs to predict the energy requirements of the flexible
demands and determine an appropriate set of DSs to motivate the aggregators to
re-profile the flexible demands as wished by the DSO. In this sense, the DS method
for congestion management is a decentralized control method.

The process of the decentralized congestion management by using the DS method
is described as follows. Firstly, the DSO obtains the flexible demand data, such as
energy requirements and the availability, by its own prediction or from aggregators.
The DSO also needs to collect the network information from its own sources and
obtain the predicted day-ahead energy price from third parties. Secondly, a set of
DSs is calculated through an optimal energy planning respecting the network con-
straints, and the DSs are published to all the aggregators before the closure of the
day-ahead energy market. Thirdly, after receiving the DSs, the aggregators make
their own optimal plans independently with the predicted energy prices, a fixed cost
(in this chapter, it refers to fixed grid tariffs and tax) and the DSs. At last, the ag-
gregators submit their energy plan/bids to the day-ahead energy market.
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The DSO may use the money collected from the customers through distribution
grid tariffs to pay the DS. The DSO has the right to collect grid tariffs to cover the
cost of operation, maintenance and reinforcement of the distribution grid. The DSO
pays the DS in order to solve congestion problems, which can effectively postpone
the very costly reinforcement of the grids. Therefore, the DS method is of the in-
terest of both the DSO and the customers because all the costs are ultimately paid
by the customers. This also means that the congestion, wherever it is in the distri-
bution grid, is solved by the contribution of every customer.

6.2.2 Mathematical Formulation of DS Method

6.2.2.1 Formulation at the aggregator side

At the aggregator side, the formulations of the DS and DT methods are similar. The
aggregators are purely economic units without any consideration of the network
constraints. They make energy plans based on the requirements of the flexible de-
mands and the prices, including the energy price, and the fixed cost (such as grid
tariffs and tax), and the DS (or DT). In both the DS and the DT methods, the ag-
gregators use the following optimization problem to determine the energy plans of
EVs and HPs in the day-ahead energy market. For aggregatori ,

minpiv”piv‘ z%pi’,TBi’tpi’, +(c,1+ E,,Tr,)Tp,,J +
T (6.1)

1. - N
Epi,tTBi,tpi,t + (Crl + EiTrt)Tpi,r

subject to,
el»mm < Z(p,-k _di,t Se ,Vte T (/u o t) (6.2)
P <, <pys VteT (6,6, (63)
[{Z;min < 2147‘,t,t7ﬁi,t -H/l” < Kamax vteT, (/:ll_t’/:ll z) P (64)

t <t

P <p, <P teT($,.8). (6.5)
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The distributional regulation price rin (6.1) can be either positive or negative.
When it is positive (, > 0 ), it is the DT. When it is negative (r, < 0 ), it is the DS.

The decision vector variables p, and p, represent the charging power of EVs and

consumption of HPs. Matrix B describes the sensitivity coefficients, £ is a map-
ping from the customers to the load busses, parameter ¢, is the baseline price, d

is discharging power, ¢is SOC (kWh) of EV batteries, 7 is the set of planning
periods. One planning period is assumed to be one hour in this chapter; therefore

(p,-,,_ —d,-,,_) :(p,-,,_ —d,-,,_)Al‘ , and Atis omitted for brevity.

Constraints (6.2) - (6.3) are from the limits of EVs. Constraints (6.4) - (6.5) present
the thermal and electrical limits of HPs. Constraint (6.4) is derived from the thermal
process analysis of the household and the HP as shown in chapter 2.

6.2.2.2 Formulation at the DSO side

At the DSO side, the formulations of the DS and DT methods are quite different.
The DT method will be briefly reviewed first.

The DSO needs to determine a proper distributional regulation price such that the
sum of all aggregators’ energy planning resulting from (6.1)-(6.5) will not exceed
the network constraints. This is the key idea of the DT and DS methods. In order
to determine DTs in the DT method, chapter 2 proposed a method using the fol-
lowing optimization problem (6.6)-(6.11). The DTs are calculated from the La-
grange multipliers of the network constraint (6.7).

. 1
mlnp,.‘,,i;,./ Z _pi,tTBi,tpi,t + (Ctl)Tpi,t +

ieB,teT 2 (66)
B BB+ b,
subject to,
Y DE(p,+b,)<fVieT, (4) (6.7)

ieB

eimm < Z(pi,L _di,tf) +ei,0 Se[maXth € Tai € B’(:uijl"u:f) (6'8)

t <t
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Py <p, <p Vel ieB(s,.q,) (6.9)

KS™<> A4, b, +u, < K™ NVteT,ieB(j,, ) (6.10)
t <t

P <p, <py Vel ieB(S,.¢)) (6.11)

The set of the aggregators is denoted as I3 , the PTDF is denoted as D . The DT is
determined to be p” 4, . Since 4, is required to be non-negative and D has non-neg-

ative elements, the DT is always non-negative. The following proposition is the
key principle of the DT method which has been proven in chapter 2 by comparing
the KKT conditions of the optimization at the DSO side and the optimizations at
the aggregator side.

Proposition 6.1: The sum of the optimal energy consumption resulting from (6.1)
- (6.5) of all aggregators is the same as the optimal energy consumption resulting
from (6.6)- (6.11) given that the distributional regulation price » (DT) is equal to

D'2,.

According to Proposition 6.1, the DT, as a distributional regulation price deter-
mined by the DSO using (6.6) - (6.11), is able to motivate the aggregators of the
flexible demands (EVs and HPs) to make their schedule such that the network con-
straints are not violated. The DS, as another kind of distributional regulation price,
should be able to play the same role as the DT does. The method used by the DSO
to determine the proper DS is, however, quite different from the one to determine
the DT. The DS is determined by a two-level optimization problem. The two-level
optimization problem can be written as,

Optimization 6.1:

m]‘n';api.ni)i,/ gz_ Z ’/I;TE;(pl‘,[ +ZA7[,[) (6.12)

teT jeB
subject to (6.7), and

r<0vieT, (6.13)
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(p,.»P,,) e argmin {(6.1): (6.2) - (6.5)},Vie B.

The objective functionJrepresents the total cost of the DSO to employ the DS
method (notice that », < 0 ). Constraint (6.13) requires the distributional regulation

price to be non-positive according to the definition of the DS. The inner optimiza-
tion gives the outer optimization a constraint such that the energy plan (p, , 5. )

must be the minimizer of (6.1) subject to (6.2)-(6.5), which represents the optimi-
zation problem of each aggregator. Finally, the energy plan (p, , p,,) must fulfill

constraint (6.7). The Optimization 6.1 can be summarized as: the DSO needs to
find the proper rthat minimizes the cost function g, and ris non-positive and the

optimal energy plan of each aggregator with the given rrespects the network con-

straints (6.7). Therefore, Optimization 6.1 represents exactly the DS concept in
subsection 6.2.1.

It is obvious that the optimization result of each aggregator is the same as the opti-
mal energy plan determined by Optimization 6.1 because it is assured by the inner
optimization of Optimization 6.1. Hence, the sum of all aggregators’ energy plan-
ning respects the network constraints assured by constraint (6.7) of Optimization
6.1. It implies that the decentralized congestion management through the DS
method is realized.

6.2.3  Feasibility Discussion and a Feasible Solution

Optimization 6.1 is generally difficult to solve. Before trying to solve the problem,
it is necessary to investigate its feasibility, i.e. whether there is any feasible solution
and under what conditions there is. If the conditions under which the DS exists are
too stringent, the DS method for congestion management will not be attractive to
the DSO.

In the DT method, the DT exists as long as the optimization problem (6.6) - (6.11)
is feasible, i.e. the feasible set determined by constraints (6.7) - (6.11) is not empty.
The optimization problem (6.6)-(6.11) is a strictly convex problem and its feasible
set is not unbounded because of the constraints (6.5) and (6.11). Therefore, the op-
timization problem has an optimal solution as long as the feasible set is not empty.
Hence, 2, exists and so does the p” , i.e. the DT exists. Constraints (6.7)-(6.11)
have defined the feasible condition for the DT method, i.e. there exists an energy

plan respecting the network constraints as well as the requirements of each individ-
ual flexible demand.
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It is desirable that the feasible condition for the DS method is as straightforward as
the one for the DT method. This is possible if the inner optimization of Optimiza-
tion 6.1 is slightly modified and the baseline price ¢, is strictly positive. Though

the energy price is sometimes negative due to the excess production of renewable
energy, the total baseline price is usually positive. The modified inner optimization
1s,

. 1
mlnpi‘/,p‘i‘/ Z,Epi’tr (aBi,t )pi,t + (ct 1+ Eirrr )T Pis
te

: (6.14)
v b @B+ 1+ E Y By

subject to
(6.2)-(6.5),
where  is a small positive number (0 < a <1).

The coefficient & can be calculated through the following method. Firstly, the op-
timization problem (6.6)-(6.11) is solved and the Lagrange multiplier 4, is found.

Then the coefficient & is determined by,

. C, .
azmln{m‘v’teT,]eNd}a (615)

to assure that the calculated DS is nonpositive, where A, is the set of load points.
The new two-level optimization problem can be written as,
Optimization 6.2:
(6.12) subject to (6.7), (6.13),
and (p,, p,,) e argmin {(6.14): (6.2)-(6.5)},Vie 5.
It can be proven that the distributional regulation price,

r=a(D'A, +c1)-c1,VteT, (6.16)
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is a feasible point of Optimization 6.2; this implies that it is a feasible DS scheme
which can re-profile the flexible demands such that the network constraints are re-
spected.

Proof: Firstly, the distributional regulation price . determined by (6.16) is non-pos-
itive, because

vteT,jeN,,
{7;}, :a({DT/lt}j +Ct)—Cl <

G

{DTﬂ,} P ({DTﬂ’t}] +ct)_ct =0,
;T4

Hence, constraint (6.13) is fulfilled.

Secondly, the inner optimization problem of Optimization 6.2 under the given .
has the same optimal solution as the optimization (6.1)-(6.5) with » = p” 4 . With

the given ., the inner optimization problem can be rearranged as,

minpi‘/,p,v‘ a(z%pi,tTBi,tpi,t +(c 1+ EiTDTﬂ*x)T
T (6.17)

P+ %ﬁi,tTB,-,tf?,-,t +(c1+E'D"2)" p,,)
subject to,
(6.2)-(6.5).
This is because,
¢c1+E"r,=c1+E (a(D"2+¢c1)-c1)
=aE (¢c1+D"A)=a(c1+E'D"2).

Assume that (Pi,z*af?i,z*) is the optimal solution of (6.17) subject to (6.2)-(6.5), i.e.

it is the minimizer of the inner optimization of Optimization 6.2 since they are
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equivalent to each other. Then, it is obviously also the optimal solution of (6.1)-
(6.5) with » = p7 4, because they have the same constraints and the proportional

objective function with a constant factor ¢ .

Finally, according to Proposition 6.1, (p,»,t*, ]A?,»,t*) is also the optimal solution of
(6.6)-(6.11) since it is the optimal solution of (6.1)-(6.5) with » = p’ 4 . Therefore,

constraint (6.7) is fulfilled with (P,»,[*, ]A?,»,[*). This leads to the conclusion that the

distributional regulation price determined by (6.16) is a feasible solution of Opti-

mization 6.2 and its associated optimal energy plan is (pi,t*af?i,z*) . (End of the proof)

It should be noted that in the DT method, the coefficient of the quadratic terms, i.e.
B,,, 1s the sensitivity of the predicted energy price and plays the role of avoiding

the multiple-response issue of the linear optimization problem where g, =0 . In
the DS method, the coefficient of the quadratic terms becomes ¢B,, which is
smaller than B and its main function is to avoid the multiple-response issue. Pa-
rameter ¢ B, will be chosen to be sufficiently small such that it has the least impact

on the energy schedules.

6.3  Method to Determine DS

6.3.1 Calculate DS with One-level Optimization

Optimization 6.2 is to be solved in order to determine the efficient DS. Due to the
strict convexity, the KKT conditions of the inner optimization problem are both
necessary and sufficient. Hence, the inner optimization problem of Optimization
6.2 is equivalent to, Vie B ,

aBp,, + e+ B+ Y (uf, —p, )+ (s, —6,)=0,teT (6.18)

t_<t

aBpy, e+ Elr+ Y (A, =@, )+ (& -¢)=0YeT (6.19)

t_<t

Q.(p, —d, )+e,—€™) 1, =0vteT (6.20)

t <t
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Q.(p, —d, ) +e,—™) i, =0V1eT (6.21)

(p,—P7) 6 OVteT, (6.22)

(P, —P3")-6,~OVteT, (6.23)

QA b +u, —K™)- i =0VteT (6.24)

Q A4, b, +u,—K:™)f =0VieT (6.25)
t <t

(D, =P 6 OVteT, (6.26)

(b, —Pi")-&,=0VreT, (6.27)

Ky b 563 Gigo s B 56561y 201 €T (6.28)

and (6.2)-(6.5).

Since the inner optimization problem is replaced with its KKT conditions, Optimi-
zation 6.2 is equivalent to a one-level optimization rewritten as,

Optimization 6.3: (6.12)
subject to
(6.7), (6.13) and
Vie BB, (6.2)-(6.5), (6.18) - (6.28).

This one-level optimization, named as Optimization 6.3. However, it is still hard to
solve.
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6.3.2 Calculate DS with Tightened Constraints

This section presents a linearized method to determine the DS by tightening the
constraints. The feasible energy planning set resulting from the Optimization 6.3’s
feasible set is tightened by assuming that the only allowed energy plan is

(p,»,,*, ]51»,[*) , i.e. the optimal energy plan of (6.6)-(6.11). The reason is explained as

follows. There are two costs associated with the customers. The first one is the
energy cost (including the fixed cost) paid to the day-head market, grid companies
and tax authorities, depending on the energy price and the energy plan. The second
cost is the DS. Though it is an income in the congestion management, it will ulti-
mately be a cost to the customers as explained in subsection 6.2.1. The second cost
is realized in a long-term process. The DSO will adjust the grid tariffs depending
on how much it spends on the DS in the last few months. Therefore, it is reasonable
to separate these two costs. In the first step, the energy cost is minimized using (6.6)

-(6.11), which will end up with the energy plan (pi,t*a [A%J*). Then, the DS will be

minimized with the fixed energy plan, i.e. (P,»,t*, ]5,»,[*).

With a fixed energy plan, all the switching conditions become linear and the objec-
tive function becomes linear as well. The resulting liner optimization can be written
as,

Optimization 6.4:

min, g=— > 'E(p,+h,) (6.29)

ieNg,teNy
subject to

(6.13), (6.18) - (6.28),

* Ak
where , and p_are fixed to (P, »D;, ).

If coefficient E,(p,, + ]A?i,, ) becomes zero, rbecomes free. In practice, the follow-

ing constraint can be added to avoid such situation,

n2=ME(p,, +p;, ), (6.30)
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where coefficient Mis a very big number such that, when E,(p,t* + ]3,:) is nonzero,
the constraint will have no effect onr; otherwise, ris forced to be zero. The proce-
dure of calculating the DS can be summarized as: Employ (6.6)-(6.11) to determine

(pl»,,*, f?l»,,*) and 1, , then employ (6.15) to determine & and finally use Optimiza-
tion 6.4 to determine the DS.

6.4  Discussions of DS and DT

6.4.1 Limited DS and Unlimited DT

Use the method proposed in Section 6.3, the calculated DS is always limited be-
tween zero and the maximum baseline price. The reason is explained as follows.

Same as the DT method, the DS method influence the behavior of the customers
by changing the prices. The consumption of the flexible demands will be shifted
from the hours with higher prices to the hours with lower prices. Without losing
generality, consider a case with two hours. Assume hour ¢ has total price ¢, +
and hour ¢ has total pricec, + r,. If the first price is sufficiently smaller than the
second price, i.e.¢, + 7 < ¢, +1,, the energy consumption of the flexible demands
will be shifted from hour ¢ to hour ¢, no matter whether the flexible demands have
very efficient storage system like EVs or inefficient storage system like HPs. On
the other hand, the total price cannot be zero or negative; otherwise, it will attract
infinite large consumption of the flexible demands. Therefore, both prices are pos-
itive, i.e. ¢, +r, > 0and ¢, +r, > 0. For the case of the DS, i.e. ¥<Oand DS equals

, there is ‘7”1‘ <(,and 7’2‘ <G, . Therefore, the DS is always limited between

zero and the maximum baseline price.

to ‘V

However, for the case of the DT, i.e. ¥>0and DT equals to r, the situation is in
the opposite. In order to shift enough consumption from hour ¢ to hour ¢, the sec-

ond price c, + r, should be sufficiently large, which might lead to a very high r, i.e.
a very high DT at hour ¢ This is verified in the case study in Section 6.5.2.

6.4.2 Regulatory Issues

In this subsection, the regulatory issue refers to the non-discrimination requirement
by the grid code [82]. This implies that customers in the same distribution network
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should have an equal opportunity to access the network, and the same type of cus-
tomers should have same network tariffs. However, the DT method may not fulfil
this requirement, because the customers located at different nodes may have differ-
ent network tariffs. Therefore, unless this requirement is removed from the grid
code, the DT method cannot be employed by the DSO.

For the DS method, the non-discrimination requirement is fulfilled. The network
tariff is always the same for the same type of customers. The DS is given to those
customers who are willing to shift their consumption in a way that benefits the
network. After employing the DS method, the high-energy prices become lower,
and the customers who originally cannot consume cheap energy due to congestion
are able to have the cheap prices like other customers who don’t have congestion
issues. In this sense, with the DS method, the customers have an equal and fair
opportunity to access the network and the (cheap) energy. This will be further il-
lustrated in subsection 6.5.2.

6.4.3 Social Welfare

With the method proposed in Section 6.3.2, the energy planning resulting from the
DS method and the DT method is the same. Therefore, the social welfare from the
supply side is the same in both methods.

The utility (benefits obtained from consuming energy) from the demand side is also
the same in both methods, because the energy planning is the same. The cost at the
demand side has two parts. The first part is the energy cost, which should be the
same in both methods. The second part is the cost/reward due to the DT/DS. As the
second part is a reallocation of money among the customers, the overall cost is zero
for both methods. Therefore, the social welfare at the demand side is also the same
for both methods. Hence, the social welfare using the DS method is the same as the
one using the DT method.

6.5 Case Studies

6.5.1 Case Study with a One Node System

In order to illustrate the idea and efficacy of the DS method for congestion man-
agement, a straightforward case was studied first. Only one EV is considered which
requires 4 kWh for its battery. The network constraint is the fuse outside the house-
hold, which gives a limit of 4 kW. Considering the basic load of 1 kW for each
period, the allowed capacity for the EV charging is only 3 kW. Only three charging
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periods are considered and the predicted energy prices are 0.5, 0.2, 0.6 DKK/kWh,
respectively (the fixed cost is neglected).

6.5.1.1 DT method

The DT method was studied first which can not only give a comparison with the
DS method but also offer some useful results needed by the DS method. The DSO
solves the following optimization problem first in order to determine the DTs.

min, 1;3% Bp’+ep, (631)
subject to,
P <3,6=1,2,3 (6.32)
S p, 24 (6.33)
b 20,=1,2,3 (6.34)

Constraint (6.32) assures the limit of the fuse, (6.33) reflects the energy require-
ment of the EV and (6.34) implies no discharging. The calculated DTs, which in
this case are Lagrange multipliers of (6.32), are 0.2996 DKK/kWh for period 2 and
zero for other periods (see Table 6-1). The DTs will be sent to the aggregator who
will make an optimal energy planning for the EV by the following optimization.

minp, Z %ﬁptz + (Cr + ’?)P, P (635)
1<t<3

subject to (6.33)-(6.34). The results are listed in Table 6-1 (row “ p, (kW) — with

DT”).

6.5.1.2 DS method
In order to calculate the DS, the DSO formulates the following two-level optimi-
zation according to Optimization 6.2, where ¢ is determined to be 0.4003 (Table
6-1— row “ & ) according to (6.15).

min z -1,p, (6.36)

Te> Pt
1<t<3
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subject to (6.32), and
p, cargmin{Y Safp?+(c, +7)p, : (633)(6.34)}.

1<t<3

TABLE 6-1. PARAMETERS AND RESULTS OF THE SIMPLE EXAMPLE

time 1 2 |3

£ (DKK/KW/KW) 0.0002

¢, (DKK/kW) 0.5 02 0.6

DT (DKK/kW) 0 0.2996

p, (kW) — with DT 1 3

a 0.2/(0.2+0.2996) =0.4003

DS-1 (DKK/kKW) -0.2999 0 -0.3598
DS-2 (DKK/kW) -0.29992 0 0

p, (kW) — with DS 1 3 0

The above two-level optimization is difficult to solve directly, and therefore is
transformed to the following one-level optimization according to Optimization 6.3.

(6.36) subject to (6.32), (6.33)-(6.34),

afp,+c,+r—u—g¢, =0,0=123, (6.37)
(X p,—Hu=0; (6.38)

1<t<3
ps, =0,0=123, (6.39)
£>0,6,>20,1=1,2,3. (6.40)

Though the above nonlinear optimization can be solved, it is desirable to transform
it to a linear problem by fixing p, according to Optimization 6.4. The final linear
formulation is obtained as below,

(6.36)

subject to,

(6.37), (6.40), and
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¢, =0,6=1,2. (6.41)

where the ‘parameter’ p, takes the value p " = (1,3,0) . The final optimal DS is ob-
tained by solving the above linear program using GAMS [38] and the results are
list in Table 6-1 (row “DS-2 (DKK/kW)” and “ p, (kW) — with DS”). A feasible
DS is directly calculated according to (6.16) and listed in Table 6-1 as well (row
“DS-1 (DKK/kW)”), which is not as efficient as the optimal DS because the DS for
t=3 has no effect on the EV charging planning and therefore should be zero.
Though both of the DS sets can motivate the aggregator to make an optimal plan

which respects the network constraint, only the optimal DS should be chosen by
the DSO.

6.5.2  Case Study with the Bus 4 Distribution Network of RTBS

6.5.2.1 Case study parameters

The single line diagram of the Bus 4 distribution network of the RBTS [36] is
shown in Fig. 6-1. The parameters of the grids and load points can be found in
Appendix A.

The key parameters of the simulation are listed in Table 6-2. The parameters about
EV and HP can be seen in Appendix A.

Grid
33 kV
1
sP 11 kV
L1
= b LP32
o O & - LP18 -2~ =
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L4 LP12| (5 LP19 ((D--CD—| LP20 LP33 =@+
LP2} (O
s Sl e PO P2 LP34 | (@D P38
L6 =
LP3 |G
L7 raD—{P1s LP23}—C05- LP36 |—-QD
LP4 }_@@4&’5 o
| Le Fao-—-o-Hg LP24—(D-—-0D—] LP25 LP37 |-D-—CD—| LP38
L10 LP17
Lp7 FCD——CD—{LPe
L11 L12

Fig. 6-1. Single line diagram of the distribution network
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TABLE 6-2. KEY PARAMETERS OF THE SIMULATION MODEL

parameter value
L2 limit (kW) 1100
L3 limit (kW) 7000
L4 limit (kW) 2700

6.5.2.2 Case study results

The simulation was carried out using the GAMS optimization software [38].

Firstly, the DT calculation was conducted. The DSO optimization problem with
network constraints was solved and the optimal energy plan was found. The line
loadings of L2, L3 and L4 with the DT method are shown in Fig. 6-2. Because the
line loading limits are respected in the optimization, the line loadings of all line
segments are lower than the limits. The base energy prices and the final energy
prices with the DT for the customers at LP1 are shown in Fig. 6-3.

- o
L el TR
i HEm
i e R
izzzg _____________-_Lfi°fd_i"_9_-______________
§10020- mmg%%%mmz%%%%%%2‘5
time (h)

Fig. 6-2. Line loading with the DT method
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base price
O price of LP1 with DS
*  price of LP1 with DT

o
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price (DKK/kWh)
o
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o
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‘ }

02} ° ©

5 10 15 20
time (h)
Fig. 6-3. System prices or baseline price and the final prices at LP1, including DT or DS

Secondly, the DS calculation was done using Optimization 6.4. The resulting prices
(the base energy price minus the DS) for the customers at LP1 are also shown in
Fig. 6-3. The DS is nonzero for many time periods for LP1 because the limit of L2
is tight. Therefore, many nonzero DS are needed to re-profile the flexible demands
such that the line loading limit is respected. However, the DS is nonzero only for
hour 23 for LP2-5 (shown in Table 6-3) due to the loose line loading limit of L3
and L4.

TABLE 6-3. PRICES, DKK/KWH, FOR LP2-5
(“-> MEANS SAME AS BASE PRICE)

time 23 24
base price 0.29414 0.22414
LP2 0.22425 -
pr lt;e LP3 0.22425 -
wi
DS LP4 0.22425 -
LP5 0.22425 -
LP2 - 0.29378
price LP3 - 0.29378
with 029378
DT LP4 - .
LP5 - 0.29378
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Then, the DS was verified by sending to the aggregators. Each aggregator per-
formed the optimization (6.1)-(6.5) and ended up with a total energy plan as shown
in Fig. 6-4, which was the same as Fig. 6-2 with tolerable computation precision.
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o
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©
o

time (h)

Fig. 6-4. Line loading with the DS method

6.5.2.3 Discussion

It can be observed from Fig. 6-3 that the final energy prices with the DS are always
between zero and the base energy prices. Therefore, the DS is always limited be-
tween zero and the base energy prices, as it is the difference between the final en-
ergy price and the base energy price. In Fig. 6-3, it can be seen that the DT is always
positive and can be very high. For instance, the maximum DT is about 0.709
(DKK/kWh) at hour 19, which is almost twice of the maximum base price. How-
ever, the maximum DS (absolute value) is only 0.27 (DKK/kWh) at hour 16. This
is because the price difference determines the optimal energy plan, not the absolute
value of the prices. Take LP1 as an example. In order to shift the HP demand from
hour 19 to hour 16, the price at hour 19 should be several times higher than hour
16 in the DT method. However, in order to shift the same amount of the HP demand
in the DS method, the price at hour 16 needs to be several times lower than hour
19. This results in a very high DT, but a moderate DS.

Moreover, receiving DS gives the customers a fair opportunity to the low energy
prices. Take LP2 as an example. A customer wants to charge his EV in hour 24,
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because the energy price is lower. However, due to the congestion, he is forced to
charge his EV partially in hour 23 with a higher energy price. With the DS, he can
charge his EV in hour 23 with an equally cheap price as in hour 24. This gives the
customer the same opportunity to utilize the cheap energy price just as the custom-
ers at the load points where there is no congestion, such as LP11.

At last, it is obvious that there is no rebound effect with the DS (or the DT) method,
because the optimization is conducted over the whole-time period (24 hour) corre-
sponding to the day-ahead energy market.

6.6  Summary

This chapter proposes the DS method for congestion management in distribution
networks with high penetration of EVs and HPs. The DS method employs a decen-
tralized framework to realize the congestion management. A two-level optimiza-
tion formulation is proposed to determine the DS. By using the KKT conditions of
the inner optimization, the two-level optimization of calculating the DS is trans-
formed into a one level optimization. By tightening the feasible set, the optimiza-
tion is further simplified and easier to be solved. The case studies have demon-
strated the DS method and validated its efficacy for congestion management.

Though it takes more efforts to determine the DS than the DT, the DS method is
preferred to the DT method for congestion management nowadays. In addition to
the fact that the DS method shares some of the advantages of the DT method, i.e.
having the least cost energy planning without rebound effect. Unlike the DT
method, the DS method does not have any regulatory issue. It provides a fair op-
portunity to customers to access cheap energy prices.






CHAPTER 7.

REAL-TIME CONGESTION MANAGEMENT BY SWAP’

After presenting the DT and DS methods, that are applicable at the time frame of
day-ahead, this chapter will present a congestion management method that can be
employed near the operation time.

7.1  Introduction

As important as the congestion management in the day-ahead market where the
majority of energy production and consumption is planned, the congestion man-
agement close to the operation time (5 to 60 minutes ahead of the operation time)
should be handled by the distribution system operator (DSO) because the discrep-
ancy from the planning due to forecast error or component failure cannot be totally
avoided in real life. This congestion management is referred as real-time conges-
tion management. As approaching the operation time, new information about the
grid condition, more accurate forecast of the energy production as well as the load
demands, will be available with high certainties, which is an advantage of the real-
time congestion management. However, as all market players have already made
promises at the day-ahead energy market, it becomes more complicated to give
proper incentives to the players to change their behaviors as close to the operation
time.

In recent research, demand response (DR) is very promising in dealing with the
real-time congestion management. Unless noted otherwise in this chapter, the Nor-
dic electricity market (see Section 7.2) is used when discussing the DR cost, settle-
ment and market procedure. There are two important aspects to be taken into ac-
count when designing the DR program for the real-time congestion management.
The first one is the system balance, which is critical for the system to maintain the

7 This chapter is based on the paper: S. Huang and Q. Wu, “Real-Time Congestion Management in Distribu-
tion Networks by Flexible Demand Swap”, IEEE Tr. Smart Grid, in press.
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frequency. And when there are system balance issues, additional costs to the DR
providers may occur due to the settlement of the system imbalance. The second one
is the rebound effect of the flexible demands, which can cause system balance is-
sues and additional cost in future hours.

Either or both of the two important aspects have not been studied in the incentive-
based DR programs, e.g. the FLECH method and the AD method, proposed in re-
cent literatures. In [22], the coupon incentive-based DR program is proposed. How-
ever, the intertemporal feature of the flexible demands wasn’t considered in the
models of the coupon incentive-based DR program. Therefore, the rebound effect
is not considered in this DR program. In [23], an optimal coordination and sched-
uling method for DR via monetary incentives is proposed, where the distribution
network constraints and the rebound effect are taken into account. However, the
system imbalance issue and the associated costs are not studied.

On the other hand, the DT method discussed in chapter 2 cannot be directly used
in the real-time congestion management because they may cause system imbalance
and the imbalance cost is unknown until the settlement of the regulation power
market. The aggregators, as the provider of flexibility services, will not be willing
to provide such services if the cost of them is not known or very difficult to forecast.
Here, the cost refers to the settlement of system imbalance and the energy cost due
to the future batteries/temperature recovery needs. In [83], the real-time market (5
minutes ahead of the operation time) architecture for European electricity markets
is proposed, where the flexible demands are programmed to be simple price-re-
sponsive loads. However, the challenges of the real-time market lie in how to de-
termine the real-time price, how to cooperate with the existing electricity markets
and how to handle the rebound effect of the DR.

Because of the importance of the imbalance issue and the unknown-cost issue of
providing flexibility services, this chapter proposes a real-time congestion manage-
ment method by swapping the consumption of the flexible demands, i.e. the EV
charging/discharging and the HP consumption increase/decrease. In the proposed
method, the ‘swap’ occurs both temporally and spatially. The spatial swap helps
maintain the system balance and avoid the cost of the system imbalance settlement.
For instance, a decrease of consumption at one node is compensated by an increase
with the same amount at another node; as such, the system balance is not affected.
The temporal swap can help avoid the rebound effect. The flexible demands par-
ticipating in the DR program will have the chance to restore their batteries or the
temperature level of their households with the temporal swap. Taking either side of
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the swap and providing the DR, the aggregators can be rewarded by the DSO ac-
cording to the amount of the provided flexibility.

The ‘buy back’ method for transmission line congestion management [84] is also a
swap method, but it only exchange the consumption/generation spatially to relieve
the congestion between two price areas at the operation phase. The implementation
of the ‘buy back’ method and the proposed swap method is also different. In the
‘buy back’ method, the bids from the producers or consumers are submitted to the
TSO and then activated by the TSO according to the network conditions and the
merit order of these bids. The implementation of the proposed swap method will
be introduced later on in this chapter. The benefits of the proposed swap method
are summarized as: (1) No system balance issue; (2) No rebound effect; (3) No
unforeseen costs due to the system imbalance and the rebound effect; (4) The re-
ward/cost for the aggregators/DSO is clear.

This chapter will first introduce the structure of the Nordic electricity markets, as
their impacts on the behavior of the market players and the cost of providing DR
must be considered in the real-time congestion management. Next, the method of
swapping the EV charging and HP consumption is presented. Then, the algorithm
for forming swaps is described. At last, results of the case studies are presented and
discussed.

7.2 Electricity Markets and Potential Costs of Providing Flexible Services

As preknowledge of the proposed swap method, different types of markets and the
potential costs of providing flexible services will be briefly discussed in this section.

7.2.1 Zonal price market

The detailed introduction of the Nordic electricity market, that represents many
European electricity markets, can be seen from Appendix B. The Nordic electricity
market is a typical zonal price market. It comprises chronologically the day-ahead
spot market, intra-day market, regulation market and ancillary market.

The day-ahead spot market is the major market. The aggregators of flexible de-
mands should buy the electricity from this market to fulfil the daily consumption
requirement of the flexible demands. However, any deviation from the day-ahead
energy plans, i.e. the difference between the actual production or consumption and
the day-ahead schedule, will incur additional cost unless it is helping the system
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balance according to the results of the regulation power market. Providing flexibil-
ity services, if activated, will cause such deviations and therefore will be subject to
potential additional cost, which should be taken care of.

Due to the limited capacity and lifetime of storage systems of flexible demands, the
flexibility services are not suitable to be traded in the intra-day market, but they are
encouraged to participate in the regulating power market and ancillary service mar-
ket. However, it is suggested that the bids should be checked by the DSO to ensure
the security of the distribution networks before submitted to the regulating power
market or ancillary service market.

Zonal price market is suitable for employing the proposed swap method for real-
time congestion management. It will be the basic assumption for the analysis of the
swap method, while the application of the swap method on other types of markets
will be briefly discussed.

7.2.2  Nodal Price Market and Single Price Market

Employing the swap method for real-time congestion management is also suitable
for single price markets, e.g. regulated electricity market in China, and the nodal
price markets, e.g. many markets in North America. The technical issues of using
swaps, e.g. the limitation of distribution networks and transmission networks, are
the same for the three types of markets. The economic issues, i.e. the settlements
of the swaps, will depend on the types of the markets, which will be partially illus-
trated through case studies in subsection 7.5.2. More detailed discussion of em-
ploying the swap method in single price markets or the nodal price markets will be
carried out in the future work.

7.3  Memthod of Swapping

Flexibility services, e.g. charging/discharging batteries of EVs and increasing/de-
creasing consumption of HPs, can be employed to resolve congestion in distribu-
tion networks. However, it must be done with the coordination of the relevant elec-
tricity markets, such as day-ahead spot market, regulating power market, and
ancillary services market, such that the settlement rules of these markets are con-
sidered and the power system security/balance is ensured. In this section, the pro-
posed method of swapping EV or HP consumption is described, which can help the
aggregators provide flexibility services without causing system imbalance and at
the same time avoid additional cost in the settlement of other associated markets.
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7.3.1 Swap within One DSO

If the congestion is not at the connection point of the distribution network to the
transmission grid, it is possible that the congestion can be resolved by a swap within
the same DSO.

One side of a swap ( S, ) offered by the DSO can be defined as,

S’l : {l‘e |j ejvl}’tl’_ps’tp—i_ps ’

where set {LB Wi GNl}represents the joint of load points where the flexibility ser-

vice is needed, ¢ is the time period showing when and how long the flexibility is
needed, — p means a consumption decrease with the total amount p_, ¢ is the time
period that the opposite flexibility is needed, + p_ means a consumption increase
with the total amount p_, which is the opposite flexibility. The opposite flexibility

is to give the aggregator a chance to restore the storage system associated with the
flexibility, e.g. maintain the state of charge (SOC) level of the batteries of EVs.

The other side of the swap (S, ) is defined as,
Sz : {LE |J ej\lz}atv—i'ps’tz’_ps )

which means a consumption increase of the total amount p_is needed at ¢ and a

consumption decrease of the total amount p_is needed at ¢ at any or a joint of the

load points in {L}Z |j GNQ} One aggregator can take one side of a swap and the

other aggregator can take the other side. It is allowed that one aggregator takes both
sides of a swap as long as it has the capacity of the required flexibility service.

Without losing generality, a distribution network (Fig. 7-1) from the RBTS [36] is
employed to illustrate how the swap method can be used to handle real-time con-
gestion in distribution networks. For instance, the DSO finds that there will be con-
gestion, e.g. overloading by p_, in 15 minutes at line L3 at Feeder 1, and the con-
gestion will last for 30 minutes. The time information (¢ ) is written as “hour:

minute, duration in minutes”, i.e. “18:00, 30”. By forecast, the DSO finds that there
is enough free capacity of line L1 and the other feeders ats,. The DSO also finds



126 CHAPTER 7 Real-Time Congestion Management by Swap

that there is enough free capacity at ¢, to perform the opposite flexibility. Then, it

will raise an offer requesting a consumption decrease, written as,

Sy ALP, )b, =Pty +p, -

Grid
DSO1
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Fig. 7-1. Single line diagram of the distribution network

At the same time, it will raise an opposite offer requesting a consumption increase,
written as,

Sz : {LPI’LP11—38}7t1’+ps’t2’_ps :

The two offers form a swap. If both offers are taken by the aggregators, the con-
gestion at L3 can be solved. It can be seen that the net change of consumption is
zero at both ¢ and¢,, implying that the system balance is not influenced by the acti-

vation of the flexibility services.

The economics of the above swap is analyzed as follows. Firstly, the imbalance
settlement as described in Appendix B.3 is analyzed. Assume that the one-price
settlement is applied and the regulation prices at £ and ¢ are 7and 7, respectively.
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The first aggregator ( 4, ), who takes S, , should pay: p ¢(r - r,) , while the second
aggregator ( 4, ), who takes S, , should pay: p (- +r,), where Zis the duration

of the swap. As a whole, the two aggregators do not pay anything to the independ-
ent system operator (ISO) or transmission system operator (TSO) due to the imbal-
ance. But one aggregator needs to pay another. However, it is assumed that the
aggregators have a special agreement with the DSO that no one would have profit
or loss due to the settlement of imbalance resulting from the swap. Hence, with this
special agreement, the aggregators pay zero in the imbalance settlement. The DSO
will help to neutralize the profit or loss of the aggregators either by notifying the
ISO such that the two aggregators need not to be involved in the imbalance settle-
ment or by collecting profit from one aggregator and covering the loss of another.

Secondly, the settlement of the swap is analyzed. Assume that the price of the swap
offered by the DSO isc, . Both 4, and 4, will receive the payment from DSO by

the amount p tc, , which is the profit from providing flexibility services. It should

be noted that either side of the swap can be shared by several aggregators if one
aggregator does not have enough flexibilities and the profit will be shared accord-

ingly.

Because the payment of swap is based on the difference between the actual con-
sumption and the baseline, there is incentive for the aggregator to exaggerate the
amount of flexible demand (known as "inflating the baseline" problem [85], [86]).
In the swap method, the schedule submitted to the day-ahead market is served as
the baseline, which can reduce substantially the incentive for the aggregator to in-
fluence the baseline, because there is risk for the aggregator to exaggerate this num-
ber in the day-ahead market due to many uncertainties.

7.3.2  System-wide Swap

If there is not enough free capacity to implement S, inside the same distribution
network which faces congestion issue identified by the DSO, denoted as D, , it will

need to seek help from other DSOs and the TSO. If a neighboring DSO is able to
help D, , the transmission limitation between different price zones does not need to
be considered; otherwise, it needs to apply for the transmission capacity from rel-
evant TSOs, which is considered free to use within the limitation in this chapter,
and seek the help from a remote DSO. In either case, if the requested free capacity
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to implement S, is identified in one or several other distribution networks, the sys-
tem-wide swap can be formed, with §, implemented in the distribution network of
D, . The settlement of the system-wide swap is similar to the swap within one DSO
since the help from the other DSOs and the TSO is “free”.

7.3.3  Procedure of Swap Market

The concept of the swap market is shown in Fig. 7-2. “Swap” is a form of flexibility
service proposed in this chapter to solve real-time congestion without causing im-
balance to the transmission network. The procedure is described below.

®
&
0501) / Aggl
V‘ payment \ payment

Help \
I each \ w“ SWAP: flexibility \ |

¥ other ¢« receive serwce ‘Provide | o |
// i |\ service service / / o ;
( DSO2 | Aggz) !

Fig. 7-2. Concept of the swap market

1) The DSO identifies the congestion problem within its network with at least 5
minutes in advance, such that there is enough time to set up a swap market.

2) The DSO identifies the free capacity to implement §, within its network.

3) The DSO identifies the free capacity to implement §, within its network; if

not successful, it will ask help from a neighboring DSO; if not successful, it will
ask help from a remote DSO within the allowed transmission capacity verified by
the TSO.

4) If the free capacity to implement both S, and S, is found, the swap can be
formed and published to the swap market by the DSO.
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5) The aggregators can take the either side of the swap or both according to their
flexibility service capacity.

6) The DSO confirms that both sides of the swap are taken by aggregators; oth-
erwise, it will cancel the swap.

7) The aggregators activate S, or S, at the operation time.

8) The DSO settles the swap.

7.4  Algorithm for Formimg Swap

In this section, an algorithm for forming the swap is proposed. As shown in section
7.3.1, among the other parameters of the swap, the congestion time ¢ is identified

by the DSO at first; otherwise, there is no need of swap. The amount of the ex-
change power p_ is standardized to a fixed number, e.g. 100 kW or 50 kW, to ease

the programming. The size of the standardized exchange power is chosen such that
the aggregators are easy to manage their flexible demands to provide the DR. The
case with non-standardized p_ can be derived from the standardized case. The time

of the swap, e.g. ¢,and ¢, is discretized with a fixed duration, e.g. 30 minutes, and

indexed with natural numbers. The set of the time periods that the algorithm will
search is denoted as 7 = {1,2,3,...n} and ¢, =1. The goal of the algorithm is to

identify the suitable load points and ¢ . The steps of the algorithm are presented as
follows.

1) Step 1: Generate multiple solutions that can alleviate the congestion

In order to maximize the chance of the participation from the aggregators, it is de-
sirable to have as many suitable load points as possible in S, . Employ the follow-
ing OPF, a MIP problem, to search for a feasible solution that can alleviate the
identified congestion.

OPF1: mn Y x, (7.1)
i€Z, jeN, =1
Subject to,
Y. -pDx, < ft=1 (72)

ieZ,jeN,
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Z p.Dx;, < f,Vi>1teT (7.3)
ieZ,jeN,
> x, <LVieIt=1 (7.4)
JeNy
> x,=x,,Viel,jeN, (7.5)
t>1,teT .
x € {0,1}

In OPF1, Z is the set of swaps (one swap has a standardized exchange power p ),

N, is the set of load points, «xis the indicator of whether the load point is selected,

D is the PTDF, f is the remaining capacity of the line loadings (negative means
the corresponding line is overloaded).

The objective function (7.1) is to minimize the total number of swaps, which is also
to minimize the cost of the swaps, since the cost of a standardized swap is fixed.
Constraints (7.2)-(7.3) are power flow constraints, noticing that the swap is to re-
duce power at £ and to increase power at ¢,. Constraint (7.4) means that only one

load point is selected in one swap. Constraint (7.5) means that the power increase
is the same as the power decrease at the same load point, which is the idea of the
swap.

After solving OPF1, a solution is found. The solution tells how many swaps are
needed. For instance, the DSO is willing to use a maximum of 10 swaps to solve
the congestion by defining 7 = {1,2,...,10} . If the solution has an objective value

2, it means that it only needs two swaps to solve the congestion. The solution also
tells a candidate 5§, with e.g. two swaps: Sl(l) = {LPJ1 1, _ps9t2(1)9+ps} and
Sl(z) = {LP]2 ,, —ps,tz(z),+ps} . Due to the symmetry of OPF1, the order of s, and

§,® does not matter.

Then exclude the above solution by adding new constraints to OPF1, e.g. if add
new constraint Xy X e 31, then X, and X« cannot be one at the same

time. Solve OPF1 again and find a new solution if any. Repeat the procedure till
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there is no new solution or the objective value starts to increase or the total number
of solutions reaches a predefined number, e.g. 100.

2) Step 2: Select ¢,

Theoretically, one side of the swap, S, , can be formed as a group of all optimal

solutions found in Step 1. However, in order to reduce the complexity of forming
S, , the optimal solutions are further refined. To do so, ¢ s identified as an unor-

dered » -tuple (» is the optimal value of OPF1) which has the maximum appearance
in all optimal solutions found in Step 1. Form §, as the group of the optimal solu-

tions having the selecteds and drop the rest of the optimal solutions.
3) Step 3: Form S,

Employ the following OPF with a dummy objective function to find a candidate
s, .

OPF2: min 0 (7.6)
Subject to,
> pDy,<fut=1 (1.7)
ieI*,jeA/d
> —pDy,<[f.Vi>LteT (7.8)
ieI*,jeA/d
Zyijtzl,VieI*,t:I (7.9)
JjeNy
Yy =V, VieL  jeN, (7.10)
y€{0,1}

In OPF2, 7° c 7 is the set of active swaps according to S, T is the list of active
time periods of #in S, , Vindicates whether the load point is selected in the swap,
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f is the minimum remaining capacity of the line loadings after activating S, (as

shown in Steps 1 and 2, S, has a group of selected candidates), subscript (" of

Vo is the 7 -th element in 7 (ordered list which may have duplicate elements) .

Constraints (7.7)-(7.8) are power flow constraints. Constraint (7.9) means that the
number of selected load point is precisely one in one active swap. Constraint (7.10)
is to match ¢in S, and S, such that the system balance is maintained.

Similar to Step 1, after finding one candidate S, , exclude the solution by adding

new constraints to OPF2 and find new candidates. Repeat till there is no feasible
solution or the number of candidates reaches a predefined number. In this way, S,

is formed as the group of all possible candidates.

If there are not enough candidates within one DSO to form §, or it fails to attract
the aggregators to take the formed §, , the DSO should send a request to other DSOs.
The other DSO can also employ OPF2 to find candidates and then form §, within
its distribution network.

7.5 Case Study

Case studies have been carried out using the distribution network shown in Fig. 7-1.
Key parameters particular to this case study are listed in Table 7-1, while the other
common parameters about the grid and loading information can be found in Ap-
pendix A. The EV availability, implying EV is parked and connected, can be found
in Appendix A as well. Assume each household has one EV and one HP. It is a
typical winter day and almost all HPs are running.

TABLE 7-1. KEY PARAMETERS OF THE CASE STUDY

parameter value
price of swap 2 DKK/kWh
L2 limitation 1400 kW
L3 limitation 7000 kW

L4 limitation 1700 kW
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It is assumed that the line loadings resulting from the day-ahead planning, including
conventional load, EV load and HP load, are respecting the line loading limits as
shown in Fig. 7-3. The peak conventional consumption of residential customers
occurs at 18:00 when people come home and start cooking or using other appli-
ances (shown in Fig. 7-3).

Two cases are presented in the following two subsections. One case illustrates the
fundamental idea of the swap method using a straightforward example, where the
stakeholders of the swap are all in one distribution network. The second case has a
rather complicated situation, where a remote DSO and remote aggregators are in-
volved.

7.5.1 Case one

As approaching the real operation time, e.g. 18:00, the DSO finds that there will be
an overloading of L2 by the amount of 100 kW and the overloading will last for 30
minutes due to a wrong forecast, e.g. the conventional consumption will be more
than the day-ahead forecast, or a loss of generation from a wind power generator.
The forecast line loadings are shown in Fig. 7-4, where each period has 30 minutes
and there are 12 periods in total. The DSO has to solve the congestion and it con-
siders buying flexibility services from the aggregators since they are managing a
large number of EVs and HPs in this distribution network.

L2 loading

time (h)

Fig. 7-3. Line loading resulting from the day-ahead planning
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The DSO needs a reduction of consumption at 18:00 by 100 kW on L2 and an
increase of consumption at 22:00 by the same amount, because the flexibility ser-
vices need to restore their batteries or household temperatures and there is enough
free capacity at 22:00 on L2 as shown in Fig. 7-4. The DSO observes that there is
enough free capacity of other lines of feeder 1 and all lines of other feeders to im-
plement 5, . Hence a swap can be formed within this distribution network, which
is (the standardized exchange power is assumed to be 100 kW in the case study,
see the beginning of Section 7.4):

S, :{LP},(18:00,30),-100,(22:00,30),+100 ,

and,
S, :{LP, ,,LP, ,},(18:00,30),+100,(22:00,30),-100 .
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Fig. 7-4. Forecasted line loadings when close to the operating time

Because of the high HP availability indicated by high HP consumption as shown
in Fig. 7-4, there is an aggregator taking both sides of the swap. After the confir-
mation of the swap from the DSO, the aggregator can activate the swap at the op-
eration time. The aggregator will reduce HP consumption at LP1, which will result
a reduction of the power flow of L2. At the same time, the aggregator will increase
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HP consumption at LP2 in order to activate §, and maintain the system balance.

Similarly, at 22:00, the aggregator will increase the HP consumption at LP1 to re-
cover the household temperature. At the same time, the aggregator will reduce HP
consumption at LP2 to maintain the system balance. The line loadings of L2, L3
and L4 after activating the swap are shown in Fig. 7-5, from which it can be seen
that the congestion is solved.
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Fig. 7-5. Line loadings after activating swaps

The swap is settled by a payment made by the DSO with the amount
2p,tc, =2-100-0.5-2 =200 DKK. The aggregator makes a profit of 200 DKK in

this case by providing flexibility services to solve the congestion in the distribution
network. If the aggregator would like to employ EV, e.g. discharge (V2G) or charge
the batteries, to activate the swap, it can make the same profit from providing the
swap and the DSO cannot see any difference.

7.5.2 Case Two

In Case Two, the algorithm for forming swaps is tested and the swap settlement
involving remote DSO is considered. The DSO makes a forecast before 18:00 and
the forecasted line loadings are shown in Fig. 7-6. Both L3 and L4 are overloaded:
L3 is overload by 150 kW and L4 is overloaded by 60 kW. Because one swap has
a standard 100 kW power exchange capacity, multiple swaps are employed.
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OPF1 is employed to search for the first group of candidate swaps; each candidate
swap has one load point and ¢,. The minimum number of swaps is two, denoted as

s and §(*, after solving OPF1. Then exclude the solution and search for all

other candidates. Observing all candidates, it is found that 20:00 and 20:30 are good
time periods for consumption increase and load points 2~5 are suitable for activat-
ing S, . And LP2 must be in one of the two swaps. To simplify the business be-

tween the DSO and the aggregators, the DSO decides to fix LP2 in s " with ¢,

=20:00. Hence, one side of the two swaps are formed by combining selected can-
didates as,

Sl“) :{LP,},(18:00,30),-100,(20:00,30),+100,
and,
Slm {LP, ,},(18:00,30),-100,(20:30,30),+100 .

In order to form S, , the DSO solves OPF2. It can be seen from Fig. 7-6 that there

is no free capacity on L2 at 18:00. Assume that there is no free capacity on other
feeders either. Therefore, OPF2 returns no feasible candidate. The DSO will broad-
cast a request to neighboring and/or remote DSOs. The request can be,

2000 L2 loading
=
= L o —— i = — |
.81000 F 4
3
L 0 V222222 conv load

[___JEVload
L3 loading I HP load

— — — limit

L] | 1] el

L4 loading

1

time (h)

Fig. 7-6. The forecast line loadings when close to 18:00
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S {LP},(18:00,30),+100,(20:00,30),-100 ,
and,
S {LP},(18:00,30),+100,(20:30,30),-100 .

Assume that there are a number of DSOs that have enough free capacity to imple-
ment S, . They send the information to the sponsor DSO and the TSO. The TSO

validates the technical limit of the transmission lines and rejects some candidate
DSOs. The remaining DSOs will broadcast S, to attract potential interested aggre-

gators in their own networks.

Finally, assume that one aggregator takes §, (including two standardized swaps)
and another aggregator takes S, (including two standardized swaps). The line load-
ings of the local distribution network after activating §, are shown in Fig. 7-7,

where there is no congestion. The line loadings of the remote distribution network
after activating S, are also respecting the limits of the corresponding network.

2000 L2 loading
=
3 Lo e . 5 _
L 0 vZZZZ4 conv load
[—1EVIocad
L3 loading | I HP load
< — — — - limit
E e s B — — — — — — — — — — — — — — —]
= 6000
(o]
2 4000
3 Yy
2000 L4 loading
% _________________________________
k]
©
L2 0
time (

Fig. 7-7. Expected line loadings after activating Si



138 CHAPTER 7 Real-Time Congestion Management by Swap

The settlement of the two swaps depends on the market setup: single price market,
zonal price market or nodal price market. For the single price market, the settlement
will be the same as the situation in case one, i.e. the DSO should pay the two ag-
gregators according to the swap price and the number of the swaps taken by the
aggregators. For the nodal price market, the DSO should not only pay the cost of
the swap as for the single price market, but also need to cover the possible losses
due to different energy prices at ¢ and ¢,. For instance, assume that the first aggre-

gator has a profit/loss a, due to activating S, and the second aggregator has a
profit/loss a, . Then the DSO needs to pay max(0,-a, —a,) to the two aggregators.

This means if the two aggregators have a net loss, it will be covered by the DSO.
But if the two aggregators have a net profit, one of the aggregators can keep the net
profit.

For the zonal price market, if the neighboring/remote distribution network is within
the same price zone with the local distribution network, the settlement will be the
same as in the single price market. Otherwise, the settlement will be the same as in
the nodal price market.

7.6  Summary

This chapter proposes a real-time congestion management method by swap of EV
charging and HP consumption. By reducing consumption at the congestion points
while increasing the same amount of consumption at other points, the total power
balance is maintained and the congestion can be solved. There is no rebound issue
because the same amount of consumption change in an opposite direction in a pre-
defined future time is allowed by the swap to recover the batteries of EVs or house-
hold temperatures. The settlement of the swap is the payment made by the DSO
based on the price of the swap, and the amount and duration of power being acti-
vated. The cost or profit resulting from the energy and regulation power market is
neutralized by a special agreement made between the DSO and aggregators.



CHAPTER 8.

CONCLUSION AND FUTURE WORK

8.1 Conclusions

In this thesis, the market-based methods for congestion management on distribution
networks have been investigated and a series of new methods have been proposed
and validated.

The DT method has been shown in this thesis to be efficient in congestion manage-
ment on distribution networks. The DT can motivate the aggregators to plan the
flexible demands such that the sum of the planning will be the same as the DSO’s
planning, where the network constraints are expected. Because the DT method is
based on the location marginal pricing concept, each bus or load point may receive
different DT, leading to a discrimination of the customers of the same distribution
network. This is against the regulation code of the distribution networks in many
countries. In the future, an investigation of revising the regulation is needed for the
DT method to be put into use.

Alternatively, the DS method can be employed in place of the DT method. The DS
method rewards the customers who consume the power at desired hours, designated
by the DSO according to the forecast energy price and the network conditions. As
such, the customers can have the same opportunity to access the cheap energy.
Therefore, the non-discrimination requirement is fulfilled.

The DT or DS is determined through a DC OPF model; however, the accuracy of
the DC OPF model for distribution networks is a concern. This thesis has proposed
a sufficient condition for the convex relaxation of the AC OPF to be exact. The
assumption of the DT or DS method is that there is high penetration of the flexible
demands on the distribution network; therefore, the sufficient condition is fulfilled



140 CHAPTER 8 Conclusion and Future Work

and the convex relaxation based AC OPF can be employed to determine the DT or
DS, leading to a more accurate and more complete model.

Stochastic nature of the flexible demands and the error of the forecast data can
affect the efficacy of the DT method. Uncertainty management has been carried out
in this thesis through sensitive analysis and an iterative algorithm to determine the
proper DT such that the probability of the network constraints being violated is less
than a predefined level.

The market based methods, such as the DT or DS method, can be combined with
the direct control methods, such as feeder reconfiguration, for a better solution for
congestion management. In this thesis, it is shown that the combination of the DT
and the feeder reconfiguration method can be employed for the congestion man-
agement and loss reduction of distribution networks more efficiently. It is sug-
gested that the DSO should combine the control of self-owned resources first, such
as OLTC, capacitor banks and voltage regulator, and at last combine the control of
customer-owned resources, such as production curtailment and load shedding.

After the closure of the day-ahead market, the DT or DS method can’t be employed
any longer to influent the behavior of the flexible demands. The residual congestion
can be handled before the actual operation time by the flexible demand swap
method, as proposed lastly in this thesis. The swap is conducted both spatially and
temporally; therefore, the power balance of the network can be maintained and the
rebound effect of demand response can be avoided.

8.2  Future Work

In the future, it is interesting to further investigate the following points.

e Compare the DT or DS method with the transactive energy framework, to
see which concept is more efficient and suitable for congestion manage-
ment on distribution networks.

e Combine the DT or DS method with more direct control methods, such as
OLTC and reactive power support of SVC or the flexible demands
equipped with power electronic interfaces, to achieve a more efficient and
powerful congestion management method.
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o Further organize these market-based methods, as well as the direct control
methods, to form a congestion management system, which can deal with
the congestion more thoroughly.

e Study the convex relaxation of the AC OPF when there are heavy reverse
power flows on the distribution networks.

e  Study the coordination of the congestion management methods and the an-
cillary services provided by the flexible demands. Since they all rely on the
management of the flexible demands, the potential conflicts and common
interests should be studied.






APPENDIX A

PARAMETERS FOR THE SIMULATIONS

A.1 Grid Data

The Bus 4 distribution network of the Roy Billinton Test System (RBTS) [36] is
employed in many case studies in this thesis. Its simplified structure is shown in
Fig. A-1. The customer type at each load point and the peak conventional load per
load point are listed in Table A- 1. The 24-hour conventional load profile for each
load point can be obtained through the peak load of each load point multiplying the
load coefficient shown in Table A- 5. Assume each residential customer has one
EV and/or HP, while the commercial customer has no EV or HP.

Grid
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Fig. A-1. Single line diagram of the distribution network
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A.2 EV Parameters.

The key parameters of EVs [37] are listed in Table A- 2. The EV availability shown
in Fig. A-2 is from the driving pattern study in [37]. Detailed data for 50 EVs are
drawn and shown in Table A- 3, which are assumed to represent the population of
a large EV fleet in EV planning in the case studies. An EV is available means that
the EV is home and plugged to the power socket.

TABLE A- 1. LOAD POINTS DATA

peak conv. number of
. customer
load points o load per customers per
typ point (kW) point
1-4 11-13 18-21 32-35 residential 886.9 200
5141522233637 residential 813.7 200
671617242538 commercial 671.4 10

TABLE A- 2. KEY PARAMETERS OF EVS

parameter value

EV battery size 25 kWh

Peak charging power 11 kW (3 phase)
Energy consumption per km 150 Wh/km
Minimum SOC 20%

Maximum SOC 85%

Average driving distance 40 km
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TABLE A- 3. EV AVAILABILITY OF A SAMPLE OF 50 EVs

A.2 EV Parameters.
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0037 20038 e0039 0040 e0041 0042 20043 €0044 20045 €0046 0047 e0048 €0049 €0050
t01 1 1 1 1 1 1 1 1 1 0 1 1 1 1
102 1 1 1 1 1 1 1 1 1 0 1 1 1 1
103 1 1 1 1 1 1 1 1 1 0 1 1 1 1
104 1 0.016667 1 1 1 1 1 1 1 1 1 1 1 1
105 1 0 1 1 1 1 1 1 1 1 1 1 1 1
106 1 0 1 1 1 1 1 1 1 1 1 1 1 1
07 1 0 1 1 1 1 1 1 1 1 1 0.35 1 1
t08  0.68333 0.75 1 1 1 1 0.51667 1 1 0.93333 0.016667 0  0.93333 1
09 0 1 1 1 1 1 0 1 0.016667  0.66667 0 0 0 1
t10 0 1 1 1 1 1 0 1 0 1 0 0 0 1
t11 0 1 0.016667 1 1 1 0 1 0 1 0 0 0 0.6
t12 0 1 0 1 1 1 0 1 0 1 0 0 0  0.58333
t13 0 1 0.86667 1 0.51667 1 0 1 0 1 0 0.25 0 1
t14 0 1 1 1 0 1 0 1 0 1 0 1 0 1
t15 0 1 1 1 0 1 0 1 0 051667 0 1 0 1
t16 0 1 1 1 0 1 0  0.26667 0 1 0  0.51667 0 1
t17  0.61667 1 1 1 0.66667 1 0 0.55 0.91667 1 0.083333  0.63333 0 1
t18 1 1 1 1 1 1 0.91667 1 1 1 1 0.26667 0 1
t19 1 1 1 1 1 1 1 1 1 1 1 0 0 1
20 1 1 1 1 1 1 1 1 1 1 1 0 1 1
21 1 1 1 1 1 1 1 1 1 1 0.76667 0 1 1
22 1 1 1 1 1 1 1 1 1 1 0.66667 0 1 1
23 1 1 1 1 1 1 1 1 1 1 1 0 1 1
124 1 1 1 1 1 1 1 1 1 1 1 0.66667 1 1
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Fig. A-2. EV availability

A.3 HP and House Thermal Parameters

The key parameters of HPs [87] are listed in Table A-3.

TABLE A- 4. KEY PARAMETERS OF HPs

parameter value

COP of HP of one hour 2.3-3600 s
Initial Inside Air Temp. 20

Initial Structure Temp. 15

Min Temp. of the House 20 °C

Max Temp. of the House 24 °C

The household floor area A is a random number which has a uniform distribution
between 100 and 200 (m”). The parameters C,, C,, k, , k, , k, are all estimated

based on the floor area through estimation functions [88], which are shown as fol-
lows.

Parameter C, represents the heat capacity of the air and the furniture inside the

house.
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Ca = Ahpuirc + Ahwoodpwaadcwaad
- 4-2.5m-1.205 %€ .1 005 X

m’ kg°C
A-1.25em 50058 .17 K ’
m kg°C

air

+

kJ
~(A-3+4-10)——
( )m2°C

where his the height of the house (2.5m), o represents the density of air and wood,
the heat capacity of the furniture is estimated as of 1.25¢cm wood of the living area
A , cis the heat capacity of the substances.

According to [89], the heat capacity of the house structure (floor, wall and ceiling)

is varying between 144 and 576 % per square meter of the heated floor area de-
. . . . kJ
pending on the material of the structure. In the previous case studies, 360 C per

square meter of heated floor area is used, i.e. C, =3604

m*°C

The heat transfer between the inside and the outside is assumed to be the heat loss
through ventilation. The inside air with temperature k¢ will be replaced by the out-

. . . 1
side air with temperature K, . Assume that the replacement rate »1is 0.5 EOf the

internal volume of the house. Hence, the HTC £, of one time unit (one hour, or h)
is determined by,

kl =n Vpaircairt

293 120528 1005 X ip,
h m kg°C
0.6V
m°C

and V'=254.

In order to calculate k, and &, , the surface area of the house 4, is defined to be,
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A =2A4+4h-/4.

The thermal resistance of the transition between the inside air and the wall, R, , is

, 0.13m*C
approximated as — —

A

s

for isolated wall [90]; therefore,

k :;A_ -3600S:27.7A,i.
2 mZOC S S mZOC
0.13
W

The HTC £, can be determined by estimating the total thermal resistance from the
wall to the outside air, R, . The total thermal resistance can be estimated by the

summation of the thermal resistance of the series-connected layers of the wall and
the transition between the wall and the outside air, which can be found in [90] for
some specific wall materials. Alternatively, it can be estimated by the total thermal
resistance from the inside air to the outside air, R, , minus R, [88].

The parameter R, is estimated from the annual heat consumption for a normal Dan-

1sh house, which 1s 4816kWh + A4-104 kWh

2

as shown in [88], minus the heat loss

m?*°C

through ventilation. In this way, R, is estimated as -
69.05m” +1.074 W

[88].

Finally,
1
k= -3600s
17 Y
_ 7.694,-(69.05m* +1.074) 36002
7.694, —(69.05m” +1.07 4) m*°C

A.4 Predicted Day-Ahead System Prices and Outside Temperature

The predicted day-ahead system prices are shown in Table A- 5, which are used as
the predicted baseline price to calculated DT or DS in several simulations in this

thesis. The outside temperatures employed in the case studies are also shown in
Table A- 5.
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TABLE A-5. SOME PARAMETERS FOR PREVIOUS SIMULATIONS

Time Outside Day-ahead baseline Conv. load
Temp. (°C) | price (DKK/kWh) coefficient
t01 1 0.37109 0.43491
t02 1.9799 0.38109 0.42124
t03 1.9942 0.35177 0.41575
t04 1.9449 0.34177 0.42715
t05 3.0281 0.30115 0.44823
t06 3.0027 0.31115 0.54529
t07 3.0019 0.32018 0.64725
t08 3.0258 0.33018 0.62588
t09 3.754 0.34309 0.60073
t10 3.9839 0.30309 0.56767
tll 4.0278 0.35185 0.54251
t12 4.6447 0.36185 0.54043
t13 5.0854 0.37168 0.5342
t14 3.9327 0.41612 0.54061
t15 4.5145 0.35155 0.55981
t16 5.0699 0.38838 0.6904
t17 3.8971 0.35125 0.93859
t18 4.0556 0.33125 1
t19 2.5406 0.30465 0.92232
t20 2.0209 0.31465 0.843
t21 2.0014 0.30212 0.75081
t22 1.9993 0.32212 0.64897
t23 1.9902 0.29414 0.52515
t24 1.8782 0.22414 0.43786
A.5 fand B

In the case studies, diagonal matrix B (price sensitive matrix) has same diagonal
elements, which are equal to =0.0001.






APPENDIX B

INTRODUCTION TO THE NORDIC ELECTRICITY

MARKET

The Nordic electricity market is traded at Nord Pool, which is owned by several
TSOs in Nordic and Baltic countries. Nord Pool has both day-ahead market and
intraday market, which will be briefly introduced in the following sections.

B.1 Day-ahead Spot Market

The day-ahead spot market is the most important energy market in the Nordic elec-
tricity market, as the majority of the electricity is traded in this market. The market
players submit their bids into a pool, and the market operator clears the market.
After the clearance, the market players will receive the accepted bids, and the
hourly zonal prices as well as the hourly system prices will be published. If there
is no congestion between zones, the zonal prices will be equal to the system prices.

Due to the participation of renewable energy, the electricity price fluctuates and is
largely dependent on the weather forecast.

B.2 Intra-day Market

The intra-day market is a bilateral contract market and is closed at one hour before
the actual operation time. The bids not selected at the day-ahead market can be
traded here. Market players can make contracts here and avoid the potential cost of
causing system imbalance if they have failed components or inaccurate forecast
and need balance help from other participants.
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B.3 Regulating Power Market

The regulating power market is an auction market managed by the transmission
system operator (TSO) where the up regulation (increase production or reduce con-
sumption with duration of e.g. 30~60 minutes) and the down regulation (decrease
production or increase consumption) are separated. The market is closed at 45
minutes before the operation time and the bids cannot be modified (price and quan-
tity) after the closure.

The bids are activated in a sequence according to their prices. For a given hour, the
up-regulation price (RP) is set as the last activated up regulation bid and the down
RP is set as the last activated down regulation bid. It is possible that both up regu-
lation bids and down regulation bids are activated; then a common RP is deter-
mined to be one of the up and down regulation price depending on the net effect of
the total up and down regulation power. For instance, if the net effect of the total
regulation power is up regulation, the common regulation price is determined to be
the up-regulation price. In this case, all the up-regulation bids are settled at the
common RP while all the down regulation bids are settled by pay-as-bid.

The imbalance of each balance responsible party (BRP), i.e. the difference between
the metered data and the scheduled or notified plan resulting from spot market and
regulating market, will be settled after the operation time. The imbalance that con-
tributes to the system total imbalance will be settled at the common RP, and the
imbalance that is in the opposite direction of the system total imbalance will be
settled at the day-ahead spot price. This settlement method is referred as two-price
settlement. If one-price settlement applies, the imbalance is always settled at the
common RP.

B.4 Ancillary Service Market

Ancillary services, including primary reserve, secondary reserve, manual reserve,
and black-start capacity, are traded in this market. EVs are believed to be a good
source for providing ancillary services due to the ability of quick response. Bids
from the aggregators should be first checked by the DSO to ensure the security of
the distribution networks.



[2]

[3]

[5]

BIBLIOGRAPHY

(2011, Feb. ). Energy strategy 2050. The Danish government,
Copenhagen. [online]. Available:
http://www.ens.dk/sites/ens.dk/files/dokumenter/publikationer/downloads/
energy_strategy 2050.pdf.

Global Wind Energy Council. (2016). Global wind report. [online].
Available: http://www.gwec.net/wp-content/uploads/vip/GWEC-Global-
Wind-2015-Report April-2016_22 04.pdf. [Accessed: 11-May-2016].
Energinet.dk, “New record-breaking year for Danish wind power.”
Available: http://energinet.dk/EN/El/Nyheder/Sider/Dansk-vindstroem-
slaar-igen-rekord-42-procent.aspx. [Accessed: 11-May-2016].

IEA PVPS Programme. (2016). 2015 snapshot of global photovoltaic
marktes. [online]. Available: http://www.iea-
pvps.org/fileadmin/dam/public/report/PICS/IEA-PVPS -

__A Snapshot_of Global PV _- 1992-2015 - Final 2 02.pdf.
[Accessed: 11-May-2016].

G. Delille, B. Francois, and G. Malarange, “Dynamic frequency control
support by energy storage to reduce the impact of wind and solar
generation on isolated power system’s inertia,” I[EEE Trans. Sustain.
Energy, vol.3, no.4, pp. 931-939, Oct. 2012.

Z. H. Rather, Z. Chen, and P. Thogersen,“Impact of wind energy
integration on reactive power reserve and its smart solution: A danish
power system case study,” in Proc. IEEE International Conference on
Power System Technology (POWERCON), pp. 1-6.

U.S. Department of Energy,“Global plug-in light vehicle sales increased
by about 80% in 2015,” 2016. Available:
http://energy.gov/eere/vehicles/fact-918-march-28-2016-global-plug-light-
vehicle-sales-increased-about-80-2015. [Accessed: 11-May-2016].

R. Bohn, M. Caramanis, and F. Schweppe,“Optimal pricing in electrical
networks over space and time,” RAND J. Econ., vol.15, no.3, pp. 360-376,
1984.

P. M. Sotkiewicz and J. M. Vignolo,*“Nodal pricing for distribution
networks: Efficient pricing for efficiency enhancing DG,” IEEE Trans.
Power Syst., vol.21, no.2, pp. 1013—-1014, May 2006.



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

R. K. Singh and S. K. Goswami,“Optimum allocation of distributed
generations based on nodal pricing for profit, loss reduction, and voltage
improvement including voltage rise issue,” Int. J. Electr. Power Energy
Syst., vol.32, no.6, pp. 637-644, Jul. 2010.

F. Meng and B. H. Chowdhury,“Distribution LMP-based economic
operation for future smart grid,” in Proc. 2011 IEEE Power and Energy
Conference at Illinois, pp. 1-5.

G. T. Heydt, B. H. Chowdhury, M. L. Crow, D. Haughton, B. D. Kiefer,
F. Meng, and B. R. Sathyanarayana,‘Pricing and control in the next
generation power distribution system,” IEEE Trans. Smart Grid, vol.3,
no.2, pp. 907-914, Jun. 2012.

K. Shaloudegi, N. Madinehi, S. H. Hosseinian, and H. A. Abyaneh,“A
novel policy for locational marginal price calculation in distribution
systems based on loss reduction allocation using game theory,” I[EEE
Trans. Power Syst., vol.27, no.2, pp. 811-820, May 2012.

N. O’Connell, Q. Wu, J. Ostergaard, A. H. Nielsen, S. T. Cha, and Y.
Ding,“Day-ahead tariffs for the alleviation of distribution grid congestion
from electric vehicles,” Electr. Power Syst. Res., vol.92, pp. 106114,
2012.

R. Li, Q. Wu, and S. S. Oren, “Distribution locational marginal pricing for
optimal electric vehicle charging management,” IEEE Trans. Power Syst.,
vol.29, no.1, pp. 203-211, Jan. 2014.

R. A. Verzijlbergh, L. J. De Vries, and Z. Lukszo,“Renewable energy
sources and responsive demand. Do we need congestion management in
the distribution grid?,” IEEE Trans. Power Syst., pp. 1-10, 2014.

P. Bach Andersen, J. Hu, and K. Heussen, “Coordination strategies for
distribution grid congestion management in a multi-actor, multi-objective
setting,” in Proc. 3rd IEEE PES Innovative Smart Grid Technologies
Europe (ISGT Europe), pp. 1-8.

J. Hu, S. You, M. Lind, and J. Ostergaard,“Coordinated charging of
electric vehicles for congestion prevention in the distribution grid,” IEEE
Trans. Smart Grid, vol.5, no.2, pp. 703—711, Mar. 2014.

B. Biegel, P. Andersen, J. Stoustrup, and J. Bendtsen,“Congestion
management in a smart grid via shadow prices,” in Proc. 2012 8th IFAC
Symposium on Power Plant and Power System Control, pp. 518-523.

C. Zhang, Y. Ding, N. Nordentoft, P. Pinson, and J. Ostergaard, “FLECH-
A danish market solution for DSO congestion management through DER
flexibility services,” J. Mod. Power Syst. Clean Energy, vol.2, no.2, pp.
126-133, 2014.

C. Evens, S. Hénninen, F. Pettersson, and S. Melin. Aggregate consumer’s
flexibility in consumption and generation to create “Active Demand.”
[online]. Available:



157

[22]

[23]

[24]

[25]

[33]

http://www.addressfp7.org/config/files/Nordac10  ADDRESS.pdf.

H. Zhong, L. Xie, and Q. Xia,“Coupon incentive-based demand response:
theory and case study,” IEEE Trans. Power Syst., vol.28, no.2, pp. 1266—
1276, May 2013.

M. R. Sarker, M. A. Ortega-Vazquez, and D. S. Kirschen,“Optimal
coordination and scheduling of demand response via monetary
incentives,” IEEE Trans. Smart Grid, vol.6, no.3, pp. 1341-1352, May
2015.

A. R. Malekpour, A. R. Seifi, M. R. Hesamzadeh, and N.
Hosseinzadeh,“An optimal load shedding approach for distribution
networks with DGs considering capacity deficiency modelling of bulked
power supply,” in Proc. Power Engineering Conference, pp. 1-7.

M. Alonso, H. Amaris, C. Alvarez, and R. Albarracin, “Reactive power
planning in distribution networks with distributed generation,” in Proc.
7th Mediterranean Conference and Exhibition on Power Generation,
Transmission, Distribution and Energy Conversion (MedPower 2010), pp.
1-7.

W. Liu and F. Wen,“Discussion on ‘Distribution Locational Marginal
Pricing for Optimal Electric Vehicle Charging Management,”” I[EEE
Trans. Power Syst., vol.29, no.4, pp. 1866—1866, Jul. 2014,

R. A. Verzijlbergh, Z. Lukszo, and M. D. Ilic,“Comparing different EV
charging strategies in liberalized power systems,” in Proc. 9th
International Conference on the European Energy Market, pp. 1-8.

P. Bacher and H. Madsen,“Identifying suitable models for the heat
dynamics of buildings,” Energy Build., vol.43, no.7, pp. 1511-1522, Jul.
2011.

S. Boyd and L. Vandenberghe,Convex Optimization. Cambridge
University Press, 2004.

EURELECTRIC. Network tariff structure for a smart energy system.
[online]. Available:

http://www.eurelectric.org/media/80239/20130409 network-tariffs-
paper_final to publish-2013-030-0409-01-e.pdf.

D. Kirschen and G. Strbac,Fundamentals of Power System Economics.
England: John Wiley & Sons Ltd, 2004.

R. Djabali, J. Hoeksema, and Y. Langer. (2011). COSMOS description -
CWE Market Coupling algorithm. [online]. Available:
https://www.apxgroup.com/wp-
content/uploads/COSMOS_public_description2.pdf.

IEA Statistics,“Electric power transmission and distribution losses (% of
output),” 2014. Available:
http://data.worldbank.org/indicator/EG.ELC.LOSS.ZS. [Accessed: 02-
May-2016].



158

[34]

[35]

[36]

[37]

[41]

[42]

[43]

S. Huang, J. R. Pillai, M. Liserre, and B. Bak-Jensen, “Improving
photovoltaic and electric vehicle penetration in distribution grids with
smart transformer,” in Proc. 2013 4th IEEE/PES Innovative Smart Grid
Technologies Europe, ISGT Europe 2013, pp. 1-5.

S. Bolognani and S. Zampieri,”On the existence and linear approximation
of the power flow solution in power distribution networks,” IEEE Trans.
Power Syst., vol.31, no.1, pp. 163—172, Jan. 2016.

R. N. Allan, R. Billinton, I. Sjarief, L. Goel, and K. S. So,“A reliability
test system for educational purposes-basic distribution system data and
results,” IEEE Trans. Power Syst., vol.6, no.2, pp. 813—820, May 1991.
Q. Wu, A. H. Nielsen, J. @stergaard, F. Marra, and C. Traholt,“Driving
pattern analysis for electric vehicle (EV) grid integration study,” in Proc.
2010 IEEE PES Innovative Smart Grid Technologies Conference Europe
(ISGT Europe), pp. 1-6.

R. E. Rosenthal. (2014, Aug. ). GAMS — A user’s guide. GAMS
Development Corporation, Washington, DC, USA. [online]. Available:
http://www.gams.com/dd/docs/bigdocs/GAMSUsersGuide.pdf.

D. Shirmohammadi and H. W. Hong,“Reconfiguration of electric
distribution networks for resistive line losses reduction,” IEEE Trans.
Power Deliv., vol.4, n0.2, pp. 1492—1498, Apr. 1989.

E. RomeroRamos, A. GomezExposito, J. RiquelmeSantos, and F.
Llorenslborra,Path-based distribution network modeling: application to
reconfiguration for loss reduction,” /IEEE Trans. Power Syst., vol.20, no.2,
pp. 556-564, May 2005.

J. D. McDonald, “Distribution network reconfiguration: single loop
optimization,” IEEE Trans. Power Syst., vol.11, no.3, pp. 1643—-1647,
1996.

R. A. Jabr, R. Singh, and B. C. Pal,“Minimum loss network
reconfiguration using mixed-integer convex programming,” /EEE Trans.
Power Syst., vol.27, no.2, pp. 1106—1115, May 2012.

B. Enacheanu, B. Raison, R. Caire, O. Devaux, W. Bienia, and N.
HadjSaid,“Radial network reconfiguration using genetic algorithm based
on the matroid theory,” IEEE Trans. Power Syst., vol.23, no.1, pp. 186—
195, Jul. 2008.

R. Balakrishnan and K. Ranganathan,4 Textbook of Graph Theory. New
York: Springer, 2012.

M. Lavorato, J. F. Franco, M. J. Rider, and R. Romero,“Imposing radiality
constraints in distribution system optimization problems,” /EEE Trans.
Power Syst., vol.27, no.1, pp. 172—-180, Feb. 2012.

M. Guzelsoy and T. Ralphs,“Duality for mixed-integer linear programs,”
Internat. J. Oper. Res, vol.4,no.3, pp. 118-137, 2007.

MathWorks, “Mixed-integer linear programming (MILP).” Available:



159

[48]

[49]

[50]

[51]

[52]

[53]

[55]

[56]

[57]

[58]

[59]

http://www.mathworks.se/help/optim/ug/intlinprog.html#outputarg_output
. [Accessed: 20-Aug-2014].

J. Liu, G. M. Huang, Z. Ma, and Y. Geng,““A novel smart high-voltage
circuit breaker for smart grid applications,” /EEE Trans. Smart Grid,
vol.2, no.2, pp. 254-264, Jun. 2011.

J. J. Carmona Cataln and S. S. Martn,“New medium voltage circuit-
breaker switchgear with advanced functionality,” in Proc. 22nd
International Conference and Exhibition on Electricity Distribution
(CIRED 2013), pp. 1-4.

C. Meyer and R. W. De Doncker,“Solid-state circuit breaker based on
active thyristor topologies,” IEEE Trans. Power Electron., vol.21, no.2,
pp- 450458, Mar. 2006.

R. Kapoor, A. Shukla, and G. Demetriades,“State of art of power
electronics in circuit breaker technology,” in Proc. 2012 IEEE Energy
Conversion Congress and Exposition (ECCE), pp. 615-622.

R. J. Sarfi, M. M. A. Salama, and A. Y. Chikhani, Distribution system
reconfiguration for loss reduction: an algorithm based on network
partitioning theory,” in Proc. 1995 Power Industry Computer Applications
Conference, pp. 503-509.

S. Deilami, A. S. Masoum, P. S. Moses, and M. A. S. Masoum, “Real-time
coordination of plug-In electric vehicle charging in smart grids to
minimize power losses and improve voltage profile,” I[EEE Trans. Smart
Grid, vol.2, no.3, pp. 456-467, Sep. 2011.

E. Sortomme, M. M. Hindi, S. D. J. MacPherson, and S. S.

Venkata, “Coordinated charging of plug-in hybrid electric vehicles to
minimize distribution system losses,” I[EEE Trans. Smart Grid, vol.2,
no.1, pp. 198-205, Mar. 2011.

A. Abur,“A modified linear programming method for distribution system
reconfiguration,” Int. J. Electr. Power Energy Syst., vol.18, no.7, pp. 469—
474, Oct. 1996.

T. N. dos Santos and A. L. Diniz,““A dynamic piecewise linear model for
DC transmission losses in optimal scheduling problems,” /EEE Trans.
Power Syst., vol.26, no.2, pp. 508-519, May 2011.

K. Clement-Nyns, E. Haesen, and J. Driesen, “The Impact of Charging
Plug-In Hybrid Electric Vehicles on a Residential Distribution Grid,”
IEEFE Trans. Power Syst., vol.25, no.1, pp. 371-380, Feb. 2010.

Y. Cao, Y. Tan, C. Li, and C. Rehtanz,“ “Chance-constrained optimization-
based unbalanced optimal power flow for radial distribution networks,”
IEEFE Trans. Power Deliv., vol.28, no.3, pp. 1855-1864, Jul. 2013.
Shaojun Huang, Qiuwei Wu, Zhaoxi Liu, and Haoran Zhao,“Sensitivity
analysis of dynamic tariff method for congestion management in
distribution networks,” in Proc. 2015 IEEE Power & Energy Society



160

[68]

[69]

[70]

[71]

[72]

General Meeting, pp. 1-6.

H. Dommel and W. Tinney,“Optimal Power Flow Solutions,” IEEE Trans.
Power Appar. Syst., vol.PAS-87, no.10, pp. 1866—1876, Oct. 1968.

B. Stott, J. Jardim, and O. Alsac,“DC Power Flow Revisited,” IEEE
Trans. Power Syst., vol.24, no.3, pp. 1290-1300, Aug. 2009.

W. Min and L. Shengsong,“A trust region interior point algorithm for
optimal power flow problems,” Int. J. Electr. Power Energy Syst., vol.27,
no.4, pp. 293-300, May 2005.

A. A. Sousa, G. L. Torres, and C. A. Canizares, ‘Robust Optimal Power
Flow Solution Using Trust Region and Interior-Point Methods,” IEEE
Trans. Power Syst., vol.26, no.2, pp. 487-499, May 2011.

E. BAPTISTA, E. BELATI, and G. DACOSTA,“Logarithmic barrier-
augmented Lagrangian function to the optimal power flow problem,” /nt.
J. Electr. Power Energy Syst., vol.27, no.7, pp. 528-532, Sep. 2005.

R. A. Jabr,“A Primal-Dual Interior-Point Method to Solve the Optimal
Power Flow Dispatching Problem,” Optim. Eng., vol.4, no.4, pp. 309-336,
Dec. 2003.

R. A. Jabr,“Radial distribution load flow using conic programming,” /EEE
Trans. Power Syst., vol.21, no.3, pp. 1458—1459, Aug. 2006.

X. Bai, H. Wei, K. Fujisawa, and Y. Wang,*“Semidefinite programming
for optimal power flow problems,” Int. J. Electr. Power Energy Syst.,
vol.30, no.6-7, pp. 383-392, Jul. 2008.

J. Lavaei and S. H. Low,“Zero duality gap in optimal power flow
problem,” IEEE Trans. Power Syst., vol.27, no.1, pp. 92—107, Feb. 2012.
B. Zhang and D. Tse, “Geometry of feasible injection region of power
networks,” in Proc. 2011 49th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pp. 1508-1515.

B. Zhang and D. Tse, “Geometry of injection regions of power networks,”
IEEFE Trans. Power Syst., vol.28, no.2, pp. 788—797, May 2013.

L. Gan, N. Li, U. Topcu, and S. H. Low, “Exact convex relaxation of
optimal power flow in radial networks,” IEEE Trans. Automat. Contr.,
vol.60, no.1, pp. 72-87, Jan. 2015.

B. C. Lesieutre, D. K. Molzahn, A. R. Borden, and C. L.

DeMarco, “Examining the limits of the application of semidefinite
programming to power flow problems,” in Proc. 2011 49th Annual
Allerton Conference on Communication, Control, and Computing
(Allerton), pp. 1492—1499.

S. H. Low,“Convex Relaxation of Optimal Power Flow—Part I:
Formulations and Equivalence,” IEEE Trans. Control Netw. Syst., vol.1,
no.1, pp. 15-27, Mar. 2014.

S. H. Low,“Convex relaxation of optimal power flow—~Part II:
Exactness,” IEEE Trans. Control Netw. Syst., vol.1, no.2, pp. 177-189,



161

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

Jun. 2014.

M. Farivar and S. H. Low, “Branch flow model: relaxations and
convexification—Part I,” IEEFE Trans. Power Syst., vol.28, no.3, pp.
2554-2564, Aug. 2013.

O. Sundstrom and C. Binding, Planning electric-drive vehicle charging
under constrained grid conditions,” in Proc. 2010 International
Conference on Power System Technology, pp. 1-6.

O. Sundstrom and C. Binding,“Flexible Charging Optimization for
Electric Vehicles Considering Distribution Grid Constraints,” IEEE Trans.
Smart Grid, vol.3, no.1, pp. 26-37, Mar. 2012.

M. E. Baran and F. F. Wu,“Optimal capacitor placement on radial
distribution systems,” IEEE Trans. Power Deliv., vol.4, no.1, pp. 725-
734, 1989.

IEEE PES,“Distribution Test Feeders.” Available:
http://ewh.ieee.org/soc/pes/dsacom/testfeeders/index.html. [Accessed: 04-
Mar-2016].

CVX Research Inc.. (2012, Aug. ). CVX: Matlab Software for Disciplined
Convex Programming, version 2.0. [online]. Available:
http://cvxr.com/cvx/.

M. Grant and S. Boyd,“Graph implementations for nonsmooth convex
programs,” Recent Advances in Learning and Control. Springer-Verlag
Limited, pp. 95-110, 2008.

EU Comission. (2015, Jan. ). Study on tariff design for distribution
systems. [online]. Available:
https://ec.europa.eu/energy/sites/ener/files/documents/20150313 Tariff
report fina_revREF-E.PDF.

Y. Ding, S. Pineda, P. Nyeng, J. Ostergaard, and E. M. Larsen, Real-Time
Market Concept Architecture for EcoGrid EU—A Prototype for European
Smart Grids,” IEEE Trans. Smart Grid, vol.4, no.4, pp. 2006-2016, Dec.
2013.

N. Flatabo, G. Doorman, O. S. Grande, H. Randen, and I.

Wangensteen, “Experience with the Nord Pool design and
implementation,” /EEE Trans. Power Syst., vol.18, no.2, pp. 541-547,
May 2003.

B. Stephan and M. Paterson, “The politics of carbon markets: an
introduction,” Env. Polit., vol.21, no.4, pp. 545-562, Jul. 2012.

E. Woerdman, The institutional economics of market-based climate policy.
Elsevier B.V., 2004.

J. M. Nyers and A. J. Nyers,“COP of heating-cooling system with heat
pump,” in Proc. IEEE 3rd International Symposium on Exploitation of
Renewable Energy Sources (EXPRES), pp. 17-21.

C. F. Mieritz,“Aggregate Modeling and Simulation of Price Responsive



162

Heat Pumps,” M.S. thesis, Dept. of Elec. Eng., Technical University of
Denmark, 2010.

[89] S. Aggerholm and K. G. Serensen,Bygningers energibehov. Hersholm:
SBI forlag, 2005.

[90] Beregning af bygningers varmetab : DS 418. Dansk Standard, 2002.



