

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 18, 2024

Algorithms and Tools for Petri Nets - Proceedings of the Workshop AWPN 2017

Kindler, Ekkart; Bergenthum, Robin

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Kindler, E., & Bergenthum, R. (Eds.) (2017). Algorithms and Tools for Petri Nets - Proceedings of the Workshop
AWPN 2017. DTU Compute. DTU Compute Technical Report-2017 Vol. 06

https://orbit.dtu.dk/en/publications/28d2a528-31e5-48c2-81e7-795501a36236

Algorithms and Tools for Petri Nets
Proceedings of the Workshop AWPN 2017, Kgs. Lyngby, Denmark

October 19–20, 2017

Robin Bergenthum and Ekkart Kindler (Eds.)

DTU Compute Technical Report 2017-06

Technical University of Denmark
Department of Applied Mathematics and Computer Science (DTU Compute)
Richard Petersens Plads, Building 324
DK-2800 Kgs. Lyngby, Denmark
Phone: +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

DTU Compute Technical Reports: ISSN 1601-2321

Contents

Robin Bergenthum, Johannes Metzger, Lev Sorokin, Robert Lorenz:
Towards Compact Regions for Labeled Prime Event Structures 1

Vera O. Ermakova, Irina A. Lomazova:
Nested Petri Nets Using an Unfolding Approach 9

Mustafa Ghani:
Petrixx - Petri Nets for OMILAB based on ADOxx 15

Anna Gogolińska, Wiesław Nowak: OPOA - a Petri Net
Generation Algorithm for Molecular Dynamics Analysis . . . 21

Ekkart Kindler : ePNK Applications and Annotations:
A Simulator for YAWL Nets 27

Sebastian Mauser, Tobias Eggendorfer :
Detecting Security Attacks by Process Mining 33

Juraj Mažári, Gabriel Juhás, Milan Mladoniczky, Tomáš Gažo,
Martin Makáň: Netgrif Workflow Management System based
on Petriflow language . 39

Milan Mladoniczky, Gabriel Juhás, Juraj Mažári, Tomáš Gažo,
Martin Makáň: Petriflow: Rapid language for modelling Petri
nets with roles and data fields 45

Daniel Moldt, Jan Henrik Röwekamp, Michael Simon:
A Simple Prototype of Distributed Execution of Reference
Nets Based on Virtual Machines 51

David Mosteller, Michael Haustermann, Daniel Moldt:
Prototypical Graphical Simulation Feedback in Reference Net-
Based Domain-Specific Languages within a Meta-Modeling
Environment . 58

iii

Preface

The Algorithms and Tools for Petri Nets (AWPN) workshop is organized
by the Special Interest Group “Petri nets and related system models” of the
German Gesellschaft für Informatik (GI) with the focus on algorithms and
tools for Petri nets.

AWPN 2017 took place at the Technical University of Denmark in Lyn-
gby near Copenhagen on October 19-20. The emphasis of the meeting was
on the exchange of experiences and discussions.

Papers related to theoretical issues for analysis and simulation of Petri
nets and on experiences with the implementation of visualization, analysis
and simulation tools were presented at AWPN 2017.

Papers did not undergo a detailed reviewing process, but were inspected
for relevance with respect to the topics of AWPN 2017. Ten papers were
accepted for the workshop. Overall, the quality of the submitted papers was
very good and all submissions matched the workshop goals very well. We
thank the authors and the presenters for their contributions.

Enjoy reading the proceedings!

Robin Bergenthum and Ekkart Kindler
October 2017

v

Towards Compact Regions for
Labeled Prime Event Structures

Robin Bergenthum1, Johannes Metzger2, Lev Sorokin2, and Robert Lorenz2

1 FernUniversität in Hagen, Germany
robin.bergenthum@fernuni-hagen.de

2 University of Augsburg, Germany
first.lastname@informatik.uni-augsburg.de

Abstract. In this paper, we use the so-called synthesis based modeling approach
to synthesize a Petri net from specified behavior. At first, we model a set of single
executions of a process by means of a very intuitive modeling language. In a
second step, we use a synthesis algorithm to automatically produce a related Petri
net model.
Taking a look at the literature, compact regions define the state of the art algo-
rithm to synthesize a Petri net from a set of executions given by a partial language.
The partial language is modeled by means of a set of labeled Hasse diagrams. In
this paper, we discuss the problem of lifting the notion of compact regions from
Hasse diagrams to prime event structures.

1 Introduction

We model distributed systems by means of Petri nets [1, 6, 13, 14]. Petri nets have an
intuitive graphical representation, formal semantics, and are able to express concurrency
among the occurrence of actions. Furthermore, there is a rich body of algorithms and
theory checking structural and behavioral properties of Petri net. However, modeling a
Petri net form scratch is a costly and error-prone task [1, 12].

Fortunately, whenever modeling a system, there are often some associated descrip-
tions or even specifications of the desired processes. There may be log-files of recorded
behavior, example runs, or product specifications describing use cases. Such specifica-
tions can be formalized by a set of Hasse diagrams [3]. The main idea of a synthesis
based modeling approach is to input a set of Hasse diagrams and get the related Petri net
model for free using Petri net synthesis. The synthesis problem is to compute a process
model so that: (A) the specification is a subset of the language of the generated model
and (B) the generated model has minimal additional behavior. In a nutshell, it is easier
to come up with a set of Hasse diagrams and synthesize a Petri net than to produce the
Petri net model from scratch.

Right now, compact regions are the most efficient approach to synthesize a Petri net
from a partial language [3]. In this paper, we discuss how to lift the notion of these com-
pact regions from a set of Hasse diagrams to prime event structures. At a first glance,
it seems that prime event structures are just a more compact representation of a set of
Hasse diagrams. In this paper, we discuss the differences between both specification
languages and the resulting implications for synthesis algorithms. Roughly speaking,

1

we compare compact regions on Hasse diagrams to compact regions on prime event
structures.

The paper is organized as follows: Section 2 introduces Petri nets, their partial lan-
guage, and the synthesis problem. In Section 3, we recall the concept of compact regions
and describe the related synthesis algorithm. In Section 4, we introduce compact regions
for prime event structures and state an example pinpointing the difference between both
notions.

2 Preliminaries

Let f be a function and B be a subset of the domain of f . We write f |B to denote
the restriction of f to B. We call a function m : A → N a multiset and write m =∑
a∈Am(a) · a to denote multiplicities of elements in m. Let m′ : A → N be another

multiset. We write m ≥ m′ if ∀a ∈ A : m(a) ≥ m′(a) holds. We denote the transitive
closure of an acyclic and finite relation < by <∗. We denote the skeleton of < by <�.
The skeleton of < is the smallest relation / such that /∗ = <∗ holds. Let (V,<) be
some acyclic and finite graph, (V,<�) is called its Hasse diagram. Furthermore, we
model business processes by p/t-nets [7, 13, 14].

Definition 1. A place/transition net (p/t-net) is a tuple (P, T,W) where P is a finite
set of places, T is a finite set of transitions such that P ∩ T = ∅ holds, and W :
(P × T) ∪ (T × P) → N is a multiset of arcs. A marking of (P, T,W) is a multiset
m : P → N. Let m0 be a marking, we call the tuple N = (P, T,W,m0) a marked
p/t-net and m0 the initial marking of N .

There is a simple firing rule for transitions of a p/t-net: let t be a transition of a
marked p/t-net (P, T,W,m0). We denote the weighted preset of t by ◦t = ∑

p∈P W (p, t)·
p . Likewise, we denote the weighted postset of t by t◦ = ∑

p∈P W (t, p) · p. A tran-
sition t is enabled (can fire) at marking m if m ≥ ◦t holds. Once transition t fires, the
marking changes from m to m′ = m − ◦t + t◦. Repeatedly processing the firing rule
produces firing sequences. These firing sequences are the most basic behavioral model
of Petri nets. Let N be a marked p/t-net, the set of all initially enabled firing sequences
of N is the sequential language of N .

Petri nets are able to express concurrency of the occurrences of transitions. How-
ever, firing sequences are not able to capture or describe such behavior. The common
behavioral model for partially ordered behavior of Petri nets are so-called process nets
[11]. A process net is a Petri net modeling only one single partially ordered run of a
marked p/t-net. For a formal definition of process nets we refer to [11, 14]. If we ab-
stract from the places of a process net related to a p/t-net N , we have a set of events
arranged in a partial order. Just like some valid firing sequence, this partially ordered set
of events is enabled in the p/t-net. In other words, we can replay such a partial order by
firing transitions of N where unordered parts of the partial order can fire concurrently.
The set of labeled partial orders induced by all processes of N is the partial language
of N .

Although process nets are the classical definition of the partial language of a Petri
net, in [5, 4] there is an equivalent and more efficient characterization of this language,

2

namely compact tokenflows. We define compact tokenflows not on a labeled partial
order, but on the underlying Hasse diagram.

Definition 2. Let T be a set of labels. A labeled partial order is a triple lpo = (V,<, l)
where V is a finite set of events, < ⊆ V × V is a transitive and irreflexive relation, and
the labeling function l : V → T assigns a label to every event. A triple run = (V,<, l)
is a labeled Hasse diagram if (V,<∗, l) is a labeled partial order and<�=< holds. Let
run = (V,<, l) be a labeled Hasse diagram, we define run∗ = (V,<∗, l).

A Hasse diagram is in the language of a Petri net if there are valid compact token-
flows describing valid distributions of tokens along the arcs of such a diagram for every
place of the net [5, 4].

Definition 3. Let N = (P, T,W,m0) be a marked p/t-net and run = (V,<, l) be a
labeled Hasse diagram such that l(V) ⊆ T holds. A compact tokenflow is a function
x : (V ∪ <)→ N. x is compact valid for p ∈ P iff the following conditions hold:

(i) ∀ v ∈ V : x(v) +
∑
v′<v x(v

′, v) ≥W (p, l(v)),
(ii) ∀ v ∈ V :

∑
v<v′ x(v, v

′) ≤ x(v) +∑
v′<v x(v

′, v)−W (p, l(v)) +W (l(v), p),
(iii)

∑
v∈V x(v) ≤ m0(p).

run is compact valid for N iff there is a compact valid tokenflow for every p ∈ P .
The language of a marked p/t-net N is well-defined by the set of compact valid

labeled Hasse diagrams [4, 5]. We write L(N) = {run∗| run is compact valid for N}.

As we already pointed out in the introduction, our goal is to synthesize a p/t-net
from a specification describing the behavior of a system.

Definition 4. A finite set of labeled Hasse diagrams is a specification. Let N be a
marked p/t-net and S = {run1, . . . , runn} be a specification. We write S ⊆ L(N)
iff {run∗1, . . . , run∗n} ⊆ L(N) holds.

Finally, we are able to define the synthesis problem. The synthesis problem is to
construct a p/t-net such that its behavior matches a specification. If there is no such
p/t-net, we construct a p/t-net such that its behavior includes the specification and has
minimal additional behavior.

Definition 5. Let S be a specification, the synthesis problem is to compute a marked
p/t-net N such that the following conditions hold: S ⊆ L(N) and for all marked p/t-
nets N ′ : L(N)\L(N ′) 6= ∅ =⇒ S 6⊆ L(N ′).

In this paper, we lift the notion of compact regions to labeled prime event struc-
tures. So instead of considering a specification as input for the synthesis problem, we
consider a labeled prime event structure. The main idea is that if Hasse diagrams of a
specification share common prefixes, these prefixes can be glued together to come up
with a more compact representation of the same set of partial orders. To keep track of
the shared and non-shared parts of sets of events of a prime event structure, every such
structure has a so-called set of consistency sets.

3

Definition 6. Let T be a set of labels. We define a labeled prime event structure as tuple
pes = (V,<, l, Γ) where (V,<, l) is a labeled Hasse diagram and Γ = {C1, . . . , Cn}
is a set of subsets of V satisfying:

(I)
⋃
C∈Γ C = V and

(II) ∀ C ∈ Γ, v ∈ C, v′ ∈ V : (v′ < v) =⇒ (v′ ∈ C).
Let v, v′ ∈ V be two events, we write v#v′ iff there is noC ∈ Γ so that {v, v′} ⊆ C

holds. Every C ∈ Γ is called a consistency set of pes.

If we model a specification, we can use a prime event structure instead of a set of
Hasse diagrams. Roughly speaking, every consistency set of a prime event structure
relates to one Hasse diagram of the specification.

Definition 7. Let pes = (V,<, l, Γ) be a labeled prime event structure. Then the set
H(pes) = {(C,< |C×C , l|C) | C ∈ Γ} is a set of Hasse diagrams. We call H(pes)
the specification modeled by pes.

1A

3

X

4

D

2B 5A

6

D

7B

8

Y

1A

3

X

4

D

2B

5

Y

Fig. 1. Top: a specification with two Hasse diagrams. Bottom: a prime event structure modeling
the same specification.

The upper part of Figure 1 depicts a specification. The lower part of Figure 1 depicts
a prime event structure modeling the specification above. Different consistency sets of
this prime event structure are indicated by different shades of gray. Both parts of the
figure relate to the same partial language. Obviously, the number of nodes and arcs of
the prime event structure is smaller than the number of nodes of the specification. We
conclude this section by stating the synthesis problem for prime event structures.

Definition 8. Let pes be a labeled prime event structure. The synthesis problem is to
compute a marked p/t-net N such that the following conditions hold: H(pes) ⊆ L(N)
and for all marked p/t-nets N ′ : L(N)\L(N ′) 6= ∅ =⇒ H(pes) 6⊆ L(N ′).

3 Compact Regions for Hasse Diagrams

The algorithm presented in this section is based on the theory of regions [9] and was in-
troduced in [3]. The first step of every region-based approach is to construct a transition

4

for every label of the specification to get an initial p/t-net without places. The language
of this net includes arbitrary behavior because all transitions have an empty preset and
can fire in any order. Obviously, we need to add places and arcs to restrict the behavior
of this initial net. To solve the synthesis problem, we are only allowed to add places and
connected arcs that do not inhibit our specification.

Definition 9. Let S be a specification and N = (P, T,W,m0) be a marked p/t-net. A
place p ∈ P is called feasible for S iff S ⊆ L(({p}, T,W |({p}×T)∪(T×{p}),m0(p)))
holds. Let S be a specification andN = ({p}, T,W,m0) be a marked one-place p/t-net.
We call N feasible for S iff p is feasible for S.

If we are able to identify feasible places, we can add these to our initially placeless
p/t-net. These places restrict the behavior, yet such a net will still be able to execute all
the labeled Hasse diagrams of the specification.

Remark 1. Let S be a specification and let a set of p/t-nets {({p1}, T,W1,m1), . . . ,
({pn}, T,Wn,mn)} be feasible for S. Let N = (

⋃
i{pi}, T,

∑
iWi,

∑
imi) be the

union of all feasible nets, every place of N is feasible and S ⊆ L(N) holds.

Theoretically, we could restrict the behavior of the initial p/t-net by adding the set of
all feasible places. This would guarantee that the behavior of the net cannot be restricted
further without excluding some executions of the specification. This is a fundamental
theorem of region theory (see for example [2]). Practically, we need to construct a fi-
nite p/t-net with the same behavior as the union-of-all-feasible-places p/t-net. We use a
technique of so-called wrong continuations. Roughly speaking, the set of wrong con-
tinuations is the border between the specified and all other behaviors. The set of wrong
continuations is finite as long as the specification is finite as well. For each wrong con-
tinuation, we add one feasible place, thus excluding the wrong continuation from the
language of the constructed net. The resulting finite p/t-net solves the synthesis prob-
lem.

The only puzzle piece that is missing, is a characterization of the set of all feasible
places. We get such a characterization by taking advantage of compact tokenflows to
define the notion of compact regions [3] for Hasse diagrams.

Definition 10. Let S = {(V1, <1, l1), . . . , (Vn, <n, ln)} be a specification, T be its set
of labels, and p be a place. The set of events with an empty prefix in (Vi, <i, li) is
denoted by V ′i . A function r : (

⋃
i(V
′
i ∪ <i) ∪ (T × {p}) ∪ ({p} × T) ∪ {p}) → N

is a compact region for S iff ∀i ∈ {1, ..., n} : r|{V ′i ∪<i} is compact valid for p in
({p}, T, r|(T×{p})∪({p}×T), r(p)).

Every region is kind of a vector of numbers respecting the conditions (i), (ii), and
(iii) of Definition 3. With this in mind, we are able to express all feasible p/t-nets by a
single inequality system. Again, in this system, there is an unknown for every element in
the domain of a compact region, i.e. one unknown for every event with an empty prefix,
another unknown for every arc, two unknowns for every label, and a single unknown
for the initial marking. The inequality system is built from the inequalities defined in
Definition 3. According to (i) and (ii), there are two inequalities for every event of
the specification. According to (iii), there is another inequality for every labeled Hasse

5

diagram. The set of positive integer solutions of this inequality system is the set of
all feasible nets. We call this inequality system the compact region inequality system.
Every solution of this system defines one feasible place [3].

Theorem 1. Let S be a specification and T be its set of labels. Every compact region r
for S defines a feasible p/t-net Nr = ({p}, T,W,m0) and vice versa.

Finally, we sum up the complete synthesis algorithm using compact regions, input is
a set of labeled Hasse diagrams. At the beginning, we construct a Petri net starting with
an empty set of places and a transition for every label. We then set up the compact region
inequality system and the set of wrong continuations. For every wrong continuation c,
we check if it is still executable in the net constructed so far. If it is executable, we
need to exclude the wrong continuation from the behavior of the net. This is done by
adding a feasible place, i.e. a compact region. We encode the non-executability of c
in an additional inequality for the compact region inequality system. Every solution of
this extended system is a region and excludes c. If this system has a solution, we add
the related one-place net to our initially constructed set of transitions. If the extended
compact region inequality system has no solution, the wrong continuation c cannot be
excluded. We assure that the constructed net is a best approximation by expanding the
set of wrong continuations accordingly.

4 Compact Regions for Prime Event Structures

In this section, we apply compact tokenflows to prime event structures. The goal is to
reduce the number of events and arcs of a specification by modeling a specification
in terms of a prime event structure. Less arcs and nodes lead to less variables in the
compact region inequality system and thus to faster synthesis results. We will show
that, although every compact region of a prime event structure defines a feasible place,
the opposite direction does not hold. First, we lift the notion of compact tokenflows to
prime event structures.

Definition 11. Let N = (P, T,W,m0) be a marked p/t-net and pes = (V,<, l, Γ) be
a labeled prime event structure such that l(V) ⊆ T holds. A compact tokenflow is a
function x : (V ∪ <)→ N.
x is compact valid for p ∈ P iff x|(C ∪<|(C×C)) is compact valid for (C,< |(C×C), l|C)
for all C ∈ Γ . A prime event structure pes is compact valid for N iff there is a compact
valid tokenflow for every p ∈ P .

If we consider a prime event structure with only one consistency set, of course, both
notions of compact tokenflows coincide. The difference between both notions becomes
more clear if we think of two consistency sets with a common prefix. Both projections
of the tokenflow to each consistency set must be compact valid. Furthermore, the distri-
bution of tokens on the common prefix is always the same for both consistency sets. On
the one hand, this reduces the amount of variables of a compact tokenflow, on the other
hand, it might be possible that there are two valid compact tokenflows for two separated
Hasse diagrams, but not a single compact valid tokenflow on the merged prime event
structure.

6

Nevertheless, following the ideas of the previous section, we define compact regions
for prime event structures.

Definition 12. Let pes = (V,<, l, Γ) be a labeled prime event structure, T be its set of
labels, and p be a place. The set of events with an empty prefix in pes is denoted by V ′.
A function r : (V ′ ∪ <)∪ (T × {p})∪ ({p} × T)∪ {p})→ N is a compact region for
pes iff r|(V ′∪<) is compact valid for p in ({p}, T, r|(T×{p})∪({p}×T), r(p)).

Finally, we state the main contribution of this paper.

Theorem 2. Let pes be a labeled prime event structure and T be its set of labels.
Every compact region r for pes defines a feasible p/t-net Nr = ({p}, T,W,m0) but the
opposite direction does not hold.

Proof. Let r be a compact region. Obviously, r|{V ′∪<} is a valid compact tokenflow
of p in Nr = ({p}, T, r|(T×{p})∪({p}×T), r(p)) so that H(pes) ⊆ L(Nr) holds. Nr is
feasible for H(pes).

Let N be the Petri net depicted in Figure 3, let p be the place of N , and S be the
specification depicted in Figure 1. The place p of N is feasible for S, because there is a
valid compact tokenflow (see Figure 2). Let pes be the prime event structure depicted in
Figure 1. Obviously,H(pes) = S holds. We prove by contradiction and assume there is
a compact valid tokenflow x for p in pes. Obviously, x(v1, v3) ≥W (p, l(v3)) = 1 and
x(v2, v5) ≥ W (p, l(v5)) = 1 holds to satisfy condition (i) of Definition 3. Therefore,
x(v1, v4) = 0 and x(v2, v4) = 0 hold to satisfy condition (ii) for both events v1, v2. So,
0 = x(v1, v4) + x(v2, v4) < W (p, l(v4)) = 1 holds which contradicts (i). Altogether,
there is no valid compact tokenflow in pes for p and no compact region defining p. ut

1A

3

X

1

4

D

2B
1

5A

6

D

1
7B

8

Y

1

Fig. 2. Two Hasse diagrams with compact valid tokenflows. A zero-valued tokenflow at arcs is
not depicted.

X
p

D

Y

A B

Fig. 3. One-place p/t-net Nr .

7

5 Conclusion

In this paper, we presented compact tokenflows and compact regions for prime event
structures. We proved that every compact region defines a feasible p/t-net, but the op-
posite direction does not hold. Using prime event structures, we sketched a synthesis
algorithm using less variables and constraints compared to the former approach using
Hasse diagrams.

It remains to prove, that there is a subclass of all prime event structures for which
both directions of Theorem 2 hold. For this subclass the presented algorithms will be
much faster than the algorithm using Hasse diagrams.

References

[1] van der Aalst, W. M. P.; van Dongen, B. F.: Discovering Petri Nets from Event Logs. ToPNoC
VII, LNCS 7480, Springer, 2013, 372–422.

[2] Badouel, E.; Bernardinello, L.; Darondeau, P.: Petri Net Synthesis. Texts in Theoretical
Computer Science, Springer, 2015.

[3] Bergenthum, R.: Synthesizing Petri Nets from Hasse Diagrams. Business Process Manage-
ment 2017. LNCS 10445. Springer, 22-39.

[4] Bergenthum, R.; Lorenz, R.: Verification of Scenarios in Petri Nets Using Compact Token-
flows. Fundamenta Informaticae 137, IOS Press, 2015, 117–142.

[5] Bergenthum, R.: Faster Verification of Partially Ordered Runs in Petri Nets Using Compact
Tokenflows. Petri Nets 2013, LNCS 7927, Springer, 2013, 330–348.

[6] Desel, J.; Juhás, G.: ”What is a Petri Net?”. Unifying Petri Nets, Advances in Petri Nets,
LNCS 2128, Springer, 2001, 1–25.

[7] Desel, J.; Reisig, W.: Place/Transition Petri Nets. Lectures on Petri Nets I: Basic Models,
Advances in Petri Nets, LNCS 1491, Springer, 1998, 122–173.

[8] Dumas, M.; Garca-Bauelos, L.: Process Mining Reloaded: Event Structures as a Unified
Representation of Process Models and Event Logs. Petri Nets 2015, LNCS 9115, Springer,
2015, 33–48.

[9] Ehrenfeucht, A.; Rozenberg, G.: Partial (Set) 2-Structures. Part I: Basic Notions and the
Representation Problem, Part II: State Spaces of Concurrent Systems. Acta Inf. 27(4), 1990,
315–368.

[10] Grabowski, J.: On partial languages. Fundamenta Informaticae 4, IOS Press, 1981, 427–
498.

[11] Goltz, U.; Reisig, W.: Processes of Place/Transition-Nets. Automata Languages and Pro-
gramming 154, Springer, 1983, 264–277.

[12] Mayr, H. C.; Kop, C.; Esberger, D.: Business Process Modeling and Requirements Model-
ing. ICDS 2007, Computer Society, IEEE, 2007, 8-14.

[13] Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice-Hall (Englewood
Cliffs), 1981.

[14] Reisig, W.: Understanding Petri Nets - Modeling Techniques, Analysis Methods, Case Stud-
ies. Springer, 2013.

8

Veri�cation of Nested Petri Nets Using an

Unfolding Approach

Vera O. Ermakova, and Irina A. Lomazova

National Research University Higher School of Economics,
Myasnitskaya ul. 20, 101000 Moscow, Russia

voermakova@edu.hse.ru ilomazova@hse.ru

Abstract. Nested Petri nets (NP-nets) is an extension of the Petri nets
formalism within the �nets-within-nets� approach, allowing to model sys-
tems of interacting dynamic agents in a natural way. One of the main
problems in verifying of such systems is the State Explosion Problem. To
tackle this problem for highly concurrent systems the unfolding method
has proved to be very helpful. In this paper we continue our research
on applying unfoldings for NP-nets veri�cation and compare unfolding
of NP-net translated into classical Petri net with direct component-wise
unfolding.

Keywords: Multi-agent systems, veri�cation, Petri nets, nested Petri
nets, unfoldings.

1 Introduction

Multi-agent systems have been studied explicitly for the last decades and can be
regarded as one of the most advanced research and development area in com-
puter science today. They are used in various practical �elds and areas, such
as arti�cial intelligence, cloud services, grid systems, augmented reality systems
with interactive environment objects, information gathering, mobile agent coop-
eration, sensor information and communication.

Petri nets have been proved to be one of the best formalisms for modeling and
analysis of distributed systems. However, due to the �at structure of classical
Petri nets, they are not so good for modeling complex multi-agent systems. For
such systems a special extension of Petri nets, called nested Petri nets [1], can
be used. Nested Petri nets follow 'nets-within-nets' approach [2] and naturally
represent multi-agent systems structure, because tokens in the main system net
are Petri nets themselves, and can have their own behavior.

To check nested Petri net model properties one of the most popular veri�ca-
tion method, model checking, could be used. The basic idea of model checking
is to build a reachability (transition) graph and check properties on this graph.
However, there is a crucial problem for veri�cation of highly concurrent systems
using model checking approach � a large number of interleavings of concurrent
processes. This leads to the so-called state-space explosion problem.

9

To tackle this problem unfolding theory [3,4] was introduced. In [5] applica-
bility of unfoldings for nested Petri nets was studied and the method for con-
structing unfoldings for safe conservative nested Petri nets was proposed. It was
proven there, that unfoldings for nested Petri nets satisfy the unfoldings fun-
damental property, and thus can be used for veri�cation of conservative nested
Petri nets similar to the classical unfoldings methods.

Classical unfoldings are de�ned for P/T nets, but in this paper we deal with
a restricted subclass of nested Petri nets � conservative safe nested Petri nets.
This means that net tokens, representing agents, cannot be destroyed or created,
but can change their location in the system net and can change their inner
states. Thus, the number of agents is constant and each agent can be identi�ed.
It was shown in [5] that for conservative safe nested Petri nets unfoldings can
be constructed in a component-wise manner, what makes practical veri�cation
of such models feasible.

However, safe conservative nested Petri nets are bounded. So, for such net
it is possible to construct a P/T net with equivalent behavior, for which the
standard unfolding techniques can be applied. Then the question is whether
direct unfolding proposed in [5] is really better than constructing unfoldings via
translation of nested Petri nets into safe P/T nets in terms of time complexity.

In this paper we study this question. For that we develop an algorithm for
translating a safe conservative NP-net into a behaviorally equivalent P/T net.
We prove that the reachability graphs of a source NP-net and the obtained P/T
net are isomorphic, and hence both unfolding methods give the same (up to
isomorphism) result. From general considerations translating an NP-net into a
P/T net and then constructing unfoldings will be more time consuming, than
constructing unfoldings directly. To check whether this time gap reveals itself
in practice we implement all the algorithms and compare both methods experi-
mentally.

2 Related Work

Nested Petri nets (NP-nets) are widely used in modeling of distributed systems
[6,7,8], serial or recon�gurable systems [9,10], protocol veri�cation [11], coor-
dination of sensor networks with mobile agents [12], innovative space system
architectures [13], grid computing [14].

Several methods for NP-nets behavioral analysis were proposed in the litera-
ture, among them compositional methods for checking boundedness and liveness
for nested Petri nets [15], translation of NP-nets into Colored Petri nets in order
to verify them with CPNtools [16], veri�cation of a subclass of recursive NP-nets
with SPIN [17].

Unfolding approach and state-space explosion problem are explicitly studied
in the literature. The original development in unfoldings (of P/T-nets) is due
to [18]. McMillan [3] was the �rst to use unfoldings for veri�cation. He intro-
duced the concept of complete �nite pre�xes of unfoldings, and demonstrated
the applicability of this approach to the veri�cation of asynchronous circuits.

10

The original McMillan's algorithm was used to solve the executability problem
� to check whether a given transition can �re in the net. This algorithm can be
used also for checking deadlock-freedom and for solving some other problems.
Later, numerous improvements to the algorithm have been proposed ([19,20] to
name a few); and the approach has been applied to high-level Petri nets [21],
process algebras [22] and M-nets [21].

The general method for truncating unfoldings, which abstracts from the in-
formation one wants to preserve in the �nite pre�x of the unfolding, was proposed
in [23,24]. This method is based on the notion of a cutting context. We use this
approach for de�ning branching processes and unfoldings of conservative nested
Petri nets.

3 Two ways of nested Petri net unfolding

3.1 Translation of Nested Petri Nets into Classical Petri Nets

As reachability graph of the unfolding is isomorphic to the reachability graph
of the P/T-net, unfoldings can be used in veri�cation. Since safe conservative
nested Petri nets have �nite number of states, it will be apparent to assume,
that they can be translated into classical Petri nets and then can be unfolded
according to the classical unfolding rules for further veri�cation. The problem of
conservative safe nested Petri nets to classical Petri nets has not been studied
before.

To make a correct translation we have to set a number of requirements for
a translation. The main goal for building a model is the possibility to make
a simulation. Simulation implies behavioral equivalence: a possibility to repeat
all possible moves of one model on another model. Behavioral equivalence is
guaranteed by establishing strong bisimulation equivalence between states of
two models. The second requirement is about constructing a reachability graph.
It means that we need exact correspondence between nodes (states) of our model.
If these two requirements are met, we can build a translation algorithm which
allows us to use target model having the same behavioral properties like original
for veri�cation and analysis.

3.2 Comparing two ways of nested Petri net unfolding

As each conservative safe NP-net can be converted into a behaviorally equiv-
alent classical Petri net, namely their reachability graphs are isomorphic. So,
to construct unfoldings for a NP-net we can either translate it into a P/T net
and then apply the classical P/T net unfolding procedure, or directly construct
NP-nets unfoldings, as it is described in [5].

The fundamental property of unfoldings states that the reachability graph
of the unfolding is isomorphic to the reachability graph of the initial net. Since
the fundamental property holds both for Petri net unfoldings and for NP-net
unfoldings, we can immediately conclude that both approaches give the same
(up to isomorphism) result.

11

The di�erence is in the complexity of these two solutions. It is easy to see,
that when there are several net tokens of the same type in the initial marking,
the translation leads to a signi�cant net growth. Thus e.g. for a system net
transition t with n input places of the same type and k tokens of this type in the
initial marking we are to construct kn copies of this transition in the target P/T
net, corresponding to di�erent bindings for t-�rings. And it is rather clear, that
we cannot avoid this, since we are to distinguish markings of net tokens residing
in di�erent places, and hence to construct a separate P/T net transition for each
mode of a system net transition �ring.

To check the advantage of the direct unfolding method w.r.t. time complexity
for concrete examples we've developed a software application which allows:

1. translation of a conservative safe nested Petri net into a P/T net and then
building an unfolding for it;

2. building an unfolding directly for a nested Petri net.

We expected that a large number of net tokens cause signi�cant net growth
during translation. To get representative results, we conducted experiments on
nets having similar structure, but di�erent number of element nets with di�erent
types.

Even experiments with rather small models con�rmed our assumptions. If
we are dealing with a system, which consists of a large number of net tokens
and incoming arcs, after applying translation of a nested Petri net into a P/T
net the net graph will increase strongly. Since we do not know in advance, which
transitions will be used in the unfolding, we should create an intermediate graph
with a lot of transitions unnecessary for unfolding.

Element net in p1 :

Element net in p2 :

p1

p2

p3

αt1

x

x y y

t2

z z

q1

q2

α

k1

k2

k3

q1

q2

α

k1

k2

k3

Fig. 1. NP-net NP1

12

So, we conducted experiments on nets having similar structure, but di�erent
number of element nets with di�erent types. We've done a series of experiments
with rather small models, which con�rm our assumptions. Thus for our example
net NP1 we've got 0.38 ms. for the direct unfolding, and 0.54 ms. for unfolding
via the translation into a P/T net. So, even in the case of two net tokens we get
a noticeable di�erence in time.

To get representative experiment results we have done more experiments
with larger models having common patterns, for example: cyclic element net,
net with a few branching processes, with few element nets, with a deadlock.
In all mentioned cases direct unfolding time was either less or almost equal to
translation and unfolding, depending on structure of the net.

We plan to conduct more experiments to get statistically full results.

4 Conclusion and Future Work

In this paper we've proposed and compared two ways of unfolding for safe con-
servative nested Petri nets. The �rst method is based on equivalent translation
of NP-nets into safe P/T nets and then applying standard unfolding procedure
described in the literature. The second method is a direct unfolding, proposed
and justi�ed earlier in [5].

For that we've developed and justi�ed an algorithm for translation of a safe
conservative NP-net into an equivalent P/T net. Direct analysis of the algorithm
complexity allows us to conclude that the direct unfolding has a distinct advan-
tage in time complexity. To check this advantage with practical examples we've
implemented the algorithms for translation and unfolding. Experiments on small
nets have demonstrated the anticipated bene�ts of direct unfolding.

So having these results in mind, we plan:

1. to develop unfolding-based speci�c methods for veri�cation of concrete cru-
cial behavioral properties for nested Petri nets;

2. to extend the developed approach for more wide classes of nested Petri nets;
3. to develop a software tool (or a plug-in for an existing software) that imple-

ments the above methods.

References

1. Lomazova, I.A.: Nested Petri nets�a formalism for speci�cation and veri�cation of
multi-agent distributed systems. Fundamenta Informaticae 43(1) (2000) 195�214

2. Valk, R.: Object petri nets. In: Lectures on Concurrency and Petri Nets. Springer
(2004) 819�848

3. McMillan, K.L.: Using unfoldings to avoid the state explosion problem in the
veri�cation of asynchronous circuits. In: Computer Aided Veri�cation, Springer
(1992) 164�177

4. Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains,
part i. Theoretical Computer Science 13(1) (1981) 85�108

13

5. Frumin, D., Lomazova, I.A.: Branching processes of conservative nested Petri nets.
In: VPT@ CAV. (2014) 19�35

6. Lomazova, I.A., van Hee, K.M., Oanea, O., Serebrenik, A., Sidorova, N., Voorhoeve,
M.: Nested nets for adaptive systems. Application and Theory of Petri Nets and
Other Models of Concurrency, LNCS (2006) 241�260

7. Lomazova, I.A.: Modeling dynamic objects in distributed systems with nested petri
nets. Fundamenta Informaticae 51(1-2) (2002) 121�133

8. Lomazova, I.A.: Nested petri nets for adaptive process modeling. In: Pillars of
computer science. Springer (2008) 460�474

9. López-Mellado, E., Villanueva-Paredes, N., Almeyda-Canepa, H.: Modelling of
batch production systems using Petri nets with dynamic tokens. Mathematics and
Computers in Simulation 67(6) (2005) 541�558

10. Zhang, L., Rodrigues, B.: Nested coloured timed Petri nets for production con-
�guration of product families. International journal of production research 48(6)
(2010) 1805�1833

11. Venero, M.L.F., da Silva, F.S.C.: Modeling and simulating interaction protocols
using nested Petri nets. In: Software Engineering and Formal Methods. Springer
(2013) 135�150

12. Chang, L., He, X., Lian, J., Shatz, S.: Applying a nested Petri net modeling
paradigm to coordination of sensor networks with mobile agents. In: Proc. of
Workshop on Petri Nets and Distributed Systems, Xian, China. (2008) 132�145

13. Cristini, F., Tessier, C.: Nets-within-nets to model innovative space system archi-
tectures. In: Application and Theory of Petri Nets. Springer (2012) 348�367

14. Mascheroni, M., Farina, F.: Nets-within-nets paradigm and grid computing. In:
Transactions on Petri Nets and Other Models of Concurrency V. Springer (2012)
201�220

15. Dworza«ski, L.W., Lomazova, I.A.: On compositionality of boundedness and live-
ness for nested Petri nets. Fundamenta Informaticae 120(3-4) (2012) 275�293

16. Dworza«ski, L., Lomazova, I.A.: Cpn tools-assisted simulation and veri�cation of
nested petri nets. Automatic Control and Computer Sciences 47(7) (2013) 393�402

17. Venero, M.L.F.: Verifying cross-organizational work�ows over multi-agent based
environments. In: Enterprise and Organizational Modeling and Simulation.
Springer (2014) 38�58

18. Winskel, G.: Event structures. Springer (1986)
19. Bonet, B., Haslum, P., Hickmott, S., Thiébaux, S.: Directed unfolding of petri

nets. In: Transactions on Petri Nets and Other Models of Concurrency I. Springer
(2008) 172�198

20. McMillan, K.L.: A technique of state space search based on unfolding. Form.
Methods Syst. Des. 6(1) (1995) 45�65

21. Khomenko, V., Koutny, M.: Branching processes of high-level Petri nets. In Gar-
avel, H., Hatcli�, J., eds.: Tools and Algorithms for the Construction and Analysis
of Systems. Volume 2619 of Lecture Notes in Computer Science. Springer (2003)
458�472

22. Langerak, R., Brinksma, E.: A complete �nite pre�x for process algebra. In:
Computer Aided Veri�cation, Springer (1999) 184�195

23. Khomenko, V., Koutny, M., Vogler, W.: Canonical pre�xes of Petri net unfoldings.
Acta Informatica 40(2) (2003) 95�118

24. Khomenko, V.: Model Checking Based on Pre�xes of Petri Net Unfoldings. Ph.D.
Thesis, School of Computing Science, Newcastle University (2003)

14

15

16

17

18

19

20

OPOA - a Petri Net Generation Algorithm for

Molecular Dynamics Analysis

Anna Gogoli«ska1 and Wiesªaw Nowak2

1 Faculty of Mathematics and Computer Science,
Nicolaus Copernicus University, Toru«, Poland

2 Faculty of Physics, Astronomy and Informatics,
Nicolaus Copernicus University, Toru«, Poland

anna.gogolinska@mat.umk.pl

Abstract. Molecular dynamics (MD) simulations are an issue of high
importance in computational biology, chemistry and physics. They allow
to study biological components like proteins or nucleic acids, observe
their behavior, analyze their active sites, compare native and mutated
structures. Unfortunately, MD simulations produce enormous amount of
data. The main problem is an e�ective analysis of this structural and
dynamic information. We designed the complex framework to analyze
MD data using Petri nets (PNs). In this paper a part of the framework
- the One Place One Atom (OPOA) algorithm will be described in more
detail. The OPOA algorithm is one of designed by us algorithms, that
generates Petri nets based on the MD trajectory. In OPOA one place
represents one point in the space and transitions correspond to move-
ments of atoms. Some more complex aspects of the algorithm will be
also mentioned and described.

Keywords: Petri nets, Molecular Dynamics Simulations, MD analysis,
PN generation

1 Introduction

Molecular dynamics (MD) simulations [6] are computer calculations of
the trajectory of the motion of every atom from a given input set, for
example proteins. The theoretical basis of the MD simulation is straight-
forward: the localization of every atom in each time step ti+1 is calculated
by solving the Newton equation of motion using, for example, the Verlet
algorithm. The force values necessary for the computations is calculated
on the �y based on the positions of all interacting atoms and prede�ned
potentials V . A set of analytical formulas together with appropriate pa-
rameters to calculate V is called a force �eld [5]. The results of the sim-
ulations are spatial structures of the studied system, which present time

21

evolution of the system. Output �les from the MD simulations contain
frames (snapshots) which describe localization of every atom from the
system studied. Information about physical states of the system is hidden
in those output �les. They are called trajectories, because they represent
a motion of the system in the phase space.

Fig. 1. The work�ow scheme of the MD simulations analysis using PN formalism.

The main problem with MD simulations is an e�ective analysis of this
structural and dynamics information. They produce enormous amount of
data, easily gigabytes or even terabytes, which have to be analyzed mostly
by hand. Various methods of analysis are used [2], but there is still huge
demand for new ones. In our opinion, PNs have a potential to be used in
MD simulations and we developed the whole framework of MD analysis
with the use of PNs. The idea of the framework is presented in Figure 1.

The One Place One Atom (OPOA) algorithm is one of the PN gen-
erations algorithms, others are One Place One Conformation (OPOC) [1]
and Contacts (CON) algorithms. The structure of generated PN can be
analyzed or its dynamic can be study. In the next step the PN dynamic
can be analyzed separately or use to generate PDB trajectory (similarly
to MD simulations outputs).

2 Petri Nets

The idea of Petri net was proposed by Carl Adam Petri [4].

De�nition 1. A Petri net graph is a 4-tuple (P, T, F,W), where:

� P is a �nite set of places.
� T is a �nite set of transitions (or actions), such that P ∩ T = ∅.
� F is a set of directed arcs, satisfying: F ∩(P ×P) = F ∩(T ×T) = ∅ (a

place may be connected with the transition or the transition with the

place; two places or two transitions cannot be connected).

22

� W : F → {1, 2, 3, ...} is a weight function assigned to arcs. As a default

the weight of one is assigned to an arc.

De�nition 2. A marking M of a net N is a mappingM : P → {0, 1, 2, 3, ...}.

De�nition 3. Petri net is a set (P, T, F,W,M0) where M0 is an initial

marking, and (P, T, F,W) is a Petri net graph (see De�nition 1.

De�nition 4. For each element t ∈ T we de�ne a set of input places •t =
{p ∈ P ; (p, t) ∈ P} and a set of output places t• = {p ∈ P ; (t, p) ∈ P}.

De�nition 5. A transition t may �re (such transition is called enabled)

in a marking M if the number of tokens in every input place p of the

transition t is equal or greater than the weight W (p) assigned to an arc

between the place p and the transition t in the marking M.

During �ring the transition t consumes tokens from the input places
and puts them into the output places - the number of tokens transferred
is determined by the weights of arcs.

3 One Place One Atom algorithm

In the OPOA algorithm a single place in the Petri net represents the posi-
tion of one atom from the system studied by MD simulation. A transition
represents the movement of the atom. This transition connects the previ-
ous localization of the atom (the input place) and the new localization of
the same atom (the output place). Every transition has to be labeled not
only by the initial and �nal localizations of the corresponding atom, but
by the description of this atom as well. It can be obtained for example
by additional annotations or by special places to which transitions will be
connected by loops.

De�nition 6. The set of transitions which describe the trajectory of one

speci�c atom is called atom transitions set (ATS).

One can image that a PN generated by the OPOA algorithm for even
small proteins can be enormous. Big networks are extremely hard to ana-
lyze, so to reduce the number of places and transitions two methods were
used: a coarse grain representation and a discretization of the R3 space.
The coarse grain representation is standard and widely used method of
reduction complexity of the model [3]. It involves a representation of a
group of atoms, by a smaller group, usually by just one atom. There are

23

di�erent types of a such reduction, one is to represent an amino acid by
its Cα atom. This method was used in our work. The discretization of R3

space in this paper means that in order to reduce the number of points
used to represent atoms' position, the three dimensional grid is laid over
R3 space and it divides the space into cubes. The edge of each cube is
equal to the resolution of the grid. Each cube represents a new point in
the new three dimensional discrete space and every atom which belong to
the same cube in the R3 is localized in one point in the new space.

The basic pseudo code of the OPOA algorithm is listed below. It fol-
lows the general description of the algorithm. The main part of the al-
gorithm is related to checking whether required places or transitions are
already present in the PN.

One Place One Atom algorithm (OPOA)

Input: Files in Protein Data Bank (PDB) format containing the MD tra-
jectories.
Output: Petri net described by lists of places, transitions and arcs.
Steps:

1: for (every PDB �le) do

2: frame← readFrame()
3: for (every Cα atom in frame) do

4: if (position(Cα, frame) 6= (position(Cα, previousFrame) then
5: prevP lace← places.get(Cα, position(Cα, previousFrame))
6: if (!places.find(position(Cα, frame))) then
7: newPlace← createP lace(position(Cα, frame))
8: places.add(place)
9: transition← createTransition(Cα)
10: transition.add(transition)
11: createArcs(newPlace, transition, prevP lace, Cα)
12: else

13: currentP lace← places.get(position(Cα, frame))
14: if (!transitions.find(prevP lace, currentP lace)) then
15: transition← createP lace(position(Cα, frame))
16: transition.add(transition)
17: createArcs((currentP lace, transition, prevP lace, Cα)
18: end if

19: end if

20: end if

21: end for

22: end for

24

In the OPOA algorithm the presence of a token describes the current
location of the Cα atom. There is one token per one Cα atom. However,
the idea described previously has a disadvantage - the "stealing problem".
Such a situation occurs when a few Cα atoms are allowed to be in the same
point in the space (for example not necessary at the same time during MD
simulation). In such a case two (or more) tokens can be present in one
place, each of them has to be put there by transitions from di�erent atom
transitions sets. However, the PN potentially allows a transition tk from
ATS of Cα atom to consume all the tokens from exact place. After such
a situation, the PN marking will correspond to the situation when we
would have two (or more) instances of a single atom and none instances
of other Cα atoms, their tokens have been present in the considered place
and "stolen". It is an undesirable situation. Two mechanisms to avoid the
"stealing problem" was developed, they resulted in two versions of the
OPOA algorithm. In the �rst version, separated places are generated for
every atom. In the second one, additional construction is added to the PN
to prevent the "stealing problem".

4 Results and conclusions

Both versions of the OPOA algorithm were used to analyze sixteen MD
simulations of a small chemokine MCP-1. Analyzing a Petri net generated
by the OPOA version 1 algorithm, one may easily �nd amino acids which
are more �exible than others by a simple checking number of places in
every ATS. Such an analysis has been performed for MCP-1 and its results
are presented in Figure 2.

Fig. 2. MCP-1 with highlighted amino acids with a large number of places in their
ATS (red) and the small number (blue).

25

The selected amino acids with relatively large number of places in
their ATSs are highlighted in red, those with small in blue. The "red"
regions contain the most �exible amino acids indeed. They are located
at the terminal loops. On the other hand the "blue" amino acids should
be located at the most stable parts of the protein. It is also true because
those "blue" parts correspond to β-sheet or regions stabilized by H-bonds
with β-sheet. The method is sensitive enough to detect such features, even
regions stabilized by H-bonds.

Petri nets created with OPOA algorithms allow also to study dynam-
ical properties of every amino acid. Points/places frequently visited by
each Cα atom can be easily identi�ed and may be analyzed. Moreover,
the usage of PN allows deeper data mining: one can extract all the paths
leading to/from the most frequently visited place. The general character-
istic of Cα movements can be analyzed.

The PN generated by the OPOA algorithm can be a useful tools to
improve analysis of MD trajectories. Moreover, the algorithm is a part of
bigger PN framework. This paper shows that PNs are very �exible and
universal modeling method, which is suitable not only for strict mathe-
matical uses but also for MD studies.

References

1. Anna Gogolinska, Rafal Jakubowski, and Wieslaw Nowak. Petri nets formalism
facilitates analysis of complex biomolecular structural data. RAIRO-Operations

Research, 50(2):401�411, 2016.
2. William Humphrey, Andrew Dalke, and Klaus Schulten. Vmd: visual molecular

dynamics. Journal of molecular graphics, 14(1):33�38, 1996.
3. Siewert J Marrink, H Jelger Risselada, Serge Ye�mov, D Peter Tieleman, and Alex H

De Vries. The martini force �eld: coarse grained model for biomolecular simulations.
The journal of physical chemistry B, 111(27):7812�7824, 2007.

4. Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541�580, 1989.

5. Wieslaw Nowak. Applications of computational methods to simulations of proteins
dynamics. In Handbook of Computational Chemistry, pages 1127�1153. Springer,
2012.

6. James C Phillips, Rosemary Braun, Wei Wang, James Gumbart, Emad Tajkhor-
shid, Elizabeth Villa, Christophe Chipot, Robert D Skeel, Laxmikant Kale, and
Klaus Schulten. Scalable molecular dynamics with namd. Journal of computational

chemistry, 26(16):1781�1802, 2005.

26

ePNK Applications and Annotations:

A Simulator for YAWL Nets

Ekkart Kindler

DTU Compute, Technical University of Denmark
ekki@dtu.dk

1 Introduction

The ePNK is an Eclipse based framework and platform for developing and inte-
grating Petri net tools and applications. One of its core features is that new types
of Petri nets can be realized and plugged into the ePNK without any program-
ming by providing a model of the concepts of the new type, the so-called Petri

net type de�nition (PNTD). Moreover, the ePNK allows developers customizing
the graphical appearance of the features of a new Petri net type.

The main idea and features of the ePNK have been presented before [1,
2]. One important aspect of the ePNK, however, has not been discussed yet:
realizing new applications for the ePNK and, in particular, visualizing the result
of an application in the graphical editor of the ePNK by using annotations, and
interacting with the end user using these annotations.

In this paper, we give an overview of the concepts of ePNK applications by
discussing the implementation of a simulator for YAWL nets [3].

2 The Result

Before we discuss how to develop the YAWL simulator for the ePNK, we give a
brief overview of the �nal result. Figure 1 shows a YAWL net with two YAWL
simulators running on it, where the current state of the simulator selected in the
ePNK application view are shown highlighted on top of the net in the graphical
net editor. The blue numbers at the top right corner of a place indicate the
current marking of the net, and the blue overlays of a transition indicate the
currently enabled transitions. The red overlays for places, arcs and transitions
indicate a path on which a token might arrive on place c4; this serves as a
warning that the user should not yet �re transition a6, since it is an OR-join
that is supposed to wait for all possibly incoming tokens.

In Fig. 1, you can also see that a YAWL net has exactly one start place and
exactly one �nish place, indicated by corresponding icons. In our example, there
is one OR-split transition (a1) and one OR-join transition (a6), indicated by the
corresponding graphical symbols. YAWL nets have some additional features like
AND- and XOR-joins and -splits, and reset arcs. But, our example from Fig. 1
does not show them.

27

Fig. 1. ePNK with two YAWL simulators running

Once the simulator is running and selected, the user can interact with it by
double clicking on the enabled transitions. This will �re the respective transition
and show the successor marking. And the user can go back and forth to the
previous or next marking by the respective buttons in the toolbar of the ePNK
application view. From there, it is also possible to save the current state of the
simulator with the save button, to start new applications via a drop down menu,
which will show all applications registered for the net in the currently active
editor. Moreover, the user, can shut down applications or load an application
from a state that was saved earlier. As long as the developer follows the guidelines
of the ePNK, these features do not need any extra programming.

3 The YAWL PNTD

Before actually realizing an application for YAWL nets in the ePNK, we need
to realize YAWL nets in the ePNK. This is done by providing a class diagram,
which de�nes all the concepts of YAWL. This is called a Peti net type de�ni-

tion (PNTD). Figure 2 shows the PNTD for YAWL nets: Places are extended
to Conditions, YAWL's name for places, which have an attribute type, saying
whether it is a normal, a start or a �nish place. Transitions are extended to
Actions, YAWL's name for transitions, which have two attributes, de�ning the
join- and the split-type of the transition; they can have the values AND, XOR
and OR. Likewise for arcs, there is an attribute de�ning the type of the arc,
which can be NORMAL or RESET.

28

Fig. 2. PNTD for YAWL

In addition to the concepts de�ned in the model, there are some constrains,
which we do not discuss here. In contrast to earlier versions of the ePNK, which
required some minor programming, version 1.2 of the ePNK does not need any
programming for plugging in a new PNTD; the model from Fig. 2 and the code
generated from it by EMF can be plugged in directly to the ePNK.

In addition to the PNTD, we would also need to customize the graphical
appearance for start and end places, reset arcs and the split- and join-types of
transitions by some minor programming. But, we do not discuss this here.

Then, the graphical editor of the ePNK would be able to show and edit
YAWL nets as shown in Fig. 1.

4 The YAWL Simulator

Next, we discuss the concepts of ePNK applications by the example of a simulator
for YAWL nets.

4.1 The Annotations

The �rst step is to de�ne the annotations that represent the runtime information
of an application; in the example of our YAWL simulator, this is a sequence of
markings of the simulator and the current marking.

Figure 3 shows the annotations de�ned for the YAWL simulator. The three
classes at the bottom de�ne the annotations EnabledTransition, SelectArc, and

29

Fig. 3. YAWL annotations

Marking, which we have seen in use already in Fig. 1. Note that we do not de�ne
new annotations for highlighting the path of possible tokens arriving at an OR-
join here, since we can reuse ObjectAnnotation, which is de�ned by the ePNK
already. The top part of Fig. 3, actually, shows the concepts of annotations as
de�ned by the ePNK.

Let us have a brief look at these concepts: The two concepts PetriNet and
Object on the left and shown in magenta come from the PMNL core model [4]
and represent concepts of Petri nets themselves along with their objects: places,
transitions, and arcs; but also pages, and reference transitions and reference
places. The orange classes at the top de�ne ePNK's concepts of annotations.
The ObjectAnnotation annotates exactly one object, which is represented by the
reference object. Note that it is crucial that a Petri net object itself does not know
anything about its object annotations at all. A NetAnnotation refers to one Petri
net and consist of many object annotations. The class NetAnnotations comprises
all the annotations of a running application, a set of net annotations�one of
which is pointed out as the current one. The interpretation of this structure is up
to the concrete application, but the default one is a sequence of net annotations.
The class NetAnnotations has some additional attributes, which is relevant when
an application�actually its state�is saved. In particular, the appId is used for
starting the respective application, from which the state was saved, again.

The ePNK de�nes one abstract class TextualAnnotation. An ePNK applica-
tion, by default, presents annotations inheriting from TextualAnnotation as tex-
tual labels at the top left of the object, showing the value of its value attribute.
In our YAWL simulator, the Marking is an example of a textual annotation. All
other annotations are, by default, shown as red overlays of the respective ob-
ject. But, we will see later that an application can actually customize how an
annotation is graphically presented.

30

As mentioned already, we de�ne three annotations for our YAWL simula-
tor. The annotation SelectArc is used for indicating which arcs of an enabled
transition can be selected by the user, and which of the are currently selected,
represented by the attribute selected. In order to de�ne the logic of the arc se-
lection (see Sect. 4.2 for details), the SelectArc annotations are related to the
respective EnabledTransition annotation.

4.2 The Application

The three new classes from Fig. 3 represent the state of the running simulator
with a NetAnnotations object as its root. We call this the runtime information

of the simulator. Each NetAnnotation represents a marking (plus the enabled
transitions and the selected arcs), current representing the current marking.

In addition to de�ning its runtime information, an application must imple-
ment three di�erent things: the initialization, some presentation handlers, and
some action handlers. The initialization needs to compute the initial net anno-
tations, representing the state initial state (the initial marking in our case); the
presentation handlers de�ne how the di�erent object annotations should be pre-
sented; the action handlers de�ne what should happen when the user interacts
with an annotation (or actually its presentation in the graphical editor).

Separating the de�nition of the runtime information, the presentation han-
dlers and action handlers in applications follows the architectural pattern of
model-view-controller (MVC).

Here, we cannot discuss all the details of implementing the action handlers
and the presentation handlers. But we give a brief overview. The YAWL simu-
lator has two action handlers: one for �ring the transition when the user double
clicks on its enabled transition annotation, and one for selecting or unselecting
arcs when the user clicks on an select arc annotation. The enabled transition han-
dler, basically, adds a new net annotation to the state of the simulator with the
annotations representing the new marking and makes this new net annotation
the current one. The select arc handler, basically, toggles the selected attribute
taking the semantics of the respective split or join into account.

The presentation handlers, basically, returns an overlay �gure for the respec-
tive graphical �gure representing the annotated object in the graphical editor.
In our case, it returns a blue overlay for an enabled transition and, dependent on
the selected attribute, a blue or grey overlay for a selected arc annotation. For
all other annotations, ePNK's default presentation handler kicks in, returning a
red overlay.

5 Conclusion

By the example of YAWL nets and the YAWL simulator, we have discussed
the main ideas of ePNK applications and how they are realized based on an
annotation model. Like the de�nition of YAWL nets themselves, the runtime
information of the simulator is de�ned by a model. Here, we could not discuss

31

ePNK and YAWL

annotations

meta models

+

M3 Ecore (~ EMOF)

M2
ePNK and YAWL

meta models

M1 YAWL net (model)

M0 YAWL case (simulation instance)

Fig. 4. MOF levels: YAWL nets and simulator

any technical details, for which we refer to the revised manual of version 1.2 of
the ePNK, which will be published shortly [5].

Modelling the runtime information following the MVC-pattern has many
advantages: among other things, allowing saving and loading the state of an
application in a uniform way without any additional programming by the de-
veloper of an application. Moreover, it clari�es which parts of the models and
meta models belong to which level in MOF [6] as shown in Fig. 4, where the
red arrows represent an is instance relation between di�erent models, and the
dashed arrow represents that a model is aconceptual instance of another model
like a simulation being an instance of a YAWL net.

References

1. Kindler, E.: The ePNK: An extensible Petri net tool for PNML. In: Applications
and Theory of Petri Nets - 32nd International Conference, Proceedings. Volume 6709
of LNCS., Springer (2011) 318�327

2. Kindler, E.: The ePNK: A generic PNML tool - users' and developers' guide for
version 1.0.0. Technical Report IMM-Technical Report-2012-14, DTU Informatics,
Kgs. Lyngby, Denmark (2012) URL http://www2.imm.dtu.dk/~ekki/projects/

ePNK/PDF/ePNK-manual-1.0.0.pdf.
3. van der Aalst, W., ter Hofstede, A.: YAWL: Yet another work�ow language. Tech-

nical Report QUT Technical report, FIT-TR-2002-06, Queensland University of
Technology, Brisbane (2002)

4. Hillah, L., Kindler, E., Kordon, F., Petrucci, L., Treves, N.: A primer on the Petri
Net Markup Language and ISO/IEC 15909-2. In Jensen, K., ed.: 10th Workshop on
Coloured Petri Nets (CPN 09). (2009) 101�120

5. Kindler, E.: The ePNK: A generic PNML tool - users' and developers' guide for
version 1.2.0. Technical Report 2017-??, DTU Compute, Kgs. Lyngby, Denmark
(2017 to appear)

6. OMG: Meta Object Facility (MOF) speci�cation, version 1.4.1. Technical Report
formal/05-05-05, The Object Management Group, Inc. (2005)

32

Detecting Security Attacks by Process Mining

Sebastian Mauser and Tobias Eggendorfer

Hochschule Ravensburg-Weingarten, Doggenriedstr., 88250 Weingarten, Germany

{sebastian.mauser,tobias.eggendorfer}@hs-weingarten.de

Abstract. Software attacks are often used to exfiltrate data or inject arbitrary

commands into systems in order to gain control over them. Most of these at-

tacks rely on changing a process' execution path. Process mining is a method to

identify a model of the process underlying a system. By monitoring process ex-

ecutions and comparing them to such model of the normal process, security is-

sues could be identified. This paper describes how this is achieved.

Keywords: Process Mining, Security Attacks, Process Monitoring, Petri Nets.

1 Introduction

Attacking software often means to either inject new code through a vulnerability such

as a buffer overflow or alter the execution path of a process, e.g. by a „return-to-libc“

attack. However these attacks are hard to identify, since according to Rice's theorem it

is impossible for a program to tell what another program is meant for. Social engi-

neering attacks, where users are tricked to use a program in another way than it was

intended by either the developer or the company policies, are even harder to detect by

other programs. The same issues arise with insider attacks where authenticated users

exfiltrate or manipulate data. However all these attacks share that the process’ execu-

tion path is altered and thus changes from the usual behavior of the program. In fact,

most attack vectors tend to change the normal process flow of a system by differing

from typical usage patterns, skipping parts of a program, injecting new program be-

havior or forcing anomalous program executions.

Therefore, this paper proposes an approach of automatically observing process ex-

ecutions of computer programs by monitoring usage data. This way anomalous execu-

tion paths can be detected in order to identify and prevent security attacks. To develop

appropriate techniques for analyzing process executions and distinguishing between

normal and suspicious system behavior, we use methods from the research field called

process mining [1, 2]. As the above examples show, such approach might provide an

effective security mechanism for some types of attacks, e.g. insider attacks, which so

far are almost impossible to detect. Moreover, for most other attack vectors our ap-

proach can be considered as an additional line of defense complementing existing

security measures of e.g. intrusion detection systems and firewalls. The long term

goal of our work is to develop a new process-based generic security system which can

be applied to any kind of software system.

33

We have conducted first research on the topic and created a simple prototype for

demonstration purposes [7]. Our approach is based on the preliminary research on

security and process mining by van der Aalst et al [2]. The latter paper discusses the

topic on a high level of abstraction focusing more on auditing. It has barely been con-

tinued specifically in the direction of security attacks and intrusion detection which is

the purpose of our research. In contrast to most other approaches on security attacks

and process monitoring which focus on pattern analysis, e.g. [3], our method is based

on the overall process flow of a system by using process mining techniques.

2 Motivation by an Industrial Case Study

A special motivation to work on this topic has been personal experience in the finan-

cial industry. In this area, data security and confidentiality are of particular im-

portance. However, the existing software landscape in finance companies often con-

sists of many legacy systems. These highly business critical systems are far from

meeting state-of-the-art software security requirements.

One of the authors has participated in a multi-million Euro project to significantly

improve the security of a legacy financial system. While the project was partly suc-

cessful, some security problems cannot be solved adequately for legacy systems.

Moreover, the costs of the project exploded and the overall cost-benefit ratio was very

poor. Due to this unsatisfactory situation which is valid for many legacy systems,

there is a growing need to find new generic solutions for improving the security of

such systems. In this context, the authors came up with the idea of a generic system to

detect security attacks using process mining techniques as presented in this paper. We

conducted a first case study on a real world financial system which will briefly be

sketched in this section.

In this study a web application which is used to process financial trades has been

investigated. Every process activity of a user of the system is stored in a so called

event log together with a time stamp, the trade-id of the processed trade and some

additional information.1 The sequence of activities executed for one trade defines one

execution of the system’s trading process. Such process execution is called a case of

the process [1]. All cases of the process can be identified by ordering the recorded

activities related to a certain trade-id according to their time stamps. These cases

show what really happened in the system, i.e. the true trading process. One main idea

of process mining is to generate a model of this process from all the cases stored in

the event log [1]. This is called process discovery. In literature, numerous process

discovery algorithms have been proposed and many of them are implemented in the

tool ProM developed at Eindhoven Technical University (http://www.promtools.org).

The event log of the trading software used here covers a three-month period of sys-

tem usage with 62380 events, 10913 cases (trades) and 10 different activities. This log

has been imported to ProM. For process discovery, the heuristic miner of ProM has

been used, which implements the heuristic process mining algorithm described in [5].

1 Note that the system also contains user activities which are not connected to a trade. To only

focus on the trading process, these activities have been removed from the event log.

34

This popular process discovery algorithm is particularly suitable to express the main

behavior of a process and to deal with noise. The degree of abstraction of the resulting

process model can be configured by various settings of the algorithm. The algorithm

generates a process model in the form of a dependency graph which shows the de-

pendencies of the process activities together with the frequencies of activities and

ordering relations in the log. For the given log we used the standard ProM-settings of

the heuristic miner despite of the threshold for “length-two-loops” which was set to 0

(since these loops are important in the trading process). The dependency graph gener-

ated from the log is shown in Fig. 1. As confirmed by domain experts, this graph is a

good representation of the real trading process. Note that for confidentiality reasons

the real activities of the process like submit, acknowledge or cancel a trade are not

disclosed in the diagrams of this paper.

Fig. 1. Dependeny graph model of trading process generated by heuristic miner.

Now having a valid model of the process and a corresponding event log, we are able

to set up a monitoring system that observes the live event data in the event log and

detects deviations from the normal business process given by the dependency graph.

The crucial question here is if this helps to identify security attacks of hackers.

In our example, an attacker would of course try to unauthorizedly process a trade.

Since the trading activities in the system require different roles and thus must not all

be done by the same person, the attacker would perhaps try to skip some of the steps

or execute all of the steps with the same system user or manipulate a canceled trade or

something like that. For this purpose, he will play around with the possibilities offered

by the user interface and do things a normal user would never do. Moreover, he would

try to manipulate the system in order to force behavior that is not possible when nor-

mally interacting with the user interface. In any case, this would result in a process

execution that does not correspond to normal process behavior and would therefore be

detected by a respective monitoring system.

Results from a penetration test of the trading software done by a security testing

company gave evidence for these assumptions. The penetration test used a combina-

tion of several attack patterns. The results of the penetration test clearly showed that

the attacks led to deviations from the normal process. In fact, most security attacks

require playing around with the system resulting in anomalous process executions.

35

3 Algorithmic Aspects

Finally, we discuss some algorithmic and technical details of using process mining to

detect security attacks.

Process Model. For such approach a reference model representing normal process

executions has to be generated. The reference model serves as a basis to decide

whether newly observed execution paths of the process are potential security viola-

tions or not. In Section 2 we used a dependency graph as a references model which

worked well in this case. However, the example process includes no concurrency and

only local dependencies of activities. Although in [5] it is shown how the heuristic

miner can deal with these aspects, in our opinion the resulting models are not any

more intuitively understandable. For modeling concurrency additional modeling ele-

ments have to be added such as e.g. in c-nets [1, 5]. Moreover, long-distance depend-

encies in dependency graphs can hardly be distinguished from short-cuts such as

skipping the activity E in Fig. 1. For a general process including concurrency and

long-distance dependencies, a Petri net based model is a more natural choice since

Petri nets can intuitively represent the fine interplay of concurrency and non-

determinism. In Fig. 2 a Petri net is shown which was automatically generated by

ProM from the dependency graph in Fig. 1.

Fig. 2. Petri net model of trading process generated from the graph in Fig. 1.

Event Log. To generate such Petri net model using process mining we first have to

find an adequate event log of the observed system, e.g. an audit trail containing in-

formation about the underlying business process as in the example of Section 2 or a

low level log file recording technical events about process executions. Both low level

and high level data are suitable for our approach since they both can be used to find

process deviations caused by security attacks. Today’s software systems often provide

such logging data. For instance, in the financial domain mentioned before, a vast

amount of logging information is usually available ranging from low level to high

level system events. Given an appropriate event log, a major challenge is how to iden-

tify the cases in the log, e.g. in the example this has been done via the trade-id. As our

first practical experiments showed, the information available in typical logging data

can very well be used for our security monitoring approach. Still, when this is not the

36

case for some system, it is often possible to generate adequate usage data by applying

a generic tracing mechanism and potentially memory layout analysis.

However, a problem is that the event log of a system may already contain security

violations from past attacks which will then possibly be classified as correct process

executions. This problem can either be solved by some filtering technique, e.g. the

process discovery algorithm ignores process executions with low probability as it is

the case for the heuristic miner used in our example, or by specifically supervising the

learning phase when the event log is created, e.g. in this time only test users work

with the software in some offline setup.

Process Discovery. The main algorithmic challenge is to generate a Petri net pro-

cess model from a given event log such that the model is suitable for security moni-

toring. In this context an evaluation of existing process discovery approaches and

possibly the development of a new algorithm is necessary. Typical questions of pro-

cess discovery such as probabilities, timing, noise, unobserved normal behavior, sim-

plicity, fitness, precision, generalization etc. [1] have to be handled in an appropriate

way for a security monitoring system.

We illustrate the difficulties of process discovery by a short example. By playing

around with the example log of the trading software we found some exceptional be-

havior. For instance, for three trades activity F has been executed twice. This behavior

is not included in the model of Fig. 1 since it has been filtered out by the heuristic

miner. It seems appropriate to not include such behavior in the reference process

model because on the one hand the system has not been correctly used in these three

cases and on the other hand the model might become too complex yielding a useless

spaghetti-model when including all such exceptional behavior. However, it can also

be argued that omitting such exceptional behavior from the reference model might

cause a false alarm the next time the same misuse occurs by a regular user.

Process Monitoring. Finally, a monitoring mechanism which checks the live log-

ging data of the observed system for suspicious process’ execution paths has to be

implemented. Based on a comparison to the reference process model, the probability

that a new case is a security violation has to be evaluated. In case of a potential attack,

the security system can take appropriate measures, e.g. generate a warning message

for administrators, block a further execution of the process, log out the user, etc.

A simple evaluation method is to check if the new case can be executed in the ref-

erence Petri net by playing the token game. However, this might be too strict yielding

a lot of false alarms because as shown before regular users sometimes slightly deviate

from the normal process. A more appropriate approach is using techniques from the

area of conformance checking in process mining [1]. While in general conformance

checking compares the process model to a whole event log, Petri net based approach-

es often consider the so called fitness of single cases. In [4] the fitness of a case is

defined by the number of tokens which have to be added to the net such that the case

can successfully be replayed in the net. In [6] the cost of “movements” such that the

case can be executed in the net is computed. To define an appropriate notion of fitness

of cases in the context of security monitoring we can also regard a “nearest neighbor”

approach, probabilities, resources etc. Then, we can use a threshold value for the fit-

ness of a case to decide whether a new case is classified as a security violation.

37

As an example consider the standard case A-B-C-D-F of the process shown in Fig.

2. Of course this case can be executed in the Petri net and thus will not be classified as

a security violation. The same holds e.g. for the case A-B-G-B-C-D-E-F. However,

for the exceptional behavior of some users including slight deviations from the nor-

mal process, e.g. executing the activity F twice as mentioned before, this is not true.

For instance the case A-B-C-D-F-F cannot be executed in the net. However, for a

successful replay of the case only one extra token has to be added to the input place of

the F-activity. That means, according to the approach in [4] only one token is missing

for successful replay compared to ten tokens which are produced in the net during

execution of the case. This yields a relation of missing tokens to produced tokens of

0.1 and a fitness of 1 – 0.1 = 90% when only considering missing tokens (in [4] also

remaining tokens are regarded). Therefore, given a threshold value for fitness of e.g.

80% (< 90%), the exceptional case would not be classified as a security attack.

4 Conclusion

We already discussed the approach presented in this paper on a security workshop [7]

and the feedback from the security experts was positive. With this paper, we now

want to also discuss the approach with the experts in Petri nets and process mining.

In [7] a first prototype implementation has been developed. It has been tested

against a simple web shop application for a first analysis. The results of our initial

research are promising. We were in this paper able to theoretically and practically

show that our approach is capable of effectively detecting security violations. In the

future we plan to extend our work along the lines sketched in this paper.

References

1. Aalst, W..: Process Mining: Discovery, Conformance and Enhancement of Business Pro-

cesses. Springer, Berlin (2011).

2. Aalst, W., Medeiros, A.: Process Mining and Security: Detecting Anomalous Process Exe-

cutions and Checking Process Conformance. Electronic Notes in Theoretical Computer

Science, 121:3-21 (2005).

3. Forrest, S., Perelson, A., Allen, L., Cherukuri. R.: Self-Nonself Discrimination in a Com-

puter. In: Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy,

pp. 202–212. IEEE Computer Society Press, Los Alamitos (1994).

4. Aalst, W., Rozinat, A.: Conformance Checking of Processes Based on Monitoring Real

Behavior. Information Systems, 33:64-95 (2008).

5. Weijters, A, Aalst, W., Medeiros, A.: Process Mining with the Heuristics Miner-algorithm.

BETA Working Paper Series, WP 166. Eindhoven University of Technology (2006).

6. Aalst, W., Adriansyah, A., Dongen, B.: Replaying History on Process Models for Confor-

mance Checking and Performance Analysis. Wiley Int. Rev. Data Min. and Knowl. Disc.,

2, 2:182–192 (2012).

7. Mauser, S., Eggendorfer, T., Wichert, D.: Using process mining to identify attacks. In:

Proceedings of the 3rd Interdisciplinary Cyber Research Workshop, pp. 36-37. Tallinn

University of Technology (2017).

38

Netgrif Workflow Management System based on
Petriflow language

Juraj Mažári1,2, Gabriel Juhás1,2,3, Milan Mladoniczky1,2, Tomáš Gažo2, and
Martin Makáň2

1 Faculty of Electrical Engineering and Information Technology
Slovak University of Technology in Bratislava,

Ilkovičova 3, 812 19 Bratislava, Slovakia,
2 NETGRIF, s.r.o.,

Blumentálska 12, 811 07 Bratislava, Slovakia
netgrif@netgrif.com

Home page: http://www.netgrif.com
3 BIREGAL s. r. o.,

Klincova 37/B, 821 08 Bratislava, Slovakia
biregal@biregal.sk

Home page: http://www.biregal.com

Abstract. Netgrif Workflow Management System (Netgrif WMS) is
JVM based application build on Spring framework. Netgrif WMS can
be used to import Petriflow workflows in form of an XML file. Process
roles are then assigned to other users by authorized user. Users can create
new cases (instances) of imported workflows. New tasks are automati-
cally generated for each new case. Users with corresponding roles are
able to assign, reassign, finish or cancel task. Tasks data fields can be
edited by assigned user and are automatically validated and saved.

Keywords: Petri nets, workflow, Spring Boot

1 Introduction

Modern companies need workflow management systems that are able to fre-
quently change their workflows according to changes in bussiness. Petriflow lan-
guage aims to provide modeling capabilities to satisfy this needs [1]. Netgrif
Worfklow Management System is build as a tool for execution of Petriflow based
workflows. Petriflow workflows are place/transition nets extended by roles for
assigning and executing tasks represented by the net transitions and by data
variables, which can be assigned to transitions. Data variables can be assigned
to several transitions and for each transition a data variable can have differ-
ent atributes, which specify for example whether the value for the variable is
required, optional etc. Netgrif WMS enable to import Petriflow workflows and
create new cases of them. Assigning, finishing and canceling tasks of created cases
is available for registered users with process roles associated with the tasks. User
management is available for users with admin system role.

39

2 Architecture

Netgrif WMS is build as a three-layer client-server application. AngularJS frame-
work is used on presentation layer, Spring Boot framework on application layer
and multiple databases on data layer. Figure 1 depicts three-layer architecture
of Netgrif WMS.

Fig. 1. Netgrif WMS three-layer architecture

2.1 Presentation layer

AngularJS framework is base stone of the presentation layer. AngularJS uses
the MVC design pattern. The model, view and controller are well defined in
AngularJS and serve to simplify the development process. Figure 2 shows com-
munication between those components, web browsers and application layer [2].

The main advantage of AngularJS is that it enabls to easily create Angu-
larJS services that communicates with multiple web-services. These services can
be used on many places in order to optimize the size of the code. Along with An-
gularJS, Netgrif WMS also uses AngularJS Material framework. It provides a set
of reusable UI components based on Google’s Material Design. This gives Netgrif
WMS modern look on which many users are accustomed. Therefore navigation
and UI components are user friendly.

2.2 Application layer

Application layer of WMS is build on Spring Boot framework. In accordance
with rapid development, Spring Boot makes it easy to create stand-alone appli-
cations that can be started by simple java -jar command thanks to embedded
Tomcat [3]. Spring framework also introduces dependecy injection, which en-
ables autowiring of components.

Application layer is divided into multiple modules separating their concerns.
Each module consists of three packages - domain, service and web. Domain

40

Fig. 2. AngularJS internal and external communication

package contains entity classes which are persisted into database. Bussines logic
is kept in service packages. According to Spring customs, interface is created
and used to autowire each service. Web package keeps request and response
body classes and REST controllers, which calls methods on autowired services.

2.3 Data layer

Data layer leverages benefits of different database systems. Structured data
which are rarely changed, such as user credentials, are stored in MySQL databa-
se. User sessions are stored in in-memory database Redis. Tasks, cases, imported
workflows and other unstructured and constantly changing data are stored in
MongoDB database.

Each of these databases is easily accessible via Spring Data project. It en-
ables to use databases without any configuration. Spring Data also reduce the
amount of boilerplate code required to implement data access layers for various
persistence stores.

2.4 Presentation-application layer communication

Presentation and application layer are connected via REST web-services. HA-
TEOAS constraints are applied on those web-services. Main advantage of HA-
TEOAS principle is that presentation layer does not have to know all web-
services URLs. HATEOAS response provides data and all accessible web-services
for the given resource.

3 Implementation

Netgrif WMS is implemented as a Spring Boot project build by Maven. Open
source automation server Jenkins is used for building and deploying. This tool
automatically builds and deploys new version of Netgrif WMS after each commit
to git repository. In this way it is secured that latest version is always tested and
deployed if all tests passed.

41

Classes extending Spring Boot’s CommandLineRunner interface are runned
at startup. This is used to create dummy data for development. Sample user
accounts and cases are easily generated this way. Using spring boot property
spring.jpa.hibernate.ddl-auto set to create-drop for development use al-
lows to automatically create new version of data at startup and delete existing
data on application end.

Import of a workflow net has gone through many changes. Best option comes
to be use of JAXB API. Java classes are generated from Petriflow XSD def-
inition. Those classes are used to unmarshall XML file. Unmarshalled file is
processed by importer and persisted into MongoDB database as domain objects
which are used by Netgrif WMS. Original XML file is also saved to local direc-
tory. Later it can be used to get a snapshot of a state of any case in the system.
This is very useful for debugging during development phase. It is also possible to
see a complete list of all data fields and their values for any case. These features
are only available for development environment.

Generated tasks of a case can be assigned by user himself or delegated by
another user. This allows both pull and push control [4] of tasks assignement.
Both actions are possible only for users with assign and perform roles assigned
to the task.

Netgrif WMS supports three types of triggers, namely user, automatic and
time triggers. Tasks with automatic trigger are finished by the system imme-
diately. Potential conflicts of automatically triggered tasks (transitions) are re-
solved by priority according to the order of the transitions in the original XML
Petriflow file. Time triggers can be set to specific date and time or specific delay
from the current time.

4 User interface

Users can be invited by admin users through admin console. Admin can define
users email, organizations and process roles for imported processes. This will
send email invite to specified address. Invite contains link to registration form
in which user have to enter his name and password. Users email is used as a
login. In the next tab, admin can manage process roles of already registered
users according to the definition of roles in the Petriflow file.

Netgrif WMS provides two different views for managing tasks. Task view
displays all available and assigned tasks for logged in user. Task panel is expanded
upon clicking on it. Expanded task panel shows all visible data fields. User can
change each editable data field and new value is automatically validated and
saved. Invalid values are highlighted and task containing invalid data fields can
not be finished.

Second view is named case view. Case view displays all available cases. After
clicking on case panel a new tab is opened. Tasks belonging to selected case are
displayed in that tab. Each task panel behaves the same way as in task view.
This enables users to work with multiple cases simultaneously. User can create

42

Fig. 3. Example of task view in Netgrif WMS

new case by clicking on a + button in tabs panel. This opens a dialog which
enables user to select desired workflow, case title and label color.

5 Summary

Netgrif WMS is a light version of a workflow engine based on the Petriflow
processes, which are basically Petri nets enriched by roles and data variables
associated with transitions. A user registered in Netgrif WMS is able to upload
processes and thus becoming their owner. Netgrif WMS enables to create new
cases for a given Petriflow process and to control the cases processing according
to the business logic given by the Petri net modelling the Petriflow process. For
a case, the new copy of the underlying Petriflow process is created. The owner
of the process can associate other users to assign and execute roles defined in
the process. Once a transition of the case is enabled to fire, only users associated
to an assign role of the transition can assign the corresponding task of a case
modelled by the transition to the users associated with the execute role of the
transition. By assigning a user to the transition, the tokens from pre-places of
the transition are consumed. The user from the execute role assigned to the
transition is able to manipulate with the values of data variables associated with
the transition according to the policy defined by the Petriflow process model
e.g. to fill the values of data fields specified as required for the transition, or
to compute the values according to some formula over other data variables of
the case etc. After all required data fields are filled, the assigned user from the
execute role can finish the task execution. By finishing the task, the tokens are
produced to the post-places of the transition.

43

Fig. 4. Example of case view in Netgrif WMS

6 Conclusion

In this paper we introduced Netgrif Workflow Management System application,
which is based on modern principles and technologies. It leverages main advan-
tages of Petriflow language and supports rapid deployment of frequently chang-
ing workflows. From real world experiences we have learned this feature is highly
valued and required by many companies. Future development includes new archi-
tecture. With Spring Boot 2.0 coming in December 2017 we plan to go reactive
with Netgrif WMS. We are going to break the whole project into separate and
independent microservices. Spring Boot 2.0 will introduce support for reactive
programming. This will give us non-blocking, event-driven and easily scalable
application. Presentation layer will also undergo changes. We are going to create
UI service that will put together UI client from UI components based on workflow
definition. We plan to use event sourcing and Command Query Responsibility
Segregation for some microservices. This will provide us with a complete history
of events and changes in any case.

References

1. Mladoniczky, M., Juhás, G., Mažari, J., Gažo, T. and Makáň, M.: Petriflow: Rapid
language for modelling Petri nets with roles and data fields. Proceedings of the
Workshop Algorithms and Tools for Petri nets 2017, October 19-20, 2017, Technical
University of Denmark, Kgs. Lyngby, Denmark, (2017)

2. Williamson, K.: Learning AngularJS: A Guide to AngularJS Development O’Reilly
Media, Inc., (2015)

3. Walls, C.: Spring Boot in action Manning Publications Co., (2016)
4. Van der Aalst, W. M.: The application of Petri nets to workflow management.

Journal of circuits, systems, and computers, 8.01, 21-66 (1998)

44

Petriflow: Rapid language for modelling Petri
nets with roles and data fields

Milan Mladoniczky1,2, Gabriel Juhás1,2,3, Juraj Mažári1,2, Tomáš Gažo2, and
Martin Makáň2

1 Faculty of Electrical Engineering and Information Technology
Slovak University of Technology in Bratislava,

Ilkovičova 3, 812 19 Bratislava, Slovakia,
2 NETGRIF, s.r.o., Blumentálska 12, 811 07 Bratislava, Slovakia
netgrif@netgrif.com, Home page: http://www.netgrif.com

3 BIREGAL s. r. o., Klincova 37/B, 821 08 Bratislava, Slovakia
biregal@biregal.sk, Home page: http://www.biregal.com

Abstract. Petri nets are the right tool for modelling of control flow of
workflow processes. For more accurate reflection of reality it is necessary
to extend Petri nets by more components. For this purpose, modelling
language Petriflow was created, that adds roles and data variables to
Petri nets and maps roles and data variables to transitions. Develop-
ment of the language is deeply influenced by real requests incoming from
customers or developers modelling complex processes. Every feature of
the language is based on real life needs of modelling more robust and
complex processes. Based on experience each property of the language
was abstracted from real life models of processes. In Petriflow it is pos-
sible to model control flow of processes via place/transition Petri nets
enriched by reset arcs, inhibitor arcs and read arcs. Petriflow language
also introduces layer of roles and data variables into nets. The roles define
who can assign an enabled transition and who can execute a transition
of the net. The relation between data variables can be defined with an-
other property of the language named Actions. In contrast with other
modelling languages, Petriflow allows to set visual aspect of a modelled
process, such as behaviour and style of presentation for components.

Keywords: Petri net, Petriflow, modelling, roles, data, process

1 Introduction

Petri nets are a perfect tool for modelling processes. Everybody can understand
the modelled process with minor knowledge of Petri nets rules. But the situation
is different in the commercial sphere. A majority of people, who model processes
as their everyday job, consider Petri nets too simple or incapable to grasp the
complex nature of real business processes. Petriflow language was created for
purpose of taking advantage of the simple nature of Petri nets and extend them
to meet any requirements of the real life business modelling. Every feature is

45

added to the language based on an experience and on requirements from cus-
tomers. Petriflow language is developed with the rapid development in mind. If
a customer requirement to model a feature of a process is out of scope of the cur-
rent version of the language, the property is analysed in order to understand the
nature of the requirement. If the requirement can be generalised, the resulting
requirement is abstracted and implemented as a new property of the language.
Petriflow language is written in XML format for the most part. Data field actions
are the only exception. They are written in a domain specific language based
on Groovy programming language. There are different Petri net extensions and
Petri net based tools for modelling workflow processes, such as CPN [1] based
on Coloured Petri nets [6], Viptool [2], [3], Yasper [4] or ProM [5], to mention
just some of them. The question arises why to create another extension of Petri
nets. Most of the Petri net extensions are determined to create models and some
of them to analyse the models. Models are only the first step in a life-cycle of a
business process management (BPM). The main advantage of BPM is that the
model can be used to control the workflow process according to the designed
model using a workflow engine. The problem of the most existing Petri net ex-
tensions is that they were implemented with different aims, mostly to extend
the expressiveness of the formalism, or to analyse models, but they do not pro-
vide all the information about implementation details needed for the generation
of a deployable application, such as resource management, manipulation with
data, or behavioural aspects of the graphical user interface. Another problem
is with the case generation. Usually, a model obtained via a Petri net can be
understood as a general definition of a model of a process, while the single cases
can be understood as instances of the process. Using an analogy with object-
oriented programming, a model can be understood as a class, while single cases
can be understood as objects of that class. In Petri net based modelling tools,
the realisation of cases is often done using coloured Petri nets [6]. But in such
tools, colours are used both for distinguishing cases from each other as well as
for modelling the data of the cases. For the above mentioned reasons, we develop
a new language for creating deployable models of workflow processes based on
Petri nets. From the very beginning, along with the definition of the Petriflow
language, we develop the workflow engine called Netgrif Workflow Management
System, where the Petriflow models can be deployed and executed.

2 From Petri nets to Petriflows

As mentioned before, Petriflow language extends Petri nets with other compo-
nents. As the underlying model, we use place/transition nets enriched by reset
arcs, inhibitor arcs and read arcs. The read arcs appear quite necessary in order
to model unbounded number of concurrent reading of data in a case. To meet
modern business modelling requirements other layers were brought to the lan-
guage on top of Petri nets. Roles are the first layer to extend Petri nets. Roles
layer defines who can fire transitions to which they are bound. Data variables
were added as the second layer on top of modelled processes. Data variables rep-

46

resent all properties of an instance of a process during its life-cycle. To have more
control over process instance data, data field actions were added to Petriflow.
Actions can define relations or dependencies between data fields in the model
of a process or generate values based on a process instance state. All extensions
and layers create the right tool for modelling complex, yet simple to understand
models of any process that comes to mind.

2.1 Transitions as tasks

In classical Petri nets, firing a transition is one atomic event. During this event
a transition consumes tokens from connected input places and produce tokens
to output places. The number of consumed and produced tokens is according
to the firing rule in original Petri nets. In Petriflow language execution of a
transition represent an activity executed by an actor (a user or a system). In the
current version of Petriflow language transitions of the underlying net can either
represent immediate events (event transitions) or transitions can represent tasks
(task transitions) consisting of the assign event, an action which correspond to
the state, during which the activity is executed, a cancel event, an optional
delegate event and a finish event:

1. Assign event - consumes tokens from input places of the transition in the
underlying net.

2. Action - is the state where an actor, who executes the activity, does his job
defined by the activity.

3. Cancel event - cancels the task, i.e. produces the consumed tokens back to
the input places of the transition in the underlying net.

4. Optional Delegate event - delegates the task to an another actor.
5. Finish event - produces tokens in the output places of the transition in the

underlying net.

Fig. 1. A subnet modelling a transition representing a task

To illustrate the detailed behaviour of a task transition in the Petriflow lan-
guage, consider that in the underlying net a task transition has an input place
Unassigned connected with the task transition by an arc with weight one and an
output place Finished connected with the task transition by an arc with weight

47

one. Detailed behaviour of the task transition occurrence representing the task
execution can be expressed by a subnet of the underlying Petri net in Figure 1.

3 Role layer in Petriflow

Roles can be defined for Petriflow processes. If a role is associated with an event
transition, then it specifies that an actor associated with the role can fire the
event transition. In the case of a task transition Petriflow language enables to
specify for the role associated with the task transition, whether the actor can fire
the assign event, whether the actor can perform the action and fire the cancel
event and the finish event or whether the actor (optionally) can delegate the
event to be performed by other actor. Assigned or delegated actor has to have a
role that authorise to perform the action and to finish the task.

4 Data layer in Petriflow

In Petriflow language the data layer consists of data variables and their binding
to transitions of the model of the process. In Petriflow language a data variable
is primarily defined by its type, unique id and title. The type attribute of data
variable determines the data structure of the variable. For example, if the data
type of variable is set to number, the value is stored as a number of the type
double. Petriflow language allows to use of primitive data types like number,
boolean, as well as standard data types such as date, text as well as more complex
types like enumeration, multi-choice, file and table. The language also introduces
domain specific types user and case reference. The user type stores the reference
to the specific user of the system, who has assigned a process role. The case
reference data type is used when it is required to create connection between two
different cases. Visual attributes can be also set in the data variable object to
more precisely define the representation and behaviour of the data variable in
graphical user interface. For example, the attribute placeholder sets a text value
of a data field element when no user defined default value is present.

4.1 Binding data fields to task transitions

It is not a rule that every data variable has to be bounded to some task transition.
A data variable should be bounded to a transition if it is desired to display its
values to the user performing the task transition. A data variable associated to
a task transition is called data field of the task transition. Obviously, a data
variable can be bounded to several transitions. A data field, i.e. a connection
between a data variable and a task transition is implemented as a reference inside
of the task transition. The referenced data variable is identified in the reference
task transition by its unique id set in the data variable object. In addition to
data variable id, reference object has attributes to set data field behaviour and
logic inside of the transition. Behaviour attribute defines relation of the data

48

field to the transition. The attribute values can be hidden, visible, editable, and
required. When the data field in a transition is visible user can see the value of
the data field but cannot modify it. When one or more data fields in a transition
are set as required, this transition cannot be finished until every required data
field is filled. Values in the logic attribute are functions. In Petriflow language
they are named as Actions. They are executed when the value is changed inside
of the referenced data field.

5 Petriflow Actions

Actions are functions executed every time when a value inside of a data field
is changed. Actions can be placed into a data variable definition or into a data
field logic attribute (i.e. into a data variable reference inside of a task transition).
Each action contains two parts. Action variables are defined first. They reference
to a data variable or a transition in the process model. Second part consist of
keywords that define a desired expression. Values of data variables referenced by
action variables are changed according to the evaluated expression. Actions are
not written in XML format. Actions implementation is based on Groovy DSL
meta language. Groovy allows to define own semantics for domain specific lan-
guage and then compiles it to an executable code. All actions are compiled after
successful import of a model to Netgrif WMS and then saved into a database.
Actions are a big advantage of Petriflow language, because they define relations
between data fields across whole process model. They modify information stored
inside of each case of the model in real time as transitions are fired.

Algorithm 1 Usage of action defined in DSL

1 <data type=” enumerat ion ”>
2 < t i t l e>PERIODICITY</ t i t l e>
3 < i d>108001</ i d>
4 <v a l u e s>y e a r l y</ v a l u e s>
5 <v a l u e s>q u a r t e r l y</ v a l u e s>
6 < i n i t>q u a r t e r l y</ i n i t>
7 <a c t i o n t r i g g e r=” s e t ”>
8 f i e l d : f . t h i s , amount: f . 308004 , payment: f . 3 08006 ;
9 change payment about {

10 i f (f i e l d . v a l u e == ” y e a r l y ”)
11 r e t u r n 0 .95∗ amount as Double ;
12 i f (f i e l d . v a l u e == ” q u a r t e r l y ”)
13 r e t u r n amount/4 as Double ;
14 }
15 </ a c t i o n>
16 </ data>

49

For better illustration, consider the data variable object with the action
defined in Algorithm 1. The data variable object is an enumeration with two
choices, namely yearly and quarterly, with the initial value quarterly. The action
works with three action variables, namely field which refers to the data variable
itself, action variable amount, which refers to the data variable with id 308004
and action variable payment, which refers to the data variable with id 308006.
Consider, that in the data variable referred by action variable amount is stored
the previously computed amount of an insurance. The action works as follows,
if the value yearly is set, then 5% discount is given and the value of the data
variable referred by action variable payment is set to the 95 % of the insurance.
If the value quarterly is set, then no discount is given and the value of the data
variable referred by action variable payment is set to the one quarter of the
insurance.

6 Conclusion

We have briefly introduced Petriflow language, which is an extension of Petri
nets using roles and data variables associated with transitions and functions
over data variables called actions. The Petriflow language is suitable for creating
deployable models of workflow processes. The further step is to enrich the Petri-
flow language by the possibility to define process scope (global) variables and by
the communication with data passing between cases of different processes either
via task transitions or via a constructor.

References

1. M. Beaudouin-Lafon, W. E. Mackay, M. Jensen, P. Andersen, P. Janecek, M. Lassen,
K. Lund, K. Mortensen, S. Munck, A. Ratzer, K. Ravn, S. Christensen, K. Jensen:
CPN/Tools: A Tool for Editing and Simulating Coloured Petri Nets In: Tools and
Algorithms for the Construction and Analysis of Systems, LNCS 2031, pp. 574577,
Springer-Verlag, 2001.

2. R. Bergenthum, J. Desel, G. Juhás, R. Lorenz: Can I Execute my Scenario in Your
Net? VipTool tells you! In Application and Theory of Petri Nets and Other Models
of Concurrency. LNCS 4024, pp. 381390, Springer-Verlag, 2006.

3. J. Desel, G. Juhás, R. Lorenz and C. Neumair: Modelling and Validation with
VipTool. In: BPM 2003, LNCS 2678, pp. 380389, SpringerVerlag, 2003.

4. K.M. van Hee, J. Keiren, R. Post, N. Sidorova, J.M. van der Werf: Designing case
handling systems. In Transactions on Petri Nets and Other Models of Concurrency
I, LNCS 5100, pp. 119133, Springer, Berlin. 2008.

5. B. van Dongen, A.K. Alves de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and
W.M.P. van der Aalst. The ProM framework: A New Era in Process Mining Tool
Support. In Application and Theory of Petri Nets 2005, LNCS 3536, pp. 444454.
Springer-Verlag, Berlin, 2005.

6. C.W. Gunther, W.M.P. van der Aalst: Modeling the Case Handling Principles with
Colored Petri Nets. Proceedings of the Sixth Workshop and Tutorial on Practical
Use of Coloured Petri Nets and the CPN Tools, 2005, Department of Computer
Science, University of Aarhus, PB-576, 211230.

50

A Simple Prototype of Distributed Execution of
Reference Nets Based on Virtual Machines

Daniel Moldt, Jan Henrik Röwekamp, and Michael Simon

University of Hamburg, Faculty of Mathematics, Informatics and Natural Sciences,
Department of Informatics, http://www.informatik.uni-hamburg.de/TGI/

Abstract Fast execution of Petri nets is one goal of Petri net tool
providers. For complex models with a large set of concurrent simula-
tion tasks in each simulation engine there are multiple possibilities for
a speed up. Beside parallel Petri net execution within one simulation
engine distributed execution is another option. In our research group a
proposal for the distributed simulation of Reference Nets has been made.
The approach connects multiple simulations over a network, but is agnos-
tic to the environment in which these are executed. In this contribution
the distributed simulation’s scalability by the usage of virtual machines
is shown. We use an algorithm to calculate prime numbers to illustrate
the performance changes. The costs of communication and synchroniza-
tion for complex bindings are discussed to find a good trade-off for the
decision whether to distribute an execution or not.

Keywords: Petri Nets, Reference Nets, Distributed Simulation, Virtual
Machines, Synchronous Channels, Renew

1 Introduction

Distributed execution or distributed simulation of Petri nets is of high interest.
Using a concurrent semantics (e.g. step or true concurrency semantics) the op-
tion for distributed execution is inherently given. Utilizing this option in the
context of Petri nets brings up the major task of net partitioning. Several pro-
posals have been made to implement a distributed simulation, see section 4.
To allow for a flexible and expressible partitioning of the net models we follow
the Paose-approach [13] to use modeling units that have a behavior with tight
application-oriented internal local coupling and only loose coupling of larger
units (e.g. message exchanging agents or organizations). Reference nets (see sec-
tion 2) alongside with synchronous channels (see [5,10]) deliver the foundation
for it. Together with our object- and agent-oriented modeling paradigm (see
[14,8,2]) we have an intuitive separation according to the application oriented
structuring of the models. While the default conceptual approach is to use syn-
chronous channels for message exchange, asynchronous message passing without
unification can be modeled as well.

In [16] and [17] algorithms and an implementation for distributed synchronous
channels based on Java RMI are proposed. It allows a bi-directional synchroniza-

51

tion across physical machine boundaries using a network, however, without the
full arbitrary nesting of variable binding calculations.

In [1] virtual machines1 are used in general for a single execution run without
distribution of the whole execution for a given model. Each net is simulated in
isolation. Therefore the modeler has to manage the simulation of these nets.

In this paper we describe a simple prototype to apply technical solutions from
the field of VMs to allow the execution of a single net model within several VMs.
To the best of our knowledge our solution is the first to implement a synchronized
firing of distributed simulated high-level Petri nets based on virtual machines
supporting atomic firing of transitions with bi-directional parameter exchange.
It is used to demonstrate the potential of distributed simulation for complex and
highly concurrent nets where the number of processors is much smaller than the
number of possible concurrent tasks.

Section 2 introduces our tool Renew, the basic formalism Reference Nets,
their powerful synchronous channels and some relevant facts about virtualiza-
tion as we consider it here. Our simple example of a primitive algorithm with
deterministic runtime is described in Section 3 by discussing the Reference Nets
and the technical side conditions as well as the implications when to use our
approach. Comparison with other work is done in Section 4, before we conclude
in Section 5.

2 Basics

Several modeling concepts in a wider sense are relevant for this contribution. We
will briefly sketch the most relevant ones and refer to the respective literature.

Renew, Reference Nets and Synchronous Channels Based on concur-
rency theory and Petri nets we use Reference Nets [11]. Object-oriented struc-
tures (net models) that communicate via synchronous channels [5] are used to
support the nets-within-nets paradigm [19]. Introducing new instances of Ref-
erence Nets is very similar to instantiating new Java objects. All concepts are
supported by our tool Renew [3].

Synchronous channels provide a powerful bi-directional information exchange
via unification which makes this concept turing complete in the general case.
Transitions can have an inscription that is considered as a synchronous channel.
Synchronous channels can be designed and implemented in different ways. A
detailed description can be found on the website of Renew (http://www.renew.
de) and in [11].

In Renew net instances can create new net instances and store them as
tokens. These tokens have a reference semantic so a single net instance can be
contained in and passed between multiple other net instances. Net instances
can communicate with each other via synchronous channels. If a transition is

1 For the rest of the paper we will use the term VMs.

52

inscribed with an uplink, it can be included in a synchronous firing. The syn-
chronous firing is initiated by a transition that takes a net instance token and
call an uplink. The inscription used to call an uplink is called a downlink. Each
up- and downlink can provide values and unbound parameters. For a transition
to be fired a complete binding of all transitions added by synchronous channels
calls must be found. The unification algorithm of Renew allows an arbitrarily
number of unifications passing information between all involved instances. This
makes a full distribution of the algorithms behind the execution of synchronous
channels in Renew very inefficient. In [16] a restricted version that supports
distributed execution was presented.

Distributed Simulation and Virtualization Beside the parallel execution
within one machine on several processors the distributed execution on multiple
machines (each having several processors) is of high interest for better execution
of Petri net tools. Relevant work was published e.g. in [6,18,9,4,7,15]. In general
this area is under ongoing research in informatics. E.g. virtualization is known
since the 60ties and had a boost on new tools and approaches in the last five
to ten years. VMs can be used to execute several (virtual) machines on a single
machine. The tool that is used for the implementation of this contribution is
Virtualbox (see https://www.virtualbox.org/ for details).

3 Example

In the following a simple proof-of-concept example of distributed execution of
reference nets is presented.

Figure 1: WorkDistributor

53

Task The sample task pursued here is to perform a naive prime factorization
of the natural numbers from 1 to 1000. The algorithm tests for each number,
whether it is integer divisible by an iterated counter. Obviously this is not the
best possible algorithm for the task, but one that generates some deterministic
workload to show the possible speed increase by using distribution. Note, that
in this approach the computation for each value is completely independent from
all the other values and thus the task is highly parallelizable.

Possible Architectures Technically the distribution itself is realized in two
steps. First an instance of the net WorkDistributor (see figure 1) will pass work-

Figure 2: WorkLocalParallelizer

load packages to instances of the net WorkLocalParallelizer (see figure 2) run-
ning in a different simulation somewhere on the (local) network. Then, the net
WorkLocalParallelizer will unpack these packages and deliver it to multiple lo-
cal instances of WorkerLocal (see figure 3), which again realize the computation
itself. Upon completion of a certain number of items, WorkLocalParallelizer
will pack a result array and return it to the WorkDistributor. For our example,
we just count the returned items.

54

Figure 3: WorkerLocal

Figure 4 shows another possible setup of five VMs running on top of two
different physical machines with two distributors for a single task each and three
parallelizers with a different amount of workers.

Implemented Architecture For our very basic prototype implementation we
chose a setup of a total of five VMs on one bare metal machine. To simulate
limitations imposed by insufficient local CPU resources each VM is limited to 1
logical CPU core. The physical host provides 6 physical cores in form of an Intel
Core i7-6800K CPU. Each WorkLocalParallelizer net instance launches five
WorkerLocal net instances.

Figure 4: Possible architecture illustration

Results and Discussion Our experimental results have shown, that a distri-
bution to one VM hosting a WorkLocalParallelizer net instance took about
129 seconds to complete the task on the sample machine, while a simulation with
three VMs only took 84 seconds and one with five 55 seconds. Running the sim-
ulation with only one parallelizer directly on the host system (5 cores) provides
a running time of about 28 seconds. Therefore the networking and VM overhead
only slows down the simulation by roughly factor two in our example, while gain-
ing the possibility to acquire far more processor resources by distribution. The
possibility to combine several VMs to speed up the process of simulating refer-
ence nets looks promising. On one hand it might be a very useful approach to
dynamically distribute workload to other net instances on different VMs, when
a local computation slows down. On the other hand the binding cost (time) of

55

a transition increases with binding complexity and token counts in the related
places. Therefore, for a fast distribution easy bindings and low bounded input
places are desirable.

4 Related Work

In the past different approaches have been made to allow for a distributed simu-
lation. Several problems arise due to technical restrictions. Best results are often
reached on large bare metal machines with many resources (memory, proces-
sors, speed of execution of a single statement) and not on distributed execution
environments. The main problem is the partitioning, where we use an applica-
tion/model alignment. Large computing parts of an application usually require
more execution power for the corresponding models. At the same time larger
units usually have looser coupling. A looser coupling increases the communica-
tion cost over the network. In our case this cost is lower due to the partitioning.

Other valuable works (e.g. [6,18,9,4,7,15]) in Petri net simulation / execution
have followed more Petri net specific properties which also imply some kind of
efficient partitioning. However, this does not scale when a model is extended by
new modeling units (net structure). In [12] a distribution of software components
was made for Design/CPN and Java applications, but it also did not scale well
with the application.

5 Conclusion

The extension of distributed execution of Reference Nets from bare metal ma-
chines towards virtual machines has been demonstrated here. Most of the original
results from [16] can be used directly. By setting up virtual machines Renew can
be tested on a single machine by emulating the distribution of the simulation.
Due to the underlying mechanism of RMI calls the costs are comparable to those
of other means of network communication. Efficient concurrent and distributed
execution is still a challenge. Therefore, modelers can now experiment on virtual
machines with distributed simulations to test their design.

The use of new container technology like e.g. Docker (see https://www.
docker.dom) will give even further possibilities. Especially the transparent distri-
bution of a simulation and load balancing will become much easier. Applications
are planned in the field of image processing. We plan to distribute cost intensive
calculations according to the application and the used algorithms. This requires
an appropriate design as many parametrized experimental executions are neces-
sary. For this we now have a first simple prototype to test the applicability of
agent-oriented structuring mechanisms to image processing applications.

References

1. Bendoukha, S.: Multi-Agent Approach for Managing Workflows in an Inter-Cloud
Environment. Dissertation, University of Hamburg, Department of Informatics
(2016)

56

2. Cabac, L.: Modeling Petri Net-Based Multi-Agent Applications. Dissertation, Uni-
versity of Hamburg, Department of Informatics (Apr 2010)

3. Cabac, L., Haustermann, M., Mosteller, D.: Renew 2.5 - towards a comprehensive
integrated development environment for petri net-based applications. In: Kordon,
F., Moldt, D. (eds.) PETRI NETS 2016, Toruń, Poland, June 19-24, 2016. Pro-
ceedings. LNCS, vol. 9698, pp. 101–112. Springer (2016)

4. Chiola, G., Ferscha, A.: Distributed simulation of Petri nets. IEEE Parallel Distrib.
Technol. 1(3), 33–50 (Aug 1993)

5. Christensen, S., Hansen, N.: Coloured Petri nets extended with channels for syn-
chronous communication. In: Valette, R. (ed.) ICATPN. LNCS, vol. 815, pp. 159–
178. Springer (1994)

6. Hauschildt, D.: A Petri net implementation. Fachbereichsmitteilung FBI-HH-M-
145/87, University of Hamburg, Department of Computer Science (1987)

7. Kaim, W.E., Kordon, F.: An integrated framework for rapid system prototyping
and automatic code distribution. In: Proceedings of RSP, Grenoble, France. pp.
52–61. IEEE (1994)

8. Köhler, M., Moldt, D., Rölke, H.: Modelling mobility and mobile agents using nets
within nets. In: van der Aalst, W., Best, E. (eds.) ICATPN. LNCS, vol. 2679, pp.
121–139. Springer (2003)

9. Kordon, F.: Prototypage de systèmes parallèles à partir de réseaux de Petri colorés,
application au langage Ada dans un environment centralisé ou réparti. Dissertation,
Université P & M Curie (May 1992)

10. Kummer, O.: Simulating synchronous channels and net instances. In: Desel, J.,
Kemper, P., Kindler, E., Oberweis, A. (eds.) 5. Workshop AWPN. pp. 73–78. No.
Forschungsbericht Nr. 694, Fachbereich Informatik, Universität Dortmund (1998)

11. Kummer, O.: Referenznetze. Logos Verlag, Berlin (2002)
12. Kummer, O., Moldt, D., Wienberg, F.: Symmetric communication between

coloured Petri net simulations and Java-processes. In: Donatelli, S., Kleijn, J. (eds.)
ICATPN. LNCS, vol. 1639, pp. 86–105. Springer (Jun 1999)

13. Moldt, D.: PAOSE: A way to develop distributed software systems based on Petri
nets and agents. In: Barjis, J., Ultes-Nitsche, U., Augusto, J.C. (eds.) Proceedings
of MSVVEIS’06, Paphos, Cyprus 2006. pp. 1–2 (2006)

14. Moldt, D., Wienberg, F.: Multi-agent-systems based on coloured Petri nets. In:
Azéma, P., Balbo, G. (eds.) ICATPN. pp. 82–101. No. 1248 in LNCS, Springer,
Berlin Heidelberg New York (1997)

15. Pommereau, F., de la Houssaye, J.: Faster simulation of (coloured) petri nets using
parallel computing. In: van der Aalst, W.M.P., Best, E. (eds.) PETRI NETS.
LNCS, vol. 10258, pp. 37–56. Springer (2017)

16. Simon, M.: Concept and Implementation of Distributed Simulations in Renew.
Bsc thesis, University of Hamburg, Department of Informatics (2014)

17. Simon, M., Moldt, D.: Extending Renew’s algorithms for distributed simulation.
In: Cabac, L., Kristensen, L.M., Rölke, H. (eds.) PNSE’16. CEUR Workshop Pro-
ceedings, vol. 1591, pp. 173–192. CEUR-WS.org (2016)

18. Taubner, D.: On the implementation of Petri nets. In: Rozenberg, G. (ed.) Advances
in Petri Nets 1988. LNCS, vol. 340, pp. 418–439. Springer (1988)

19. Valk, R.: Petri nets as token objects - an introduction to elementary object nets.
In: Desel, J., Silva, M. (eds.) 19th International Conference on Application and
Theory of Petri nets, Lisbon, Portugal. pp. 1–25. No. 1420 in LNCS, Springer,
Berlin Heidelberg New York (1998)

57

Prototypical Graphical Simulation Feedback in
Reference Net-Based Domain-Specific Languages

within a Meta-Modeling Environment

David Mosteller, Michael Haustermann, and Daniel Moldt

University of Hamburg, Faculty of Mathematics, Informatics and Natural Sciences,
Department of Informatics, http://www.informatik.uni-hamburg.de/TGI/

Abstract The development of domain specific models requires apropri-
ate tool support for modeling and execution. Meta-modeling facilitates
solutions for the generation of modeling tools from abstract language
specifications. The Rmt-approach applies transformational semantics us-
ing Petri net formalisms as target languages in order to produce quick
results for the agile development of modeling techniques. The problem
with transformational approaches is that the inspection of the system
during execution is not possible in the original representation.
We present a concept for providing simulation feedback for DSML that
are developed with the Rmt-approach on the basis of meta-models and
translational semantics using Petri nets. Details of the usage of this new
approach are illustrated by some well known constructs of BPMNmodels.

Keywords: Meta-Modeling, BPMN, Petri Nets, Reference Nets, Simu-
lation, Graphical Feedback

1 Introduction

The construction of abstract models is an essential part of software and systems
engineering. Meta-modeling provides a conceptual basis to develop modeling lan-
guages that are tailored to satisfy the demands of specific application domains.
Tools may be generated from the language specifications to support the modeling
process.

We present a concept for the rapid prototyping and direct simulation (and
simulation feedback) of domain specific modeling languages (DSML) within the
Renew simulation environment. The focus of this contribution is on the inte-
grated simulation and graphical feedback of the executed language during sim-
ulation. With our contribution we combine and advance two branches of our
current research: First, the development of domain specific modeling languages
using the Renew Meta-Modeling and Transformation Framework (Rmt) [9]
and second, the provision and coupling of multiple modeling perspectives during
execution within Renew [8].

The approach provided by the Rmt framework supports the rapid proto-
typical development of domain specific modeling languages with Petri net-based

58

semantics. The Rmt-approach is based on the idea of providing translational
semantics for the modeling language in development (source language) through
a mapping of its constructs to a target language. The latter is implemented using
net components, which are reusable and parametrizable code templates – quite
comparable to code macros – modeled with a Petri net formalism.

We choose the Reference Net formalism as a target language, but we are not
restricted to this formalism and we intend to elaborate on different variations and
(Petri net related) formalisms in the future. Reference Nets combine concepts
of object-oriented programming and Petri net theory. They are well-suited as a
target language, because of their concise syntax and broad applicability. With
the presented solution Reference Nets provide the operational semantics for the
target language and the simulation events are reflected in the source language
during execution.

Tool support for our approach comes from Renew, which provides a flexi-
ble modeling editor and simulation environment for Petri net formalisms with
development support for the construction of Reference Net-based systems [2].

2 DSML Tools with Graphical Simulation Feedback

The Renew Meta-Modeling and Transformation Framework (Rmt) [9] is a con-
ceptual model-driven framework for the agile development of DSML. It follows
concepts from software language engineering [6]. The specification of a language
and a corresponding modeling tool may be derived from a set of models, which
are defined by the developer of a modeling technique. A meta-model defines the
structure (abstract syntax) of the language, the concepts of its application do-
main and their relations. The visual instances (concrete syntax) of the defined
concepts and relations are provided using graphical templates from the repertoire
of Renew’s modeling constructs. They are configurable by stylesheets and com-
plemented with icon images to facilitate the generation of a modeling tool that
nicely integrates into Renew’s development environment. A generic compiler
is implemented in Renew to provide translational semantics for the modeling
technique using Reference Nets. On this basis the generated technique may be
executed within Renew’s simulation engine.

Up to now there was no (sufficient) user feedback when executing models
of the generated modeling technique. In this paper we address the extension
of our tool framework to allow feedback from the simulation of the underlying
Petri net. The main idea is that within the domain models the internal state
(resp. marking) of the Petri net is reflected directly in the domain of the gen-
erated modeling technique. This allows for an adaptive feedback depending on
the translational semantics for each generated modeling technique individually.

A conceptual image from the simulation of two modeling techniques that
interact with each other is displayed in Figure 1. The image originates from
[8, p. 8] where we presented a concept for multi-formalism simulation with the
synchronization of multiple modeling techniques on the basis of Reference Nets.
The presented solution sketched the idea of providing feedback into a DSML

59

Figure 1: Conceptual model of the model synchronization from [8, p. 8].

but the realization was specific for a finite automata modeling tool. With our
current work this idea is generalized to facilitate feedback into principally any
DSML that is developed with the Rmt-approach using model-driven develop-
ment. This opens up the possibility to develop and research different simulation
semantics or modes of simulation for these DSML. However, there exist nu-
merous ways to realize an integrated simulation. Some of them are covered by
previous results: Sedrakyan et al. present a model-driven graphical feedback in a
model-to-code transformation with the goal of validating semantic conformance
especially for novice modelers [10]. They focus on feedback for errors that occur
in the compiled system rather than a complete interactive inspection of the exe-
cution. Other approaches aim at providing interactive visual behavior for domain
specific modeling tools by using model-driven techniques [1,3].

3 BPMN Example

In the following we present a solution for the simulation of a selected subset of
BPMN. As required by the Rmt-approach, the constructs of a DSML receive ab-
stract and concrete syntax by model-based specifications, which are both omitted
here for the reason of space (the complete example can be found in [9, p. 12]).
The semantic mapping of the BPMN constructs is implemented as a slight vari-
ation of the mapping to Petri nets from Dijkman et al. [4] and provided using
net components as displayed in Table 1. In contrast to Dijkman et al., instead
of using place fusion on the connected components, we have chosen to define the
BPMN constructs as transition bordered components, which are connected by
place bordered components for relations. The BPMN constructs have ports that
identify connectors, where relations may be connected and the components are
correspondingly tagged by labels (in0, in1, out0, out1, . . .). On the one hand
this technically facilitates a straight forward implementation by connecting adja-

60

Table 1: Adjusted mapping of BPMN and Reference Net constructs [9]
BPMN Reference Net BPMN Reference Net

cent components with plain Petri net arcs on the other hand it has the advantage
of being able to attach Petri net semantics to the relations as well. The proposed
transformation of modeling constructs of a source language into net components
is related to the static hierarchy concepts, such as the ones for Coloured Petri
Nets [5] and other formalisms. The research results in this area can be trans-
ferred to our approach. The capabilities of Reference Nets regarding dynamic
hierarchies can be helpful to the development of more complex semantics.

Figure 2 shows a snapshot from the simulation of a BPMN model. The top-
most part shows Renew’s main window with context menus, editor tool bars and
the status bar. In the middle are two overlapping windows, which are arranged
to complement each other in order to show a view of the modeled BPMN from
two perspectives. Visible to the right is a part of the template drawing that was
modeled using the BPMN constructs from the BPMN toolbar. The task reading
finish is selected and shows the blue circled ports of the figure, where sequence
flow relations are connected.

The left window contains an instance of this model and was created from that
template. The simulation is paused right after the assign task was completed and
the highlighted xor-decision-gateway is currently activated. This is reflected
by the black token on the place in the corresponding Petri net in the lowermost
part of Figure 2. The subsequent simulation step may be invoked by right-clicking
on the activated xor-decision-gateway figure in the BPMNmodel. In this case,
one of the possible alternatives is chosen nondeterministically. All actions and
executions are performed by the underlying Petri nets, which therefore determine
the semantics of the domain specific language model, while the interaction of the
user is performed through the BPMNmodel. The behavior may be customized by
providing alternative net components that may contain colored tokens, variables,
inscriptions, synchronous channels, etc. The GUI interaction is provided with the
Rmt integration.

For the demonstration of the underlying model the green area marks an ex-
cerpt of the BPMN model that corresponds to a part of the Petri net model,
which was generated using the semantic mapping from Table 1. For the presen-

61

Figure 2: The lifecycle of tickets in a issue tracking system, as BPMN [9, p. 12].

tation in this paper, the Petri net model was created by hand, the generated
Petri net that actually performs the simulation has no visual representation at
all. This is a design decision to maintain the ability to execute these models
without graphical feedback in server mode, which is essential to building large
scale applications from net models.

In all, this allows to provide graphical feedback in the BPMN model by re-
flecting simulation events from the simulated (invisible) Petri net to the above
layer. With the current solution, a construct from the source model is high-
lighted if the corresponding semantic component from the Petri net contains a
token. Of course, there are many ways to interpret the semantics of such simu-
lation feedback. We are working on means to conceptualize the visual behavior
of simulations based on translational semantics and Petri nets.

4 Conclusion

In this contribution we present a concept for providing simulation feedback for
DSML that are developed with the Rmt-approach on the basis of meta-models
and translational semantics using Petri nets. As a target formalism Reference
Nets are applied, which benefit from powerful modeling capabilities, Java integra-
tion, the underlying concurrency theory and the Renew integrated development
and simulation environment. The proposed transformation to a powerful (tur-
ing complete) formalism is attractive on the one hand, because the mentioned
advantages of this formalism may be exploited. On the other hand, the pos-
sibilities to perform formal analysis are restricted due to the complexity of the

62

formalism. In the future we may benefit from the presented conceptual approach
by conceptualizing the transformation and restrictions of the target language,
e.g. to Place /Transition nets, to perform analysis. The flexibility with respect
to the formalisms opens up the possibility to apply a whole array of methods
from low-level analysis – e.g. using Renew’s integration of LoLA [7] – to normal
software engineering validation like unit testing [11]. Based on our new feature
for visual feedback directly in the simulated domain specific model we provide
an improved experimentation environment to have interactive experiences with
the behavior of newly designed domain specific languages, without extra work
for animating the models.

References
1. Biermann, E., Ehrig, K., Ermel, C., Hurrelmann, J.: Generation of simulation views

for domain specific modeling languages based on the Eclipse modeling framework.
In: 2009 IEEE/ACM ASE. pp. 625–629 (2009)

2. Cabac, L., Haustermann, M., Mosteller, D.: Renew 2.5 - towards a comprehensive
integrated development environment for Petri net-based applications. In: Kordon,
F., Moldt, D. (eds.) PETRI NETS 2016, Toruń, Poland, June 19-24, 2016. Pro-
ceedings. LNCS, vol. 9698, pp. 101–112. Springer-Verlag (2016)

3. Combemale, B., Crégut, X., Giacometti, J.P., Michel, P., Pantel, M.: Introducing
Simulation and Model Animation in the MDE Topcased Toolkit. In: 4th European
Congress Embedded Real Time Software (ERTS). p. http://www.erts2008.org/.
Toulouse, France, France (Jan 2008)

4. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Information and Software Technology 50(12), 1281–1294 (2008)

5. Huber, P., Jensen, K., Shapiro, R.M.: Hierarchies in coloured Petri nets. In: Rozen-
berg, G. (ed.) Advances in Petri Nets 1990 [10th International Conference on Ap-
plications and Theory of Petri Nets, Bonn, Germany, June 1989, Proceedings].
LNCS, vol. 483, pp. 313–341. Springer (1989)

6. Kleppe, A.: Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels. Pearson Education (Dec 2008)

7. LoLA: A Low Level Petri Net Analyzer. http://service-technology.org/lola/
8. Möller, P., Haustermann, M., Mosteller, D., Schmitz, D.: Simulating multiple for-

malisms concurrently based on reference nets. In: Moldt, D., Cabac, L., Rölke, H.
(eds.) PNSE’17, Zaragoza, Spain, June 25-26, 2017. Proceedings. CEUR Workshop
Proceedings, vol. 1846, pp. 137–156. CEUR-WS.org (2017)

9. Mosteller, D., Cabac, L., Haustermann, M.: Integrating Petri net semantics in a
model-driven approach: The Renew meta-modeling and transformation framework.
Transactions on Petri Nets and Other Models of Concurrency 11, 92–113 (2016)

10. Sedrakyan, G., Snoeck, M.: Enriching model execution with feedback to sup-
port testing of semantic conformance between models and requirements - design
and evaluation of feedback automation architecture. In: Calabrò, A., Lonetti, F.,
Marchetti, E. (eds.) AMARETTO@MODELSWARD 2016, Rome, Italy, February
19-21, 2016. pp. 14–22. SciTePress (2016)

11. Wincierz, M.: A tool chain for test-driven development of reference net software
components in the context of CAPA agents. In: Moldt, D., Cabac, L., Rölke, H.
(eds.) PNSE’17, Zaragoza, Spain, June 25-26, 2017. Proceedings. CEUR Workshop
Proceedings, vol. 1846, pp. 197–214. CEUR-WS.org (2017)

63

