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A B S T R A C T

A fully coupled thermal-hydraulic-mechanical (THM) finite element model is presented for fractured geothermal
reservoirs. Fractures are modelled as surface discontinuities within a three-dimensional matrix. Non-isothermal
flow through the rock matrix and fractures are defined and coupled to a mechanical deformation model. A robust
contact model is utilised to resolve the contact tractions between opposing fracture surfaces under THM load-
ings. A numerical model has been developed using the standard Galerkin method. Quadratic tetrahedral and
triangular elements are used for spatial discretisation. The model has been validated against several analytical
solutions, and applied to study the effects of the deformable fractures on the injection of cold water in fractured
geothermal systems.

Results show that the creation of flow channelling due to the thermal volumetric contraction of the rock
matrix is very likely. The fluid exchanges heat with the rock matrix, which results in cooling down of the matrix,
and subsequent volumetric deformation. The cooling down of the rock matrix around a fracture reduces the
contact stress on the fracture surfaces, and increases the fracture aperture. Stress redistribution reduces the
aperture, as the area with lower contact stress on the fracture expands. Stress redistribution reduces the like-
lihood of fracture propagation under pure opening mode, while the expansion of the area with lower contact
stress may increase the likelihood of shear fracturing.

1. Introduction

Energy extraction from geothermal reservoirs involves multiple
physical processes including thermal (T), hydro (H), and mechanical
(M) processes that together influence the heat extraction from fractured
geothermal systems (Tsang, 1991; MIT, 2006). Due to the complexity of
this problem, and the number of parameters involved, modelling of
these systems is viable primarily through numerical methods
(McDermott et al., 2006). In a geothermal system, cold fluid is injected
into an injection well, and hot fluid is extracted from the production
well (e.g., Crooijmans et al., 2016). In order to understand the coupled
processes and their effects, a robust numerical model that simulta-
neously solves all the governing equations in a coupled manner is es-
sential for the successful investigation of a fractured geothermal system.

Fractures, natural or man-made, enhance flow within geothermal
reservoirs. For instance, fractures dominate the flow in low perme-
ability hot dry rocks (HDR) in the subsurface. Fractures may also con-
tribute to the creation of short-circuits between injector and producer
wells, hence reducing the efficiency of a geothermal system
(Emmermann and Lauterjung, 1997). In enhanced geothermal systems

(EGS), due to the low permeability of the host rock, artificial fractures
are induced, prior to injection of cold fluid, in order to enhance the
effective permeability of the hot rock. In EGS, the stimulation can occur
through induced slip on pre-existing fractures (shear stimulation), by
creating new fractures using hydraulic fracturing technique (opening
mode), or by a combination of the two (McClure and Horne, 2014).
Thermally-induced fracturing has also been frequently observed in
many subsurface applications, where a relatively cold fluid has been
injected into a reservoir: for instance, in water injection wells in the
petroleum industry (Bellarby, 2009), in geothermal wells (Benson et al.,
1987; Tulinius et al., 2000), and even in relatively soft, unconsolidated
formations (Santarelli et al., 2008). The volumetric flow rate in a
fracture is proportional to the pressure gradient and the cube of the
fracture aperture, i.e., the cubic law, which is derived from the general
Navier-Stokes equation for flow of a fluid between two parallel plates
(Zimmerman and Bodvarsson, 1996). Thus, variation in fracture aper-
ture due to the changes in the normal and/or shear stresses acting on
the fracture surfaces as a result of the THM processes strongly affects
the fluid flow and heat transport in the fracture (Rutqvist et al., 2005).

Heat conduction between the fluid inside the fracture and the
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surrounding rock matrix has been of particular interest in many situa-
tions, including magma-driven fractures (Spence and Turcotte, 1985),
hydraulic fracturing of wells (Wang and Papamichos, 1999), and hy-
draulic fracturing of shale gas reservoirs (Tran et al., 2013; Enayatpour
and Patzek, 2013; Salimzadeh et al., 2016). Rock temperature at the
surfaces of the hydraulic fracture is often considered constant, and
equal to the temperature of the injected fluid (for example in Tran et al.,
2013; Abousleiman et al., 2014). However, such an assumption does
not satisfy conservation of energy, and does not account for the fact that
heat exchange between the fracturing fluid and the rock gradually
causes the fracturing fluid to thermally equilibrate with the matrix rock.
Consequently, an unrealistically large effect due to thermal non-equi-
librium is predicted by such approaches (Salimzadeh et al., 2016).
Considerable efforts have been expended in developing THMmodels for
geothermal reservoirs over the past several decades; however, very few
studies have taken into account the evolution of fracture permeability
under thermoporoelastic effects. McDermott et al. (2006) investigated
the influence of THM coupling on the heat extraction from reservoir in
crystalline rocks using an experimentally validated geomechanical
model. Ghassemi et al. (2008), using a partially coupled formulation,
derived analytic solutions for calculating fracture aperture changes
induced by thermoelastic and poroelastic stresses during cold-water
injection in an enhanced geothermal system (EGS). Ghassemi and Zhou
(2011) proposed an approach to couple fracture flow and heat transport
to thermoporoelastic deformation of the rock matrix using the dis-
placement discontinuity (DD) method in which coupling is realised
sequentially. Sequential coupling, in a non-linear system, suffers con-
vergence problems, and requires more iteration and manual inter-
ference to converge. Abu Aisha et al. (2016) investigated the effects of
the new fractures created during a geothermal lifetime on the overall
permeability tensor of the fractured medium. Pandey et al. (2017)
proposed a coupled THM model for the variation of fracture aperture
during heat extraction from a geothermal reservoir. They treated a
fracture as a thin permeable layer in the matrix, with a stress-dependant
fracture stiffness and elastic modulus. Guo et al. (2016) investigated the
effect of the heterogeneity in the initial aperture distribution on the
flow path within a single fracture in an EGS. The equivalent perme-
ability in fractured reservoirs can be significantly affected by the choice
of the aperture distribution model (Bisdom et al., 2016).

In the present study, a finite element model is presented in which
fractures are treated more accurately in terms of their representation in
the mesh, as well as in their physical behaviour under THM loading.
Fractures are modelled as 2D surface discontinuities in the 3D rock
matrix. Separate but coupled flow/heat models are defined for the
fracture and the rock matrix. The flow through the fractures is governed
by the cubic law, and is coupled to the Darcy flow in rock matrix using
leakoffmass exchange that is computed as a function of the fracture and
matrix fluid pressures, and the matrix permeability. Local thermal non-
equilibrium is considered between fluid in the fracture and fluid in the

rock matrix. Advective-diffusive heat transfer is assumed in both the
fractures and rock matrix. Heat transfer between fracture and matrix is
allowed by conduction through the fracture walls, as well as by ad-
vection through the leakoff flow. Contact stresses on the fracture sur-
faces are computed using a robust contact model. Thermal and hy-
draulic loadings are considered in computing the contact stresses. The
contact model is iteratively coupled to the THM model. The governing
equations are solved numerically using the finite element approach.
The coupled model has been validated against several available solu-
tions, and applied to investigate the effects of fracture aperture al-
teration due to THM processes on the flow of the cold fluid in geo-
thermal reservoirs.

2. Computational model

The fully coupled computational model is constructed from five
separate yet interacting sub-models: a thermoelastic deformation
model, two flow models (one for the fractures and one for the rock
matrix), and two heat transfer models, for fracture and rock matrix,
respectively. Single-phase flow is assumed within both the fractures and
the rock matrix. In the thermoelastic mechanical model, the flow and
the heat transfer through the rock matrix are constructed for three-di-
mensional matrix body, while flow and heat transfer models through
the fractures are defined for two-dimensional discrete fractures, as
schematically shown in Fig. 1. Fracture flow and solid deformation are
two-way coupled through hydraulic loading exerted on the fracture
surfaces, as well as by ensuring the compatibility of fracture volumetric
strains. Heat transfer in the rock matrix and fractures is also coupled
through a heat exchange term included in the fracture and matrix en-
ergy balance equations. A displacement vector (three components),
fluid pressures (two components), fracture fluid and matrix tempera-
tures (two components) are defined as primary variables. Tension is
reckoned positive for stresses in the governing equations.

2.1. Thermoporoelastic mechanical model

The thermoporoelastic mechanical model is based on the condition
of stress equilibrium for a representative elementary volume of the
porous medium. The assumption of elastic behaviour for matrix de-
formation is reasonable for most thermally-induced rock deformations
(Rutqvist et al., 2005). For quasi-static conditions, the linear mo-
mentum balance equation for this elementary volume may be written as

+ =σdiv F 0 (1)

where F is the body force per unit volume, and σ is the total stress.
Effective stress is defined as the function of total stress and matrix
pressure that controls the mechanical effects of a change in stress. It is
defined exclusively within the rock matrix, linking a change in stress to
the change in strain. The effective stress for the rock matrix saturated
with a single-phase fluid is defined as (Biot, 1941)

Fig. 1. Schematic representation of a fractured geo-
thermal doublet.
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′ = + αpσ σ Im (2)

where σ′ is the effective stress, α is the Biot coefficient, pm is the fluid
pressure in the rock matrix i.e. matrix pressure, and I is the second-
order identity tensor. The Biot coefficient is defined as

= −α K
K

1
s (3)

where K and Ks are the bulk moduli of a rock matrix and rock matrix
material (e.g., mineral grains), respectively (Zimmerman, 2000). As-
suming that the rock matrix shown in Fig. 1 undergoes a temperature
change from initial temperature T0 to a new value Tm, the thermal
strain in the solid rock, under the assumption of linearity, are given by
(Zimmerman, 2000)

= − −T Tε α ( )T s m 0 (4)

where αs is a symmetric second-order tensor known as the thermal
expansivity tensor of the rock matrix. If the rock is isotropic, then

=
β

α
3

Is
s

(5)

where the scalar coefficient βs is known as the coefficient of volumetric
thermal expansion of rock matrix. Note that due to the relatively slow
movement of the fluid inside the rock matrix, local thermal equilibrium
between the rock solid and the fluid in the matrix pores is assumed. The
stress-strain relationship for thermoelasticity can be written as (Khalili
and Selvadurai, 2003)

′ = − −β K T Tσ Dε ( )Is m 0 (6)

in which D is the drained stiffness matrix. Assuming infinitesimal de-
formations, strain is related to displacement by

= ∇ + ∇u uε 1
2

( )T
(7)

where u denotes the displacement vector of the rock solid. Fracture
surfaces are not traction-free in the present model, and hydraulic
loading, as well as the tractions due to the contact between fracture
surfaces, are applied on the fracture walls, as shown in Fig. 1. Assuming
negligible shear tractions exerted from the fluid on the fracture walls,
the fluid pressure is applied only in the normal direction on the fracture
wall. The tractions on the fracture boundary Γc are

= − pF σ nc c f c (8)

where σc is the contact tractions on the fracture surfaces, pf is the
fracture pressure, and nc is the outward unit normal to the fracture
surface (on both sides of the fracture). Integrating Eq. (1) over the
domain, and after some manipulation, the differential equation de-
scribing the deformation field for a saturated rock matrix is given by

∫ ∫− − − + + − =p β T T d p dDε σ[div( α I K( )I) F] Ω ( n ) Γ 0m s m c f cΩ 0 Γc

(9)

2.2. Fracture flow model

A separate flow model is considered for fractures. This model allows
direct computation of the fluid pressures inside the fracture, and ex-
plicit application of hydraulic pressures on sub-dimensional fracture
walls (see Fig. 1). The objective is to obtain a more realistic re-
presentation of fracture flow. Assuming a high aspect ratio fracture Γc

that has a lateral extent that is much larger than its aperture, the
average velocity of a fluid along the fracture surface can be approxi-
mated using the cubic law as (Zimmerman and Bodvarsson, 1996)

= − ∇
a

μ
pv

12f
f

f
f

2

(10)

where af is the fracture aperture, defined as the differential normal

displacement between two walls of the fracture,
= − ++ −a au u n( ).f c f

c, μf is the fluid viscosity. u+ and u− represent
displacements on two sides of the fracture, and afc is the fracture
aperture at contact. When two surfaces of a fracture are in contact, the
displacement field on two surfaces of the fracture would be identical i.e.
u+ = u−, and the fracture aperture at contact (afc) is a function of the
contact tractions as explained in section 2.7. The mass balance equation
for a slightly compressible fluid may hence be written as (Salimzadeh
and Khalili, 2015, 2016)

+ ∂
∂

− =a ρ
t

a ρ Ldiv( v ) ( ) 0f f f f f f (11)

in which ρf is the fluid density, and Lf is the leakoff flow from the
fracture to the matrix. This leakoff leads to mass transfer coupling be-
tween the fracture flow and rock matrix flow. Assuming that the frac-
ture fluid is Newtonian, the leakoff flow per unit area of the fracture
wall can be written, using Darcy’s law, as (Salimzadeh et al., 2017a)

=
∂
∂

L ρ k
μ

p
nf f

n

f c (12)

where kn is the intrinsic permeability of the rock matrix in the direction
normal to the fracture (in the direction of nc), and

∂
∂

p
nc

represents the
pressure gradient along nc. In case of a fault zone, some average of the
fault zone permeability and the matrix rock permeability can be used
(Norbeck et al., 2016). Considering a barotropic fluid in which the fluid
density is a function of fluid pressure and temperature, the change in
density may be written as

= −
dρ

dt
ρ c

dp

dt
ρ β

dT
dt

f
f f

f
f f

f

(13)

where cf and βf are the compressibility and volumetric thermal expan-
sion of fluid, respectively. Combining Eqs. (10)–(13), and after some
manipulation, one obtains the governing equation for laminar flow
through the fracture under non-isothermal conditions as

⎛

⎝
⎜ ∇ ⎞

⎠
⎟ =

∂
∂

+
∂

∂
−

∂
∂

−
∂
∂

a
μ

p
a
t

a c
p

t
a β

T
t

k
μ

p
div

12 n
f

f
f

f
f f

f
f f

f n

f c

3

(14)

The term ∂
∂
a
t
f provides explicit coupling between the displacement

field and the fracture flow field, which is symmetric to the fracture
pressure loading term, pfnc.

2.3. Matrix flow model

The flow through the porous matrix, i.e., matrix flow, is constructed
by combining Darcy’s law with mass conservation for the fluid.
Neglecting inertial effects, Darcy’s law describing matrix hydraulic
diffusion under hydraulic gradient may be written as

= − ∇ +
μ

p ρ gv k ( )r
m

f
m f

(15)

where vr is the relative velocity vector of the matrix fluid, km is the
intrinsic permeability tensor of the rock matrix, and g is the vector of
gravitational acceleration. The mass balance equation for the fluid in
the rock matrix may be written as

+ ∂
∂

+ − =ρ ϕ
t

ρ ϕ Lxdiv( v ) ( ) δ( x ) 0f m f c f (16)

where ϕ is the rock matrix porosity, and vm is the fluid velocity in the
matrix. −xδ( x )c is the Dirac delta function, where xc represents the
position of the fracture (Γc). Note that the leakoff only occurs on the
boundary of the volume element that is connected to a fracture (Γc).
Considering a barotropic fluid, the change in density may be written as

= −
dρ

dt
ρ c

dp
dt

ρ β dT
dt

f
f f

m
f f

m
(17)
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where cf and βf are coefficients of the fluid compressibility and volu-
metric thermal expansion, respectively. Integrating over the element
and after some manipulation, the governing equation for the flow
model may be expressed as

∫ ∫

∫

⎜ ⎟
⎛

⎝
⎜ ∇ + ⎞

⎠
⎟ = ⎡

⎣
⎢

∂
∂

+ ⎛
⎝

+
− ⎞

⎠

∂
∂

− ⎤

⎦
⎥ +

∂
∂

μ
p ρ d α

t
ϕc

α ϕ
K

p
t

ϕβ dT
dt

d k
μ

p

k g udiv ( ) Ω (div )

Ω
n

dΓ

m

f
m f f

s

m

f
m n

f c

Ω Ω

Γc (18)

The Biot coefficient α appears in Eqs. (9) and (18), whereas it does
not appear in the fracture flow model (Eq. (14)), as the fracture itself is
not a “porous medium”. The Biot coefficient couples the flow in matrix
with the mechanical deformation, and setting α = 0 will decouple the
mechanical deformation model and the matrix flow model, in which
case mechanical loading will have no direct effect on the matrix pres-
sure, and vice versa. In contrast, fracture pressure will always be cou-
pled to the mechanical deformation model, irrespective of the value of
the Biot coefficient.

2.4. Matrix heat transfer model

The governing equation for heat transfer through the rock matrix
can be obtained by combining Fourier’s law with an energy balance for
saturated rock. It is assumed that the fluid velocity in the rock matrix is
slow enough such that the solid grains and the fluid in the rock matrix
are always in local thermal equilibrium. Convective, i.e., conduction
and advection, heat transfer in rock matrix can be written as

= − ∇ +T ρ C Tq λ vmc m m f f m m (19)

where qmc is the heat flux through the rock matrix, λm is the average
thermal conductivity tensor of the matrix, Tm is the matrix temperature,
Cf is the fluid specific heat capacity, and vm is the fluid velocity. The
average thermal conductivity tensor of the matrix is approximated as
follows, from the thermal conductivity tensors of rock solid (λs) and
fluid (λf) as (see Zimmerman (1989) for more accurate models of the
effective thermal conductivity)

= − +ϕ ϕλ λ λ(1 )m s f (20)

The heat energy change due to thermal power in the course of the
bulk deformation of matrix and fluid can be expressed, respectively, as

= ∂
∂

q β KT
t

u(div )
mu s m (21)

=
∂
∂

q ϕβ T
p
tmp f m
m

(22)

Heat is also exchanged between matrix and fracture fluid by con-
duction through the fracture surfaces, and by advection through the
leakoff mass exchange term, as

= ∂
∂

+ −q T L C T Tλ
n

( )mf n
c

f f m f (23)

where λn is the average thermal conductivity of the rock matrix along
the direction normal to the fracture (in the direction of nc), and

∂
∂

T
nc

represents the temperature gradient along nc. The heat storage in the
matrix saturated with a fluid is given by

= ∂
∂

q ρ C T
tms m m
m

(24)

where ρmCm can be computed (exactly) from the density and specific
heat capacity values of rock solid (ρs, Cs) and fluid (ρf, Cf) as

= − +ρ C ϕ ρ C ϕρ C(1 )m m s s f f (25)

Combining the above-mentioned equations, and after integrating
them over the matrix and fracture domains, the governing equation for

heat transfer through the matrix can be written as

∫ ∫

∫

∇ = ⎡
⎣⎢

∂
∂

−
∂
∂

− ∂
∂

+ ∇ ⎤
⎦⎥

+ ⎡

⎣
⎢

∂
∂

+
∂
∂

− ⎤

⎦
⎥

T d ρ C T
t

ϕβ T
p
t

β KT
t

ρ C T d

ρ C k
μ

T T

λ udiv( ) Ω (div )

v Ω

λ T
n

p
n

( ) dΓ

m m m m
m

f m
m

s m

f f m m

c
f f

n

f c
m f

Ω Ω

Γ n
c (26)

2.5. Fracture heat transfer model

Using a similar approach, the governing equation for heat transfer
through the fluid in the fracture can be obtained by combining Fourier’s
law with an energy balance for the fluid. The advective heat transfer
through the fluid in the fracture can be written as

= − ∇ +a T a ρ C Tq λ vfc f f m f f f f f (27)

and the final form of the heat transfer equation in the fracture can be
written as

∇ =
∂
∂

−
∂

∂
+ ∇ − ∂

∂

+
∂
∂

−

a T a ρ C
T
t

a β T
p

t
a ρ C T T

ρ C k
μ

p
T T

λ vdiv( ) . λ
n

n
( )

f f f f f f
f

f f f
f

f f f f f n
c

f f
n

f c
f m

(28)

2.6. Finite element approximation

Governing equations are solved numerically using the finite element
method. The Galerkin method and finite difference techniques are used
for spatial and temporal discretisation, respectively. The displacement
vector u, fluid pressures pm and pf, and matrix and fracture fluid tem-
peratures Tm and Tf are taken as the primary variables. Using the
standard Galerkin method, the primary variable =X p p T Tu{ , , , , }m f m f
within an element is approximated from its nodal values as

� = NX̂ (29)

where N is the vector of shape functions and X̂ is the vector of nodal
values. Using the finite difference technique, the time derivative of X is
defined as

� � �∂
∂

=
−+

t dt

t dt t

(30)

where Xt+dt and Xt are the values of X at time t + dt and t, respectively.
The set of discretised equations can be written in matrix form of
SX= F, in which S is the element’s general stiffness matrix as

�

� � �

� � �

� � �

=
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

uu up uT

pu pp pT

Tu Tp TT (31)

and F is the vector of right-hand-side loadings

�

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

+
+ − +

+ − +

+ − +

− +

dt

dt

T dt

dt

F T̂
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T̂ p̂

C
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C M C Q
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M C Q

T

p
T t

p p m
t

p T m
t

p

p
T t

p p f
t

p T f
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p

m T
T t

T T m
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T p m
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T T f
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T p f
t

T

0

, ,

, ,

, ,

, ,

m
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f f f f f f

m m m m m m

f f f f f (32)

where

� = Kuu (33)

� = − −[ ]C Cup p pm f (34)
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� = −[ ]C 0uT Tm (35)
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where K is the mechanical stiffness matrix, the C matrices are the
coupling matrices, and the H matrices represent the conductance and
advection matrices. Matrices M are the flow-heat capacitance matrices.
Matrices L are the leakoff flow and heat matrices. Vector F is the ap-
plied load vector, vectors Q represent the fluid and heat flux vectors, û,
p̂ and T̂ are the vectors of nodal values of displacement, fluid pressure,
and temperatures, respectively. = ∇×[B ] Nn1 6 3 , =×[B ] δ Bn2 1 3

T
1, and,

= ∇×B[ ] Nn3 3 are derivatives of the shape function. ∇ is the gradient
matrix, =δ {1 1 1 0 0 0 }T , and ∇ is the gradient vector. Superscript
t represents the time at the current time step; superscript t + dt

Table 1
Thermal properties of the fluid and rock.

Material Property Example 1 Example 2 Example 3 Unit

Young’s Modulus Rigid 37.5 20 GPa
Poisson’s ratio – 0.25 0.20 –
Matrix Permeability 0–1 × 10−13 0 1 × 10−14 m2

Fluid Density (ρf) 1000 1000 1000 kg/m3

Fluid specific heat
capacity (Cf)

4200 4200 4200 J/kg °C

Fluid thermal
conductivity (λf)

0.6 0.6 0.6 W/m °C

Fluid thermal
expansion
coefficient (βf)

0.207 × 10−3 0.207 × 10−3 0.207 × 10−3 1/°C

Rock Density (ρs) 2820 2650 2650 kg/m3

Rock specific heat
capacity (Cs)

1170 800 800 J/kg °C

Rock thermal
conductivity (λs)

2.88 2.9 2.9 W/m °C

Rock thermal
expansion
coefficient (βs)

24 × 10−6 24 × 10−6 24 × 10−6 1/°C

Fig. 2. Fluid temperature at producer versus time for rigid fracture with different matrix
permeability (a), and for different leakoff ratios m (b) from the solution proposed by
Ghassemi et al. (2008). The permeability of the matrix is assumed only in the direction
normal to the fracture surface (1D leakoff) except for the case shown by [2D].
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represents time at the next time step, and dt is the timestep. The non-
diagonal components of the stiffness matrix S are populated with the
coupling matrices C, and L. Note that the leakoff term (flow and heat)
only exists for matrix elements (volume elements) connected to a
fracture; and the integration is performed over each side of the fracture
separately. The gradient matrix ∇ for three-dimensional displacement
field is defined as

∇ =

⎡
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(58)

The components of the stiffness matrix are dependent upon the
primary unknown variables, i.e., conductance, capacitance and cou-
pling coefficients of the fracture are all dependent on the fracture
aperture; therefore, a Picard iteration procedure is adopted to reach the
correct solution within acceptable tolerance. For the current iteration, s
+ 1 in the current step, n + 1, the solution-dependent coefficient ma-
trices in the stiffness matrix � are updated using weighted average

solution vector � +
+

n
s θ

1 defined as

� � �= − ++
+

+
−

+θ θ(1 )n
s θ

n
s

n
s

1 1
1

1 (59)

where � +
−

n
s

1
1 and � +n

s
1 are the solution vectors of the two most recent

iterations in the current timestep n + 1, and θ= 2/3 is the weighing
coefficient. For the first iteration s = 1, the previous timestep solution
is used as

� � �= =+ +n n n1
0

1
1 (60)

where �n is the solution vector from previous timestep n. The iterations
are repeated until consecutive normalised values of � +n

s
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within a specified tolerance ε
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The tolerance is set to 0.01 in this work. The discretised coupled
equations are implemented as part of the Imperial College
Geomechanics toolkit (Paluszny and Zimmerman, 2011), which inter-
acts with an octree volumetric mesher and the Complex Systems
Modelling Platform (CSMP++, also known as CSP), an object-oriented
application programme interface (API), for the simulation of complex
geological processes and their interactions (formerly CSP, Matthäi

Fig. 3. Spatial distribution of fluid temperature in the fracture for rigid fracture with
different matrix permeability (a) and for different leakoff ratios m (b) from the solution
proposed by Ghassemi et al. (2008). The permeability of the matrix is assumed only in the
direction normal to the fracture surface (1D leakoff) except for the case shown by [2D].

Fig. 4. The geometry of the model and the mesh of the fracture for the case of deformable
fracture in an impermeable matrix.
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et al., 2001). Quadratic unstructured elements are used for spatial
discretisation of surfaces (quadratic triangles) and volumes (quadratic
tetrahedra). The triangles on two opposite surfaces of a fracture are
matched with each other, but they don’t share nodes, and duplicate
nodes are defined for two sides of a fracture. Therefore, there are two
matrix degrees of freedom and one fracture degree of freedom as the
governing equations for the fracture (flow and heat) are solved only on
one side of the fracture. The triangles are matched with faces of the
tetrahedra connected to the fractures. Fracture flow and heat equations
are solved only on one side of the fracture, whereas, the coupling

matrices C and L are accumulated on both sides of the fracture. Matrix
deformation, flow and heat equations are accumulated over the volume
elements. The ensuing set of linear algebraic equations SX= F is solved
at each iteration using the algebraic multigrid method for systems,
SAMG (Stüben, 2001).

2.7. Contact model

In the present study, fractures are modelled as surface dis-
continuities within a three-dimensional matrix; therefore, the contact
problem arises and the contact stresses (normal and shear) are required
to be computed in order to avoid the inter-penetration of the fracture
surfaces under compressive loading. The Augmented Lagrangian (AL)
method has been successful for enforcing the contact constraint accu-
rately when computing high contact precisions, by combining the
Lagrange multiplier and penalty methods to exploit the merits of both
approaches (Wriggers and Zavarise, 1993; Puso and Laursen, 2004). A
sophisticated algorithm is used for the treatment of frictional contact
between the fracture surfaces, based on isoparametric integration-
point-to-integration-point discretisation of the contact contribution.
Contact constraints are enforced by using a gap-based AL method de-
veloped specifically for fractured media (Nejati et al., 2016). In this
model, penalties are defined at each timestep as a function of local
aperture, so that they are larger away from the fracture tips, and reduce
to zero at the tips. In the contact model, the equilibrium equation has
been satisfied in which the hydraulic and thermal contributions are

Fig. 5. Spatial distribution of the fluid temperature, fracture aperture and contact traction
within the fracture, at t = 109 s. The contact stress and the fracture aperture at the
fracture tips is equal to zero.

Fig. 6. Evolution of the injection pressure and the fracture aperture at the injection point
for the case of deformable fracture in an impermeable matrix.

Fig. 7. Model geometry for the case with deformable fracture in a permeable matrix. The
injection and production is to/from the rock matrix, as the wells are not directly con-
nected to the fracture.
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applied as boundary values on the right-hand-side

∫ ∫ ∫
∫

+ = + −

+ −

d p d β K T T d

p d
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Ω Ω Ω 0

Γc (62)

Pressures and temperatures are imported from the THM model.
When two sides of a fracture are in contact, the change in the aperture
of the fracture is defined as a linear function of the change in normal
contact traction as

= −a σ
K

Δ Δ
f

c n

n (63)

where afc is the fracture aperture at contact, Kn is the fracture stiffness,
and σn is the contact stress (compressive) normal to the fracture.
However, nonlinear fracture stiffness models (Bandis et al., 1983;
Barton et al., 1986) can also be used. The contact and THM models are
coupled iteratively, such that in each timestep, first the THM model is
run with the contact stresses computed from the previous step. Then the
computed pressures and temperatures from the THM model are passed

to the contact model, and the contact stresses are updated. Finally, the
THM model is run again with updated contact stresses. The thermal and
hydraulic loadings are applied as body forces to the right-hand-side of
the contact model while contact stresses are applied as boundary
tractions to the right-hand-side of the THM model.

3. Simulation of geothermal systems

Three sets of examples of geothermal systems are selected for si-
mulation in this section. The first example is used for validating the
heat transfer module of the present model, as well as delineating the
extent of the validity of current semi-analytical solutions for the case of
a permeable matrix. Further validation examples for the present nu-
merical model can be found in Salimzadeh et al. (2016), Salimzadeh
et al. (2017a, 2017b, 2017c), and Usui et al. (2017). The second and
third examples demonstrate the effects of variation of the contact
tractions and fracture aperture due to thermoporoelastic deformation of
the matrix on fluid flow within a fracture in an EGS, and within a
fractured geothermal reservoir, respectively. The effect of gravity has

Fig. 8. Spatial distribution of the temperature, aperture and contact stress on the fracture after 10, 20 and 30 years of simulation for low temperature case (Tini = 80 °C) with
σini = 60 MPa. The contact stress and the fracture aperture at the fracture tips is equal to zero.
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been ignored in these simulations by assuming that the fluid flow
dominantly occurs in the horizontal direction.

3.1. Rigid fracture in permeable matrix

Bodvarsson (1969) derived an analytical solution for the problem of
advective-diffusive heat transfer through a single one-dimensional
fracture, while the heat is transferred through the matrix only by dif-
fusion in the direction normal to the fracture (1D diffusion). Ghassemi
et al. (2008) also proposed semi-analytical solution for a similar pro-
blem with leakoff of the fluid into the matrix. However, in their solu-
tion, it is arbitrarily assumed that the leakoff rate is constant (a fixed
ratio of the injection rate QL = mQ) and does not vary in time. Such an
assumption may not be realistic, as is shown by the present simulations.
By setting a very small value to m (for example m= 0.01), their solu-
tion approaches that of Bodvarsson (1969).

In this section, a fracture of length 100 m is considered between
injection and production wells. Plane-strain conditions are assumed, in
order to validate the model results against the above-mentioned

solutions. Injection of cold water at temperature 20 °C, at constant rate
Q = 0.0001 m3/s is assumed, while production is simulated through
constant zero pressure in the production well. The initial temperature of
the rock matrix is set to 100 °C. Water has a density of ρf = 1000 kg/
m3, a heat capacity of Cf = 4200 J/kg °C, and the matrix rock has
density ρs = 2820 kg/m3, heat capacity of Cs = 1170 J/kg °C, and
thermal conductivity of λs = 2.88 W/m °C. The material properties are
summarised in Table 1 (example 1). Constant matrix pressure and
temperature is assumed at the far boundaries of the simulation region.

Several cases are simulated, in which the permeability of the rock
matrix is increased from zero to 1 × 10−12 m2. The results for the fluid
temperature at production, as well as spatial distribution of the fluid
temperature along the fracture are shown in Figs. 2 and 3. Included in
these figures are the solutions proposed by Bodvarsson (1969) and
Ghassemi et al. (2008) for comparison. The temperature of the cold
water in the fracture increases as it exchanges heat with the hot rock
matrix. For the case with impermeable matrix, the temperature of the
produced fluid drops more rapidly than for the cases with a permeable
matrix. This is because the fluid has higher velocity in the impermeable

Fig. 9. Spatial distribution of the temperature, aperture and contact stress on the fracture after 10, 20, and 30 years of simulation for high temperature case (Tini = 250 °C) with
σini = 60 MPa. The contact stress and the fracture aperture at the fracture tips is equal to zero.
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case, and so the cold water reaches the production well more rapidly.
Note that the production is defined by constant pressure at the producer
well; thus, the volume of the produced water is variable in time. Very
good agreement is found between the present model results for the
impermeable case and the solution proposed by Bodvarsson (1969), and
also with the solution by Ghassemi et al. (2008) for the case of low
leakoff ratio (m= 0.01). In the permeable cases, the permeability of the
matrix is considered only in the direction normal to the fracture (to
create one-dimensional leakoff), except one case that is described by
the text “[2D]” in Figs. 2 and 3. When the permeability of the matrix
increases, the leakoff increases, so the fluid velocity in the fracture
decreases. Therefore, the residence time of the fluid, i.e., the time that
the injected fluid spends inside the fracture prior to reaching the pro-
duction well, increases, and hot fluid is produced for an extended
period of time, as shown in Figs. 2 and 3. Leakoff also increases with the
dimension of the flow in matrix (Salimzadeh et al., 2017a), so for the
case with matrix permeability km = 1 × 10−13 m2, the case with 2D
leakoff predicts a longer period of hot fluid production compared with
the 1D leakoff simulation. The solution by Ghassemi et al. (2008) for

the fluid temperature at the producer is computed for different values of
leakoff ratio m = 0.01, 0.50, 0.75 and 0.99, and plotted in Figs. 2 and
3. In their solution, higher values of m represent a higher amount of
leakoff, so the produced water has higher temperature for an extended
period of time. However, as time elapses a sharp reduction in the
temperature of the produced water is observed such that the case with
very high leakoff ratio m= 0.99 produces colder water in the producer
at a later time.

In Fig. 3, the spatial distribution of the temperature of the fluid
inside the fracture is shown at time t= 108 s. Again, very good
agreement is found between the results of the present study and the
solutions given by Bodvarsson (1969), and also with the solution by
Ghassemi et al. (2008) for an impermeable matrix. As the leakoff in-
creases, either due to an increase in the permeability of the matrix, or
an increase in the dimension of the flow field within the matrix, the
fluid velocity in the fracture reduces. Slower flow in the fracture in-
creases the fluid residence time, and therefore results in higher heat
exchange with the hot matrix, and so a higher fluid temperature is
observed in the producer for an extended period of time. Again, the

Fig. 10. Spatial distribution of the temperature, aperture and contact stress on the fracture after 10, 20, and 30 years of simulation for high temperature case (Tini = 250 °C) with
σini = 75 MPa. The contact stress and the fracture aperture at the fracture tips is equal to zero.
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present model results differ from the solution by Ghassemi et al. (2008).
This is due to the fact that in the work of Ghassemi et al. (2008), it is
arbitrarily assumed that the leakoff is equal to some fixed fraction of the
injection rate, which does not vary in time, whereas in the present work
the leakoff is computed as part of the coupled simulation, and the ratio
of leakoff to injection is found to vary with time.

3.2. Deformable fracture in an impermeable matrix

A disk-shaped fracture of 200 m diameter is considered in the hor-
izontal plane, with injection and production wells connected to the
fracture at locations 50 m from the centre of the fracture to the left and
right, respectively, as shown in Fig. 4. The injection rate is set to
Q = 0.001 m3/s of water with temperature of 20° C, while the rock has
an initial temperature of 80° C. Rock deformation is allowed in this
example, and the elastic properties of the rock are set to Young’s
modulus E= 37.5 GPa, and Poisson’s ratio ν= 0.25. Material proper-
ties of the fluid and rock are given in Table 1 (example 2). Production is
defined by constant pressure at the producer. The in situ stress normal to
the fracture plane is set to σ= 60 MPa, and initial fluid pressure is set
to pi = 20 MPa. The fracture stiffness is set to 1011 Pa/m, and the
fracture aperture at zero contact stress is set to 0.6 mm. The viscosity of
the water is defined as a function of the temperature

= − + + − × −μ ef
T T T( 52.843 3703.6/ 5.866 ln ( ) 5.88 10 )f f f29 10

(64)

in which, the fluid temperature Tf is in Kelvin. This function will give
fluid viscosity of μf = 0.001 Pa s at Tf = 20° C. In this example, both
the contact model and THM model are run sequentially at each time-
step. The contact model is run using the pressure and temperature of
the medium from the THM model, and the THM model is run using the
contact stresses from the contact model. Two or three iterations are
required in order to reach desirable convergence. The results for spatial
distribution of the fluid temperature, fracture aperture, and contact
traction within the fracture at time t = 109 s are shown in Fig. 5. The
cold fluid at injection reduces the temperature of the rock matrix,
which results in contraction of the matrix. The volumetric contraction
of the matrix reduces the contact stress on the fracture and increases the
fracture aperture around the injection well, and also towards the pro-
duction well. The contact traction at the injector is reduced to about
30 MPa from an initial value of 40 MPa at t = 109 s, and the aperture at
the injector increases to about 0.3 mm. The increased aperture creates a
favourable path for the fluid to flow towards the producer, i.e., a
channel, which results in low heat extraction from other parts of the
fracture away from this path, as shown in Fig. 5. For instance, the area
behind the producer remains relatively untouched as the injected fluid
cannot reach this area. The evolution of the injection pressure and the
fracture aperture at the injection point is shown in Fig. 6. At early time
(t < 105 s), the injection pressure increases due to the increase in the
viscosity of the fluid. The increased pressure reduces the contact stress
and results in an increase in the aperture. At later times (t > 105 s), the
cooling of the matrix starts to affect the surrounding rock, and as a
result the aperture increases, and the injection pressure reduces as
shown in Fig. 6.

Fig. 11. Spatial distribution of the temperature on a horizontal cut-plane passing through
the injection well, the fracture and the production well after t = 30 years of simulation,
for different cases: Tini = 80 and 250 °C, σini = 60 and 75 MPa.

Fig. 12. Maximum aperture change with respect to the initial aperture versus simulation
time (left vertical axis) and the fluid temperature change at production (right vertical
axis) for cases with deformable fracture in permeable matrix.
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3.3. Deformable fracture in a permeable matrix

In this case, a circular fracture of diameter 400 m is assumed in a
plane that makes an angle of 30° with the horizontal direction, as
shown in Fig. 7. Vertical injection and production wells are located at a
300 m distance from each other, and injection and production is per-
formed through the rock matrix, as the wells are not directly connected
to the fracture. Only the lower 20 m of the wells are assumed to be
perforated. Cold water is injected at a rate of Q = 0.005 m3/s at a
temperature of 20 °C, and produced at the same rate, Q = 0.005 m3/s,
at the producer. The rock has elastic properties of Young’s modulus
E = 20 GPa, Poisson’s ratio ν= 0.20, and Biot coefficient α= 0.8.
Rock and fluid properties are given in Table 1 (example 3). Three cases
are assumed: case 1 with low initial temperature (Tini = 80 °C) and low
initial contact stress (σini = 60 MPa), case 2 with high initial tempera-
ture (Tini = 250 °C) and low initial contact stress (σini = 60 MPa), and
case 3 with high initial temperature (Tini = 250 °C) and high initial
contact stress (σini = 75 MPa). In all three cases, the initial fluid pres-
sure is set to 20 MPa, the permeability of the rock matrix is set to
km = 10−14 m2, the fracture stiffness is set to 1011 Pa/m, and the
fracture aperture at zero contact stress is set to 0.6 mm.

The initial timestep is set to 1 day, and it is increased in each step by
a factor of 1.1 until it reaches to a maximum timestep of 0.2 years. The
results of the simulation for the fluid temperature, aperture and contact
stress distributions at the fracture after 10, 20, and 30 years of injection
for each case are shown in Figs. 8–10, respectively. Injection of the cold
fluid induces contractions on the rock matrix around the injection well;
such volumetric contractions reduce the contact stress on the fracture in
the area most close to the injection well. The reduction in the contact
stress results in an increase of the fracture aperture, and that creates a
preferential path for the flow. As time elapses, the region of the fracture
with decreased temperature, increased aperture, and decreased contact
stress expands. The rate and the shape of the expansion depend on both
initial aperture and initial rock temperature. Higher initial aperture
makes the fracture a permeable pathway for the flow. Therefore, the
cold front moves towards the fracture and that further increases the
fracture aperture (cases 1 and 2). This results in developing an area
with increased aperture in the fracture, as can be seen in Figs. 8 and 9,
for both cases 1 and 2. That area points towards the nearest “exit” from
the fracture towards the production well. Higher initial temperature
leads to a larger temperature change in the matrix, which creates higher
contraction followed by higher reduction in the contact stress and
higher increase in the fracture aperture. Therefore, case 2, which has
higher initial aperture and higher temperature variation, creates the
most dominant favourable path for the flow of cold fluid, which is
visible as early as 10 years.

Lower initial aperture (the initial aperture of 0.05 mm corre-
sponding to the initial contact stress of 75 MPa) makes the fracture
hydraulic conductivity to be on the same order as that of the matrix, so
the fracture initially is not a preferential pathway for the fluid (case 3).
However, as the cooling of the matrix occurs, the contraction of the
rock reduces the contact stress on the fracture, which then increases the
fracture aperture, and so the fracture becomes a preferential pathway
for the flow, as shown in Fig. 10. The area with increased aperture,
however, does not reach the same location as for cases 1 and 2. This is
due to lower conductivity of the fracture ahead of the cold front, which
prevents the movement of the cold front in the fracture. The distribu-
tion of matrix temperature along a horizontal cut-plane, after 30 years,
is shown for the three cases in Fig. 11. In case 2, the fracture is clearly
acting as short-circuit for the flow, whereas in the first case, the high
initial fracture aperture allows the cold water to access larger areas of
the fracture. In the third case, the lower initial aperture limits the
distribution of the cold water on the fracture, but the aperture increase
due to the contraction of the matrix creates a favourable path for the
cold water to move towards the producer. Again, as the initial aperture
in this case is very low, the size of the area with increased aperture is

smaller than the one in case 2. In Fig. 12, the maximum increase in the
fracture aperture, as well as the temperature drop at the producer, are
compared for the three cases. The magnitude of the aperture increase in
case 3 is the highest, while the temperature drop at the producer for
case 2 is the highest. As mentioned earlier, the area with increased
aperture in case 3 is smaller and therefore, less effective than the one in
case 2. The temperature drop in the producer, as well as the maximum
aperture increase, is the lowest in case 1. This is due to lower volume
contraction of the matrix due to lower initial temperature of the re-
servoir, and also due to distribution of the cold water in the fracture due
to the high initial aperture. In case 3, although the fracture has a lower
initial permeability than the case 1, but the temperature break-through
occurs earlier. It is interesting to note that the maximum aperture in-
crease (i.e., the maximum contact stress reduction) rapidly reaches a
maximum value at an early time (around seven years), and then de-
creases. The reduction in the aperture is due to the stress redistribution
in the fracture, as the region of the fracture with reduced contact stress
expands.

4. Conclusions

A fully coupled THM model that rigorously models deformable
fractures in a permeable matrix has been presented. The THM model is
further coupled with a contact model to resolve the contact stresses
between fracture surfaces. The model was validated and applied to
several examples of geothermal systems, in both impermeable and
permeable rocks. Conductive fractures create preferential paths for the
flow, and the flow of the cold fluid reduces the temperature of the rock
matrix surrounding these paths. The volumetric contraction of the
matrix results in the local increase in the fracture aperture, i.e., chan-
nelling of the flow. In cases with a permeable matrix, the initial aper-
ture of the fractures initially controls the flow of the cold fluid.
However, as the matrix temperature decreases, the volumetric con-
traction of the matrix increases the aperture in the nearby fractures,
which in turn become the preferential pathways for the flow. The
contact stress on the fracture is reduced as the matrix contracts; how-
ever, the contact stress reaches a minimum value and then increases.
The increase in the contact is due to the redistribution of the stresses
due to the expansion of the region with reduced contact stress. In other
words, as the area of the fracture affected by the matrix contraction
expands, the stresses redistribute, which increases the minimum con-
tact stress. The stress redistribution reduces the ability of the fracture to
propagate under pure opening mode, while the expansion of the area
with lower contact stress can increase the possibility of fracture pro-
pagation under shear. As future work, the computational method can be
further improved by using parallel computing in order to simulate
complex heterogenous media containing many discrete fractures.
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