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Abstract

Sediment cores and bottom water samples from athesBaltic Sea region were analyzed
for freely dissolved concentrations ), total sediment concentrations tjCand the
dissolved aqueous fraction in water of seven indicRCBs. Ex-situ equilibrium sampling of
sediment samples was conducted with polydimetlodaihe (PDMS) coated glass fibers that
were analyzed by automated thermal desorption GCamfich yielded PCB concentrations
in the fiber coating (fbms). Measurements of igusand G were then applied to determine
(i) spatially resolved freely dissolved PCB concatibns; (ii) baseline toxicity potential
based on chemical activities (a); (iii) site specimixture compositions; (iv) diffusion
gradients at the sediment water interface and wite sediment cores; and (vi) site specific
distribution ratios (k). The contamination levels were low in the Gulf Ehland and
moderate to elevated in the Baltic Proper, with highest levels observed in the western
Baltic Sea. The SPME method has been demonstmateel &n appropriate and sensitive tool
for area surveys presenting new opportunities tedystthe in-situ distribution and

thermodynamics of hydrophobic organic chemicalsaate levels in marine environments.

Introduction

The Baltic Sea as a shallow semi-enclosed seansected to the open ocean through the
North Sea. The mean residence time of the sea watdretween 25 and 40 years
(Rheinheimer, 1996). This facilitates the accumaiabf pollutants in the Baltic Sea, because
only 2-3% of the contaminants entering can flow tubugh the North Sea (Briigmann,
1993). Large parts of the catchment area are indliseéd or in agricultural use. The coastal
zone of the southern Baltic Sea is strongly infeezhby anthropogenic inputs derived from

industry, agriculture, tourism and shipping (Blaeiz al., 1999). In addition, atmospheric
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deposition from the catchment area and non-Europetdes, due to long-range transport of
pollutants in air, seriously reinforces the levektontamination of the Sea. Kot-Wasik et al.,
(2004), reported that in the middle of the 1980pragimately 30 000 t &of chlorinated
organic compounds were discharged into the Bab# ffom pulp mills. HELCOM identified
162 hot-spots in the Baltic Sea region (1992), With being removed to date. However, their
past pollution load was often buried in soils atiseents and has not yet disappeared from the
ecosystem (HELCOM, 2010).

The environmental sensitivity and the strong amgbgenic pressures of the region have been
recognized by the littoral states for many decadesf3en et al., 2013). In response, the
European Union Marine Strategy Framework Direc(MSFD) aims to establish effective
protection of the EU’s marine waters by puttingplace a common framework for marine
policy. The main objective of the MSFD is to acl@esr maintain a good environmental
status (GES) of the EU’s marine waters by 2020 ctvltorresponds closely to the declared
aims of the HELCOM Baltic Sea Action Plan (Ahtiamnet al., 2013). Since 1990, the main
goal of HELCOM has been to re-establish ecologezglilibrium conditions. The general
situation is that, HELCOM identified decreasing w@omination trends for a variety of
compounds, but with residual accumulation stillserg (Liehr, 2006). The Baltic Sea Action
Plan was adopted by the coastal countries and tihepEan Community in November 2007;
as a regional intergovernmental program, it intaedumeasures to protect and manage the
marine environment based on the Ecosystem Apprdduls, ecological objectives are used
to define indicators and targets, effect-basedienitrinput and monitor implementations
(Backer et al., 2010).

Polychlorinated biphenyls (PCBs) are ubiquitoushespogenic contaminants. They are
widely distributed in the environment through, taetample, inappropriate handling of waste
material or leakage from transformers, condensedshgdraulic systems (HELCOM, 2013).

They are still emitted into the atmosphere via vegadion and open burning of products
3
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containing PCBs (U.S.EPA, 2007) due to their préidncand application worldwide. Even
though PCB manufacture was banned in the 1980s.EBA 2014), their release into the
environment is still a challeng®CB concentrations decline only very slowly in saind
sediments due to their high persistency and higptism to the soil and sediment matrix
(Rein et al, 2007)Once accumulated mainly in the lipid-rich tissueoggdanisms, PCBs have
been shown to cause cancer and several seriousamoef health effects (U.S. EPA, 2007).
For that reason, PCBs are defined as priority patiis by the U.S. EPA (U.S. EPA, 2012)
and are included in the 2002 by OSPAR adopteaiishemicals for priority action (OSPAR,
2013).

Assessments of HOCs and their risks have traditipbaen based on total concentrations of
contaminants in the sediment, which are poorlyteeldo the bioavailability and toxicity of
these pollutants (Mayer et al.,, 2014). Potentiaksiof adverse biological effects from
sediment associated contaminants are better retatembncentrations of freely dissolved
chemicals in the sediment porewater (effective eatrations) (Mayer et al., 2014). Today it
is known that the contaminant’s total amount ins@iment is not a suitable measure since it
addresses neither of the two aspects of bioavhilabiefined by Reichenberg and Mayer
(2006): (1) Accessibility: The quantity of the cantinant in the system which can be made
available for an organism (i.e. the fraction whishnot “trapped” in the environmental
matrix). (2) Chemical activity/fugacity: The contarant’s thermodynamic potential for
spontaneous physicochemical processes such asopant between different compartments
in an environmental system, including partitionintp biological tissues (bioaccumulation).

It has been shown that measurements Qf, €ather than their estimations using generic K
values, can significantly improve the prediction mbaccumulation (You, Landrum and
Lydy, 2006; Mayer et al, 2014). Kraaij et al. (2DOBredicted for instance internal
concentrations of a few model HOCs in Tubificidber{thic oligochaetes) as product gEC

and bioconcentration factors. The strong agreemétit measured biota concentrations
4
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confirmed that bioaccumulation was the result afippaning (not excluding oral uptake as an
exposure route).

The measurement of;€ or chemical activity (a) gives direct informatiabout the direction
of the diffusive mass transfer, which always takémce from areas of high to lows&
concentration and chemical activity (Reichenberd Bfayer, 2006). Chemical activities in
environmental media can be calculated by dividipg. 6f a sparingly soluble compound in
water by its respective subcooled liquid solubi{f8y) (Schwarzenbach et al., 2003).

A number of studies have been carried out to inyatst PCB sediment concentrations.
Nevertheless, studies are mostly restricted toiipeegions in the Baltic Sea and only a few
studies have been investigating freely dissolvedcentrations of PCBs in sediment pore-
waters applying different types of passive sampteahniques (e.g. Cornelissen et al, 2008;
Jahnke et al., 2012). The major advantages of ymssimpling over “classical methods” are
the simple sample preparation and considerablydetection limits especially regarding the
highly hydrophobic substances that are enricheth freater to polymer by 3-7 orders of
magnitude. Passive sampling techniques are enventatly “green”, i.e. they are time and
cost efficient and less resource lavish.

The aim of this study was to comprehensively inges¢ exposure, fate, partitioning,
bioavailability, and baseline toxicity of select®&CBs. The study also makes substantial
contribution to the assessment of sediment charsiits in terms of providing the first large-
scale investigation of seven PCBs using an equilibrsampling approach in Baltic Sea
sediments. We identified (i) large scale horizograldients of ¢.. and chemical activity; (ii)
gradients of diffusion within sediment cores aslvasl at the sediment-water interface; (iii)
site specific distribution ratios & and (iv) the baseline toxic potential. The apploased in
this study provides a novel strategy to assess HO@aminated sediments. It extends
conventional approaches and techniques currentiempand delivers distinct insights in

comparison to results obtained with classical araiymethods.
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Experimental section

Sampling

Baltic Sea sediment cores were sampled in Jund@gd®008 during a cruise on the research
vessel “Maria S. Merian”. The cores were obtainsith@ a sediment multi corer and cut into
2 cm thick slices on board. The samples were honingée and aliquots were stored at -18 °C
in pre-cleaned aluminum boxes and polyethylene (P&)tainers until they could be
analyzed. A total core with a length of 20 cm waspled from eleven stations. Bottom water
was sampled with the Kiel in-situ pump system (KI8#mes, Kiel, Gemany) described by
Petrick et al. (1996). KISP was fixed on a wire daodered to preselected depth. After six
hours of sampling approximately 360 L was processadl HOCs collected onto a XAD-2
resin column. The loaded column was stored cool dadk until analysis. (For further
information of the sampling procedure please redegext S6 (Sl)). Hydrographical-chemical
parameters were obtained with a CTD rosette. A shapving the sampling locations is given
in figure S1 (Sl). Details, geographical positioswsd sampling depth of the stations are

presented in Sl, table S1.

Chemicals and other materials
A list of all materials and chemicals used as \aslla description for treatment of glassware,

solvents and other materials are given in textS8Jldgnd S2 (SI), respectively.

Bulk sediment analyses
The water content and the total organic carbon esan{TOC) were determined for all
sediment samples. In addition, black carbon (RO&9 measured for surface sediments. Text

S3 (SI) describes the procedures.
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Chemical analyses of sedimerand bottom water

The sediment samples were analyzed for freely hiedoand total PCB sediment
concentrations (g using equilibrium sampling and exhaustive extod to vyield
concentrations for the seven indicator PCBs (PCB28101, 118, 138, 153 and 180). Figure
1 presents the analytical procedure of sedimertgssing as a flow chart.

Solid phase micro-extraction (matrix-SPME) (Wittagt 2009) was carried out to determine
sediment porewater concentrations. The fibers \wmaedyzed with a GC-MS system (7890A
GC, 5975C MSD, Agilent Technologies) equipped watltold injection system (CIS) for
thermal desorption of the fibers and a GERSTEL Adted Liner EXchange system (ALEX)
for fully automated sample processing. Calculategklf dissolved concentrations were
temperature corrected from 20 °C (laboratory) ttC4(field) using the Van’t Hoff equation
and actual fiber coating thicknesses were measaitbdiaser scanning confocal technology.
A detailed description of the analytical proced¢&ME experiments, GC-MS analyses,
measurement and calculation ofcCas well asmportant requirements) is given in the Text
S4 (SI).

Total sediment concentrations were determined bpgliggiion of accelerated solvent
extraction (ASE) to the sediment samples, followgda SPE (solid phase extraction) clean-
up of the extract and subsequent analyses via GCIM& analytical procedure is described
in text S5 (SI).

Dissolved bottom water PCB concentrations wereyaeal by extracting the loaded XAD-2
columns with solvents, a subsequent clean-up stepn@geasurement of the compounds of
interest with GC-MS. A precise summary of the atedy procedure is presented in text S6

(SI).

Quiality control and assurance (QA/QC):
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Method validation was performed by assessing measemt precision (10 times replicate of a
standard solution), linearity (multipoint calibiati, 3 replicates) and system solvent blanks of
the analytical system. Evaluation of processingkdarepeatability of the sample processing
procedure (reference material and sample), reconageg of the analytes (based on internal
standard processing) and accuracy (standard resediment) were used to predict final
uncertainty of the analytical results.

Precision of the measurement method was deternwited< 10% for uncorrected and ISTD
(internal standard) corrected area responses fer thPCBs. Linear regression of the
calibration curves yielded coefficients of deteration () > 0.990 and target PCBs were
not detected in solvent blanks.

Method detection and quantification limits of thgimized methods (MDLs and MQLSs) were
calculated using the average PCB target responspocessing blanks plus 3 times (MDL)
or 10 times (MQL) the standard deviation. MQLs whetween 5 and 18 pg {{LPDMS for
PCBs. MDLs were lower than 10 pg BiLPDMS for all target compounds. Final mean
standard recoveries of internal and external P@getacompounds of standard test solutions
were 90% + 15%. For an average of eight sedimemipkss being extracted via ASE one
blank was processed and analyzed simultaneouslgnM&andard recoveries of the internal
standard solutions added to each sample were atddulor all target compounds with 82% +
7%. Additionally, the standard reference matertalz4 as well as QPH 058 and QPH 059
(QUASIMEME, Laboratory Performance Studies, httpaiv.quasimeme.org/) were equally
processed with the samples and checked for recoVée measured concentrations for the
single compounds were in all cases in the rangeedified values (x certified uncertainty).

Finally, the maximum uncertainty of the analytioagults was predicted to be + 30%.
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l Sediment core samples of Baltic Sea (20 cm) |—> TOC, TEC

l Homogenization of slices (10 x 2 cm) |

15 g aliquot, wet 1 5 g aliquot, wet

Exhaustive extraction
(Accelerated solvent extraction (ASE))

Fiber experiment
(matrix-SPME)

} |
3 fibers (ca. 10 cm) were directly inserted

l Water removal with 4 g anhydrous sodium sulphate
into the sediment slurry at 20 °C until

equilibrium was reached d

l Sulphur removal with 4 g cleaned and acid-activated
copper

v

Fiber retrieval and Solid-phase extraction (SPE) with a solvent conditioned doubled
/ . Baker-Bond column filled with 3 g of deactivated aluminum oxide
cieanin (top) and silica (bottom)

v

l Concentration of the solvent extract to < 500 pL I

v v

l Analyses of 7 PCBs with GC-MSD l

v \ 4

l Thermal desorption of the SPME fiber l ' Liquid injection |

l Calculation of concentrations l

Calculation of Cgee I Calculation of C,y l

Calculation of C,yms

Cee = Crpus
PDMS

M
Crpus=—2226
PDMS

Figure 1. Diagram presenting the steps of the analyticat@dure of sediment processing.

Results and Discussion
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Sediment characteristics

The TOC content of Baltic Sea sediment cores rarfgeth 1.4% - 11.5% (w/w, dry).
Concomitant with progressive diagenesis at gresgdiment depths, i.e. the decomposition of
the sedimentary organic matter under oxic, sub-amit anoxic conditions by micro-biota and
its mineralization, a decrease of TOC was obserfgdrage TOC values from the measured
triplicates for each sampling station and depthpaesented in detail in Table S2 (SI).

Besides TOC, black carbon (ROC) is suggested tg planajor role in the sorption of
hydrophobic organic contaminants (Jonker and Koesn&@002; Lohmann et al., 2005;
Cornelissen et al., 2005; Staniszewska et al., R@dpending on the measurement method
and definition the TOC can be interpreted to inelutde two components ROC and OC
(organic carbon) fraction, i.e. OC + ROC = TOC (Aati-Dey and Gschwend, 2002). ROC
contents ranged between 0.043% and 0.225% (w/vy,fdrythe sediment layer of 2 - 4 cm
(individual values can be found in the Sl). Jahekeal. (2012) determined the ROC to be
approximately 0.2% in surface sediments of the I8tolen Archipelago after applying the
method of Gustafsson et al. (1997) for soot quiatibn, which closely corresponds to the

data from the Aland Sea (605) recorded herein.

Composition of the sum of Gee in surface sediments and spatial distribution

The most hydrophobic PCBs (CB 118 - CB 180) yieldexy low concentrations compared to
the less hydrophobic PCBs (CB 28 - 101). The PCHribdution pattern was similar among
the sampling stations (see Box-plot, Figure 2). 2B and 52 yielded markedly higher
variability of G for the sediment depth O - 2 cm in contrast todther PCBs. For CB 118
an outlier was observed at the Bothnian Bay (sB83. CB 101 concentrations were notably
lower at the Gulf of Finland (site 302 and 305) pamed to the other stations. Box-plots of
PCB distribution patterns and thereforg.{concentration ranges for all sediment depths at

the eleven investigation sites are given in figh2e(Sl).
10
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Jahnke, et al (2012), studied freely dissolved eatrations in surface sediments along an E-
W transect from central Stockholm towards the o8teckholm Archipelago (in the region of
site 605 (Aland Sea)) and found decreasing trendhis direction. Their results for 7 PCB
congeners are in good agreement with the data miesben this study. Within congener
concentration variability, in some cases CB 28 @Bd52 were up to 3 - 7 higher in this study
and for CB 101, 118, 153, 138 and 180 up to 10 ditnigher in their study. The lower
concentrations of the higher chlorinated PCBs atAland Sea were consistent with their

decreasing trends towards the open Baltic Sea.

Distribution of C e in sSediment cores

11
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Figure 2. Box-plots for the 7 measured PCBs as depth pfilincluding the fee
concentration values [pg’] for all sampling stations of the Baltic Sea irtledox. Each box
displays the median, the 10-, 25-, 75- and 90-priteeas well as the extreme value (asterisk)

and outlier (circle) for the compound of interest.

Figure 2 displays box-plots as depth profiles fox ¥ PCBs, including theqge data for all
Baltic Sea sampling stations in each box. Highlyevated freely dissolved PCB
concentrations were mainly found in deeper sedimapérs (8 - 16 cm). Since PCB
manufacture was banned around the 1980s, a ragédiyeasing environmental concentration
could be expected to be reflected in the uppemsexti layers by lower concentrations. Even
though their release in the environment is on-gdimgpugh burning of PCB containing
products and strong environmental persistence.dstmases PCBs were not elevated in the
upper sediment layers. However, increasing conagotr levels towards the upper sediment
layers were observed for PCBs in the northern 8&#ga. A clear increase was observed for
station 603 (Bothnian Sea), whereas slightly el &..levels were found at the Bothnian
Bay (BB03) for CB 101 and CB 118. Individual degiofiles for the sediment cores and

measured PCBs are displayed in figure S3 (SI).

Baseline toxicity

The sum of chemical activities, calculated from #iegle Gee values of the individual
compounds is an indicator of the baseline toxiepw&l of a mixture (Di Toro et al., 2000).
Baseline toxicity, also referred to as narcosighésminimal toxicity a single compound can
cause when crossing membranes (Escher and Schwacter?002). Mixtures can include
thousands of individual compounds and even iflese compounds are below the threshold
level of specific toxicity, the underlying cumublai baseline toxicity might determine the

overall toxic effect (Escher et al., 2002).
13
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In this study baseline toxicity or rather the cdnition to the baseline toxicity potential of a
mixture was evaluated for the sum of seven PCB® PEB mixture showed moderate
variations between the sites and was below lethafit any case. In most cases the
contribution of the sum of PCBs to the baselinedgotential was approximately a factor of
thousand below the effective activity range (EAB8tween 0.01 and 0.1). At this chemical
activity range baseline toxicity is lethal (Reicheng and Mayer, 2006).

Values for the sum of chemical activities (sevenBBCfor all sediment depths at the
sampling stations and the mean, maximum and miniwaiore for each station are presented
in table3 (SI). Within the sediment cores the highest cloahactivities were mostly found in
the middle or deeper sediment layers, suggestiag #m organism experiences lower
exposure from PCBs in surface sediment layers. lDgpbfiles of the sum of chemical

activities of the seven PCBs for all sampling stadican be found in figure S4 (SI).

Comparison of the composition of Gee and chemical activity

A comparison of the variation in molecular compositof the 7 PCBs as a percentage @f.C
and chemical activity for station BB03 at a seditnggpth of 0 - 2 cm is given in Figure 3.
Although the percentage composition ofeLand chemical activity varied moderately
between the sampling stations, the general disioibwf the PCBs was consistent for a depth
of 0 - 2 cm. Lower chlorinated PCBs had only a miaii contribution to the chemical activity
and therefore to baseline toxicity. In contréasgher chlorinated PCBs which contributed less
to Gree, predominated the contribution to the overall esyge when expressed as chemical
activity. This example clearly demonstrates thesvahce of not only freely dissolved
concentrations, but also on the properties of glsicompound when assessing baseline
toxicity from chemical activities of a contaminanixture. Thus, the baseline toxicity of PCB
mixtures is not only controlled by the concentmatibut also by the properties and

characteristics of the individual compounds. Irstbontext, it is relevant to be mentioned,
14



295 that freely dissolved PCBs concentrations were dotmnbe 2 - 3 orders of magnitude lower
296 than PAHs concentrations (Lang et al., 2015). Nedess, the sum of chemical activities
297 and hence the contribution to the baseline toxiemaal was only one order of magnitude

298  lower for PCBs compared to PAHS.

CB153 (B 138 B28 cpsp
B 118 3% 2.4% 3% 4% cB101
4% CB 180
11%
0,7% \
CB 101 CB 118
11% 6%
CB 153
0,
CB 52 25%
-y CB 138
15,3%

Ci..., BBO3 chemical activity, BBO3

299

300 Figure 3: Comparison between the contributions of 7 indmldPCBs to & and chemical
301 activity in percentage for the surface sedimengidg - 2 cm) at site BBO3 (Bothnian Bay,
302 Baltic Sea).

303

304 Diffusion gradients

305 An indicator for diffusive mass transfer of contaamts is also the chemical activity
306 (Reichenberg and Mayer, 2006). Diffusion alwaysetalplace from high to low chemical
307 activity. Diffusion gradients, i.e. the directioh contaminant mass transfer in the sediment
308 can be seen in the vertical profiles of the chehacdivities. In addition, the diffuse mass
309 transfer at the sediment water interface was inyatstd for PCBs to address the question
310 whether the Baltic Sea sediments act as diffusiugce or as diffusive sink to the water

311  column.
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Figure 4 displays the activity profiles of the swinseven PCBs for site 113 (Arkona Sea),
305 (Gulf of Finland) and 605 (Aland Sea). The klasrows indicate the direction of
contaminant diffusion within the depth profile fromgh to low chemical activity. PCB
activity profiles for the other stations withoutlinative arrows are given in figure S4 (Sl) and
individual values in table S3 (SI).

Station 113 represents a profile determined byvarange of chemical activities over the
entire depth and therefore low diffusion gradier8ge 305 (Gulf of Finland) showed a
maximum chemical activity at a sediment layer af&cm and a diffusion trend towards the
upper and deeper sediment layers. Site 605, regsesediffusion pattern directed to mid
sediment layers and was not observed at any oiker Rrofiles with low variations in
chemical activities were also found for station8,2233 and 259. All other stations revealed a
clearly identifiable maximum in middle up to deegediment layers with a varying diffusion

trend towards upper and deeper sediment layers.

113 chemical activity, sum 7 PCBs 305 chemical activity, sum 7 PCBs 605 chemical activity, sum 7 PCBs
1607 1,606 1E05 1,604 1603 1E02 101 1,400 1E07 1,606 1605 1,604 1,603 1602 1,601 16400 1607 1606 1605 1604 1603 1602 1E01 1400
0 0 0
o o o
2 2 2
o o o
4 4 4
o o o
6 6 6
o

osv3
=
[wd] yadap

m = 0 =} [
osv3
= =
[wd] yadap
= B m =
n o
osv3
=
[wd] yadap
o

Figure 4: Vertical profiles of the sum of chemical actieti for three Baltic Sea sampling
sites (113, 305 and 605) calculated from seven PiGBeach depth. Small and large black

arrows indicate small-scale and overall diffusie@ntls, respectively.
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Sediment to water activity ratios: Chemical activities of sediment porewater (surfiager,

0 - 2 cm depth) were plotted against chemical awssof the bottom water for PCBs (figure
S5 (SI)). Calculated activity ratiosp{dasw) between sediment porewater (PW) and bottom
water (BW) indicate whether sediments act as diffasurce or sink. The grey line in the
diagrams indicates similar activitiess¢@asw = 1) in sediment porewater and bottom water,
which implies a similar energetic state betweerseheompartments where no spontaneous
diffusion processes occur. A ratio gfwdasw > 1 suggests that the sediment acts as a source
of PCBs to the water body, while a ratio gfyew < 1 suggests that the sediment acts as a
sink.

In a few cases the chemical activities of the 7 P@&re almost equal (thermodynamic
equilibrium, aw/agw = 1) or lower (disequilibrium,m@/agw < 1) in the sediment compared to
the chemical activities in the bottom water. Excaml diffusive flux, directed from water to
sediment (aw/asw: 0.26 - 1.04) were found at site 302 and 305 (GlLFinland) for CB 118,
CB 138 and CB 153 and at station 284 (Western Gotiea) for CB 180 and the sediment
was assumed to act as a sink. In all other casemtios were: @/agw > 1, which implies the
sediment to act as a diffuse source for PCBs. Gakul chemical activity ratios of sediment
porewater to bottom waterg@agw) for the seven different PCBs at the 11 sampliagjas

are given in table S4 (Sl).

In a previous study (Cornelissen et al., 2008), meaJ/agw ratios close to one were
calculated for 14 PCBs at five locations in the ropeorthern Baltic Sea region. They
concluded equilibrium conditions between sedimemtewater and overlying water in the
open Baltic Sea, which implies no overall diffusifltax of PCBs. Further, Jahnke et al
reported higher chemical activities of PCBs in lakel Baltic Sea sediment compared to biota

and water (Jahnke et al, 2012; Jahnke et al, ES&A2Jahnke et al, ESPI 2014 ).

Site specific distribution ratios (Kp)
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It is also known that black carbon (ROC, a parthef TOC) — like organic carbon - is an
important sorbent for PCBs in the Baltic Sea (Gigstan et al., 1997; Gustafsson et al., 2001;
Cornelissen and Gustafsson, 2005b). ROC was mebsuagldition to TOC, to investigate its
impact on the sorption behavior of the compoundBatic Sea sediments. An assessment of
correlation between K values (= G/Cee [L Kg™ dw]) and ROC as well as TOC vyielded
positive results. The Kvalues were plotted against TOC and ROC and regidifferences

of the sorption capacity and sorptive strengthhefd4ediments were identifiedpKalues and
plots of Ky against TOC and ROC for individual PCBs can benébin table S5 (SI) and in
figure S7 (Sl), respectively.

A strong correlation with TOC was found for all PCB the northern Baltic Sea region’(R
0.84 - 0.94). In contrast, a moderate correlatiith ROC was observed {R 0.46 - 0.82) for
this region. The correlation with ROC was also loveand inverse compared to TOC,
suggesting that the major sorbent for PCBs is TO@é northern Baltic Sea region. Jahnke
et al. (2012) confirmed TOC as the major sorbentHGBs in the Stockholm harbor and
Archipelago, with R values between 0.49 - 0.70 for six PCBs. Compapeth¢ northern
Baltic Sea region, the southern Baltic Sea regiteldgd low to moderate correlation
coefficients between fvalues and both TOC and ROC. ThevRlues between TOC andhK
ranged from 0.05 - 0.89, but with CB 101, 138 afl $howing R values < 0.1 and CB 28,
52, 118, 153 Rvalues between 0.52 and 0.89. In contrasydRies for ROC and iKranged
between 0.004 - 0.74, with CB 28, 52 and 118 shgvihvalues < 0.22 and CB 101, 138,
153, 180 Rvalues between 0.61 and 0.74. For this regionctineslation with ROC was also
inverse, but reverse of that in the northern BaBe@a region. The results for the southern
Baltic Sea region suggest a compound dependenti@otp ROC and TOC. CB 28, 52, 118
and 153 are more likely associated with TOC andl0OB, 138, 153 and 180 are more closely
associated with ROC, while CB 153 showed similav&8ues with TOC and ROC. In the

case of PCBs, station 271 (Gotland Deep) did nsb@sate with any regional trends. With
18



383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

very high TOC content (11.1%) and the highesgt Walues across all sites it remained
exceptional.

An earlier study presented by Konat and Kowalew@k®1) showed trends and fate of PCBs
in sediments of the southern Baltic, identifyingimsources of contamination as floods and
heavy rains washing these compounds from land ¢ostha, while PCB pollution is not
directly attributable to specific human activityurther they concluded that algae and algal
detritus play an important role in the transpod distribution of PCBs in the southern Baltic,
because of high correlation of PCBs with chlorophgl derivatives. The northern Baltic Sea
region in contrast, was directly influenced by isttial PCB discharge, before hot spots in
this area were controlled (HELCOM, 2012 and 2013).

In a PCB survey of the U.S. EPA (2007) differenedween urban and rural atmospheric
pollution by PCBs was observed. The higher chlaeddCBs, typically associated with the
particle phase, were found at higher concentrationarban sites, whereas at rural sites, the
PCB mixture had more PCB congeners with lower @hétion, typically associated with the
gas phase. The distinct origin and input of PCBsveen the two regions may explain the
differences in sorption behaviour to TOC and RO@émeral, whereas the northern Baltic
Sea region could be described as dominated by mpaits in contrast to the urban and

industrial influenced southern Baltic Sea.

A plot of Kp against kw (Figure S6 (Sl)) gives evidence of higher sorptstrength of the
sediments in the western Baltic Sea and Baltic &rgpmpared to the Gulf of Finland and
northern Baltic Sea. The sediments of the GotlapéD(station 271) have highest sorption
strength for PCBs compared to all other sites.h&torthern Baltic Sea region, highest K
values were observed for station BB03. Comparesitéo603 and 605, station BB0O3 showed
a higher TOC content and sediment concentratiohgde Wi was only slightly elevated. In

the Gulf of Finland, station 305 revealed only Islig higher Ky values than site 302 and
19
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freely dissolved concentrations were similar at hbatites. However, total sediment
concentrations were approximately double compacethose at site 305, while the TOC
content was nearly half of the one at site 302.sTlhis would suggest that PCBs are more
available for partitioning into the porewater ae&<302, while the sorption strength is higher at
site 305. In the southern Baltic Sea region lowéstvalues were observed at the Gdansk
Deep (233). Compared to site 113, 213 and 259 set@iment concentrations were lowest,
while Giee was similar for all stations indicating lower sbop strength and therefore a

possibly higher bioavailability of the sediment bduPCBs in this region.

Conclusions

This study provides the first comprehensive datasefreely dissolved concentrations and
contaminant chemical activities of PCBs in BalteaSediments. The SPME ALEX GC-MS
method used for this basin-scale investigation @doto be a suitable and efficient tool to
measure (e The method is straightforward provided some apgilbn conditions are
considered. Measurements of.Cfrom seven indicator PCBs at the main sedimentatio
basins of the Baltic Sea allowed for the investayabf spatial gradients among and within
the sites. Furthermore, the baseline toxic potentias successfully assessed. Highly
hydrophobic substances were characterized by raletevels for Gee and high levels of
chemical activity. This means that whilst the cidmition of such substances to the pool of
freely dissolved molecules is often negligible,itle®ntribution to the baseline toxic potential
may be of high relevance. Moreover, this studwartyeshows that (e and chemical activity
are important exposure parameters for expressingvhilability and predicting baseline
toxicity and physico-chemical processes like ditfas The obtained results can be directly
applied within a quantitative thermodynamic expesassessment framework. On this basis,
the presented results should be considered whassasg environmental risk and remedial

actions. Further investigations should involve oth®©Cs of concern, such as PCDD/Fs,
20
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PBDEs, PAHs and BFRs. It seems especially releisa@stimate and sum-up the contribution
of mixture constituents to the baseline toxicity @amplex mixtures, including priority
pollutants as well as other hydrophobic chemidakproducing and linking freely dissolved
concentrations of HOC mixtures measured in thensedi pore-water to aquatic toxicity
testing via passive dosing (Smith et al. 2010atisetial. 2010b, Schmidt et al., 2013) which
ensures constant exposure concentrations in bigassaer time, allows then for an

ecotoxicological assessment under nearly "truéd Gienditions.
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List of figure captions of the main manuscript:

Figure 1: Diagram presenting the steps of the analytical procedure of sediment processing.
Figure 2: Box-plots for the 7 measured PCBs as depth profiles, including the Csee concentration
vaues [pg L™ for al sampling stations of the Baltic Sea in each box. Each box displays the
median, the 10-, 25-, 75- and 90-percentile as well as the extreme value (asterisk) and outlier
(circle) for the compound of interest.

Figure 3: Comparison between the contributions of 7 individua PCBs to Ciee and chemical
activity in percentage for the surface sediment layer (0 - 2 cm) at site BBO3 (Bothnian Bay,
Baltic Sea).

Figure4: Vertical profiles of the sum of chemical activities for three Baltic Sea sampling sites
(113, 305 and 605) calculated from seven PCBs for each depth. Small and large black arrows

indicate small-scale and overall diffusion trends, respectively.
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Highlights
* Thebasdline toxicity of the PCB mixture was below lethality at all sampling sites
* Expressed as chemica activity - higher chlorinated PCBs contributed most to
exposure
* Thesediment was assumed to act as asink for PCBsin some individual cases
e Sorption capacity/sorptive strength of sediments for PCBs revealed regional

differences



