Investigations of FIBCD1: Immunohistochemical localization and immunomodulatory role upon helminth antigen stimulation in colon epithelium

von Huth, Sebastian; Skallerup, Sofie; Buragaite, Benita; Schlosser, Anders; Moeller, Jesper B.; Hammond, Mark; Nielsen, Ole; Marcussen, Niels; Svensson Frej, Marcus; Williams, Andrew R.

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
A-31195
Investigations of FIBCD1: Immunohistochemical localization and immunomodulatory role upon helminth antigen stimulation in colon epithelium

Sebastian von Huth1, Sofie Skallerup1, Benita Buragaite1, Anders Schlosser1, Jesper B. Moeller1, Mark Hammond1, Ole Nielsen2, Niels Marcussen2, Marcus Svensson-Frej3, Andrew R. Williams4, Stig M. Thamsborg3, Grith L. Sorensen1 & Uffe Holmskov1

1Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark, 2Department of Clinical Pathology, Odense University Hospital, Odense, Denmark, 3Division of Immunology & Vaccinology – Mucosal Immunology, DTU VET, Copenhagen, Denmark, and 4Department of Veterinary and Animal Sciences, University of Copenhagen, University of Copenhagen, Copenhagen, Denmark

Introduction: Fibrinogen C domain-containing 1 (FIBCD1) is a homotetrameric type II transmembrane protein, expressed at epithelial surfaces. FIBCD1 has a wide ligand spectrum, including chitin found in various pathogens such as helminths and fungi. Current understanding points towards a role as a pattern recognition receptor in the innate immune response.

Aim: In the present study, we investigate the localization of FIBCD1 in 49 different healthy human tissues by immunohistochemistry. Further, we investigate the in vitro effects of excretory-secretory (ES) antigens from pig whipworm (Trichuris suis) on FIBCD1-transfected colon epithelial cells, and identify protein fractions in the ES-antigen that binds to FIBCD1.

Results: Immunohistochemical staining shows that FIBCD1 is present at mucosal surfaces throughout the human body, with high intensity in the airways and gastrointestinal and urogenital tract. Transfection of the human colon epithelial cell line HCT116 with FIBCD1 did not result in any major genotypic differences upon stimulation with ES antigens, as determined by quantitative PCR of various pro- and anti-inflammatory genes. FIBCD1 recognizes and binds to whipworm eggshell and ES antigens. Analysis of the T. suis ES-antigen by size chromatography reveals predominant sizes of proteins ranging from 10 kDa to 200 kDa.

Conclusion: FIBCD1 is present at mucosal surfaces throughout the human body, which may underline its function as a pattern recognition receptor in the innate immune system. FIBCD1 binds to ES antigens. Stimulation with ES antigens does not appear to be influenced by FIBCD1 transfection in vitro. FIBCD1 may play a role in whipworm infections in vivo.

A-31201
Deleted in Malignant Brain Tumours 1 affects intestinal regeneration during doxorubicin toxicity

Andreas A. Pedersen1,2, Sebastian von Huth2, Sönke Detlefsen3, Anders B. Nexoe2, Grith L. Sorensen2, Uffe Holmskov2, Steffen Husby1 & Mathias Rathe1

1Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark, 2Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark, and 3Department of Pathology, Odense University Hospital, Odense, Denmark

Gastrointestinal toxicity is a major dose-limiting adverse effect of chemotherapeutic treatment. The intestinal barrier and the adaptive immune system are compromised during treatment. Deleted in Malignant Brain Tumours 1 (DMBT1) is a secreted scavenger protein with effects on innate immunity and epithelial differentiation. We investigated the effect of Dmbt1 deletion on intestinal toxicity and inflammation after chemotherapeutic treatment in mice. C57BL/6 mice deficient in DMBT1 (KO) and wild-type (WT) littermates were treated with intraperitoneal injections of doxorubicin and terminated on day 3 (D3) or 7 (D7) after treatment. Intestinal inflammation and gastrointestinal toxicity was investigated through daily weighing, serum citrulline levels, histological evaluation and quantitative real-time PCR analysis of Dmbt1, Tnf, Il1b and Il6 gene expression.

Doxorubicin treatment induced wasting and gastrointestinal inflammation. Citrulline levels were lower in doxorubicin treated mice D3 compared to saline controls.