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Abstract. Air quality monitoring has become an integral part of smart city solu-
tions. This paper presents an air quality monitoring system based on Internet of
Things (IoT) technologies, and establishes a cloud-based platform to address the
challenges related to IoT data management and processing capabilities, including
data collection, storage, analysis, and visualization. In addition, this paper also
benchmarks four state-of-the-art database systems to investigate the appropriate
technologies for managing large-scale IoT datasets.
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1 Introduction

With the development of urbanization, cities are facing an increasing challenge to re-
duce the climate impact. Cities are the large energy consumers accounting for 80% of
the total carbon emissions [10]. Carbon emissions are mainly responsible for the green-
house effect, and close monitoring of carbon emissions is an effective way to reduce
the climate impact. Today more than 1,400 cities worldwide regularly report on their
greenhouse gas (GHG) emissions through the Carbon Climate Register and the Gover-
nors Convention initiative [1]. However, emissions monitoring at the city level is often
costly and time-consuming because they relate to a high degree of uncertainty. Most
cities in Europe do not currently possess the capacity to measure the actual emissions
within their urban space. On the other hand, carbon reduction has become a city devel-
opment strategy. For example, the European Union (EU) aims to cut its primary energy
consumption by 27% by 2030. In Denmark, the government has set the goal of reduc-
ing GHG emission by 40% by 2020, and becoming a fossil-fuel free country by 2050.
This requires innovating approaches to reporting air quality for politician and citizens
to make quick and effective decision makings. In this context, IoT technologies can be
used to address the challenge of real-time monitoring of air quality, such as the detection
of pollutant concentration levels and trends.

In this paper, we present an IoT-based air quality monitoring system developed un-
der our Carbon Track and Trace (CTT) project [3]. The system can track the real-time
greenhouse gas emissions at the urban-street level. This work makes the following con-
tributions: First, we present an IoT-based solution for air quality monitoring. Second, we
propose a cloud-based platform for managing air quality and other IoT related datasets,
which provides the necessary functionality for adding high-frequency sensor data and
accessing data from the database. Third, we develop a dashboard for presenting the in-
sight of the data. Fourth, we investigate and benchmark alternative database technolo-



gies for managing IoT datasets, including specialized time-series database, in-memory
columnar store, key-value store and relational database.

The rest of this paper is organized as follows. Section 2 describes the system design
and implementation. Section 3 benchmarks the state-of-the-art database systems for
managing IoT data. Section 4 surveys the related works. Section 6 concludes the paper
and present the future works.

2 System Design and Implementation
The system is designed with two purposes: one is to enable city officers, decision mak-
ers, citizens, and other stakeholders to visualize the emission measurements of the
whole city for decision making or monitoring purpose, while the other is to establish
a scalable data management system that can manage other IoT data used to study the
impact on the air quality, such as weather data and traffic data. The data management
system is required with a high scalability for supporting the large-scale deployments
of sensors within the cities in the future. Besides, the platform should ease the integra-
tion of new data sources, and provide standard access service for enabling the data to
be used by other applications or users. The system should make use of existing open
source technologies, including the IoT network, data management, and visualization
systems to reduce cost.

We develop the system based on the existing technologies, including sensors, sensor
platforms, and IoT network. Air quality data (including CO2 and NOx) are collected by
low-cost sensors deployed in outdoor environments. All sensor nodes are also equipped
with climate sensors for collecting weather conditions (e.g., ambient temperature, pres-
sure, wind speed and humidity) and particulate matter (PM) sensors for measuring dust
particle size (e.g., PM1, 2.5 and 10). The sensors collect these measurements every five
minutes and send them to the server on the cloud over Internet of Things network (TTN)
via a low-power LoRaWAN gateway. The server aggregates the data from the TTN and
saves them in the cloud database from which the dashboard reads the data to generate
real-time views. Figure 1 shows the system architecture. In order to achieve high scala-
bility, the architecture employs the distributed time series database, OpenTSDB [16], as
the cloud database for managing air quality data, as well as weather and traffic data for
correlation analysis. The reason for choosing OpenTSDB is that it is a NoSQL database
that can handle massive amounts of data which is anticipated. As air quality data and
their associated data (such as traffic and weather data) are captured, they will never be
updated or changed. We expect thousands of sensors to be deployed in the city in the fu-
ture. Therefore, it is preferable to select a distributed database to meet the city-scale IoT
data management. OpenTSDB provides REST-based services for adding and accessing
data, and supporting advanced queries for complex data analytics.

The time series of saving into OpenTSDB are given a unique name, called metric.
To discriminate different data sources, we add a prefix to the name of metric, e.g., AQ
for air quality data, TF for traffic data and WT for weather data. In addition, each time
series is labeled with multiple tags for its dimensions or features. A tag is a key/value
pair, and multiple tags can be combined to for doing complex queries. List 1 is an
example of a data point with a CO2 metric tagged with the device id (dev eui) and the
sensor location (longitude and latitude).



Fig. 1. Overview of the system architecture

Fig. 2. Data analysis and visualization on Zeppelin

We use Apache Zeppelin as the visualization platform to implement the dashboard
(see Figure 2). JavaScript is the programming language for implementing the visual-
ization program, which accesses the data from OpenTSDB, and generates the real-time
dashboard. The program is run on Zeppelin’s Web-based interface (see the top in Fig-
ure 2). The open source Leaflet map visualizes the deployment locations of the sensors
(see the middle in Figure 2). The real-time air quality time series will be displayed on
the bottom chart if a sensor location marker is clicked (see the bottom in Figure 2). The
chart is implemented using Highchart JavaScript library. The chart is updated dynami-
cally when a new reading has been received. The chart can also be exported as an iframe
to be embedded in other web pages, e.g., on a city government portal.



3 Benchmarking
3.1 Experimental settings

In this section, we will benchmark four representative database systems for managing
IoT data, including OpenTSDB [16], BerkeleyDB [15], PostgreSQL [21] and KDB+
[11]. They are the state-of-the-art database technologies in the following four cate-
gories: distributed time series database (OpenTSDB), key-value store (BerkelyeDB),
relational database (PostgreSQL), and column store (KDB+). BerkelyeDB and KDB+
are main memory based. KDB+ is the commercial database system, and we are per-
mitted to publish its benchmarking data. Only OpenTSDB is an distributed database
system. To align the settings, we evaluate OpenTSDB on a single server environment.

We benchmark the database systems in the private Cloud (SciCloud, www.science-
cloud.dk). A virtual machine instance is created, with 8 cores and 16GB RAM, run-
ning 64-bit Ubuntu 16.04. PostgreSQL 9.6 is used, with the settings “shared buffers =
4096MB, temp buffers = 512MB, work mem = 1024MB, checkpoint segments = 64”
and default values for the other configuration parameters. KDB+ and BerkeleyDB use
their default settings.

The test data are the messages streamed from sensors with 10 metrics. For n sensors,
the total number of time series (metrics) is 10× n. At present, since we have only 14
sensors, we use a data generator to generate more datasets, which simply replace the
numeric and string typed attribute values with random numbers. These values are not
important because we are only benchmarking the performance of the database systems.

3.2 Benchmarking methods

The purpose of the benchmarking is to evaluate the ability of the database systems (i)
to add incoming IoT data with a high speed, (ii) to store big IoT data over a long period
of the time, and (iii) to provide data as a service. We use the appropriate data model
supported by each database system for the benchmarking. This means that OpenTSDB
uses its default data model; BerkelyDB uses key-value pair data model, where device id
and metric id are saved as the key, bundled with the timestamp as a key object, and the
other attributes are saved as the value; PostgreSQL uses a relational data model, with
the table layout of (device id, metric, metric value, timestamp, tags) with a composite
index created on the device id and metric attribute; KDB+ uses a columnar data model
with its default settings.

The pseudocode for loading and querying is shown in Algorithm 1 and 2, respec-
tively. The target table is empty before loading. We insert the required number of data
points into the table, measure the elapsed time and calculate the throughput for ev-
ery 10,000 data points added. This approach allows us to investigate the impact of the
amount of data on the subsequent load performance. The target table is padded with
the data before the query is benchmarked. We are interested in evaluating the queries
that need to scan the table, such as aggregations of min, max, sum, or avg. Aggrega-
tion can be performed easily in OpenTSDB, PostgreSQL, and KDB+, but BerkelyeDB
is difficult because it is a key-value store which does not provide built-in aggregation
functions. Therefore, we use Algorithm 2 to benchmark the query for individual time
series and compare their performance.



Algorithm 1 Benchmark data loading
1: function LOAD( records, insertNumOfRecords)
2: T ←{} . Initialize the set of throughput
3: n← 0 . Inserted data point counter
4: st← Get the wall clock time
5: for all r ∈ records do
6: deviceId,metricId, timestamp,reading, tags← Get attribute values from r
7: addRecordToDB(deviceId, metricId, timestamp, reading, tags)
8: n← n+1
9: if i mod 10000 == 0 then
10: ed← Get the wall clock time
11: t← 10000/(ed− st)
12: T ← T

⋃
{t}

13: st← ed
14: if n == insertNumO f Records then
15: return

Algorithm 2 Benchmark data query
1: function QUERY(deviceId, metricId, queryNumOfRecords)
2: T ←{} . Initialize the set of throughput
3: n← 0 . Queried record counter
4: st← Get the wall clock time
5: for deviceId← 0...maxDeviceId do
6: for metricId← 0...maxMetricId do
7: cur← fetchRecordsOrderByTimestamp(deviceId, metricId)
8: while hasNext(cur) do
9: deviceId,metricId, timestamp,reading, tags← next(cur)
10: n← n+1
11: if i mod 10000 == 0 then
12: ed← Get the wall clock time
13: t← 10000/(ed− st)
14: T ← T

⋃
{t}

15: st← ed
16: if n == queryNumO f Records then
17: return

3.3 Benchmarking results

We now evaluate the loading and query performance of the four database systems using
the air quality IoT datasets. We generate two datasets for our testing: 1) big data set
contains 1 million sensors (with 10 metrics for each) and 2) small data set contains 10
thousand sensors. The reading interval is ten minutes, and the duration of the monitoring
is one day (a total of 144 data points). Thus, the total number of data points for the
big data set is 1.44 billion (i.e., 1000000× 10× 144) and its size is 198.8GB. In the
following, we will use the generated data to benchmark the performance of loading,
time series queries, and analysis.

Load performance. When loading, we use a bulk with the size of 10,000 for OpenTSDB.
For PostgreSQL, we use batch insertion with the same bulk size. For KDB+ and Berke-
leyDB, we use their default insert or add method. We measure the performance of load-
ing the big and small datasets, and show the results in Figure 3 and 4, respectively. The
loading test uses Algorithm 1, which measures the elapsed time per 10,000 operations
and calculates the corresponding throughput. The results are shown as box plots where
the red line represents the median of the throughput values, and the height represents
the variability. According to the results, KDB+ has the highest throughput, up to 38,000



Fig. 3. Throughput of loading big data set Fig. 4. Throughput of loading small data set

Fig. 5. Throughput of querying big data set Fig. 6. Throughput of querying small data set

operations per second. PostgreSQL shows a significant difference in loading different
sizes of datasets. The throughput of the small data set is 4.3 times the throughput of the
big data set. For the investigation, we use the Linux command vmstat to check IO and
find that for the big data set, the write latency is 5-15% longer than the small data set.
In addition, the I/O speed is quite variable, the read speed of 2-15MB/s and the write
speed of 0-10MB/s. This may be due to the construction of the index, which involves
reading the b-tree pages from disk to memory to update the index. According to the
height of box plots, KDB+ has the smallest variability.

We now compare the database sizes after the loading (see Table 1). PostgreSQL is
larger than the others because it saves the data in a de-normalized table, and uses extra
space for the index. In contrast, the tags in OpenTSDB are saved once in row keys,
which saves space. Although it has an additional index table, the table does not seem to
cause a significant increase in space usage. KDB+ ranks the second place of using the
least space which is due to the data compression in columns. BerkeleyDB hasn’t shown
space efficiency with its default settings.

Table 1. Database size after the loading the big data set
Raw data OpenTSDB PostgreSQL KDB+ BerkeleyDB
198.8GB 164.8GB 344.5GB 176.4GB 352.8GB

Time series query performance. After the loading experiment, the next step is to
benchmark query performance. The query time series is done by using Algorithm 2,
which scans each time series with specific metric and device ID. Figure 5 and 6 show
the results for the big and small datasets, respectively. The results indicate that the in-
memory-based solutions, KDB+ and BerkeleyDB, have better performance for time
series query.



Analysis query performance. Analysis query benchmarking is performed only on
OpenTSDB, PostgreSQL and KDB+ since Berkeley DB does not provide the oper-
ators for analysis queries. We compare three queries on CO2 emissions, which are
shown in Table 2. Different to PostgreSQL and KDB+ which support SQL statements,
OpenTSDB queries data through the RESTful interface, and a query is serialized as a
JSON object sent over HTTP to the query endpoint (see [16] for more details).

Table 2. Comparison of analysis queries

Analytic Queries
SELECT WHERE ORDER BY

metric dev eui value metric dev eui value metric dev eui value
Total number of readings ANY

√

Total CO2 emission
√ √

Top CO2 emission
√ √ √

(i) Total number of CO2 readings: Figure 7 shows the performance of counting the
total number of CO2 readings in the database with the load of the big data set. There
are different ways for counting the number of the readings. In this case, we test
using ”SELECT COUNT(*)” statements without and with specifying the attributes
(on metric or value attribute), respectively. The motivation for carrying out this test
is to quantify the implication on query performance for different encoding methods
used in different columns, e.g., in KDB+. But, for OpenTSDB, it doesn’t matter
which attribute is chosen for the counting. Therefore, the query times are the same
for the three tests, which are around 1.4 seconds. The query time of OpenTSDB is
longer than the other two systems. It is interesting to see that the counting on the
metric column in KDB+ takes a longer time than the value column. This illustrates
the trade-off for achieving better compression for the metric column and the dataset
overall, but it takes longer to access the compressed data.

(ii) Total CO2 emission: Figure 8 shows the results for the total CO2 emission query.
The times used by OpenTSDB and KDB+ increase steadily with more sensor data
added (indicated as the number of sensors). The performance of KDB+ far outper-
forms the other two systems, due to its memory-based technology.

(iii) Top CO2 emission: Figure 9 shows the results for the analysis of top CO2 emis-
sion. OpenTSDB and KDB+ show better performance than PostgreSQL, and the
times increase slightly with more sensor data. In contrast, the time by PostgreSQL
increases faster and almost linearly to the data size. In addition, PostgreSQL uses
more time when querying top CO2 emission, as compared to the time of querying
total CO2 emission in Figure 8, because additional time is required for ordering.

Discussion. Based on the results of the above experiments, we can observe that the
memory-based column store, KDB+, indicates the best load and query performance
for managing IoT data. KDB+ is a non-distributed database solution suitable for real-
time analysis of high-frequency time series data, e.g., IoT and trading data. Key-value
stores (e.g., BerkeleyDB), also displays good performance, but lack analysis opera-
tors, while these operators are often needed for providing data as a service (DaaS) to
other applications. IoT data are generated by many sensors, with the characteristics of
fine granularity, high frequency, high volume, and high dimensionality. Comparatively,



Fig. 7. CO2 reading number Fig. 8. Total CO2 emission Fig. 9. Top CO2 emission

it is challenging to use traditional databases, e.g., PostgreSQL, to manage this type
of datasets. The distributed open source time series database, OpenTSDB, has shown
good performance in both loading and query. Furthermore, OpenTSDB offers built-in
analytic operators for manipulating time series, which well suit our needs in the imple-
mentation of our monitoring system, i.e., open source, scalable, and good performance.

There are some limitations on this benchmarking work. Among them, OpenTSDB
is a distributed database system. Technically, it is unfair to compare with the others on
the single-server setting. Second, all database systems are evaluated under their most
basic settings, i.e., without advanced optimizations. There is still much room for opti-
mizing the performance for each system. For example, in PostgreSQL, the applicable
optimizations can be tuning different configuration settings, table partitioning, clustered
indexed, and using a normalized table, etc. For KDB+, it can use a partitioned table; and
for OpenTSDB, it can also tune different database settings, and ideally be tested on a
cluster. In addition, parallelism is worthwhile for the test, as well as testing more ad-
vanced analysis queries (e.g., time series or pattern similarity). However, through this
work, we have obtained the initial results of choosing a cloud database for managing
IoT data. Obviously, there are a lot of variables that can be considered to obtain com-
prehensive benchmarking results, for space reason we would like to leave this as our
future work.

4 Related Work
IoT-based air quality monitoring has received intensive research effort in recent years,
e.g., [4, 7, 17, 9, 22]. These efforts focus on the implementation of the IoT, whilst rarely
introduce how to manage IoT data. In contrast, we detail IoT data management, as well
as benchmark the alternative technologies. Several solutions have been proposed to
manage IoT data. Li et al. present a NoSQL-based storage system IOTMDB to manage
scalable IoT data and discuss how to store large-scale data efficiently [12]. However, it
is unclear how the data is visualized and accessed. Pintus et al. present a social web-
based system [20] of using MongoDB to store IoT data expressed in form of key-value
pairs. Ding et al. conversely use the relational data management system PostgreSQL
to store sensor data [6]. Di et al. present a document-oriented data model for storing
heterogeneous IoT data [5]. Contrary to these works, we take the air quality IoT data
management as an example, but emphasize the evaluation of IoT data management
technologies. We have conducted extensive experiments to compare different types of



database technologies: SQL and NoSQL, column and relational based, memory and
non-memory.

There is a large number of studies addressing database performance. Van et al. eval-
uate IoT data management on PostgreSQL, Cassandra, and MongoDB [24]. However,
the experiments are run between a physical server and a virtual machine, rather than
in a real cloud environment. Goldschmidt et al. evaluate the scalability and robustness
of three open source time series databases (OpenTSDB, KairosDB and Databus) in a
cloud environment, and the results indicate that KairosDB is the best to meet the ini-
tial assumptions about scalability and robustness [8]. Sanaboyina et al. evaluate the
time series databases OpenTSDB and InfluxDB in terms of energy consumption when
database read/write operations are carried out. Phan et al. compare the performance
and complexity of NoSQL databases with SQL databases (including MySQL, Mon-
goDB, CouchDB and Redis) [19]. IoT data (sensor readings) and multimedia data are
used for their evaluation. The comparison mainly focuses on MongoDB and MySQL,
and shows that MongoDB has better scalability. They conclude that scalability is a key
point that could potentially make NoSQL better than SQL databases. In our previous
work [14, 13], we evaluate the database systems and techniques for managing energy
time series data, including traditional, columnar store, and distributed databases. This
work focuses primarily on the ability to analyze the well-formatted energy consump-
tion data. IoT data are usually more complicated, for example, with different types,
formats, and complex metadata; and the data are often used by IoT applications for
different purposes. In addition, there is still a lack of technical work on the evaluation
of memory-based technologies for IoT data management. This paper bridges this gap
by evaluating the performance, and compares it to traditional and distributed database
technologies.

5 Conclusions and Future Work
Air quality monitoring has received increasing attention in recent years. Smart cities
necessitate effective tools for air quality monitoring and data management. In this paper,
we have presented an air quality monitoring system for smart cities, and established an
open source IoT-based platform including software and hardware. We have proposed a
scalable IoT data management solution for data collection, analytics and visualization.
For the benchmarking, we have evaluated four state-of-the-art database technologies
for managing large-scale IoT datasets, and conducted a comprehensive comparison by
experimenting on the server. According to the results, the memory-based column store
outperforms the others on a dedicated server environment, while the specialized time-
series database can also achieve high-throughput writes and reads.

For the future work, we will further improve the system by adding data analytic
capabilities, for example, to show the correlation between air quality and other factors
such as traffic and weather conditions. We will conduct a more comprehensive bench-
marking of database technologies for managing IoT data, and evaluate more advanced
analytic queries.
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