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 

Abstract—We report on a 116 Gbps on-off keying (OOK), 

4 pulse amplitude modulation (PAM) and 105 Gbps 8PAM 

optical transmitter using an InP-based integrated and packaged 

externally modulated laser for high speed optical interconnects 

with up to 30 dB static extinction ratio and over 100 GHz 3 dB 

bandwidth with 2 dB ripple. In addition, we study the trade-off 

between power penalty and equalizer length to foresee 

transmission distances with standard single mode fiber. 

 
Index Terms—distributed feedback laser (DFB), direct 

detection, electroabsorption modulator, optical interconnects. 

I. INTRODUCTION 

he third generation 400 Gbps client-side links are 

demanding a solution as the cloud services together with 

the huge size datasets are driving demand for bandwidth in 

datacenters [1],[2]. Potential solutions are under discussion 

within the IEEE P802.3bs 400 Gigabit Ethernet (GbE) Task 

Force [3]. One attractive solution is based on eight optical 

lanes (i.e., 8×50 Gbps/λ [4]) thanks to compatibility with 

existing building blocks for 100 GbE (drivers, lasers, and 

photodetectors with transimpedance amplifiers). However, 

large lane count increases complexity and power consumption 

resulting in higher costs [1]. More scalable and cost efficient 

approach is to reduce number of lanes and increase the 

bandwidth for a single lane. Four optical lanes at 100 Gbps net 

rate (i.e., 4×100 Gbps/λ [5]) are a promising solution in order 

to reduce complexity, power consumption and costs. 
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However, this task becomes even more challenging since it 

requires silicon and InP opto-electronic components with more 

than 70 GHz bandwidth. 

Advanced modulations formats are extensively studied for 

short reach applications: (1) pulse amplitude modulation 

(PAM) [6]-[16], (2) carrierless amplitude phase (CAP) 

modulation [17], or (3) discrete multi-tone (DMT) [13],[18]. 

Such formats allow for more efficient bandwidth utilization at 

the cost of complex digital signal processing (DSP), which 

also may result in a higher costs and power consumption. 

These demonstrations usually require long digital filters 

resulting in complicated implementations. Hence, consensus 

seems to evolve towards 4PAM [6]-[16] and on-off keying 

(OOK) [14],[19]-[23] as it saves complexity on the transmitter 

side. Limiting amplifiers and electrical multiplexers 

technologies up to 120 Gbps have already matured into 

products. However, cost-efficient optical modulators at this 

bandwidth are not commercially available yet. PAM may 

reduce the bandwidth requirements, but it also reduces the 

receiver sensitivity and significantly complicates the electrical 

side of the transmitter (i.e., digital to analogue converters 

(DACs), linear drivers etc.). Therefore, higher bandwidth 

optoelectronic components with simpler modulation formats 

seem to be the most practical. 

In this paper, we report on a cost-efficient integrated 

externally modulated laser (EML) with high bandwidth for 

116 Gbps OOK (the first time achieved on a single EML [20] 

with low complexity DSP) and linear enough to accommodate 

116 Gbps 4PAM and 105 Gbps 8PAM, while requiring a 

driving voltage of 2 Vpp, paving the way for high speed 

multilevel modulation formats. 

This paper is organized as follows. Section II summarizes 

the related works and provides description of the externally 

modulated laser. In Section III, the experiment setup is 

detailed. The experimental results are shown and 

complemented with system simulations in Section IV. The 

conclusions are drawn in Section V. 

II. EXTERNALLY MODULATED LASER 

A. Previous Experimental Demonstrations 

The optical transmitter is based on a monolithically 

integrated distributed feedback laser with traveling-wave 

electroabsorption modulator (DFB-TWEAM) designed by 
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KTH, fabricated by KTH and Syntune and packaged by 

u
2
t Photonics [22],[23]. In [23], the performance of already 

packaged DFB-TWEAM transmitter module for 100 Gbps 

data rate is evaluated experimentally using 100 meters long 

standard single mode fiber (SSMF) and 10 km optical link 

with dispersion management. In [21] successful field trial is 

demonstrated with transmission of 112 Gbps OOK signals 

using a purely electrical time division multiplexing-based 

system without DSP. A bit error rate (BER) performance 

below the forward error correction (FEC) threshold of 2·10
-3

 is 

achieved after transmission over 42 km field installed SSMF 

with dispersion management between Kista and Råsunda in 

Sweden. It is the first demonstration of a complete 112 Gbps 

ETDM system based on monolithically integrated transmitter 

[23] and receiver modules. 

B. Device Structure and Characterization 

The TWEAM is based on the 12 strain-compensated 

InGaAsP quantum wells/barriers (QWs) of around 9 nm 

thickness each. The total active length of modulator is 

180 µm. The gain section of the DFB is based on 7 QWs 7 nm 

thick grown by metal vapour phase epitaxy coupled with butt-

joint technique. The laser is 440 µm long with a grating 

designed to have most of the output power towards the 

modulator. Components are formed in standard ridge 

waveguide structures [22]. Figure 1 shows the power versus 

current for unbiased modulator, power versus bias voltage and 

the frequency response taken at 22º C [24]. As we can see 

from Fig. 1a, the threshold current is ~25 mA, and the slope 

efficiency is .04 W/A, which allows us to reach about 2 mW 

with only 80 mA driving current. Fig. 1b shows the static 

extinction ratio versus bias voltage. We can observe that the 

device has a static extinction ratio in the range of 20 to 35 dB. 

The dynamic extinction ratio during modulation is related to 

modulator bias voltage and swing of driving voltage. The S21 

curve of the device [22] (W1 connector) depicted in Fig. 1c 

clearly shows beyond 100 GHz 3 dB bandwidth, the highest 

reported bandwidth to the best of our knowledge, with less 

than 2 dB ripple in the pass band of the EML [22] which 

indicates high phase linearity. These figures of merits [22] are 

order of magnitude better than state-of-art EMLs for optical 

interconnects. 

III. EXPERIMENTAL SETUP 

Figure 2 shows the transmitter setup for 116 Gbps OOK,  

4PAM and 105 Gbps 8PAM with receiver setup including 

DSP (see Fig. 2a) and output optical spectrum of modulated 

signals (see Fig. 2b). In the OOK setup, two pseudo-random 

bit sequences with a word length of 2
15

-1 (PRBS15) at 

58 Gbps are first decorrelated and then multiplexed into a 

single 116 Gbps sequence. A 110 GHz traveling-wave limiting 

amplifier (TWA110 [25]) is used to drive the EML. In the 

4PAM setup, two PRBS15 are first decorrelated and then 

 
 

Fig. 1.  a) P(I) characteristics for unbiased modulator b) static extinction ratio characteristics c) S21 characteristics as measured in [22]. 
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Fig. 2.  a) Experimental setup. (PPG: pulse-pattern generator, Mux: Multiplexer, DAC: digital to analog converter Ƭ: Delay line, EDFA: erbium doped fiber 

amplifier, PD: Photodiode, DSO: digital storage oscilloscope, DSP: digital signal processing, LPF: low pass filter, FFE: Feed forward equalizer, DFE: decision-

feedback equalizer). b) Optical spectrum of the modulated signals (@ 0.01 nm resolution bandwidth). 
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passively combined into a 4PAM signal, which is then used to 

directly drive the EML. In the 8PAM setup, three PRBS15 

sequences at 35 Gbps are first decorrelated and then combined 

in a 3 bit DAC with 19 GHz analogue bandwidth. A 65 GHz 

linear amplifier is used to drive the EML. During 

measurements the bias voltage was kept at minus 2 volts and 

driving voltage was 2 Vpp for OOK, 8PAM and 1 Vpp for 

4PAM. The average output power was kept at minus 2 dBm in 

all cases. The receiver is composed of an Erbium doped fiber 

amplifier (EDFA), variable optical attenuator (VOA), a high 

bandwidth photodiode (PD) from u
2
t with a responsivity of 

0.5 A/W, and a 200 GSa/s, 70 GHz bandwidth Tektronix 

digital sampling oscilloscope (DSO) (DPO77002SX) for OOK 

as well as 4PAM setups, while 80 GSa/s, 33 GHz DSO - for 

8PAM setup. An automatic gain-controlled EDFA with fixed 

output power is employed as a pre-amplifier due to the low PD 

responsivity and the lack of transimpedance amplifier. The 

sampled signal is then processed offline using DSP. The clock 

recovery and resampling is performed on the received 

waveform. The signal is then downsampled to 1 sample per 

symbol for static/adaptive feed forward equalizer (FFE) with 

different number of taps to overcome inter symbol 

interference (ISI) or symbol-spaced adaptive decision-

feedback equalizer (DFE) with different configuration of feed-

forward taps (FFT) and feedback taps (FBT) to overcome ISI 

in presence of noise. The initial weights of the equalizer were 

obtained using training data with the normalized least-mean-

square (NLMS) algorithm before applying other data. A total 

number of 1.2 million bits are used for BER counting. The 

bandwidth limitation is due to limited effective 3 dB 

bandwidth on the transmitter side components used to 

generate electrical signals, while additional filtering occurs 

due to the limited DSO bandwidth, affecting the performance 

of OOK and 8PAM setups. 

IV. RESULTS AND DISCUSSIONS 

Obtained results provide the quantitative and qualitative 

performance evaluation of the optical transmitter for its 

capabilities to enable the third generation 400 Gbps client-side 

links for optical interconnects. Figure 3 shows BER curves for 

116 Gbps OOK (see Fig. 3a) and the qualitative measure in 

 
 

Fig. 3.  a) BER curves for 116 Gbps OOK. b) Received eye diagram without 

and with equalizer and histograms for 116 Gbps OOK at -2 dBm input power. 
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Fig. 4.  a) BER curves for 116 Gbps 4PAM. b) Received eye diagram without 

and with equalizer and histograms for 116 Gbps 4PAM at -2 dBm input power. 
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Fig. 5.  a) BER curves for 105 Gbps 8PAM. b) Received eye diagram without 

and with equalizer and histograms for 105 Gbps 8PAM at -2 dBm input power. 
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terms of eye diagram and the histogram distribution of the 

received signal (see Fig. 3b). BER curves are obtained using 

3-tap and 27-tap static filter, 3-FFT and 27-FFT adaptive FFE, 

and 3-FFT&3-FBT and 27-FFT&3-FBT DFE. One can 

observe that the use of 3-FFT&3-FBT DFE allows achieving 

below 7% FEC limit performance, which was further 

improved with larger lengths of equalizers. Adding small 

feedback in equalizer allows significantly improving the 

performance. We also observed that 27-tap static filter allows 

achieving almost the same performance as 3-FFT&3-FBT 

DFE. Performance is further improved by 3 dB (reduction in 

power penalty) with 27-FFT&3-FBT DFE. Figure 3b shows 

the received eye diagrams and histograms with and without 

equalizer for 116 Gbps OOK signal. We can see that the signal 

is limited by both ISI and noise. The histogram without 

equalizer shows level degeneration owing to the ISI which we 

also observed in the electrical signal. 

Figure 4 shows BER curves (see Fig. 4a), eye diagrams and 

histograms (see Fig. 4b) before and after equalizer for 

116 Gbps 4PAM. BER curves are obtained using same 

equalizers as in OOK case. We can see large degradation on 

the 4PAM signal owing to both higher sensitivity 

requirements and poor electrical signal performance at the 

transmitter. After equalizer one can observe that passive 

combining ratio is suboptimal (see transmitter design in 

Fig. 2a), which explains the worse performance. We use the 

EML to compensate this effect by driving it at high reverse 

bias voltage (-2 volts). We are able to improve the 

performance, however, this causes compression on the upper 

levels and thus a trade-off was found. By adding 3-FFT&3-

FBT DFE, a BER below FEC limit was achieved. We did not 

observe significant improvement by increasing the length of 

equalizer. 

Figure 5 shows BER curves for 105 Gbps 8PAM (see 

Fig. 5a) and eye diagram and the histogram distribution of the 

received signal (see Fig. 5b). Similarly to previous cases BER 

curves are obtained using same configuration as before. 

Sensitivity for 8PAM is lower than 4PAM, but thanks to the 

performance of the 3 bit DAC, the implementation penalty is 

lower. However, still some compression is observed. One can 

observe that the performance of 3-FFT&3-FBT DFE is below 

the 7% FEC limit. Still performance can be significantly 

improved (reduction in power penalty is 4dB with 27-tap static 

filter and 5 dB with 27-FFT&3-FBT DFE) with increased 

length of equalizer since the main bandwidth limitation is the 

19 GHz bandwidth of the DAC. Therefore, by ensuring 

sufficient bandwidth in the electrical domain, the optical 

transmitter has the potential of transmitting >100 Gbaud 

signals with low DSP requirements. 

Operational wavelength of the EML is around 1548 nm in 

these measurements. To complement the experiments we 

study chromatic dispersion tolerance for different modulation 

formats using Monte Carlo simulations. In simulation we 

assumed that all modulation formats are operated at 116 Gbps 

for a fair comparison. In simulations we focus on tolerance to 

chromatic dispersion (16ps/nm/km). Only bandwidth 

limitation is PD with responsivity of 0.5 A/W and 80 GHz 

bandwidth. Received power penalty as function of transmitted 

distance is shown in Fig.6. We obtain curves for 3-tap and 6-

tap static filter, 3-FFT and 6-FFT adaptive FFE, and 3-

FFT&3-FBT and 6-FFT&3-FBT DFE. For 1 dB power 

penalty, the 116 Gbps OOK format can be transmitted up to 

700 meters using 3-FFT&3-FBT DFE. The distance for 116 

Gbps 4PAM can be increased about three times compared to 

OOK for same penalty and equalizer parameters. In case of 

116 Gbps 8PAM, the dispersion penalty will be below 1 dB at 

3 km distance using only a 3-tap static filter. 

We point out that the microwave design of the transmitter 

can be applied to a semiconductor material with larger 

bandgap in order to achieve modulation at another operation 

wavelength [23]. Then transmission distances over SSMF can 

be significantly improved. 

V. CONCLUSIONS 

We report on the performance of an EML with higher than 

100 GHz bandwidth for optical interconnects. We 

experimentally validate its potential for fast optical 

interconnects by transmitting 116 Gbps OOK, 4PAM and 

105 Gbps 8PAM signals. Furthermore, this is the first time 

[20] that 116 Gbps OOK is achieved on a single EML based 

 
 

Fig. 6.  Received power penalty as function of transmitted distance for 116 Gbps OOK, 4PAM and 8PAM for different equalizer configurations (see inset). 
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optical transmitter with low complexity DSP. We study the 

trade-off between power penalty and equalizer length using 

Monte Carlo simulations. According to simulation results, a 

transmission of 3 km standard single mode fiber with less than 

1 dB dispersion penalty using only 3-tap static filter for 

116 Gbps 8PAM seems to be possible. We conclude that, 

provided sufficient bandwidth and linearity on the electrical 

domain, this optical transmitter can be used for advanced 

modulation formats at higher than 100 Gbaud. 
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Applied Optics, Optics Express, and Photonics Research. 
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worked as Assistant Manager (Optical Systems and Networks 

Research) at Sterlite Technologies Ltd., India from August, 

2013 to June, 2014. He joined KTH/Acreo High Speed 

Transmission Lab as EU Marie Curie Early Stage Researcher 

in August, 2014 where he is currently pursuing his PhD in 

coherent optical communications. 

 

 

 

Aleksejs Udalcovs received the degree of Doctor of 
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Since the end of 2016, he is a postdoctoral researcher at the 
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Generation (TNG) project. 
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publication. 

 

 

 

Richard Schatz was born 1963 and has since 1987 conducted 
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He spent 1992-1993 as a Visiting Scientist at AT&T Bell 
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transmitters (edge emitter lasers, VCSELs and modulators) 
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the Danish Telecom Research Lab. From 1997 to 2002 he was 
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